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Model-based evaluation of school- and
non-school-related measures to control the
COVID-19 pandemic
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The role of school-based contacts in the epidemiology of SARS-CoV-2 is incompletely

understood. We use an age-structured transmission model fitted to age-specific ser-

oprevalence and hospital admission data to assess the effects of school-based measures at

different time points during the COVID-19 pandemic in the Netherlands. Our analyses sug-

gest that the impact of measures reducing school-based contacts depends on the remaining

opportunities to reduce non-school-based contacts. If opportunities to reduce the effective

reproduction number (Re) with non-school-based measures are exhausted or undesired and

Re is still close to 1, the additional benefit of school-based measures may be considerable,

particularly among older school children. As two examples, we demonstrate that keeping

schools closed after the summer holidays in 2020, in the absence of other measures, would

not have prevented the second pandemic wave in autumn 2020 but closing schools in

November 2020 could have reduced Re below 1, with unchanged non-school-based contacts.
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In autumn 2020, many countries, including the Netherlands,
are experiencing a second wave of the COVID-19 pandemic1.
During the first wave in spring 2020, general population-based

control measures were introduced in the Netherlands, which
involved physical distancing (including refraining from hand-
shaking), frequent hand-washing and other hygiene measures,
and self-quarantine when symptomatic. In addition, many public
places and schools were closed. These contact-reduction measures
were relaxed starting from May, and the incidence of COVID-19
started to increase again at the end of July1. From the end of
August onwards, contact-reduction measures were intensified in a
step-wise manner. Schools closed during July and August for
summer break, reopened at the end of August, and have remained
open until 16 December, with the exception of a one-week
autumn break. Some measures were implemented in schools after
the summer break to reduce transmission. Students and teachers
in secondary schools have to wear masks when not seated at their
desks, and students have to keep distance from teachers. A stu-
dent with cold- or flu-like symptoms has to stay at home.

The step-wise increase in control measures after the summer
started with earlier closing times of bars and restaurants, reinforce-
ment of working at home (in September), followed by closure of all
bars and restaurants, theaters, cinemas, and other cultural meeting
places in November and obligatory mask wearing in all public places
since 1 December. According to the National Institute for Public
Health and the Environment (RIVM), estimated effective repro-
duction numbers (Re) for the Netherlands were about 1.3 in the
period 27 August–6 September and about 1.0 in the period 7–13
November1. The aim of measures implemented by the government
in autumn 2020 was to reduce Re to 0.8. The failure to achieve this
might be due to reduced societal acceptance of control measures,
and/or due to the lack of school closure. The role of children and
their contacts during school hours in the spread of SARS-CoV-2 is in
fact not well understood2,3. In this study, we explored this role with a
mathematical model fitted to COVID-19 data from the Netherlands.

Closure of schools is considered an effective strategy to contain
an influenza pandemic4, based on both model calculations and
observational studies of the influence of school holidays on the
spread of influenza5,6. The reasons for this are the high contact
rates in young age groups7 and the susceptibility of children and
young people to the influenza virus. In contrast to influenza,
children seem to be less susceptible to SARS-CoV-2 than adults
and, based on sparse data, the susceptibility to SARS-CoV-2
increases with age8,9.

In the absence of empirical SARS-CoV-2 data, mathematical
modeling can help to quantify the role of different age groups in
the distribution of SARS-CoV-2 in the population10,11, and to
evaluate the impact of interventions on transmission12–17. Such
models can help to estimate the reduction in the effective
reproduction number for different contact-reduction scenarios
within or outside school environments. Model predictions about
the relative epidemic impacts of school- and non-school-based
measures can assist policymakers in selecting combinations of
measures during different stages of the pandemic that optimally
balance potential harms and benefits. Predictions generated by
models that include differences in susceptibility and contact rates
in different age groups can also aid in deciding which school age
groups should be the primary target of school-based
interventions.

We used an age-structured transmission model fitted in a Baye-
sian framework to age-specific hospital admission data (27
February–30 April 2020) and cross-sectional age-specific ser-
oprevalence data (April/May 2020)18 to evaluate the effects of control
measures aimed at reducing school and other (non-school-related)
contacts in society in general at different time points during the
COVID-19 pandemic in the Netherlands. The model makes use of

age-specific contacts rates before and after the first lockdown19 and
contact rates in schools7,20, and accounts for different susceptibility
to SARS-CoV-2 among younger, middle-aged, and older persons.
Using the model equipped with parameter estimates, we provide a
comparative study of the impact of school- and non-school-related
measures on the effective reproduction number in August 2020,
before the most recent set of measures was implemented, and in
November 2020, when the most recent measures were still in place.
In particular, we assess whether keeping schools closed after the
summer holidays in 2020 would have prevented the second pan-
demic wave in the autumn and whether closing schools in November
2020 could have helped to achieve the control of the pandemic. We
quantify reductions in Re due to closing schools for different ages and
make recommendations on which school ages should be targeted to
design effective school-based interventions.

Results
Epidemic dynamics. The model shows a very good agreement
between the estimated age-specific hospitalizations and the data
(Fig. 1). The number of hospitalizations increases with age, with
the highest peaks in hospitalizations observed in persons above 60
years old. The estimated probability of hospitalization increases
nearly exponentially with age (as shown by an approximately
linear relationship on the logarithmic scale, Fig. 2), except for
persons under 30 years old, in whom the number of hospitali-
zations was low. The estimated probability of hospitalization
increased from 0.09% (95% CrI 0.05–0.15%) in persons under 20
years old to 4.37% (95% CrI 2.80–8.82%) in persons older than 80
years (Supplementary Fig. 2).

The model accurately reproduces the percentage of seropositive
persons distributed across the age groups (Fig. 3). The median
seroprevalence in the population was 2.7%, with the maximum
seroprevalence observed in persons between 20 and 40 years old
(about 3.5%). The lowest seroprevalence was among children in
the 0–10 years age group (0.9%). Note that if our model did not
include age dependence of susceptibility to SARS-CoV-2, the
seroprevalence peak would be expected among children because
they have the largest numbers of contacts in the population.

The estimated probability of transmission per contact was 0.07
(95% CrI 0.05–0.12) before the first lockdown and it decreased by
48.84% (95% CrI 23.81–87.44%) after the first lockdown. The
reduction in susceptibility relative to susceptibility in persons
above 60 years old was 23% (95% CrI 20–28%) in persons under
20 years old and 61% (95% CrI 50–72%) for persons between 20
and 60 years old (Supplementary Fig. 3). The estimated basic
reproduction number was 2.71 (95% CrI 2.15–5.18) in the
absence of control measures (February 2020) (Supplementary
Fig. 4a), and dropped to 0.62 (95% CrI 0.29–0.74) after the full
lockdown (April 2020) (Supplementary Fig. 4b). Supplementary
Figures 1–4 show an overview of all parameter estimates.

The joint posterior density of the estimated parameters reveals
strong positive and negative correlations between some of the
parameters (Supplementary Fig. 5). For instance, the initial
fraction of infected individuals is negatively correlated with the
probability of transmission per contact and the hospitalization
rate, as a small initial density can be compensated by a faster
growth rate or a larger hospitalization rate. For that reason, the
age-specific hospitalization rates are all positively correlated.
These correlations highlight the necessity of complementing the
hospitalization time series data with seroprevalence data, even if
the sample size of the latter is small. Without the seroprevalence
data many parameters would be difficult to identify.

School and non-school-based measures. The sequence of mea-
sures implemented and lifted during the pandemic in the
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Netherlands and the respective estimated values of the effective
reproduction numbers are shown schematically in Fig. 4. We used
the fitted model to separately determine the effect on the effective
reproduction number of decreasing contacts in schools and of
decreasing other (non-school-related) contacts in society in
general in August 2020 (Fig. 5) and in November 2020 (Fig. 6). In
doing so, we varied one type of contact and kept the other type
constant. For each scenario, the reduction in contact rate was
varied between 0 and 100%. The aim of reducing the number of
contacts of each type is to decrease the effective reproduction
number below 1.

We first considered the situation in August 2020 (Fig. 5), when
schools had just opened after the summer holidays and when
control measures in the population were less stringent than in

April (full lockdown). Between August and December 2020, the
only infection prevention measure in primary schools was the
advice to teachers and pupils to stay at home in case of symptoms
or a household member diagnosed with SARS-CoV-2 infection;
physical distancing between teachers and pupils (but not between
pupils) only applied to secondary schools. We therefore assumed
that the effective number of contacts in schools was the same as
before the pandemic. For other (non-school-related) contacts in

Fig. 3 Estimated age-specific seroprevalence. The data (dots) are shown
as the percentage of seropositive persons based on a seroprevalence
survey that was conducted in April/May 2020. The number of positive and
total samples defining this percentage for each age category is supplied in
seroprevalence data file accompanying this study (see “Data availability”).
The error bars represent the 95% confidence (Jeffreys) interval of the
percentage. The violin shapes represent the marginal posterior distribution
for 2000 samples of the percentage of seropositive persons in the model.

Fig. 1 Estimated age-specific hospital admissions. The black lines represent the estimated medians. The dark gray lines correspond to 95% credible
intervals obtained from 2000 parameter samples from the posterior distribution, and the shaded regions show 95% Bayesian prediction intervals. The dots
are daily hospitalization admission data (all data points are included). Day 1 corresponds to 22 February 2020 which is 5 days prior to the first officially
notified case in the Netherlands (27 February 2020). Panels a–h refer to different age groups.

Fig. 2 Estimated age-specific probability of hospitalization. The violin
shapes represent the marginal posterior distribution for 2000 samples of
the probability of hospitalization in the model.
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Fig. 4 Schematic timeline of the pandemic in the Netherlands during 2020. Outlined are times of the introduction and relaxation of control measures,
and the estimated effective reproduction numbers for (a) start of the pandemic (February 2020), (b) full lockdown (April 2020), (c) schools opening
(August 2020), and (d) partial lockdown (November 2020). See Supplementary Fig. 4 for the distributions of the reproduction numbers.

Fig. 5 Impact of reduction of two types of contacts on the effective reproduction number in August 2020. Percentage reduction in (a) other (non-
school-related) contacts in society in general and (b) school contacts, with the number of the other type of contact kept constant in each of the two panels.
The scenario with 0% reduction describes the situation in August 2020, when schools just opened in the Netherlands. The scenario with 100% reduction
represents a scenario with either (a) maximum reduction in other (non-school-related) contacts in society in general to the level of April 2020 or (b)
complete closure of schools. The solid black line describes the median and the shaded region represents the 95% credible intervals obtained from 2000
parameter samples from the posterior distribution. The red line is the starting value of Re (situation August 2020) and the green line is the value of Re
achieved for 100% reduction in contacts. The blue line indicates Re of 1. To control the pandemic, Re < 1 is necessary.

Fig. 6 Impact of reduction of two types of contacts on the effective reproduction number in November 2020. Percentage reduction in (a) other (non-
school-related) contacts in society in general and (b) school contacts, with the number of the other type of contact kept constant in each of the two panels.
The scenario with 0% reduction describes the situation in November 2020. The scenario with 100% reduction represents a scenario with either (a)
maximum reduction in other (non-school-related) contacts in society in general to the level of April 2020 or (b) complete closure of schools. The solid
black line describes the median and the shaded region represents the 95% credible intervals obtained from 2000 parameter samples from the posterior
distribution. The red line is the starting value of Re (situation November 2020) and the green line is the value of Re achieved for 100% reduction in
contacts. To control the pandemic, Re < 1 is necessary.
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society in general we assumed that (1) the number of contacts
increased after April 2020 (full lockdown) but was lower than
before the pandemic, and that (2) reduction in probability of
transmission per contact due to mask wearing and hygiene
measures was lower in August as compared to April (due to
decreased adherence to measures). The starting point of our
analyses is an effective reproduction number of 1.31 (95% CrI
1.15–2.07) in accordance with the state of the Dutch pandemic in
August 2020 (Supplementary Fig. 4c).

Figure 5a demonstrates that in August 2020 other contacts in
society in general would have to be reduced by at about 60% to
bring the effective reproduction number to 1 (if school-related
contacts do not change). A 100% reduction would resemble the
number of contacts in April (full lockdown) and would bring the
effective reproduction number to 0.83 (95% CrI 0.75–1.10).
Figure 5b demonstrates that reductions of school contacts would
have a limited impact on the effective reproduction number (if
non-school contacts do not change). A 100% reduction (complete
closure of schools) would have reduced the effective reproduction
number by only 10% from 1.31 to 1.18 (95% CrI 1.04–1.83).

Subsequently, we considered the Dutch pandemic situation in
November 2020 (Fig. 6), when the measures implemented since
the end of August (partial lockdown intended to prevent the
second wave) had led to an effective reproduction number of 1.00
(95% CrI 0.94–1.33) (Supplementary Fig. 4d). As described above,
only limited control measures were taken in schools during this
period. Now, the impact of interventions targeted at reducing
school contacts (Fig. 6b) would reduce the effective reproduction
number similarly as reducing non-school contacts in the rest of
the population (Fig. 6a). Specifically, closing schools would
reduce the effective reproduction number by 16% from 1.0 to 0.84
(95% CrI 0.81–0.90) (Fig. 6b). Almost the same Re= 0.83 (95%
CrI 0.75–1.10) would have been achieved by reducing non-
school-related contacts to the level of April 2020 while the schools
remain open (Fig. 6a).

Interventions for different school ages. Next we investigated the
impact of targeting interventions at different age groups, starting
from the situation in November 2020 with the effective repro-
duction number being about 1 (Supplementary Fig. 4d).
Figure 7a–c shows Re as a function of the reduction of school
contacts in age groups of [0, 5), [5, 10), and [10, 20) y.o.,
respectively. In each panel, we varied the number of school

contacts in one age group while keeping the number of school
contacts in the other two age groups constant. Zero percent
reduction corresponds to the situation in November 2020, and
100% reduction represents a scenario with schools for students in
a given age group closed. The model predicts a maximum impact
on Re from reducing contacts of 10–20-year-old children
(Fig. 7c). Closing schools for this age group only could decrease
Re by about 8% (compare Fig. 7c and Fig. 6b where we expect the
reduction of 16% after closing schools for all ages). School closure
for children aged 5–10 years would reduce Re by about 5%
(Fig. 7b). Contact reductions among 0–5-year-old children would
have a negligible impact on Re as shown in Fig. 7a.

Discussion
We used an age-structured model for SARS-CoV-2 fitted to
hospital admission and seroprevalence data during spring 2020 to
estimate the impact of school contacts on transmission of SARS-
CoV-2 and to assess the effects of school-based measures,
including school closure, to mitigate the second wave in the
autumn of 2020. We demonstrate how the relative impact of
school-based measures aimed at reduction of contacts at schools
on the effective reproduction number increases when the effects
of non-school-based measures appear to be insufficient. These
findings underscore the dilemma for policymakers of choosing
between stronger enforcement of population-wide measures to
reduce contacts in society in general or measures that reduce
school-based contacts, including complete closure of schools. For
the latter choice, our model predicts highest impact from mea-
sures implemented for the oldest school ages. We used the
Netherlands as a case example but our model code is freely
available and can be readily adapted to other countries given the
availability of hospitalization and seroprevalence data. The find-
ings in our manuscript can be relevant for guiding policy deci-
sions in the Netherlands, but also in countries where the contact
structure in the population is similar to that of the Netherlands7.

Our model integrates prior knowledge of epidemiological
parameters and the quantitative assessment of the model uncer-
tainties in a Bayesian framework. To our knowledge, our mod-
eling study is the first that uses this method to address the role of
school-based contacts in the transmission of SARS-CoV-2. Pre-
vious studies (e.g. refs. 21–25) used individual-based or network
models that were not fit to epidemiological data using formal
statistical procedures. Due to uncertainties in key model

Fig. 7 Impact of reduction of school contacts in different age groups on the effective reproduction number in November 2020. Percentage reduction in
school contacts among (a) [0, 5) years old, (b) [5, 10) years old, and (c) [10, 20) years old. In each panel, we varied the number of school contacts in one
age group while keeping the number of school contacts in the other two age groups constant. The scenario with 0% reduction describes the situation in
November 2020 with Re of about 1 (partial lockdown intended to prevent the second wave), where all schools are open without substantial additional
measures. The reduction of 100% in school contacts represents a scenario with the structure of non-school contacts in society in general as in November
2020 and schools for students in a given age group closed. The solid black line describes the median and the shaded region represents the 95% credible
intervals obtained from 2000 parameter samples from the posterior distribution. The red line is the starting value of Re= 1 (situation November 2020).
The green line indicates the value of Re achieved when schools for a given age group close.
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parameters, predictions of these models vary widely. Our model
has been carefully validated to achieve an excellent fit to data of
daily hospitalizations due to COVID-19 and seroprevalence by
age. Furthermore, reproduction numbers at different time points
of the pandemic correlated well with estimates obtained from
independent sources1. In addition, the Netherlands is one of few
countries in the world for which the contact rate after the first
lockdown is available (see ref. 26 for the UK). We could, therefore,
model the contact structure during the course of the pandemic as
continuously changing between the contact structure before the
pandemic and the contact structure when the measures were the
most strict (first lockdown) without making additional assump-
tions about the impact of specific interventions on contacts in
different age groups. Crucially, many prior models evaluating the
impact of school-based contacts assumed age-independent sus-
ceptibility to infection with SARS-CoV-2 (e.g. refs. 13,23). Here,
we estimated susceptibility to infection with SARS-CoV-2 to
increase with age, which corroborates published findings from
cohort studies8,9. Compared to adults older than 60 years, the
estimated susceptibility was about 20% for children aged 0–20
years and about 60% for the age group of 20–60 years. However,
even with extensive validation, we need to be careful when
interpreting the predictions of our model as these depend on the
sensitivity of serology to identify individuals with prior infection.
Recent studies suggest that in persons who experience mild or
asymptomatic infections, SARS-CoV-2 antibodies may not always
be detectable post-infection27,28. Therefore, more children may
have had an infection than indicated by the seroprevalence survey
because the proportion of asymptomatic in children is believed to
be high. As a consequence, our study potentially underestimates
the role of children in transmission.

Naturally, our findings result from age-related differences in
disease susceptibility and contact structure. Despite high numbers
of contacts for children of all ages, and in particular in the age
group of 10–20 years old, closing schools appeared to have much
less impact on the effective reproduction number than contact-
reduction measures outside the school environment. In fact,
measures effectively reducing non-school contacts, similar to
those measures implemented in response to the first pandemic
wave in spring 2020, could have prevented a second wave in
autumn without school closures. With an estimated effective
reproduction number of 1.3 in August 2020, continuation of
school closures would have had much lower effects than measures
aiming to reduce non-school-related contacts, which mainly
occur in the adult population. Yet, that situation changes if the
proposed measures fail. In November 2020, the measures
implemented since August had reduced the effective reproduction
number to around 1, instead of achieving the target value of about
0.8. In that situation, as our findings demonstrate, additional
physical distancing measures in schools could assist in reducing
the effective reproduction number further, in particular when
implemented in secondary schools. Our analyses suggest that
physical distancing measures in the youngest children will have
no impact on the control of SARS-CoV-2 infection. Of note,
better adherence to non-school-based measures would still have
similar effects as reducing school-based contacts.

Although there are several options for reducing the number of
contacts between children at school, such as staggered start and
end times and breaks, different forms of physical distancing for
pupils and division of classes, the effects of such measures on
transmission among children have not been quantified. Impor-
tantly, we have assumed that reductions in school-based contacts
are not replaced by non-school-based contacts (among children
and between children and adults) with similar transmission risk.

Our modeling approach has several limitations. For estimating
disease susceptibility we could only model children as a group of

0–20 years old. As disease susceptibility increases with age, it
seems obvious that effects of reduced school contacts are most
prominent in older children. Assuming equal susceptibility across
these ages may have underestimated to some extent the effect of
reducing school contacts for children between 10 and 20 years. At
the same time, we assumed that school contact patterns in
August–November 2020 reflect the pre-pandemic situation. Yet,
general control measures in the Netherlands such as stay at home
orders for symptomatic persons probably lower infectious con-
tacts in school settings too, meaning that some reduction com-
pared to pre-pandemic levels of contacts could already be present
in schools. Effects of these measures in school settings should be
smaller than in the general population and are hard to estimate
due to a large number of asymptomatic cases among children,
and therefore were not taken into account. In this respect, the
results reported here describe the maximum possible reduction in
the effective reproduction number due to school interventions.
Furthermore, the contact matrices available did not allow dif-
ferentiation between various types of contacts outside schools
(like work, leisure, transport, etc.), as these were not available for
periods during the pandemic. Therefore, we could not model the
impact of reducing work-related or leisure-related contacts
separately. We also could not include hospitalization data from
the second wave of the pandemic due to lack of data availability.

The potential effects of opening or closing schools in different
phases of the pandemic have been reported in other
studies13,21–24,29,30. Also based on a mathematical model,
Panovska-Griffiths et al.21 predicted that without very high levels
of testing and contact tracing reopening schools after summer
with a simultaneous relaxation of measures will lead to a second
wave in the United Kingdom, peaking in December 2020. Their
model predicted that this peak could be postponed for two
months (to February 2021) by a rotating timetable in schools.
Very early in the pandemic, in March 2020, the Scientific Advi-
sory Group for Emergencies in the United Kingdom concluded
that it would not be possible to reduce the effective reproduction
number below 1 without closing schools29. In a modeling study
on the impact of non-pharmaceutical interventions for COVID-
19 in the United Kingdom, Davies et al.13 found that the impact
of school closures was low. In another modeling study Rice
et al.24 found that school closures during the first wave of the
pandemic could increase overall mortality, due to death being
postponed to a second and subsequent waves. And based on an
analysis of the impact of non-pharmaceutical measures in 41
countries between January and May 2020, Brauner et al.30 con-
cluded that closure of schools and universities had contributed
the most to lowering the effective reproduction number. Yet, a
major difficulty in estimating the effect of school closure using
observational data from the first wave is that other non-
pharmaceutical interventions were implemented at or around
the same time as school closures31. Similarly, lifting such mea-
sures often coincided with school re-openings. Observational data
from the period after the first wave show conflicting results on
within school transmission32–35 and the effect of school reopen-
ing and interpretation is further hampered by the variety in
control measures implemented in schools across countries.
Finally, Munday et al.22 showed that reopening secondary schools
is likely to have a greater impact on community transmission
than reopening primary schools in England. While the modeling
approach of Munday et al.22 is different from ours, our findings
are similar in the sense that secondary schools are predicted to
make a larger contribution to transmission than primary schools,
and are therefore more important for controlling COVID-19.

In conclusion, we have demonstrated that the potential effects
of school-based measures to reduce contacts between children,
including school closures, markedly depends on the reduction in
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the effective reproduction number achieved by other measures.
With remaining opportunities to reduce the effective reproduc-
tion number with non-school-based measures, the additional
benefit of school-based measures is low. Yet, if opportunities to
reduce the effective reproduction number with non-school-based
measures are considered to be exhausted or undesired for eco-
nomic reasons and Re is still close to 1, the additional benefit of
school-based measures may be considerable. In such situations,
the biggest impact on transmission is achieved by reducing
contacts in secondary schools.

Methods
Overview. Estimates of epidemiological parameters were obtained by fitting a
transmission model to age-stratified COVID-19 hospital admission data in the
period from 27 February till 30 April 2020 (n= 10,961) and cross-sectional age-
stratified SARS-CoV-2 seroprevalence data assessed in April/May 2020 (n=
3207)18. The model equipped with parameter estimates was subsequently used to
investigate the impact of school- and non-school-based measures on controlling
the pandemic.

Data. The hospital data included n= 10,961 COVID-19 hospitalizations by date of
admission and stratified by age during the period of 64 days following the first
official case in the Netherlands (27 February 2020). The criteria for hospital
admission have not changed during the pandemic, and from the early stages all
hospitalized patients with a clinical suspicion of COVID-19 were tested by RT-PCR.
In all stages of the pandemic, patients requiring hospital admission were hospita-
lized and the practice of not referring patients for hospital admission (e.g. due to
self-expressed treatment restrictions or moribund condition) did not change.

The SARS-CoV-2 seroprevalence data were taken from a cross-sectional
population-based serological study carried out in April/May 2020 (PIENTER
Corona study)18. Participants for the serosurvey were enrolled from a previously
established nationwide serosurveillance study, provided a self-collected fingerstick
blood sample and completed a questionnaire. A total of 40 municipalities were
randomly selected, with probabilities proportional to their population size. From
these municipalities, an age-stratified sample was drawn from the population
register, and 6102 persons were invited to participate. Serum samples and
questionnaires were obtained from 3207 participants and included in the analyses.
The majority of blood samples were drawn in the first week of April. IgG
antibodies targeted against the spike S1-protein of SARS-CoV-2 were quantified
using a validated multipleximmunoassay. Seroprevalence was estimated controlling
for survey design, individual pre-pandemic concentration, and test performance.

Our analyses made use of the demographic composition of the Dutch
population in July 2020 from Statistics Netherlands36 and age-stratified contact
data for the Netherlands19,20. The contact rates before the pandemic were based on
a cross-sectional survey carried out in 2016/2017, where participants reported the
number and age of their contacts during the previous day19. The contact rates after
the first lockdown were based on the same survey which was repeated in a sub-
sample of the participants in April 2020 (PIENTER Corona study)19. School-
specific contact rates for the Dutch population before the pandemic were taken
from the POLYMOD study7,20.

Transmission model. We used a deterministic compartmental model describing
SARS-CoV-2 transmission in the population of the Netherlands stratified by
infection status and age (Fig. 8a). Some modeling studies on the impact of inter-
ventions against COVID-19 account for spatial variations of the disease16,17,37.
Since the available data are aggregated on the country level and for the sake of the
model’s tractability, we disregarded regional stratification of the population. The
dynamics of the model follows the Susceptible-Exposed-Infectious-Recovered
structure. Persons in age group k, where k= 1, …, n, are classified as susceptible
(Sk), infected but not yet infectious (exposed, Ek), infectious in m stages (Ik,p, where
p= 1,…,m), hospitalized (Hk), and recovered without hospitalization (Rk). Sus-
ceptible persons (Sk) can acquire infection via contact with infectious persons
(Ik,p, k= 1,…, n, p= 1,…,m) and become latently infected (Ek) at a rate βkλk,
where λk is the force of infection, and βk is the reduction in susceptibility to
infection of persons in age group k compared to persons in age group n. Persons in
the classes Ik,p, (k= 1, …, n, p= 1, …, m) are assumed to be equally infectious.
After the latent period (duration 1/α days), exposed persons become infectious
(Ik,1). Infectious persons progress through (m− 1) stages of infection (Ik,p, where
p= 2, …, m) at rate γm, after which they recover (Rk). Inclusion of m identical
infectious stages allows for the tuning of the distribution of the infectious period
(the time spent in the infectious compartments, Ik,p, p= 1, …, m)38,39, inter-
polating between an exponentially distributed infectious period (m= 1) and a fixed
infectious period (m→∞). Intermediate values of m correspond to an Erlang-
distributed infectious period with mean 1/γ and standard deviation 1=½γ ffiffiffiffi

m
p �.

Hospitalization (Hk) of infectious persons (Ik,p) occurs at rate νk. Since the model is
fitted to hospital admissions data, the disease-related mortality and discharge from
the hospital are not explicitly modeled, and Hk describes the cumulative number of

hospital admissions. We assume that currently hospitalized persons (who may still
be infectious) will have contacts with medical personnel and visitors, but these
persons will not be infected because they use personal protective measures. Given
the timescale of the pandemic and the lack of reliable data on reinfections, we
assume that recovered individuals cannot be reinfected. As the timescale of the
pandemic is short compared to the average lifespan of persons, we neglected
natural birth and death processes, and the population size in the model stays
constant.

We assume that, before the first lockdown, the probability of transmission per
contact between a susceptible and an infectious individual, ϵ, is independent of the age
of two individuals. After introduction of the control measures in March 2020, this
probability of transmission decreased to ϵζ1, where 0 ≤ ζ1 ≤ 1. The value (1− ζ1) then
denotes the reduction in the probability of transmission due to general population-
based measures that are not explicitly included in the model, such as refraining from
shaking hands, mask wearing, and self-isolation of symptomatic persons.

We denote the general contact rate (the number of contacts per day) of a person
in age group k with persons in age group l, ckl(t), and the contact rates specific to
the periods before and after the first lockdown, bkl, and, akl, respectively (see
Fig. 8b, c). The contacts are defined as contacts with household members and
contacts in the community19. Examples of a contact outside one’s household are
talking to someone (face-to-face), touching someone, kissing someone, or doing
sports with someone. More details on contact matrices akl and bkl can be found in
ref. 19. We assume a smooth change from the contact rate bkl to the contact rate akl,
as the contact-reduction measures were introduced during the first lockdown. We
model the transition in the general contact rate from before to after the first
lockdown using a linear combination

cklðtÞ ¼ ½1� f ðtÞ�bkl þ ζ1f ðtÞakl ; ð1Þ
where the contribution of the contact rate after the first lockdown is given by the
logistic function

f ðtÞ ¼ 1

1þ e�K1ðt�t1Þ ð2Þ

with the mid-point value t1 and the logistic growth K1 (Supplementary Fig. 1). The
parameter K1 governs the speed at which control measures are rolled out, and t1 is
the mid-time point of the lockdown period. The special cases of f= 0 and f= 1
describe the contact rate before and after the first lockdown, with f values between
0 and 1 corresponding to contact rates at the intermediate time points.

To investigate the impact of school- and non-school-based measures
individually, we need to be able to split the contact rate into a rate of contacts
occurring at schools and a rate of contacts occurring elsewhere. The contact rates we
used from the literature are additive19,20; thus, the contact rate before the lockdown
(bkl) can be written as a sum of the school contact rate at the pre-lockdown level (skl,
see Fig. 8d) and the contact rate for all locations but schools (bkl− skl). The contact
rate after the lockdown (akl) by definition did not include any school contacts
because all schools were closed. The contact rate incorporating the relaxation of
control measures after the first lockdown is therefore modeled as follows:

cklðtÞ ¼ ζ1gðtÞakl þ ½1� gðtÞ�ζ2ðbkl � sklÞ þ ωskl; ð3Þ
where gðtÞ ¼ 1= 1þ eK2ðt�t2Þ

� �
with the mid-point value t2 > t1 and the logistic growth

K2. In Eq. (3), the first two terms describe the increase of non-school contacts from the
level after the first lockdown (akl) to their pre-lockdown level (bkl− skl). The parameter
ζ2 ≥ ζ1, 0 ≤ ζ2 ≤ 1 implies that the probability of transmission increased due to reduced
adherence to control measures. The last term describes opening of schools which we
assume to happen instantaneously, where ω, 0 ≤ω ≤ 1, is the proportion of retained
school contacts. Schools functioning without any measures correspond to ω= 1. School
closure is achieved by setting ω= 0. A summary of the model parameters is given in
Table 1.

Model equations. The model was implemented in Mathematica 10.0.2.0 using a
system of ordinary differential equations as follows:

dSkðtÞ
dt

¼ � βkλkðtÞSkðtÞ;
dEkðtÞ
dt

¼ βkλkðtÞSkðtÞ � αEkðtÞ;
dIk;1ðtÞ
dt

¼ αEkðtÞ � ðγmþ νkÞIk;1ðtÞ;
dIk;pðtÞ
dt

¼ γmIk;p�1ðtÞ � ðγmþ νkÞIk;pðtÞ; p ¼ 2; ¼ ;m;

dRkðtÞ
dt

¼ γmIk;mðtÞ;
dHkðtÞ
dt

¼ νk

Xm
p¼1

Ik;pðtÞ;

ð4Þ

where Sk, Ek, Rk, and Hk are the numbers of persons in age group k, k= 1,…, n,
who are susceptible, exposed, recovered, and hospitalized, respectively. The num-
ber of infectious persons in age group k and stage p= 1,…,m is denoted Ik,p. The
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force of infection is given by

λkðtÞ ¼ ϵ
Xn

l¼1

Xm
p¼1

cklðtÞ
Il;pðtÞ
Nl

; ð5Þ

where Nl is the number of individuals in age group l,

Nl ¼ SlðtÞ þ ElðtÞ þ
Pm
p¼1

Il;pðtÞ þHlðtÞ þ RlðtÞ. Note that the denominator in the

force of infection (Nl) includes hospitalized persons, Hl(t), where Hl(t) describes the
cumulative number of hospital admissions at time t. The current number of
hospitalized persons (not the cumulative) is not subtracted from Nl because we
assume that hospitalized persons will be involved in contacts with medical per-
sonnel and visitors. Since we assume that contacts of the currently hospitalized
persons (who may still be infectious) will not be infected due to the use of personal
protective measures by medical personnel and hospital visitors, the current number

of hospitalized persons does not contribute to the force of infection. As patients
who are discharged and recovered (or deceased) also do not contribute to the force
of infection, the cumulative number of hospitalized persons (Hl(t)) does not
contribute to the force of infection either. In Eq. (5) we assumed a frequency-
dependent transmission where the per capita rate at which a susceptible person
becomes infected increases with the fraction of the population that is infectious.
This choice is justified for the Netherlands as one of the most densely populated
countries in Europe. Moreover, as the population size does not change during the
time horizon of our analyses, there is no difference in the outcome between a
frequency-dependent and a density dependent model once the parameters are
fitted to obtain the observed reproduction number.

We took 22 February 2020 as starting date (t0) for the pandemic in the Netherlands,
which is 5 days prior to the first officially notified case (27 February 2020). We assumed
that there were no hospitalizations during this 5-day period. To account for
importation of new cases into the Netherlands at the beginning of the pandemic, we

Fig. 8 Transmission model and contact rates. a Model schematic. Black arrows show epidemiological transitions. Red arrows indicate the compartments
contributing to the force of infection. Susceptible persons in age group k (Sk), where k= 1, …, n, become latently infected (Ek) via contact with infectious
persons in m infectious stages (Ik,p, p= 1, …, m) at a rate βkλk, where λk is the force of infection, and βk is the reduction in susceptibility to infection of
persons in age group k compared to persons in age group n. Exposed persons (Ek) become infectious (Ik,1) at rate α. Infectious persons progress through (m
− 1) infectious stages at rate γm, after which they recover (Rk). From each stage, infectious persons are hospitalized at rate νk. Table 1 gives the summary of
the model parameters. b–d Contact rates. b, c show contact rates in all locations before the pandemic and after the first lockdown (April 2020),
respectively; d shows contact rates at schools before the pandemic. The color represents the average number of contacts per day a person in a given age
group had with persons in another age group.
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estimated a fraction θ of each age group infected at time t0. For simplicity, we assumed
this fraction to be equally distributed between the exposed and infectious persons, i.e.,
Ekðt0Þ ¼ 1

2 θNk , Ik;pðt0Þ ¼ 1
2m θNk and Sk(t0)= (1− θ)Nk. In later stages of the

pandemic, importations do not play such an important role because of existing pool of
infected individuals within the country and ongoing control measures. For this reason,
importations after t0 were not included in the model.

Observation model and parameter estimation. Given predictions of the model,
we calculated the likelihood of the data as follows. In the model, infectious indi-
viduals are hospitalized at a continuous rate νk

Pm
p¼1 Ik;p . However, the hospita-

lization data consist of a discrete number of hospital admissions hk,i on day Ti for
each age class k. As the probability of hospitalization is relatively small, we made
the simplifying assumption that the daily incidence of hospitalizations is propor-
tional to the prevalence of infectious individuals at that time point. To accom-
modate errors in reporting and within age class variability of the hospitalization
rate, we allowed for over-dispersion in the number of hospitalizations using a
Negative-Binomial distribution, i.e.,

hk;i � NegBinom νk

Xm

p¼1
Ik;pðTiÞ; r

� �
; ð6Þ

where we parameterize the NegBinom(μ, r) distribution with the mean μ and over-
dispersion parameter r, such that the variance is equal to μ+ μ2/r.

We calculated the likelihood of the seroprevalence data using the model prediction
of the fraction of non-susceptible individuals in each age class 1− Sk(T)/Nk. Here T
denotes the median sampling time minus the expected duration from infection to
seroconversion. We assumed that the probability of finding a seropositive individual in
a random sample from the population is equal to the fraction of non-susceptible
individuals, leading to a Binomial distribution for the number of positive samples ℓk
among all samples Lk from age group k

‘k � Binom Lk; 1� SkðTÞ=Nkð Þ: ð7Þ
Parameters were estimated in a Bayesian framework based on the methods from

refs. 40,41. The model given by Eq. (4) was fit to the data using the Hamiltonian Monte
Carlo method as implemented in Stan (https://www.mc-stan.org)42 with R and R
Studio interfaces. We used four parallel chains of length 1500 with a warm-up phase of
length 1000, resulting in 2000 parameter samples from the posterior distribution.

We used age-specific contact rates with ten age groups (ages [0, 5), [5, 10), [10, 20),
[20, 30), [30, 40), [40, 50), [50, 60), [60, 70), [70, 80) and 80+). Due to the low number
of hospitalizations in young persons, we assumed that hospitalization rates in the first
three age groups (ages [0, 5), [5, 10), [10, 20)) were equal; therefore, only eight

hospitalization rates were estimated. As the age-specific hospitalization rates are
positively correlated (Supplementary Fig. 5), we parameterized the model as νk ¼ ν̂k�ν,
where ν̂k is a simplex and �ν a scalar. We kept the same age categories for the relative
susceptibility as in the retrospective cohort study by Jing et al.8, from where we took the
priors, i.e., the relative susceptibility was estimated for ages [0, 20), [20, 60), and 60+
age category was used as the reference corresponding to susceptibility equal to 1. As the
age groups for which the seroprevalence was reported18 are different from the age
groups used in our model, we used demographic data from the Netherlands36 and the
smoothed age-specific seroprevalence curve estimated by Vos et al.18 to correct for this
discrepancy. The Bayesian prior distributions for the 10 estimated parameters (18
numbers in total as hospitalization rate and susceptibility are age-dependent) (see
Table 1) are listed in Table 2. In the main text, we presented results for three infectious
classes corresponding to an Erlang-distributed infectious period with shape parameter
m= 3.

Model outcomes. We considered control measures aimed at reducing contact rate at
schools or in all other locations. We evaluated the impact of a control measure by
computing Re using the next-generation matrix (NGM) method43–46, and percentage
of contacts that need to be reduced to achieve control of the pandemic as quantified by
Re= 1. Previously, we applied this method for HIV and CMV transmission
models41,47. The method for calculating the basic reproduction number R0 and Re
(Supplementary Fig. 4) is described in detail in Supplementary Information. In short,
Supplementary Fig. 4a, b were obtained using the NGM method and posterior dis-
tributions of the parameters (Supplementary Fig. 3) that were estimated from fitting the
model to the data of the first 69 days of the pandemic (22 February till 30 April 2020).
As hospitalization data during relaxation are not available, we calibrated the model to
values of Re as published on the dashboard of the National Institute for Public Health
and the Environment (RIVM)1. These time-dependent Re values are estimated from
hospitalization data and later from case numbers using methods described in ref. 48.
Specifically, we chose ω, g, and ζ2 such that the median reproduction numbers in the
model would equal the specific values estimated by the RIVM (about 1.3 in the period
27 August–6 September and about 1 in the period 7–13 November)1. The distributions
shown in Supplementary Fig. 4c, d are therefore obtained using the NGMmethod with
fixed ω, g, and ζ2 and other parameters drawn from the posterior distributions as
shown in Supplementary Fig. 3. Note that the calibration of the model in the relaxation
period is possible because the parameters describing epidemiology of SARS-CoV-2 are
assumed to be constant throughout the time horizon of the analyses which spans both
pre-lockdown, post-lockdown, and relaxation periods, and only contact structure varies
with time (see Supplementary Information). In analyses, the parameters ω and g were
then used as control parameters to reduce the number of school- and non-school-

Table 1 Summary of the model parameters.

Description (unit) Notation Reference

Constant parameters
Number of age groups n 10
Number of infectious stages m 3
Basic reproduction number R0 Computed using the method in ref. 45

Effective reproduction number Re Computed using the method in ref. 45

Probability of transmission per contact ϵ Estimated
Reduction in post-lockdown probability of transmission per contact (1− ζ1) Estimated
Latent period (days) 1/α Estimated
Infectious period (1/day) 1/γ Estimated
Contribution of the contact rate after the lockdown fðtÞ ¼ 1= 1þ e�K1ðt�t1Þ

� �
Eq. (2)

Mid-point value of the logistic function (days) t1 Estimated
Logistic growth (1/day) K1 Estimated
Over-dispersion parameter for the NegBinom distribution for hospitalizations r Estimated
Proportion of school contacts ω [0, 1], calibrated
Reduction in probability of transmission per contact during relaxation (1− ζ2) [0, 1], ζ2≥ ζ1, calibrated
Initial fraction of infected persons θ Estimated
Logistic function for relaxation gðtÞ ¼ 1= 1þ eK2ðt�t2Þ

� �
0≤ g(t)≤ 1, calibrated

Age-specific parametersa

Force of infection (1/day) λk Eq. (5)
Hospitalization rate (1/day) νk Estimated
Susceptibility of age group k relative to age group nb βk Estimated
General contact rate (1/day) ckl Eqs. (1) and (3)
Contact rate before the pandemic (1/day) bkl 19

Contact rate after the first lockdown (1/day) akl 19

School contact rate before the pandemic (1/day) skl 7,20

Population size of age group k Nk
36

aIndices k and l denote the age groups k, l= 1,…, n.
bIn the estimation procedure the reference age group n is 60+, and β60+= 1 is fixed at 1.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21899-6 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1614 | https://doi.org/10.1038/s41467-021-21899-6 | www.nature.com/naturecommunications 9

https://www.mc-stan.org
www.nature.com/naturecommunications
www.nature.com/naturecommunications


related contacts (Figs. 5–7). In doing so, we varied one type of contact and kept the
other type constant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All datasets analyzed and generated during this study are available in the GitHub
repository, https://github.com/lynxgav/COVID19-schools49.

Code availability
Mathematica, Stan, R, and R Studio codes reproducing the results of this study are
available in the GitHub repository, https://github.com/lynxgav/COVID19-schools49.
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