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periodic solutions in a bilinear oscillator whose one spring has nearly infinite 
stiffness. This leads to a singularly perturbed problem where the classical theory 
does not apply.
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1. Introduction

Since the observation by Glover, Lazer and McKenna [13] that a simple bilinear oscillator (i.e. harmonic 
oscillator with an elastic obstacle) can be used in the explanation of the failure of the Tacoma bridge, 
the study of periodic oscillations in bilinear oscillators received a lot of attention (see [2,6,8,16,20,24,29,32]
among others). Most recently, the analysis of the dynamics of bilinear oscillators helped to understand the 
loss of image quality in atomic force microscopy, see [25,30]. More applications that involve the bilinear 
oscillator as a component can be found in survey [19].

The analysis in this paper concerns the following prototypic version of the bilinear oscillator

ẍ + x = εf(t, x, ẋ, ε), x > 0,

ẍ + 1
ε2(ωε)2

x = g(t, x, ẋ, ε), x ≤ 0,
(1)

which can be viewed as a perturbed regularization of the impact oscillator
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ẍ + x = 0, x > 0,
ẋ(t− 0) = −ẋ(t + 0), x(t) = 0,

(2)

in the terminology of [27]. Here f and g are smooth scalar functions, ε > 0 is a small parameter, and 
ωε → ω0 ∈ R as ε → 0. The second equation of (1) can be considered as a smooth approximation of the 
impact law of (2), see [10, Section 1.2.4]. An energy dissipation approach comparing the dynamics of systems 
(1) and (2) is proposed in [4]. A comprehensive bifurcation analysis of a version of (1) is carried out in [24], 
in which paper the stroboscopic map (period map) for (1) is taken as a regularization of the stroboscopic 
map of (2). A direct proof of the existence of periodic solutions for general versions of (1) is accomplished in 
[8], but stability of periodic solutions was not analyzed. At the same time, the knowledge about asymptotic 
stability of periodic oscillations of (1) is of crucial importance in such applications of bilinear oscillator as 
e.g. regularization of non-deformable contacts in rigid-body mechanics ([1,15,16,22]) or in electro-mechanical 
systems ([26]). Because system (2) doesn’t admit an isolated periodic solution, the standard methods of 
singularly perturbation theory (see e.g. [31]) don’t apply. To establish stability of periodic solutions to (1), 
the present paper develops an appropriate averaging principle, which approach has been earlier used in the 
context of impact oscillator in [3,7,11].

The main assumption of our approach is π-periodicity of the right-hand-sides of (1) in time. This doesn’t 
mean that the period of the excitation coincides with the period of self-oscillations in (1) because a part of 
functions f and g can be viewed as small detuning of self-oscillations away from period π (the role of this 
detuning is played by the term εax in the example of Section 3). However, π-periodicity of the right-hand-
sides of (1) implies that the period of excitation in (1) is close to the period of self-oscillations of (1), i.e. 
this paper deals with so-called resonant periodic solutions.

Linear system (2) can be viewed as an approximation of a nonlinear impact system of center type in the 
case where the dependence of the period-function on the coordinate is negligible compared to perturbation. 
When the dependence of the periods of the cycles of unperturbed system (2) on the initial condition is 
essential and cannot be neglected, the properties of the above-mentioned period-function have to be taken 
into account when constructing the averaging function, see [13]. As shown in [13] for the case of a piecewise 
smooth oscillator with bounded (in ε) terms, non-vanishing derivative of the period-function helps to reduce 
the dimension of the averaging function to 1. We expect that the same reduction is possible in the case of 
oscillator (1) with the unbounded entry 1/ε2, but we don’t pursue this analysis in the present paper. Similar 
reduction of the dimension of the averaging function is expected when the obstacle of the oscillator is located 
at some x > 0 as opposed to x = 0 that we assume in (1). Indeed, placing the obstacle at x > 0 implies that 
the periods of the cycles of (2) depend on the initial condition in the same way how periods of the cycles of 
(2) depend on the initial condition when (2) bounces at x = 0, but nonlinear. Another potentially interesting 
extension that lies outside of the scope of the paper is the case where the cycles of system (2) share the 
same period which is incommensurable with the periods of excitations f and g. As shown in [24] various 
chaotic regimes are possible here. At the same time, following the classical result by Bogolyubov (see [5, 
Section 29]), one can also investigate the occurrence of asymptotically stable almost periodic solutions, but 
the construction of the averaging function will need to involve integration over an infinite interval. In the 
case of discontinuous system (1) computation of such an integral will lead to summation over a countable 
number of switchings. A useful source in this regard can be the papers [9,12] which compute improper 
integrals (Melnikov integrals) for discontinuous systems in the context of homoclinic solutions.

The paper is organized as follows. In the next section we prove Theorem 1, which is our main result. This 
theorem introduces an analogue of the subharmonic Melnikov function P̄ (A, θ) (also known as bifurcation 
function or averaging function, see [14]). Stable zeros of P̄ (A, θ) correspond to the cycles of the limiting 
system (2) that transform to asymptotically stable periodic solutions of (1) as ε crosses 0. The proof 
is based on the analysis of the associated period-map that comes by appropriately combining the slow 
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part of the flows of system (1) on x > 0 and the fast part corresponding to x < 0. An example with 
particular choices of the right-hand-sides f(t, x, ẋ, ε) = −ax − c1ẋ+μ1ẋ(1 − ẋ2) + γ sin 2t and g(t, x, ẋ, ε) =
−(c2 + εc1)ẋ + (μ2 + εμ1)ẋ(1 − ẋ2) + εγ sin 2t is presented in Section 3, where an explicit condition for 
the occurrence of π-periodic solutions in (1) is obtained in terms of the parameters a, c1, μ1, γ, c2, μ2. 
Same section features numeric simulations confirming our theoretic predictions. The respective Wolfram 
Mathematica Notebook (where we also computed the function P̄ (A, θ) of the example of Section 3) is 
uploaded as a supplemental material. A conclusions section concludes the paper.

2. Main result

The main achievement of the paper is the following bifurcation function that allows to judge about the 
occurrence of resonant periodic solutions in (1):

P̄ (A, θ) = −
π/2−θ∫
0

(
sin(τ + θ)

(1/A) cos(τ + θ)

)
(f(τ, A cos(τ + θ),−A sin(τ + θ), 0)+2ω0A cos(τ + θ))dτ

−
π∫

π/2−θ

(
sin(τ + θ + π)

(1/A) cos(τ + θ + π)

)
(f(τ, A cos(τ + θ + π),−A sin(τ + θ + π), 0)+2ω0A cos(τ + θ + π))dτ

−ω0

π∫
0

(
sin (s + π/2)

0

)
g (π/2 − θ, 0,−A sin (s + π/2) , 0) ds.

Naturally, when ω0 = 0 and θ = π/2, this function coincides with the averaging function of the forced linear 
oscillator, see e.g. [5,28].

We prove the following theorem.

Theorem 1. Let f, g ∈ C1(R ×R ×R, R) be π-periodic with respect to the first variable. If equation (1) has 
a π-periodic solution xε for all ε > 0 sufficiently small and

(xε(0), ẋε(0)) → (x0, v0) as ε → 0, with x0 > 0, (3)

then

P̄ (A0, θ0) = 0 (4)

for (A0, θ0) ∈ (0, ∞) × (−π/2, π/2) given by

(x0, v0) = (A0 cos θ0,−A0 sin θ0). (5)

Conversely, if (4) holds for some (A0, θ0) ∈ (0, ∞) × (−π/2, π/2) and

det P̄ ′(A0, θ0) �= 0, (6)

then, for any ε > 0 sufficiently small, equation (1) has a unique π-periodic solution xε satisfying (3)
with (x0, v0) given by (5). Assume additionally, that the matrix P̄ ′(A0, θ0) is diagonalizable over C, i.e. 
P̄ ′(A0, θ0) admits two eigenvalues. Then the solution xε is attracting (asymptotically stable), repelling, or 
a saddle according to whether the real parts of the two eigenvalues of P̄ ′(A0, θ0) are both negative, both 
positive, or have opposite signs.
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Fig. 1. Left: The three pieces of the cycle of (9)–(10) with the initial condition at the dotted point: 1) from the initial condition to 
the time of switching from x > 0 to x < 0 (dashed), 2) from the latter switching to the switching from x < 0 to x > 0 (solid), 
3) from the latter switching to π (dotted). Right: Illustration of the change of variables (15)–(17).

Proof. Rewrite system (1) as follows

ẍ + 1
(1 − εωε)2

x = εf(t, x, ẋ, ε)+2ε ωε

(1 − εωε)2
x− ε2 (ωε)2

(1 − εωε)2
x, x > 0, (7)

ẍ + 1
ε2(ωε)2

x = g(t, x, ẋ, ε), x < 0, (8)

and consider the reduced system

ẍ + 1
(1 − εωε)2

x = 0, x > 0, (9)

ẍ + 1
ε2(ωε)2

x = 0, x < 0. (10)

The idea behind separating the reduced system (9)–(10) is that any solution of (9)–(10) is π-periodic. To 
see this, observe that equations (9) and (10) are symmetric about x = 0. Therefore, the switching threshold 
x = 0 cuts exactly half of the cycle in equation (9) and exactly half of the cycle in equation (10). In other 
words, the period T of any cycle of (9)–(10) is the sum of (i) half of the period of cycles of (9) (denote this 
half by T+) and (ii) half of the period of cycles of (10) (denote this half by T−). Referring to Fig. 1 (left), 
the period T+ represents the combined duration of dashed and dotted arcs, while the period T− represents 
the duration of the solid arc. Now recall that the full period of cycles of a linear oscillator ẍ+kx = 0 equals 
2π/

√
k, so that half of this period is π/

√
k. Therefore, T+ = π/

√
1/(1 − εωε)2 = (1 −εωε)π and T− = εωεπ. 

Summing up, T = T+ + T− = π. Moreover, since equations (9)–(10) are linear we can construct periodic 
cycle with any initial condition (x̄(0), ˙̄x(0)) = (x, v), x > 0, in closed-form to get

(
x̄
˙̄x

)
= A

⎛⎜⎜⎝ cos
(

1
1 − εωε

(t + θ)
)
,

− 1
1 − εωε

sin
(

1
1 − εωε

(t + θ)
)
⎞⎟⎟⎠ =: Ω1,ε(A, t + θ), t + θ ∈

[
θ,

π

2 (1 − εωε)
]
, (11)

(
x̄
˙̄x

)
= A

1 − εωε

⎛⎜⎜⎝ εωε cos
(

1
εωε

(t + θ − π

2 (1 − εωε)) + π

2

)
− sin

(
1

εωε
(t + θ − π

2 (1 − εωε)) + π

2

)
⎞⎟⎟⎠ =: Ω2,ε(A, t + θ),

t + θ ∈
[π (1 − εωε),

π (1 + εωε)
]
, (12)
2 2
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(
x̄
˙̄x

)
= Ω1,ε(A, t + θ + π + 2πεωε) =: Ω3,ε(A, t + θ), t + θ ∈

[π
2 (1 + εωε), θ + π

]
, (13)

where (A, θ) computes from

(
x

v

)
= A

⎛⎜⎜⎝ cos
(

1
1 − εωε

θ

)
,

− 1
1 − εωε

sin
(

1
1 − εωε

θ

)
⎞⎟⎟⎠ . (14)

The three formulas (11), (12), and (13) describe the dashed, solid, and dotted pieces of the cycle as shown 
at Fig. 1 (left).

The method we follow now is a standard tool of nonlinear dynamics used to analyze weakly nonlinear 
systems at resonance, see e.g. [5, Sections 14–15]. Since we expect that solutions of the full system (7)–(8)
are close on the interval [0, π] to the solutions of the reduced system (9)–(10), we will search for solutions of 
(7)–(8) in the form of (11)–(13), where the constant function t �→ A and the linear function t �→ t + θ will 
be unknown functions t �→ A(t) and t �→ θ(t) located ε-close to t �→ A(0) and t �→ t + θ(0). To implement 
this idea, we now view A and θ as new variables (i.e. functions) and use formulas (11)–(13) to introduce 
the following change of the variables in the full system (7)–(8):(

x

ẋ

)
= Ω1,ε(A, θ), θ ∈

[
−π

2 (1 − εωε),
π

2 (1 − εωε)
]
, (15)

(
x

ẋ

)
= Ω2,ε(A, θ), θ ∈

[π
2 (1 − εωε),

π

2 (1 + εωε)
]
, (16)

(
x

ẋ

)
= Ω3,ε(A, θ), θ ∈

[π
2 (1 + εωε),

π

2 (3 − εωε)
]
. (17)

Since A(t) in (15)–(17) is no longer a constant (but close to a constant) and since θ(t) is no longer t +θ (but 
close to t + θ), the three curves (15), (16), and (17) now slightly deviate from their unperturbed (ε = 0) 
counterparts (11), (12), and (13), as Fig. 1 (right) illustrates. The change of the variables (15)–(17), as 
expected, transforms equations (7)–(8) to the following system(

Ȧ
θ̇

)
=

(
0
1

)
+ εG1(t, A, θ, ε), if θ ∈

[
−π

2 (1 − εωε),
π

2 (1 − εωε)
]
, (18)(

Ȧ
θ̇

)
=

(
0
1

)
+ εG2(t, A, θ, ε), if θ ∈

[π
2 (1 − εωε),

π

2 (1 + εωε)
]
, (19)(

Ȧ
θ̇

)
=

(
0
1

)
+ εG3(t, A, θ, ε), if θ ∈

[π
2 (1 + εωε),

π

2 (3 − εωε)
]
, (20)

where, for j ∈ {1, 3},

Gj(t, A, θ, ε) = (1 − εωε)2
(

0 1/A
−1/A2 0

)
Ωj,ε(A, θ)

⎛⎝f(t,Ωj,ε(A, θ), ε) − ωε(−2 + εωε)
(1 − εωε)2

(
1
0

)T

Ωj,ε(A, θ)

⎞⎠,

and G2(t, A, θ, ε) = 1
ε
(1 − εωε)2

(
0 1/A

−1/A2 0

)
Ω2,ε(A, θ)g (t,Ω2,ε(A, θ), ε).
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Let (A0, θ0) be as given by the formulation of the theorem. In what follows, we restrict our analysis to 
some neighborhood BΔ(A0, θ0) of (A0, θ0), where Δ > 0 will be defined later. By [y]i we will denote the ith 
component of a vector y.

Step 1. Construction of the Poincaré map Pε for system (18)–(20). First we show that solution t �→
(Ā(·, A, θ, ε), θ̄(·, A, θ, ε)) of (18)–(20) on [0, π] can be consequently sewed by solutions of systems (18), 
(19) and (20).

Denote by t �→ (Āi(·, t0, A, θ, ε), θ̄i(·, t0, A, θ, ε)), i = 1, 2, 3, the solutions of (18), (19), (20) respectively with 
the initial condition (A, θ) at time t0. Define Δ > 0 so that [Ω1,0(A, θ)]1 ≥ 0, for all (A, θ) ∈ B2Δ(A0, θ0). 
Then, there exists ε0 > 0 such that

[Ω1,ε(A, θ)]1 ≥ 0, for all (A, θ) ∈ BΔ(A0, θ0), ε ∈ [0, ε0].

Put

F1(T,A, θ, ε) = 1
1 − εωε

θ̄1(T, 0, A, θ, ε) − π

2 .

Since F1

(π
2 − θ0, A0, θ0, 0

)
= θ̄1

(π
2 − θ0, 0, A0, θ0, 0

)
− π

2 = 0 and

(F1)T
(π

2 − θ0, A0, θ0, 0
)

= θ̄T

(π
2 − θ0, 0, A0, θ0, 0

)
= 1

then by the implicit function theorem [17, Chapter X, Section 2, Theorems 1 and 2], Δ > 0 and ε0 > 0 can 
be reduced so that a continuously differentiable function T1(A, θ, ε) is defined on (A, θ) ∈ BΔ(A0, θ0) and 
ε ∈ [0, ε0], for which

T1(A, θ, ε) → π

2 − θ0, as (A, θ, ε) → (A0, θ0, 0), (21)

and

F1(T1(A, θ, ε), A, θ, ε) = 0, (A, θ) ∈ BΔ(A0, θ0), ε ∈ [0, ε0].

Or, equivalently,

1
1 − εωε

θ̄1(T1(A, θ, ε), 0, A, θ, ε) = π

2 , (A, θ) ∈ BΔ(A0, θ0), ε ∈ [0, ε0].

Therefore, the time when the solution of system (18) with the initial condition (A, θ) at t = 0 approaches 
the threshold between systems (18) and (19) equals T1(A, θ, ε). Using that θ0 ∈ (−π/2, π/2) (as given by 
the assumptions of the theorem) and (21), we can reduce Δ > 0 and ε0 > 0 further to have

T1(A, θ, ε) > 0, for all (A, θ) ∈ BΔ(A0, θ0), ε ∈ [0, ε0].

Now we show that, for any (A, θ) ∈ BΔ(A0, θ0) and ε ∈ [0, ε0], the solution(
Ā2
θ̄2

)(
·, T1(A, θ, ε), Ā1(T1(A, θ, ε), A, θ, ε), π2 (1 − εωε), ε

)
,

stays till some time T2(A, θ, ε) in
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[0,∞) ×
[π
2 (1 − εωε),

π

2 (1 + εωε)
]

and that T2(A, θ, ε) is given by

T2(A, θ, ε) = T1(A, θ, ε) + εT̃2(A, θ, ε),

where T̃2(A, θ, ε) is a continuously differentiable bounded function. To do this, consider

F2(T,A, θ, ε)

=

⎧⎪⎨⎪⎩
1

εωε

(
θ̄2

[
T1(A, θ, ε) + εT, T1(A, θ, ε), Ā1(T1(A, θ, ε), A, θ, ε), π2 (1 − εωε), ε

]
− π

2 (1 − εωε)
)
− π, ε > 0,

1
ω0

T − π, ε = 0.

Let us verify that the function F2 satisfies the assumptions of the implicit function theorem at the point 
(T, A, θ, ε) = (ω0π, A0, θ0, ε). Since

π

2 (1 − εωε) = θ̄2

(
T1(A, θ, ε), T1(A, θ, ε), Ā1(T1(A, θ, ε), A, θ, ε), π2 (1 − εωε), ε

)
,

by the mean-value theorem,

lim
ε→0

F2(T,A, θ, ε)

= lim
ε→0

1
εωε

(θ̄2)T
(
T1(A, θ, ε) + λ(A, θ, ε)εT, T1(A, θ, ε), Ā1(T1(A, θ, ε), A, θ, ε), π2 (1 − εωε), ε

)
εT − π

= 1
ω0

T − π,

that is F2 is continuous at ε = 0 (here λ(A, θ, ε) ∈ [0, 1] is the constant given by the mean-value theorem). 
Furthermore, we have

(F2)T
(π

2 − θ0 + π,A0, θ0, 0
)

= 1
ω0

�= 0.

Therefore, the implicit function theorem allows as to again reduce Δ > 0 and ε0 > 0 to have a continuously 
differentiable function T̃2(A, θ, ε) defined on (A, θ) ∈ BΔ(A0, θ0) and ε ∈ [0, ε0], such that

T̃2(A, θ, ε) → ω0π as ε → 0

and

1
εωε

(
θ̄2(T1(A, θ, ε) + εT̃2(A, θ, ε), T1(A, θ, ε), A1(T1(A, θ, ε), A, θ, ε), π2 (1 − εωε), ε) −

π

2 (1 − εωε)
)

= π,

for all (A, θ) ∈ BΔ(A0, θ0), ε ∈ [0, ε0]. Since

θ̄3

(
π, T1(A, θ, ε) + εT̃2(A, θ, ε),A,

π

2 (1 + εωε), ε
)
→ θ̄3

(
π,

π

2 − θ,A,
π

2 , 0
)

= π + θ, as ε → 0,

where A = Ā2

(
T1(A, θ, ε) + εT̃2(A, θ, ε), T1(A, θ, ε), Ā1(T1(A, θ, ε), A, θ, ε), π2 (1 − εωε), ε

)
,

the constants Δ > 0 and ε0 > 0 can be reduced further so that the solution (A(t), θ(t)) of (20) with the initial 
condition 

(
A,

π (1 + εωε)
)

satisfies [Ω3,ε(A(t), θ(t))]1 ≥ 0 on the time-interval (T1(A, θ, ε) + εT̃2(A, θ, ε), π].
2
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Summarizing, we can define the solution t �→
(
Ā(t, A, θ, ε), θ̄(t, A, θ, ε)

)
of system (18)–(20) as follows(

Ā
θ̄

)
(t, A, θ, ε) =

(
Ā1
θ̄1

)
(t, 0, A, θ, ε), if t ∈ [0, T1(A, θ, ε)],(

Ā
θ̄

)
(t, A, θ, ε) =

(
Ā2
θ̄2

)(
t, T1(A, θ, ε), Ā(T1(A, θ, ε), A, θ, ε), π2 (1 − εωε), ε

)
, if t ∈ (T1(A, θ, ε), τ ],(

Ā
θ̄

)
(t, A, θ, ε) =

(
Ā3
θ̄3

)(
t, τ, Ā(τ, A, θ, ε), π2 (1 + εωε), ε

)
, if t ∈ (τ, π], τ = T1(A, θ, ε) + εT̃2(A, θ, ε).

Define the Poincaré map of system (18)–(20) as

Pε(A, θ) =
(
Ā
θ̄

)
(π,A, θ, ε).

There should be no confusion between the usage of subindex to denote a partial derivative and a parameter 
throughout the paper. The subindex of a function stays for the parameter, when the given subindex is not 
listed as a variable of the function. In other words ε denotes a parameter in the notation Pε(A, θ) and ε
would denote a partial derivative with respect to ε in the notation Pε(A, θ, ε).

The solution x(t) of system (7)–(8) with the initial condition (x, v) can be computed from the solution (
Ā
θ̄

)
(t, Ω−1

1,ε(x, v)) by applying the change of the variables (15)–(17).

Step 2. Computing the leading order term of the expansion of Pε in ε. Let us decompose Pε as

Pε(A, θ) =
(

A
θ+π

)
+ ε(P̄ε,1(A, θ) + P̄ε,2(A, θ) + P̄ε,3(A, θ)),

where

P̄ε,1(A, θ) =
T1(A,θ,ε)∫

0

G1(τ, Ā(τ, A, θ, ε), θ̄(τ, A, θ, ε), ε)dτ,

P̄ε,2(A, θ) =
T1(A,θ,ε)+εT̃2(A,θ,ε)∫

T1(A,θ,ε)

G2(τ, Ā(τ, A, θ, ε), θ̄(τ, A, θ, ε), ε)dτ,

P̄ε,3(A, θ) =
π∫

T1(A,θ,ε)+εT̃2(A,θ,ε)

G3(τ, Ā(τ, A, θ, ε), θ̄(τ, A, θ, ε), ε)dτ.

Since sin, cos and g are bounded on any bounded set then from system (18)–(20), we have that(
Ā(t, A, θ, ε)
θ̄(t, A, θ, ε)

)
→

(
A

t + θ

)
as ε → 0

uniformly with respect to t ∈ [0, π] and (A, θ) ∈ BΔ(A0, θ0). This gives

P̄ε,1(A, θ) →
T1(A,θ,0)∫

0
G1(τ, A, τ + θ, 0)dτ,

P̄ε,3(A, θ) →
π∫

G3(τ, A, τ + θ, 0)dτ, as ε → 0,
(22)
T1(A,θ,0)
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uniformly with respect to (A, θ) ∈ BΔ(A0, θ0). Since we proved that T1 is continuously differentiable, then 
(22) implies that

(P̄ε,1)′(A, θ) → (P0,1)′(A, θ),

(P̄ε,3)′(A, θ) → (P0,3)′(A, θ), as ε → 0,

uniformly with respect to (A, θ) ∈ BΔ(A0, θ0).

Let us now study the behavior of P̄ε,2 and (P̄ε,2)′ as ε → 0. We have

P̄ε,2(A, θ) = −(1 − εωε)
T1(A,θ,ε)+εT̃2(a,θ,ε)∫

T1(A,θ,ε)

⎛⎜⎜⎜⎝
1
ε

sin ξ(τ)

1
Ā(τ, A, θ, ε)

(1 − εωε)ωε cos ξ(τ)

⎞⎟⎟⎟⎠
×g

(
τ, εĀ(τ, A, θ, ε)ωε cos ξ(τ)

1 − εωε
,−Ā(τ, A, θ, ε) sin ξ(τ)

1 − εωε
, ε

)
dτ, ξ(τ) = 1

εωε

(
θ̄(τ, A, θ, ε) − π

2 (1 − εωε)
)

+ π

2 .

Scaling the time in the integral as τ = T1(A, θ, ε) + εωεs, we get

P̄ε,2(A, θ) = −ωε(1 − εωε)
T̃2(A,θ,ε)/ωε∫

0

⎛⎜⎜⎝
sin ξ(τ)

ε
1

Ā(ζ(s), A, ω, ε)
(1 − εωε)ωε cos ξ(s)

⎞⎟⎟⎠
×g

(
ζ(s), εĀ(ζ(s), A, θ, ε) ωε

1 − εωε
cos ξ(s),−Ā(ζ(s), A, θ, ε) 1

1 − εωε
sin ξ(s), ε

)
ds,

ξ(s) =
(

1
εωε

(
θ̄(T1(A, θ, ε) + εsωε, A, θ, ε) − π

2 (1 − εωε)
)

+ π

2

)
, ζ(s) = T1(A, θ, ε) + εωεs.

Put

K(A, θ, ε) = 1
ε

(
θ̄(T1(A, θ, ε) + εωεs,A, θ, ε) − θ̄(T1(A, θ, ε), A, θ, ε)

)
.

Since

1
ε

(
θ̄(T1(A, θ, ε) + εωεs,A, θ, ε) −

π

2 (1 − εωε)
)

= K(A, θ, ε) → θ̄T (T1(A, θ, 0), A, θ, 0)ω0s = ω0s, as ε → 0,

then

P̄ε,2(A, θ) → −ω0

π∫
0

(
sin

(
s + π

2

)
0

)
g
(π

2 − θ, 0, A sin
(
s + π

2

)
, 0
)

ds, as ε → 0,

uniformly with respect to (A, θ) ∈ BΔ(A0, θ0). Since K(A, θ, ε) converges as ε → 0 uniformly in (A, θ) ∈
BΔ(A0, θ0), then K(A,θ)(A, θ, ε) → K(A,θ)(A, θ, 0) as ε → 0. Therefore,

(P̄ε,2)′(A, θ) → (P̄0,2)′(A, θ) as ε → 0

uniformly with respect to (A, θ) ∈ BΔ(A0, θ0).
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To conclude, we proved that the Poincaré map Pε(A, θ) of system (18)–(20) can be decomposed as

Pε(A, θ) =
(

A

θ + π

)
+ εP̄ε(A, θ), where P̄ε(A, θ) → P̄ (A, θ) and (P̄ε)′(A, θ) → P̄ ′(A, θ) as ε → 0, (23)

uniformly with respect to (A, θ) ∈ BΔ(A0, θ0).

Step 3. Linking π-periodic solutions of initial system (7)–(8) to the properties of the Poincaré map Pε. For 
given ε ∈ [0, ε0] and (x̄, ̄v) ∈ Ω1,ε(BΔ(A0, θ0)), let x(t) be the solution of system (7)–(8) with the initial 
condition (x(0), ẋ(0)) = (x̄, ̄v). Define the Poincaré map Pε of system (7)–(8) as Pε(x̄, ̄v) = (x(π), ẋ(π)). 
Fixed points of the map Pε are the initial conditions of π-periodic solutions of system (7)–(8). Furthermore, 
stability of fixed points of Pε coincides with stability of corresponding π-periodic solutions of system (7)–(8). 
To investigate fixed points of Pε we recall that according to the change of the variables (15)–(17), Pε and 
Pε are linked by the formula

Pε(x, v) = Ω3,ε(Pε(Ω−1
1,ε(x, v))). (24)

Therefore, (x, v) is a fixed point of Pε if and only if

Pε(Ω−1
1,ε(x, v)) = Ω−1

3,ε(x, v). (25)

In order to make use of (23) we now want to rewrite (25) in terms of(
A

θ

)
= Ω−1

1,ε(x, v). (26)

Therefore, given (26) we need to find Ω−1
3,ε(x, v). This means that given (A, θ) ∈ BΔ(A0, θ0) we have to find 

(A∗, θ∗) with θ∗ ∈
[π
2 (1 + εωε), π

]
such that

Ω1,ε(A, θ) = Ω3,ε(A∗, θ∗).

Using (15) and (16), the above equality leads to A = A∗ and 
1

1 − εωε
θ + 2π = 1

1 − εωε
(θ∗ − 2πεωε + π), 

yielding θ = θ∗ − π. Therefore, (25) can be rewritten as

Pε(A, θ) =
(

A

θ + π

)
. (27)

And we can finally conclude that (x, v) ∈ Ω1,ε(BΔ(A0, θ0)) is a fixed point of Pε if and only if (A, θ) ∈
BΔ(A0, θ0) given by (26) satisfies (27).

Step 4. Proof of the necessity part. Let xε be a π-periodic solution of (1) satisfying (3). Therefore xε is a 
solution of (7)–(8). According to (26), define (Aε, θε) as(

Aε

θε

)
= Ω−1

1,ε(xε(0), ẋε(0)) (28)

By continuity of Ω−1
1,ε, we have that (Aε, θε) converges as ε → 0. Put (A0, θ0) = limε→0(Aε, θε). Plugging 

(23) into (27), we get
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(
Aε

θε + π

)
=

(
Aε

θε + π

)
+ εP̄ε(Aε, θε),

from where P̄ε(Aε, θε) = 0 for all ε > 0 sufficiently small. Passing to the limit as ε → 0 in the latter relation, 
we conclude P̄0(A0, θ0) = 0. The relation (5) follows by passing to the limit as ε → 0 in (28).

Step 5. Proof of the sufficiency part. As in the proof of the necessity part, we plug (23) into (27) to get the 
following equation for (A, θ)

P̄ε(A, θ) = 0. (29)

Thanks to assumptions (4) and (6) we can now apply the implicit function theorem to conclude that equation 
(29) has a unique solution

(Aε, θε) → (A0, θ0), as ε → 0.

To investigate stability of the fixed point

(
xε

vε

)
= Ω1,ε(Aε, θε),

denote by λ0 an eigenvalue (real or complex) of (P̄ )′(A0, θ0). Then the matrix (P̄ε)′(Aε, θε) admits an 
eigenvalue λε such that

λε → λ0 as ε → 0.

Recalling (23), we have that 1 + ελε is an eigenvalue of (Pε)′(Aε, θε). From (24),

(Pε)′(x, v) = (Ω3,ε)′
(
Pε(Ω−1

1,ε(x, v))
)
(Pε)′(Ω−1

1,ε(x, v))(Ω
−1
1,ε)′(x, v).

By the formula for the derivative of the inverse function, (Ω−1
1,ε)′(x, v) =

[
(Ω1,ε)′(Ω−1

1,ε(x, v))
]−1. Therefore,

(Pε)′(xε, vε) = (Ω3,ε)′(Pε(Aε, θε))(Pε)′(Aε, θε) [(Ω1,ε)′(Aε, θε)]
−1

= (Ω3,ε)′(Aε, θε + π)(Pε)′(Aε, θε) [(Ω1,ε)′(Aε, θε)]
−1

.

Now we compute (Ω3,ε)′(Aε, θε + π) and see that

(Ω3,ε)′(Aε, θε + π) = (Ω1,ε)′(Aε, θε),

which implies that the eigenvalues of (Pε)′(xε, vε) coincide with the eigenvalues of (Pε)′(Aε, θε). Therefore, 
1 + ελε is an eigenvalue of (Pε)′(xε, vε). In other words, 1 + ελε is a Floquet multiplier (or characteristic 
multiplier) of the π-periodic solution of (7)–(8) with the initial condition (x(0), ẋ(0)) = (xε, vε). It remains 
to notice that when Re(λ0) �= 0 (which is an assumption of the theorem), the number 1 + ελε is inside of 
the unit circle for all ε > 0 sufficiently small or outside of the unit circle for all ε > 0 sufficiently small 
according to whether λ0 < 0 or λ0 > 0. This concludes the proof of the stability statement.

The proof of the theorem is complete. �
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Fig. 2. Model of a preloaded ball (body of mass m = 1) bouncing against a nearly elastic surface S which is represented by a spring 
of stiffness 1

ε2ω2 with ε > 0 small. The rest coordinate of the mass is assumed to coincide with the origin of the x-axis on the one 
hand and with the rest coordinate of surface S on the other hand. We also suppose that the viscous friction coefficient equals εc1
outside the contact with S and that it takes the value c2 + εc1 during the contact.

3. An application

In this section we apply the result of section 2 to an impact oscillator of Fig. 2. In this model, a body 
of mass m = 1 is bouncing against a nearly elastic surface S (of stiffness 1/ε2ω2). Assuming in addition 
that the body is subjected to viscous friction (linear damping), Rayleigh excitation (nonlinear damping, see 
[31]), and periodic forcing, the equation of motions can be written in the form (1) as follows

ẍ + x = −εax− εc1ẋ + εμ1ẋ(1 − ẋ2) + εγ sin 2t, if x � 0,

ẍ + 1
ε2ω2x = −(c2 + εc1)ẋ + (μ2 + εμ1)ẋ(1 − ẋ2) + εγ sin 2t, if x < 0.

(30)

There is no obvious reason why the Rayleigh excitation should be O(1) during impact, but as this does 
not complicate the analysis, we admit this possibility. Following the strategy of the averaging method (see 
[5,28]), we view system (30) as a damped periodic excitation of the following autonomous system

ẍ + x = −εax, if x � 0,

ẍ + 1
ε2ω2x = 0, if x < 0,

which oscillates at the period Tε = π/
√

1 + εa + επω. In other words, the period Tε corresponds to the 
natural frequency of system (30) and the period π corresponds to the frequency of the excitation. The 
period Tε is close to π but is different from π. We are going to prove the existence of asymptotically stable 
π-periodic oscillations in (30) meaning that π-periodic excitation in (30) overrides the natural period of 
oscillations and makes the full system oscillating at the period of the excitation (called period locking).

The averaging function P̄ computes as

P̄ (A, θ) = −
π/2−θ∫
0

(
sin(τ + θ)

(1/A) cos(τ + θ)

)
(−aA cos(τ + θ) + c1A sin(τ + θ)

−μ1A sin(τ + θ)(1 −A2 sin2(τ + θ)) + γ sin 2τ + 2ωA cos(τ + θ))dτ

−
π∫

π/2−θ

(
sin(τ + θ + π)

(1/A) cos(τ + θ + π)

)
(−aA cos(τ + θ + π) + c1A sin(τ + θ + π)

−μ1A sin(τ + θ + π)(1 −A2 sin2(τ + θ + π)) + γ sin 2τ + 2ωA cos(τ + θ + π))dτ
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−ω

π∫
0

(
sin

(
τ + π

2

)
0

)(
c2A sin

(
τ + π

2

)
− μ2A sin

(
τ + π

2

)(
1 −A2 sin2

(
τ + π

2

)))
dτ

=

⎛⎜⎝−π

2A(c1 + c2ω) + π

2 (μ1 + μ2ω)A
(

1 − 3
4A

2
)
−4

3γ cos 2θ
π

2 (a− 2ω) + 2
3Aγ sin 2θ

⎞⎟⎠ .

To compute zeros of P̄ (A, θ) we assume ∣∣∣∣3πA4γ (a− 2ω)
∣∣∣∣ ≤ 1, (31)

and solve the second equation of P̄ (A, θ) = 0 for θ obtaining two solutions

2θ̃(A) = − arcsin
(

3πA
4γ (a− 2ω)

)
or 2θ̂(A) = π + arcsin

(
3πA
4γ (a− 2ω)

)
, (32)

which correspond to cos(2θ̃(A)) ≥ 0 and cos(2θ̂(A)) ≤ 0, respectively. We will stick to the second solution 
because, as we will see, it leads us to a positive A solving P̄ (A, θ) = 0. The reader can examine the first 
solution by analogy. Finding zeros of P̄ (A, θ) now reduces to finding zeros of a scalar function

M(A) =
[
P̄ (A, θ̂(A))

]
1

= −π

2A(c1 + c2ω) + π

2 (μ1 + μ2ω)A
(

1 − 3
4A

2
)

+ 1
3
√

(4γ)2 − (3πA)2(a− 2ω)2,

where we used that

cos(2θ̂(A)) ≤ 0 (33)

by (32), to determine the sign in front of the square root. Observe that saying that M(A) is defined implies 
that (31) is satisfied. Therefore, for any A0 > 0 such that M(A0) = 0, the pair (A0, ̂θ(A0)) provides a zero 
of P̄ . We will now use the following lemma to compute det P̄ ′(A, ̂θ(A)).

Lemma 1. Consider F, G ∈ C1(R ×R, R). Assume that G(A, ̂θ(A)) = 0 for some open interval of values of 
A where θ̂ is a differentiable function. Then

d

dA
F (A, θ̂(A)) = 1

Gθ(A, θ̂(A))
det

(
FA(A, θ̂(A)) Fθ(A, θ̂(A))
GA(A, θ̂(A)) Gθ(A, θ̂(A))

)
.

The proof of the lemma comes by expressing θ̂′(A) from G(A, ̂θ(A)) = 0 and plugging the result to

d

dA
F (A, θ̂(A)) = FA(A, θ̂(A)) + Fθ(A, θ̂(A))θ̂′(A).

Using Lemma 1, property (33), and the computation

[
P̄θ(A, θ)

]
2 = 4γ

3A cos 2θ,

we conclude that, when γ > 0 and A > 0,

sgn(det P̄ ′(A, θ̂(A))) = −sgn(M ′(A)).

The next lemma will be used to determine the signs of the eigenvalues of P̄ ′(A, ̂θ(A)).
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Lemma 2. Consider a 2 × 2 real matrix D. Assume that matrix D is diagonalizable over C, i.e. D admits 
two eigenvalues λ1 and λ2. Then the following statements hold up to the change of the indices of lambdas.

If detD > 0 and trD < 0 then Reλ1 < 0 and Reλ2 < 0;
If detD > 0 and trD > 0 then Reλ1 > 0 and Reλ2 > 0;
If detD < 0 then λ1λ2 < 0.

The statement of the lemma follows by direct computation of the eigenvalues of D according to the 
standard formula for the roots of a quadratic equation.

To compute tr P̄ ′(A, ̂θ(A)) we recall that

tr P̄ ′(A, θ̂(A)) = −π

2 (c1 + c2ω) + π

2 (μ1 + μ2ω)
(

1 − 9
4A

2
)

+ 4γ
3A cos 2θ. (34)

Assuming that A0 > 0 is found such that 
[
P̄ (A0, θ̂(A0))

]
1

= 0, we can express cos 2θ̂(A0) from the latter 
equality and plug to (34) obtaining

tr P̄ (A0, θ̂(A0)) = −π(c1 + c2ω) + π(μ1 + μ2ω)
(

1 − 3
2A

2
0

)
. (35)

The above findings can be summarized as the following proposition.

Proposition 1. Assume that all the parameters in equation (30) are non-negative. If there exists A0 > 0
such that M(A0) = 0 and M ′(A0) �= 0, then, for all ε > 0 sufficiently small, equation (30) has exactly one 
π-periodic solution

(xε(0), ẋε(0)) → (A0 cos θ̂(A0),−A0 sin θ̂(A0)) as ε → 0.

The solution xε is attracting, repelling, or a saddle according to whether

(a) M ′(A0) < 0 and (35) is negative,
(b) M ′(A0) < 0 and (35) is positive,
(c) M ′(A0) > 0.

Remark 1. Assume a �= 2ω. Let A1 be the largest value for which the square root in the definition of function 
A �→ M(A) is defined, i.e. let A1 = 2γ

3π|a−2ω| . Since we always have M(0) > 0, the property M(A1) < 0 is a 
sufficient condition for the function M to admit a zero A0 ∈ [0, A1] with M ′(A0) < 0.

Simulation results in Figs. 3 and 4 show that the amplitude of the attracting limit cycle of equation (30)
does indeed approach the zero of function A �→ M(A) as ε → 0. Furthermore, the two figures show that the 
shape of the limit cycle can approach limiting shape differently for different sets of parameters.

4. Conclusion

In this paper we proved the existence of stable fixed points for a Poincaré map (also called period-map 
or stroboscopic map) with small parameter ε > 0 in the case where the flow of the system corresponding to 
ε > 0 is smooth while the flow for ε = 0 contains an impact. To carry out the proof, we rescale the time of 
the flow on the fast time-interval, which allows to expand the Poincaré map as in the standard averaging 
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Fig. 3. Simulation results for the parameters c1 = 1, c2 = 5, μ1 = 2.5, μ2 = 1.5, γ = 3, a = 2, ω = 1. Left: The graph of function 
M(A), which shows that M ′(A0) < 0. Computation in Mathematica returns A0 = 0.718 and estimates (35) as −16.0007. Right: 
Attracting cycles of system (30) for ε = 0.3 (dashed) and for ε = 0.02 (solid).

Fig. 4. Simulation results for the parameters c1 = 1, c2 = 1, μ1 = 3, μ2 = 5, γ = 3, a = 2, ω = 1. Left: The graph of function 
M(A), which shows that M ′(A0) < 0. Computation in Mathematica returns A0 = 1.1677 and estimates (35) as −32.552. Right: 
Attracting cycles of system (30) for ε = 0.3 (dashed) and for ε = 0.02 (solid).

principle. The first term of the expansion provides a bifurcation function (also called averaging function 
or subharmonic Melnikov function, see Theorem 1), which explains how contributions of the slow and fast 
right-hand-sides of the bilinear oscillator need to be counted.

We have formulated an unusual type of singular perturbation problem. Putting ε = 0, we have a non-smooth 
impact, for ε > 0 we have fast motion in a neighborhood of the subset x = 0. For x > 0 slow motion takes 
place but this is not described by standard slow manifold theory, see [31]. Still, the dynamics for x > 0 can 
be considered as taking place in an explicitly formulated slow manifold. On the other hand, the solutions 
for x < 0 have as slow manifold the boundary x = 0. This does not satisfy the necessary hyperbolicity 
condition, but the solutions for x > 0 are forced to the manifold x = 0 and, after passing by a fast transition 
through the domain x < 0 they are forced again to leave x = 0. We note also that sliding along the slow 
manifold, as happens for instance in dry friction problems, is not possible. This simplifies the analysis.

Regarding the averaging result obtained in this paper, the interested reader might consult the papers [21,23]
and further references there. In [23], a framework of differential inclusions is used, in [21] explicit estimates of 
the vector field and the solutions are given in the case of impulsive forces. Our approach doesn’t estimate the 
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general solution behavior as we aim at just periodic solutions. However, the averaging function of Theorem 1
can be used for the construction of a reduced (averaged) system that will describe the global dynamics (as 
opposed to just local asymptotic stability) near the periodic solution obtained.

The authors’ future plans include studying the occurrence of asymptotically stable periodic solutions in 
system (1) when (2) admits a family of cycles of varying periods. Another topic of our future research is 
the case where the unperturbed system (2) admits a limit cycle whose period is ε-close to the period of 
perturbation in (1) (complementing the existence result of Battelli-Feckan [8]). The non-resonant case where 
the unperturbed system (2) comes with an asymptotically stable limit cycle whose period is separated from 
the period of the perturbation is a particularly interesting research direction with regard to system (2). 
We expect that similar to the classical result by Levinson [18], it must be possible to prove that periodic 
perturbation of (1) transforms the limit cycle of (2) into an asymptotically stable manifold invariant under 
the action of the Poincaré map (i.e. stroboscopic map) of (1), where ergodic solutions are possible.
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