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ON GALOIS DESCENT OF COMPLETE INTERSECTIONS

MARTA PIEROPAN

Abstract. We introduce a notion of strict complete intersections with respect
to Cox rings and we prove Galois descent for this new notion.
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1. Introduction

Throughout the paper, complete intersection means scheme-theoretic complete
intersection. Given a field k we always denote by k a separable closure.

Given an inclusion X ⊆ Y of varieties over a field k such that Xk is a complete
intersection of hypersurfaces of Yk, one can ask whetherX is a complete intersection
of hypersurfaces of Y . If Y = Pn

k then the answer is positive. A proof by induction
as in [BHB17, Lemma 3.3] works over all fields and regardless of the smoothness
of the complete intersection. In this paper we generalize the result to polarized log
Fano ambient varieties as follows.

Theorem 1.1. Let k be a field of characteristic 0. Let Y be a log Fano k-variety
and X ⊆ Y a subvariety such that Xk is a complete intersection of s hypersurfaces
of Yk of degrees D1, . . . , Ds ∈ ZA for a very ample A ∈ Pic(Y ). Then X is a
complete intersection of s hypersurfaces of Y of degrees D1, . . . , Ds, respectively.

We investigate also complete intersections of hypersurfaces whose degrees are
not all multiples of the same divisor class. In this case, if the divisor class of one
of the hypersurfaces that define Xk is not defined over k, we should not expect a
positive answer to the question above, as the following example illustrates.

Example 1.2. Let k′/k be a quadratic separable extension of fields. Let σ ∈
Gal(k′/k) be the nontrivial element. Let Y be a k-variety such that Yk′

∼= P1
k′ ×P1

k′

with the Gal(k′/k)-action that sends a k′-point ((x1 : y1), (x2 : y2)) to the point
((σ(x2) : σ(y2)), (σ(x1) : σ(y1))). Let Hi := {xi = 0} ⊆ Yk′ for i ∈ {1, 2}. Then
X := H1 ∩ H2 is a complete intersection defined over k, as the hypersurfaces H1

and H2 form an orbit under the the Gal(k′/k)-action on Yk′ . We observe that H1,
H2 have classes (1, 0), (0, 1) in Pic(Yk′) ∼= Z2, respectively, and that Pic(Y ) is the
subgroup generated by the class (1, 1). Hence, by intersection theory, X cannot be
written as a complete intersection of hypersurfaces of Y .
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2 MARTA PIEROPAN

To study complete intersections as in the example above we introduce the notion
of orbit complete intersection: We say that a subvariety X of an integral k-variety
Y is a single-orbit complete intersection if Xk is a complete intersection of Cartier
divisors H1, . . . , Hs on Yk such that H1, . . . , Hs form an orbit under the action of

Gal(k/k) on Yk and the subset {[H1], . . . , [Hs]} of Pic(Yk) has cardinality s. We
say that X is an orbit complete intersection if it is a scheme-theoretic complete
intersection of single-orbit complete intersections. We observe that all single-orbit
complete intersections in Pn

k are hypersurfaces, the intersection H1∩H2 in Example
1.2 is a single-orbit complete intersection, and all complete intersections of hyper-
surfaces of Y are trivially orbit complete intersections. In Section 2 we address the
following refinement of the original question.

Question 1.3. Given an inclusion X ⊆ Y of varieties over a field k such that Xk is
a complete intersection of hypersurfaces of Yk, is X an orbit complete intersection?

The notion of orbit complete intersection has natural arithmetic applications.
Indeed, many proofs involving number theory are carried out assuming that the
varieties under study are defined by equations over the base field k. Similarly,
knowing the action of the absolute Galois group on the equations that define the
variety gives control on the arithmetic properties. The notion was inspired by the
results in [Pie19, §5.2]. We expect many further arithmetic applications.

We recall that a scheme-theoretic complete intersection X of codimension s in
a projective space Pn

k
has the property that the homogeneous ideal of X in the

coordinate ring of Pn

k
is generated by s elements. This last property is called

strict complete intersection in [Har70, Exercise II.8.4]. To study Galois descent of
complete intersections we introduce a notion of ideal of a subvariety X ⊆ Y in a
Cox ring R of Y and we say that X is a strict complete intersections with respect
to the given Cox ring if the ideal of X in R is generated by s elements where s is
the codimension of X in Y . See Section 2 for the precise definitions. The reason for
this definition is that the ideal of Xk in Rk is Gal(k/k)-invariant, and hence can be
used to perform Galois descent. See Theorem 2.4, which gives a positive answer to
Question 1.3 in the case of strict complete intersections with respect to Cox rings.

Strict complete intersections with respect to a Cox ring R are, in particular,
complete intersections of hypersurfaces defined by elements f1, . . . , fs of R. In
Section 3 we show that the strict complete intersection property is equivalent to
the saturation of the ideal generated by f1, . . . , fs with respect to the irrelevant
ideal of the Cox ring (see Corollary 3.3). If Y is a projective space, the saturation
is automatic. In other ambient varieties not all complete intersections are strict
complete intersections with respect to a Cox ring. In Section 4 we give some
examples.

Notation. Unless stated otherwise, k denotes an arbitrary field. We denote by OY

the structure sheaf of a variety Y . The ideal sheaf of a closed subvariety X ⊆ Y is
denoted by IX . Given an effective Cartier divisor D on an integral variety Y , we
denote by Supp(D) the support of D, and we identify H0(Y,OY (D)) with the set
of elements a in the function field K(Y ) of Y such that D + (a) is effective, where
(a) is the principal ideal defined by a. Given an element g of a ring R, we denote
by R[g−1] the localization of R at g. Given two ideals I and G in a ring R, we
denote by (I : G∞) the saturation of I with respect to G in R.

2. Galois descent of strict complete intersections

Definition 2.1. Let Y be an integral k-variety. We say that a closed subvariety
X ⊆ Y is a complete intersection of hypersurfaces H1, . . . , Hs of Y if dimX + s =
dimY and IX = IH1

+ · · ·+ IHs
.



ON GALOIS DESCENT OF COMPLETE INTERSECTIONS 3

We introduce a correspondence between ideal sheaves (of subvarieties) and ho-
mogeneous ideals in Cox rings. We refer to [DP19] for the theory of Cox rings.

Definition 2.2. Let Y be an integral k-variety such that H0(Y,OY
k
)× = k

×
. Let

R be a Cox ring of Y of type M ⊆ Pic(Y ) for a finitely generated subgroup M of
Pic(Y ). For every homogeneous element f ∈ R, denote by Df the corresponding
effective divisor on Y . For every homogeneous ideal I of R let

ϕ(I) :=
∑

f∈I
homogeneous

OY (−Df) ⊆ OY .

For every ideal sheaf I ⊆ OY , let ψ(I ) be the ideal of R generated by all homo-
geneous elements f ∈ R such that OY (−Df ) ⊆ I . In particular, if X ⊆ Y is a
subvariety with ideal sheaf IX ⊆ OY , we say that ψ(IX) is the ideal of X in the
Cox ring R.

Definition 2.3. Let Y be an integral k-variety such that H0(Y,OY
k
)× = k

×
. Let

R be a Cox ring of Y of type M ⊆ Pic(Y ) for a finitely generated subgroup M of
Pic(Y ). We say that a closed subvarietyX ⊆ Y of codimension s is a strict complete
intersection with respect to R of hypersurfaces H1, . . . , Hs defined by f1, . . . , fs ∈ R
if X is the complete intersection of H1, . . . , Hs and the ideal ψ(IX) is generated
by f1, . . . , fs.

The following technical theorem provides a positive answer to Question 1.3 in
the case of strict complete intersections.

Theorem 2.4. Let k be a field and k a separable closure of k. Let Y be a
geometrically integral k-variety with H0(Yk,OY

k
) = k. Assume that Y admits

a Cox ring R over k of type M ⊆ Pic(Yk) for a finitely generated Gal(k/k)-
invariant subgroup M of Pic(Yk). Let X ⊆ Y be a closed subvariety such that
Xk ⊆ Yk is a strict complete intersection with respect to Rk of hypersurfaces
H1, . . . , Hs defined by f1, . . . , fs ∈ Rk, respectively. Assume that there are inte-
gers 0 = s0 < s1 < · · · < sn = s, such that for every i ∈ {0, . . . , n − 1} the set
{[Hsi+1], . . . , [Hsi+1

]} forms an orbit of cardinality si+1 − si under the Gal(k/k)-
action on Pic(Yk). Then Xk ⊆ Yk is a complete intersection of hypersurfaces

H ′
1, . . . , H

′
s such that H ′

si+1, . . . , H
′
si+1

form an orbit under the Gal(k/k)-action on

Yk for all i ∈ {0, . . . , n− 1}, and [H ′
i ] = [Hi] in Pic(Yk) for all i ∈ {1, . . . , s}.

Proof. Let k′/k be a finite Galois extension such that f1, . . . , fs ∈ Rk′ and M ⊆
Pic(Yk′ ). Since Xk is a strict complete intersection with respect to Rk, the ideal
I :=

∑s
i=1 fiRk′ is invariant under the Gal(k′/k)-action on Rk′ . For every i ∈

{1, . . . , s}, let Si ⊆ Gal(k′/k) be the stabilizer of [Hi] for the action of Gal(k′/k)
on the set {[H1], . . . , [Hs]}.

We first prove thatXk ⊆ Yk is a complete intersection of hypersurfaces H̃1, . . . , H̃s

such that H̃i is Si-invariant for all i ∈ {1, . . . , s}, and [H̃i] = [Hi] in Pic(Yk) for all
i ∈ {1, . . . , s}. Let t ∈ {1, . . . , s+1} be the largest integer such that fi is Si-invariant

for all i ∈ {1, . . . , t− 1}. For all i ∈ {1, . . . , t− 1}, let H̃i = Hi. If t = s+1, there is
nothing to prove. If t ≤ s, let It :=

∑
1≤i≤s
i6=t

fiRk′ . Let V :=
∑

g∈St
g(ft)k

′ ⊆ Rk′ .

Then V is St-invariant, V ⊆ I, and all elements of V are homogeneous elements
of Rk′ of degree [Ht]. We denote by V St ⊆ V the subset of St-invariant elements.

Then V St * It as ft /∈ It. Let f̃t ∈ V St r It. Since f̃t ∈ I, we can write f̃t = aft+ b

with a ∈ Rk′ r {0} and b ∈ It. Since deg f̃t = deg ft = [Ht] and It is a homoge-
neous ideal, we can assume that deg b = [Ht] and a ∈ H0(Yk′ ,OYk′

) = k′. Thus
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It+ f̃tRk′ = I. Let H̃t be the hypersurface defined by f̃t. Replace ft by f̃t, t by t+1
and repeat the argument. In a finite number of steps we reach the case t = s+ 1.

Given L1, L2 ∈ Pic(Yk′) we say that L1 ≤ L2 if L2 − L1 is an effective divisor
class. Then (Pic(Yk′ ),≤) is a partially ordered set. We observe that if g ∈ Gal(k′/k)
and L1, L2 ∈ Pic(Yk′ ) satisfy L1 ≤ L2, then gL1 ≤ gL2. Moreover, if g ∈ Gal(k′/k)
and L ∈ Pic(Yk′), then L ≤ gL is equivalent to L = gL because g has finite order.
Up to reorderingH1, . . . , Hs, we can assume that there are s0, . . . , sn ∈ {1, . . . , s} as
in the statement and r1, . . . , rm−1 ∈ {s1, . . . , sn−1} with r1 < · · · < rm−1, r0 := 0,
rm := s such that

(1) [Hi] belongs to the Gal(k′/k)-orbit of [Hj ] in Pic(Yk′ ) if and only if i, j ∈
{rl−1 + 1, . . . , rl} for some l ∈ {1, . . . ,m},

(2) [Hsi+j ] = [Hsi+1+j ] for all j ∈ {1, . . . , si+1 − si} for all i ∈ {1, . . . , n} such
that rl−1 ≤ si, si+2 ≤ rl for some l ∈ {1, . . . ,m}.

We conclude the proof by recursion as follows. Let α ∈ {1, . . . ,m + 1} be

the largest number such that H̃si−1+1, . . . , H̃si form an orbit under the Gal(k/k)-
action on Yk for all i ∈ {1, . . . , n} such that si ≤ rα−1. For all i ∈ {1, . . . , rα−1}, let
H ′

i := H̃i. If α = m+1, there is nothing to prove. If α ≤ m, write I =
⊕

L∈M IL as
graded ideal of Rk′ . Let β := #{[Hrα−1+1], . . . , [Hrα ]} = si−si−1 for i ∈ {1, . . . , n}
such that si = rα. Then rα − rα−1 = βγ for some γ ∈ Z>0. For i ∈ {1, . . . , β}, let
Li := [Hrα−1+i]. For every i ∈ {1, . . . , β}, the set {f̃1, . . . , f̃s} ∩ ILi

has cardinality
γ. We denote by fi,1, . . . , fi,γ its elements. Let δ ∈ Z≥0 such that the k′-vector
space IL1

has dimension γ+δ. Then dimk′ ILi
= γ+δ for all i ∈ {1, . . . , β} because

they are conjugate to IL1
under the Gal(k′/k)-action on I. For every i ∈ {1, . . . , β},

choose hi,1, . . . , hi,δ ∈ ILi
∩ (
∑

L<Li
ILRk′ ) such that fi,1, . . . , fi,γ , hi,1, . . . , hi,δ is a

basis of the k′-vector space ILi
. Then hi,1, . . . , hi,δ is a basis of the k′-vector space

ILi
∩(∑L<Li

ILRk′) becauseXk is a complete intersection. For every i ∈ {1, . . . , β},
let gi ∈ Gal(k′/k) such that giL1 = Li. We observe that gjg

−1
i

∑
L<Li

ILRk′ =∑
L<Lj

ILRk′ , because the ideal I is Gal(k′/k)-invariant. Then gi(
∑δ

j=1 h1,jk
′) =

∑δ
j=1 hi,jk

′ for all i ∈ {1, . . . , β}. Then gi(f1,1), . . . , gi(f1,γ), hi,1, . . . , hi,δ is a basis
of giIL1

= ILi
. Thus

I =

(
rα−1∑

i=1

fiRk′

)
+




β∑

i=1

γ∑

j=1

gi(f1,j)Rk′


+

(
s∑

i=rα+1

fiRk′

)
.

By the orbit-stabilizer theorem β = #Gal(k′/k)/#S, where S is the stabilizer
of L1. Therefore, the set {g1(f1,j), . . . , gβ(f1,j)} is an orbit under the Gal(k′/k)-
action on Rk′ for all j ∈ {1, . . . , γ}. For every i ∈ {1, . . . , β} and j ∈ {1, . . . , γ}, let
H ′

rα−1+(j−1)β+i be the hypersurface defined by gi(f1,j). Then [H ′
rα−1+(j−1)β+i] =

Li = [Hrα−1+(j−1)β+i] by condition (2) above. For every i ∈ {1, . . . , β} and j ∈
{1, . . . , γ}, replace fi,j by gi(f1,j). Replace α by α + 1 and repeat the argument.
In a finite number of steps we reach the case α = m+ 1. �

3. Ideals of subvarieties in Cox rings

We study the correspondence between ideal sheaves of subvarieties and homoge-
neous ideals in Cox rings introduced in Definition 2.2 and we reformulate the strict
complete intersection property in terms of saturation of the corresponding ideal in
the Cox ring.

Proposition 3.1. Let k be a field. Let Y be an integral k-variety such that

H0(Y,OY
k
)× = k

×
. Let R be a Cox ring of Y of type M ⊆ Pic(Y ) for a finitely

generated subgroup M of Pic(Y ). Then
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(i) ϕ(
∑

f∈F fR) =
∑

f∈F OY (−Df) for every set F of homogeneous elements
of R.

Assume, in addition, that there exist finitely many homogeneous elements g1, . . . , gm
of R such that Y rSupp(Dg1), . . . , Y rSupp(Dgm) form an open covering of Y that
refines an affine open covering of Y . Then

(ii) ψ(ϕ(I)) = (I : (
∑m

i=1 giR)
∞) for every homogeneous ideal I of R.

(iii) If M = Pic(Y ), then ϕ(ψ(I )) = I for every ideal sheaf I ⊆ OY .

Proof. To prove (i), let F be a set of homogeneous elements of R. We observe
that the inclusion

∑
f∈F OY (−Df) ⊆ ϕ(

∑
f∈F fR) holds by definition. For the

reverse inclusion, let f ′ ∈∑f∈F fR be a homogeneous element. We have to show

that OY (−Df ′) ⊆ ∑f∈F OY (−Df ). There are f1, . . . , fr ∈ F and h1, . . . , hr ∈ R

with deg hi = deg f ′ − deg fi for all i ∈ {1, . . . , r} such that f ′ =
∑r

i=1 fihi.
Let R[Df′ ] be the degree-[Df ′]-part of R, and fix an isomorphism α : R[Df′ ] →
H0(Y,OY (Df ′)) such that α(f ′) = 1 ∈ K(Y ). Let {Uj}j∈J be an affine open
covering of Y that trivializes Df ′ , say Df ′ = {(Uj, αj)}j∈J . Then Dfihi

= Df ′ +
(α(fihi)) = {(Uj, αjα(fihi)}j∈J for all i ∈ {1, . . . , r}. Then for every j ∈ J we
have

OY (−Df ′)(Uj) = αjOY (Uj) ⊆
r∑

i=1

αjα(fihi)OY (Uj) =

(
r∑

i=1

OY (−Dfihi
)

)
(Uj),

as 1 = α(f ′) =
∑r

i=1 α(fihi). Hence, OY (−Df ′) ⊆
∑r

i=1 OY (−Dfihi
). Since

Dfihi
= Dfi +Dhi

, we have OY (−Dfihi
) ⊆ OY (−Dfi) for all i ∈ {1, . . . , r}.

Now we prove (ii). Let G :=
∑m

i=1 giR. To show that ψ(ϕ(I)) ⊆ (I : G∞), let

f ∈ ψ(ϕ(I)) be a homogeneous element. Let π : Ŷ → Y be a torsor associated to
R as in [DP19, Theorem 1.1]. Then

fO
Ŷ
= π∗OY (−Df ) ⊆ π∗ϕ(I) =

∑

f ′∈I
homogeneous

π∗OY (−Df ′) =
∑

f ′∈I
homogeneous

f ′O
Ŷ
.

(3.1)

Since π is affine andDgi are Cartier divisors, π
−1(YrSupp(Dgi)) = ŶrSupp(π∗Dgi)

for all i ∈ {1, . . . ,m}. Since π∗Dgi is the principal ideal defined by gi for all
i = 1, . . . ,m, and Y r Supp(Dgi) is contained in an affine open subset of Y , then
the open subset Vi := π−1(Y rSupp(Dgi)) is affine for all i = 1, . . . ,m. We observe

that O
Ŷ
(Vi) = R[g−1

i ] for all i = 1, . . . ,m by [Har77, Lemma II.5.14]. By looking
at sections of the sheaves in (3.1) over the open subsets Vi, we get

f |Vi
∈

∑

f ′∈I
homogeneous

f ′R[g−1
i ] = IR[g−1

i ]

for all i = 1, . . . ,m. So there exists n ≥ 0 such that gni f ∈ I for every i = 1, . . . ,m.
Let N := nm. Then for every α1, . . . , αm ∈ Z≥0 such that α1 + · · · + αm = N
we have f

∏m
i=1 g

αi

i ∈ I as there exists at least one index i ∈ {1, . . . ,m} such that
αi ≥ n. Thus fGN ⊆ I, which gives f ∈ (I : G∞).

We now prove the reverse inclusion. Let f ∈ (I : G∞). Since G is finitely gen-
erated, there exists a positive integer N such that fGN ⊆ I. Then OY (−DfgN

i
) ⊆

ϕ(I). Let {Uj}j be an affine open covering of Y that trivializes simultaneously Df

and Dgi for all i ∈ {1, . . . ,m}. Write Df = {(Uj, αj)}j and Dgi = {(Uj , βi,j)}j for
all i ∈ {1, . . . ,m} with αj , βi,j ∈ OY (Uj) for all i, j. Then

OY (−Df)((Y r SuppDgi) ∩ Uj) = OY (−Df)(Uj)[β
−1
i,j ] = αjOY (Uj)[β

−1
i,j ]

= αjβ
N
i,jOY (Uj)[β

−1
i,j ] ⊆ ϕ(I)(Uj)[β

−1
i,j ] = ϕ(I)((Y r Supp(Dgi)) ∩ Uj)
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for all i ∈ {1, . . . ,m} and all j. Hence, OY (−Df ) ⊆ ϕ(I) and f ∈ ψ(ϕ(I)).
For (iii), the inclusion ϕ(ψ(I )) ⊆ I holds by definition. For the reverse inclu-

sion, it suffices to prove that I (Y r Supp(Dgi)) ⊆ ϕ(ψ(I ))(Y r Supp(Dgi)) for
all i ∈ {1, . . . ,m}. Fix i ∈ {1, . . . ,m}, and let D := Dgi and U := Y r Supp(Dgi).
Let s ∈ I (U), and let D′ be the principal divisor on Y defined by s. Then D′ ∩U
is an effective divisor on U . Let {Uj}j∈J be a finite affine open covering of Y
that trivializes D. For every j ∈ J , let αj ∈ OY (Uj) be a section that defines the

principal divisor D ∩ Uj . Then for every j ∈ J , OY (U ∩ Uj) = OY (Uj)[α
−1
j ] and

I (U ∩ Uj) = I (Uj)[α
−1
j ]. Hence, there exists nj ∈ N such that α

nj

j s ∈ I (Uj).

Let n := maxj∈J nj. Then nD +D′ is an effective Cartier divisor on Y such that
OY (−(nD +D′)) ⊆ I and s ∈ OY (−(nD +D′))(U). �

Remark 3.2. If Y is projective andM contains an ample divisor class A, elements
g1, . . . , gm as in the statement of Proposition 3.1 exist. For example, one can take
a basis of the degree-mA-part of R for a positive integer m such that mA is very
ample.

Corollary 3.3. Let Y be an integral k-variety such that H0(Y,OY
k
)× = k

×
.

Let R be a Cox ring of Y of type M ⊆ Pic(Y ) for a finitely generated sub-
group M of Pic(Y ). Assume that there exist finitely many homogeneous elements
g1, . . . , gm ∈ R such that Y r Supp(Dg1), . . . , Y r Supp(Dgm) form an open cov-
ering of Y that refines an affine open covering of Y . Let X ⊆ Y be a complete
intersection of hypersurfaces Df1 , . . . , Dfs with f1, . . . , fs ∈ R. Then X is a strict
complete intersection with respect to R if and only if the ideal

∑s
i=1 fiR is saturated

with respect to the ideal
∑m

i=1 giR.

Proof. By Proposition 3.1 we know that ψ(IX) = ψ(ϕ(
∑s

i=1 fiR)) is the saturation
of
∑s

i=1 fiR with respect to
∑m

i=1 giR. �

4. Applications and examples

In this section we discuss the saturation condition from Corollary 3.3 and we
prove Theorem 1.1.

Lemma 4.1. If R is a Cohen-Macaulay ring, I and G are ideals in R such that
ht(G) > ht(I) and I is generated by s = ht(I) elements, then I is saturated with
respect to G in R.

Proof. Let I =
⋂r

i=1 qi be a minimal primary decomposition of I in R. Then
(I : G∞) =

⋂r
i=1(qi : G

∞). If I is not saturated with respect to G, then there is
i ∈ {1, . . . , r} such that qi ( (qi : G

∞), then fGN ⊆ qi for some f ∈ (qi : G
∞)r qi

and some N > 0. Since qi is primary, we deduce that G ⊆ √
qi, so that ht(G) ≤

ht(
√
qi) = ht(qi). But ht(qi) = ht(I) because the unmixedness theorem holds for

R by [Mat80, Theorem 32, p.110]. This gives a contradiction. �

Lemma 4.2. Let Y be a geometrically integral normal variety over k such that

H0(Y,OY
k
)× = k

×
. Let R be a Cox ring of Y of type M ⊆ Pic(Y ) for a finitely

generated subgroup M of Pic(Y ). Assume that R is finitely generated as a k-
algebra and contains finitely many homogeneous elements g1, . . . , gm such that Y r
Supp(Dg1), . . . , Y r Supp(Dgm) form an affine open covering of Y . Let X ⊆ Y be
a complete intersection of hypersurfaces Df1 , . . . , Dfs with f1, . . . , fs ∈ R. Then
ht(
∑s

i=1 fiR) = s.

Proof. The ring R is an integral domain as in [ADHL15, §5.1]. Let I :=
∑s

i=1 fiR.
We compute ht(I) = dimR− dimR/I = s by using [Mat80, Corollary 3, p.92] and
the fact that dimR and dimR/I are the dimensions of torsors under a torus of
rank rk(M) over Y and X , respectively, by [DP19, Proposition 4.1]. �
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We recall that a variety Y is log Fano if there exists an effective Q-divisor D
such that (Y,D) is klt and −(KY +D) is ample. For the singularities we refer to
[Kol97].

Proof of Theorem 1.1. Let R be a Cox ring of Y of type ZA ⊆ Pic(Yk). The
R is a Cohen-Macaulay finitely generated k-algebra by [GOST15, Corollary 5.4],
[Smi00, Corollary 5.5] and [Kol97, Corollary 3.11]. Let g0, . . . , gn be a basis of
H0(Y,OY (A)). Let f1, . . . , fs ∈ R be homogeneous elements such that Xk is a
complete intersection of the hypersurfaces of Yk defined by f1, . . . , fs. Let I :=∑s

i=1 fiR and G :=
∑n

i=0 giR. We observe that R is the normalization of its

subring S = k[g0, . . . , gn] by [Har77, Exercise II.5.14(a)] and that SpecR → SpecS
is an isomorphism away from the closed subsets defined by G in SpecR and by
G∩S in SpecS. Since the morphism is finite and G∩S is a maximal ideal in S, we
have ht(G) = dimR − dim(R/G) = dimS − dim(S/(G ∩ S)) = dimS = dimR =
dimY +1 > s. Then I is saturated with respect to G in R by Lemmas 4.1 and 4.2,
and we can apply Corollary 3.3 and Theorem 2.4. �

In the remainder of the section we focus on complete intersections in products
of projective spaces.

Proposition 4.3. Let k a field. Fix n1, . . . , nm ≥ 1. Let f1, . . . , fr be multihomo-
geneous elements in R := k[xi,j : 0 ≤ j ≤ ni, 1 ≤ i ≤ m] that define a complete
intersection of codimension s ≤ min1≤i≤m ni in Pn1 ×k · · · ×k Pnm . Then the ideal
(f1, . . . , fs) in R is saturated with respect to the irrelevant ideal of R.

Proof. The irrelevant ideal of R is G =
∏m

i=1(xi,0, . . . , xi,nm
). Then htG = 1 +

min1≤i≤m ni > s. We conclude by Lemmas 4.1 and 4.2. �

Remark 4.4. A prime ideal I in a ring R is saturated with respect to every ideal
G 6⊆ I. Primality is not an easy condition to check in general. However, if a Cox
ring R is isomorphic to a polynomial ring over a field (e.g. if Y is a toric variety),
then every ideal generated by linear polynomials is a prime ideal.

The following example shows that the property being a strict complete intersec-
tion depend on the choice of the Cox ring.

Example 4.5. Consider P1 × P1 with coordinates ((x0 : x1), (y0 : y1)). The Cox
ring of identity type (i.e. with M = Pic(P1 × P1)) is R = k[x0, x1, y0, y1] with
irrelevant ideal G = (x0y0, x0y1, x1y0, x1y1). The ideal generated by x0y0 and x1y1
in R is not saturated with respect toG, as x0x1 ∈ ((x0y0, x1y1) : G

∞)r(x0y0, x1y1).
But the ideal generated by x0y0 and x1y1 in the Cox ring of type Z(1, 1) ⊆ Z2 ∼=
Pic(P1 × P1) is saturated with respect to the irrelevant ideal as in the proof of
Theorem 1.1.

If we allow nonreduced structure, it is easy to construct complete intersections of
hypersurfaces of degrees that do not belong to the subgroup Z(1, 1) ⊆ Pic(P1 ×P1)
that are not strict complete intersections with respect to R: the ideal generated
by x0y

2
0 , x

2
1y1 in the Cox ring of identity type R defines a complete intersection

in P1 × P1 but it is not saturated with respect to the irrelevant ideal G in R, as
x20x

2
1 ∈ ((x0y

2
0 , x

2
1y1) : G

∞)r (x0y
2
0 , x

2
1y1).

The following example shows that the property being a strict complete intersec-
tion with respect to a given Cox ring can depend on the choice of the hypersurfaces
defining the complete intersection.

Example 4.6. With the notation of Example 4.5, the point ((0 : 1), (0 : 1)) with
reduced scheme structure can be written as complete intersection in two different
ways: as intersection of the hypersurfaces {x0 = 0} and {y0 = 0}, or as intersection
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of the hypersurfaces {x0 = 0} and {x1y0 = 0}. The ideal generated by x0 and y0
in R is a prime ideal and hence it is saturated with respect to the irrelevant ideal
G. The ideal generated by x0 and x1y0 in R is not saturated with respect to G, as
its saturation is the ideal generated by x0 and y0.
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