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Lie algebras and vn-periodic spaces

By Gijs Heuts

Abstract

We consider a homotopy theory obtained from that of pointed spaces by

inverting the maps inducing isomorphisms in vn-periodic homotopy groups.

The case n = 0 corresponds to rational homotopy theory. In analogy with

Quillen’s results in the rational case, we prove that this vn-periodic ho-

motopy theory is equivalent to the homotopy theory of Lie algebras in

T (n)-local spectra. We also compare it to the homotopy theory of com-

mutative coalgebras in T (n)-local spectra, where it turns out there is only

an equivalence up to a certain convergence issue of the Goodwillie tower of

the identity.
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1. Introduction

Quillen [44] proves a remarkable result on the global structure of the ho-

motopy theory of rational spaces, showing that it is in a sense completely alge-

braic. More precisely, he shows that the homotopy theory of simply-connected

rational spaces can be modelled by the homotopy theory of differential graded

rational Lie algebras or that of cocommutative differential graded rational coal-

gebras. This paves the way for the development of very explicit calculational

methods for dealing with such spaces, e.g., Sullivan’s theory of minimal models

[47], which are not available when dealing with general spaces.

Rationalization is the first (or rather, zeroth) in a hierarchy of localiza-

tions of homotopy theory. The rational homotopy groups of a pointed space

X arise when considering homotopy classes of maps from spheres Sk → X

and then inverting the action of the multiplication maps p : Sk → Sk for all

primes p. Adams [1] showed that if one takes the cofiber Sk/p, then (for k large

enough) there is a self-map v1 : ΣdSk/p→ Sk/p that induces an isomorphism

in K-theory. One can now consider homotopy classes of maps Sk/p→ X and

invert the action of the self-map v1 to obtain the (mod p) v1-periodic homotopy

groups of X. A v1-periodic equivalence of spaces is a map inducing isomor-

phisms in these v1-periodic homotopy groups. Since the periodicity results of

Hopkins and Smith [27] it is known that this pattern continues indefinitely: for

every n ≥ 0, there exist suitable finite type n spaces with vn self-maps and one

can consider the associated notions of vn-periodic homotopy groups and vn-

periodic equivalences. Their results, together with the nilpotence theorem of

[19], have proved to be very powerful organizing principles in stable homotopy

theory.

In this paper we study a homotopy theory Svn that is essentially obtained

from that of pointed spaces by inverting the vn-periodic equivalences. We write

T (n) for the spectrum obtained as the telescope of a vn self-map on a finite

type n spectrum. The associated Bousfield localization of stable homotopy

theory is independent of choices. The main result of this paper can be stated

as follows:

The homotopy theory Svn is equivalent to the homotopy theory of Lie al-

gebras in the category of T (n)-local spectra.
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LIE ALGEBRAS AND vn-PERIODIC SPACES 225

We will make this statement precise below (Theorem 2.6) and outline

related results and consequences; in particular, we also include a version appli-

cable to K(n)-local homotopy theory. Our results generalize Quillen’s rational

homotopy theory to the cases n > 0. We also compare Svn to the homotopy

theory of cocommutative coalgebras in T (n)-local spectra. It turns out these

theories are not quite the same, but only equivalent “up to Goodwillie con-

vergence.” We make this precise in Theorem 2.10. This second comparison is

closely related to recent work of Behrens and Rezk [8].

Acknowledgments. The results of Section 5 grew out of an attempt to

understand and contextualize the results of Behrens and Rezk [8], [9] on the

relation between the Bousfield–Kuhn functor and topological André–Quillen

homology. I have benefitted much from reading their work, as well as from

several inspiring talks by and conversations with Mark Behrens. Theorem 2.6

(the comparison with Lie algebras) offers a different (and sharper) perspec-

tive on vn-periodic homotopy theory, which builds on joint work with Rosona

Eldred, Akhil Mathew, and Lennart Meier [20] carried out at the Hausdorff

Research Institute for Mathematics. I wish to thank my collaborators for an

inspiring semester and the Institute for its hospitality and excellent working

conditions. Moreover, I thank Greg Arone and Lukas Brantner for useful con-

versations relating to this paper. A large intellectual debt is owed to Bousfield

and Kuhn, whose work is indispensable. I thank Haynes Miller for comments

on an earlier version of this paper. Finally, I thank Jacob Lurie for many useful

suggestions, among which a slick proof of the crucial Proposition 4.18. While

this paper was being written, Mike Hopkins and Jacob Lurie ran a seminar

at Harvard on (amongst other things) the results presented here; the reader

might find their excellent notes [39] to be a useful resource.

2. Main results

Throughout this paper we will use∞-categories, or quasicategories, as our

preferred formalism for higher category theory. There are several instances in

this paper where this turns out to be convenient, for example in Theorem 4.1,

in applying a theorem of Lurie on bar-cobar duality in Section 4.3, and when

applying the formalism of Goodwillie towers of ∞-categories in Section 5. We

will assume basic familiarity with the theory of ∞-categories. The works of

Joyal [28], [29] and Lurie [36] are the standard references. All of the spaces

and spectra we consider will (implicitly) be localized at a fixed prime p. In

other words, we consider their Bousfield localization at the homology theory

determined by S(p), the p-local sphere spectrum. We will write S∗ and Sp for

the ∞-categories of p-local pointed spaces and p-local spectra, respectively.

For an integer n ≥ 0, a finite pointed space V is of type n if K(m)∗V = 0

for m < n and K(n)∗V 6= 0. Here K(m)∗V denotes the reduced mth Morava
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226 GIJS HEUTS

K-theory of V . The periodicity results of Hopkins and Smith [27] imply that

any pointed type n space V (after sufficiently many suspensions) admits a vn
self-map, i.e., a map v : ΣdV → V so that

K(m)∗v is

{
an isomorphism if m = n,

nilpotent if m 6= n.

For X a pointed space, one can define its v-periodic homotopy groups with coef-

ficients in V by taking the homotopy groups of the mapping space Map∗(V,X)

and inverting the action of v by precomposition. It is convenient to formulate

this definition as follows. One can define a spectrum ΦvX by setting

(ΦvX)0 = Map∗(V,X), (ΦvX)d

= Map∗(V,X), . . . , (ΦvX)kd = Map∗(V,X), . . .

and using the maps

(ΦvX)kd = Map∗(V,X)
v∗−→ Map∗(Σ

dV,X) = Ωd(ΦvX)(k+1)d

as structure maps. This defines the telescopic functor

Φv : S∗ → Sp

associated to v (see [34]). The homotopy groups π∗Φv(X) are then precisely

the v-periodic homotopy groups of X described above. In fact, the functor

Φv takes values in the ∞-category SpT (n) of T (n)-local spectra (see Theorem

4.2 of [34]). Here T (n) denotes the telescope of a vn self-map on a finite type

n spectrum. Although T (n) itself depends on the choice of spectrum, the

corresponding Bousfield localization does not.

The Bousfield–Kuhn functor conveniently packages the various telescopic

functors Φv into one. It is a functor

Φ: S∗ → SpT (n)

enjoying the following properties (see Theorem 1.1 and Lemma 8.6 of [34]):

(i) For V a finite type n space with vn self-map v, there is a natural equiva-

lence

DV ⊗ Φ(X) ' Φv(X).

Here DV denotes the Spanier–Whitehead dual of V . Of course one could

replace DV ⊗ Φ(X) with the function spectrum F (V,Φ(X)).

(ii) There is a natural equivalence of functors

ΦΩ∞ ' LT (n).

(iii) The functor Φ preserves finite limits.

In fact, Kuhn [34] shows that Φ is essentially determined by property (i).
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LIE ALGEBRAS AND vn-PERIODIC SPACES 227

Definition 2.1. A map of pointed spaces f : X → Y is a vn-periodic equiv-

alence if Φ(f) is an equivalence of spectra.

A map of T (n)-local spectra is an equivalence if and only if it is an equiva-

lence after smashing with a finite type n spectrum. Indeed, the latter condition

implies it is an equivalence after smashing with any finite type n spectrum (by

the thick subcategory theorem [27]) and one then uses the fact that up to

T (n)-equivalence the sphere spectrum can be written as a filtered colimit of

finite type n spectra. (This trick goes back to Kuhn [30].) It then follows from

property (i) above that a map f of pointed spaces is a vn-periodic equivalence

if and only if Φv(X) is an equivalence, i.e., if and only if it induces an iso-

morphism on v-periodic homotopy groups. Our first goal will be to describe a

homotopy theory obtained from S∗ by inverting the vn-periodic equivalences.

The following was essentially proved by Bousfield in [12]. We formulate it here

in a form that suits our purposes (and a proof is included in Section 3.2):

Theorem 2.2. For n ≥ 1, there exist an ∞-category Svn and a functor

M : S∗ → Svn such that for any ∞-category C, precomposition by M gives an

equivalence

Fun(Svn ,C)
M∗−−→ Funvn(S∗,C).

Here Funvn denotes the full subcategory of functors that send vn-periodic equiv-

alences in S∗ to equivalences in C.

Of course one can always formally invert a class of morphisms in a cate-

gory (or an ∞-category), but generally only at the cost of passing to a larger

universe. The content of the theorem is therefore that Svn is still locally small.

Note that the universal property described in the theorem implies that Svn and

the functor M are unique up to equivalence. In fact, we will construct Svn as

a full subcategory of S∗. We write i : Svn → S∗ for the inclusion. Viewed in

this way, the functor M should be thought of as a projection to this subcate-

gory. The following theorem summarizes the properties we need. Its proof will

be given in Section 3.2 and again leans very heavily on the work of Bousfield

[10], [12].

Theorem 2.3. There is a natural equivalence M◦i ' idSvn
. Furthermore,

Svn enjoys the following properties :

(i) A map ϕ of pointed spaces is a vn-periodic equivalence if and only if M(ϕ)

is an equivalence.

(ii) The Bousfield–Kuhn functor factors through M ; we still denote the re-

sulting functor by

Φ: Svn → SpT (n).
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228 GIJS HEUTS

This functor admits a left adjoint Θ. In particular, this Φ preserves all

limits (rather than just finite limits).

(iii) The functor M : S∗ → Svn preserves finite limits and filtered colimits.

(iv) The ∞-category Svn is compactly generated.

Remark 2.4. When comparing with Bousfield’s paper [12] the reader will

note a change of notation. Bousfield writes UNf
n for a category that is essen-

tially the homotopy category of what we call Svn here.

Remark 2.5. As already expressed by Theorem 2.2, the homotopy theory

Svn and the functor M are unique up to equivalence. However, the embedding

i : Svn → S∗ does depend on a choice, namely that of the “connectivity” dn+1

featuring in Section 3.1.

The ∞-category Svn is related to the ∞-category of T (n)-local spectra by

two different adjunctions (left adjoints on top):

SpT (n) Svn SpT (n).
Θ

Σ∞
T (n)

Φ Ω∞
T (n)

The pair on the left exists by part (ii) of Theorem 2.3. The notation Σ∞T (n) is

short-hand for the composition

Svn
i−−−−→ S∗

LT (n)Σ
∞

−−−−−−→ SpT (n).

Its right adjoint Ω∞T (n) is the composition M ◦Ω∞. We will show (see Proposi-

tion 3.19 and Remark 3.20) that this functor exhibits SpT (n) as the stabiliza-

tion of Svn , i.e., it is the terminal functor from a stable∞-category to Svn that

preserves limits.

The two adjunctions above offer complementary perspectives on the ∞-

category Svn . In joint work with Eldred, Mathew, and Meier [20] we prove

that the adjoint pair (Θ,Φ) is monadic, meaning that Φ gives an equivalence

between Svn and the∞-category of algebras for the monad ΦΘ on SpT (n). Here

we go further and explicitly identify this monad as the free Lie algebra monad.

As a functor, ΦΘ admits the following description (see Theorem 4.13):

ΦΘ(X) ' LT (n)

⊕
k≥1

(∂kid⊗X⊗k)hΣk
.

Here ∂kid is the kth Goodwillie derivative of the identity. It is a finite

spectrum with Σk-action which can be described explicitly as the Spanier–

Whitehead dual of a certain partition complex [5]. Informally speaking, the

monad structure on ΦΘ corresponds to the fact that the spectra ∂kid assemble

into an operad, as demonstrated by Ching [14]. This operad can be thought of

as a version of the Lie operad in the stable homotopy category. We will adapt

This content downloaded from 
�������������131.211.12.11 on Tue, 19 Oct 2021 09:14:56 UTC������������� 

All use subject to https://about.jstor.org/terms



LIE ALGEBRAS AND vn-PERIODIC SPACES 229

Ching’s work to the setting in which we work here and give a precise definition

of Lie algebras in Section 4. Subsequently we will prove the following:

Theorem 2.6. For n ≥ 1, there is an equivalence between the∞-category

Svn and the ∞-category Lie(SpT (n)) of Lie algebras in T (n)-local spectra. This

equivalence has the property that the resulting composition

Svn ' Lie(SpT (n))
forget−−−→ SpT (n)

is equivalent to the Bousfield–Kuhn functor Φ.

Remark 2.7. One of the most basic manifestations of the relation between

Lie algebras and the homotopy theory of spaces is the Whitehead bracket on

the homotopy groups of a pointed space. In Proposition 4.28 we show that for a

pointed space X, the Lie algebra structures on Φ(X) produced by Theorem 2.6

in particular agree with the Whitehead bracket on the vn-periodic homotopy

groups of X.

There is a variant of Theorem 2.6 for K(n)-local homotopy theory (which

might or might not be the same as T (n)-local homotopy theory, depending on

the telescope conjecture). Let us say a map f of pointed spaces is a ΦK(n)-

equivalence if the map of spectra Φ(f) is a K(n)∗-equivalence. We derive the

following in Section 4.5:

Corollary 2.8. The localization of Svn at the ΦK(n)-equivalences exists.

More precisely, there exists a full subcategory MK(n) → Svn for which the

inclusion admits a left adjoint, satisfying the following two properties :

(i) The unit is a ΦK(n)-equivalence.

(ii) A map in MK(n) is an equivalence if and only if it is a ΦK(n)-equivalence.

Moreover, the ∞-category MK(n) is equivalent to the ∞-category Lie(SpK(n))

of Lie algebras in K(n)-local spectra.

This corollary is not proved by analogy with the proof of Theorem 2.6;

rather, it is a formal consequence. We do not know of a direct proof avoiding

the use of that theorem. This highlights the fundamental role of T (n)-local

(as opposed to K(n)-local) homotopy theory in this paper.

Remark 2.9. Our proof of Theorem 2.6 does not extend in an evident way

to include the case n = 0 of rational homotopy theory and therefore does not

give an independent proof Quillen’s results. The reason is that the definition

of the telescopic functors Φv (and the Bousfield–Kuhn functor Φ) does not

admit an evident analog in the rational setting. However, many of our results

on operads and Lie algebras in T (n)-local spectra in Section 4 do extend to

the case of rational spectra.
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230 GIJS HEUTS

Theorem 2.6 tells us that the adjoint pair (Θ,Φ) is as good as one could

hope for. The question remains to what extent this is true for the other

adjunction

Svn SpT (n).
Σ∞

T (n)

Ω∞
T (n)

This adjunction gives a comparison between Svn and the ∞-category of coal-

gebras for the comonad Σ∞T (n)Ω
∞
T (n). As a functor, a theorem of Kuhn implies

that this comonad can be described by the formula

Σ∞T (n)Ω
∞
T (n)X ' LT (n)

⊕
k≥1

X⊗khΣk
;

see Theorem 4.16. This formula is suggestive of the fact that such coalgebras

are closely related to commutative coalgebras in SpT (n). We will make this

relationship explicit in Section 5, using the formalism of Goodwillie towers of

∞-categories developed in [26]. The result is the following, which we prove in

Section 5.1:

Theorem 2.10. The functor Σ∞T (n) induces an equivalence between the

kth Goodwillie approximation PkSvn of the ∞-category Svn and the ∞-category

of k-truncated commutative ind-coalgebras in T (n)-local spectra, denoted by

coAlgind(τkSp⊗T (n)).

We will explain the terms in the statement of this theorem more pre-

cisely in Section 5.1, but for now we mention that a k-truncated commutative

coalgebra is essentially a spectrum E equipped with comultiplication maps

δj : E → (E⊗j)hΣj

for 2 ≤ j ≤ k together with a coherent system of homotopies expressing the

necessary compatibilities between the various δj . Theorem 2.10 cannot be

strengthened to say that Svn is equivalent to the ∞-category coAlgind(Sp⊗T (n))

of commutative ind-coalgebras in T (n)-local spectra (or that of commutative

coalgebras, without the ind, for that matter). Rather, one can think of the

difference between the two as the issue of convergence of the Goodwillie tower

of the identity of Svn .

Theorem 2.10 gives another perspective on the Bousfield–Kuhn functor

that we discuss in Section 5.2. There is a functor

triv : SpT (n) → coAlg(Sp⊗T (n))

that assigns to a T (n)-local spectrum X the trivial coalgebra structure on X.

This functor admits a right adjoint

prim: coAlg(Sp⊗T (n))→ SpT (n),

This content downloaded from 
�������������131.211.12.11 on Tue, 19 Oct 2021 09:14:56 UTC������������� 

All use subject to https://about.jstor.org/terms



LIE ALGEBRAS AND vn-PERIODIC SPACES 231

which we will refer to as the primitives functor. The construction of this functor

is formally dual to the construction of topological André–Quillen homology

(TAQ) of commutative ring spectra (see, for example, [6]). Similarly, there are

primitives functors

primk : coAlg(τkSp⊗T (n))→ SpT (n)

for every k ≥ 1. Write

CT (n) : Svn → coAlgind(Sp⊗T (n))

for the functor that assigns to a space X ∈ Svn its T (n)-local suspension

spectrum Σ∞T (n)X together with its natural coalgebra structure with respect

to the smash product. Similarly, write τkCT (n)(X) for the k-truncations of

this coalgebra, simply obtained by forgetting the comultiplication maps δj for

j > k. We will derive the following as a formal consequence of Theorem 2.10:

Theorem 2.11. The Goodwillie tower of the functor Φ can be described

in terms of primitives by equivalences

PkΦ(X)→ primk(τkCT (n)X)

natural in X and k.

This reproduces a recent result of Behrens and Rezk: in [8] they prove the

analogous statement in the K(n)-local setting, stating it for TAQ rather than

for the primitives functor we consider here. Let us say a pointed space X is

Φ-good if the Goodwillie tower of Φ converges on X, i.e., if the natural map

Φ(X)→ lim←−
k

PkΦ(X)

is an equivalence. The natural maps of Theorem 2.11 arise from a natural

transformation Φ → prim ◦ CT (n) that is a variant of the comparison map of

Behrens and Rezk. In Section 5 we show how to derive the following:

Corollary 2.12. A space X ∈ Svn is Φ-good if and only if the compari-

son map

Φ(X)→ prim(CT (n)X)

is an equivalence.

It is an interesting question which spaces are Φ-good. Arone and Ma-

howald (Theorem 4.1 of [5]) prove that spheres are Φ-good. Behrens and Rezk

(Section 8 of [9]) show that the same is true for the special unitary groups and

the symplectic groups (at least in the K(n)-local setting). In [13] it is proved

that wedges of spheres are not Φ-good and that the same is true for Moore

spaces. We will establish a novel class of Φ-good spaces in Corollary 4.23,

namely the spaces of the form Θ(LT (n)S`), with S` denoting the `-fold suspen-

sion of the sphere spectrum and ` any integer.
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232 GIJS HEUTS

The fact that not all spaces are Φ-good explains why Theorem 2.6 gives

a much sharper description of vn-periodic unstable homotopy theory than the

coalgebra model of Theorem 2.10 and the resulting comparison between the

Bousfield–Kuhn functor and primitives (or TAQ). In particular, it should be

noted that the Lie algebras ΦX produced by Theorem 2.6 are generally not the

same as the Lie algebras prim(CT (n)X) or TAQ(SX+

T (n)), which are considered

by Behrens and Rezk in [9].

Finally, we sample some calculational consequences of our results in Sec-

tion 4.4. The following theorem shows that the calculation of the vn-periodic

homotopy groups of a large class of type n spaces with vn self-maps can be

translated completely into stable terms.

Theorem 2.13. Suppose V is a pointed finite type n space with a vn self-

map, and write W = Σ2V . Then there is an equivalence of spectra as follows :

Φ(W ) ' LT (n)

⊕
k≥1

(∂kid⊗ Σ∞W⊗k)hΣk
.

This formula will result from an identification of the Goodwillie derivatives

of Φ and a splitting of the Goodwillie tower of this functor when evaluated on

spaces W of the form described in the theorem. As an example, if n = 1 and p

is odd, then the mod p Moore space M(Z/p, 3) supports a v1 self-map. In this

case Theorem 2.13 expresses the v1-periodic homotopy groups of M(Z/p, j),

for j ≥ 5, in terms of the stable homotopy groups of the homotopy orbit

spectra on the right. It would be interesting to compare this splitting with

the computations of Thompson [48], who uses the splitting of loop spaces of

Moore spaces constructed by Cohen, Moore, and Neisendorfer.

Another application of Theorem 2.6 is the following. After identifying Svn
with Lie(SpT (n)), the functor

Ω∞T (n) : SpT (n) → Svn

can be identified with the trivial Lie algebra functor

triv : SpT (n) → Lie(SpT (n)).

The left adjoint Σ∞T (n) is then identified with the functor taking derived inde-

composables or topological Quillen homology (see, for example, [6]). Roughly

speaking, for any operad O (say in spectra) and an O-algebra A, there is a

natural filtration of the topological Quillen homology of A whose associated

graded can be expressed in terms of the bar construction of O. (See Section

4 of [8], where this filtration is called the Kuhn filtration.) We will define the

relevant filtration of Σ∞T (n)X in the case of interest to us in Section 4.4 and

show that the associated graded is the free (nonunital) symmetric algebra on

Φ(X):
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LIE ALGEBRAS AND vn-PERIODIC SPACES 233

Theorem 2.14. For X ∈ Svn , the suspension spectrum Σ∞T (n)X admits a

natural filtration with associated graded the spectrum

Sym∗(Φ(X)) = LT (n)

⊕
k≥1

Φ(X)⊗khΣk
.

Remark 2.15. In the analogous case of differential graded Lie algebras

over the rational numbers, topological Quillen homology is equivalent to the

complex calculating Chevalley–Eilenberg homology. That complex, evaluated

on a differential graded Lie algebra L, indeed has an evident filtration whose

associated graded is the free nonunital symmetric algebra on the (shifted)

underlying chain complex of L.

Of course Theorem 2.14 becomes more useful when one knows something

about Φ(X). As an example, take n = 1 and p odd again. Then Bousfield’s in-

terpretation [11] of a computation of Thompson [49] (which is the odd-primary

version of a calculation of Mahowald [40] at p = 2) describes the spectrum

Φ(S2`+1) as the localization of a mod p` Moore spectrum:

Φ(S2`+1) ' LK(1)S2`/p`.

This leads to the following:

Corollary 2.16. Take ` ≥ 1. Then the K(1)-local sphere spectrum

admits a filtration with associated graded the spectrum

LK(1)Σ
−2`−1

(⊕
k≥1

(S2`/p`)⊗khΣk

)
.

It would be interesting to see if recent calculations of the Bousfield–Kuhn

functor on spheres at heights greater than 1 [50], [51] can be used to deduce

further results along these lines.

3. The vn-periodic homotopy theory of spaces

The goal of this section is to present the construction of the ∞-category

Svn and prove Theorems 2.2 and 2.3. Most of this material is based on the work

of Bousfield and Dror-Farjoun on localizations (or “nullifications”) of spaces

[10], [21]. We will frequently cite results from Bousfield’s papers [10] and

[12]. An alternative exposition of the theory of localizations specifically aimed

at the results of this paper is contained in the notes for Harvard’s Thursday

seminar [39].

3.1. The ∞-category L
f
n. Fix a finite type n + 1 suspension space Vn+1.

We need not assume that Vn+1 admits a vn+1 self-map. Bousfield chooses

Vn+1 so that its connectivity is as low as possible. We do not make this

restriction, because the additional freedom in choosing Vn+1 is useful in proving

This content downloaded from 
�������������131.211.12.11 on Tue, 19 Oct 2021 09:14:56 UTC������������� 

All use subject to https://about.jstor.org/terms



234 GIJS HEUTS

Theorem 4.1. Define dn+1 to be conn(Vn+1) + 1. In other words, dn+1 is the

dimension of the lowest nonvanishing homotopy group of Vn+1. As an example,

V1 may be taken to be the Moore space M(Z/p, 2), in which case d1 = 2. If

k > l, we will always assume that our choices of Vk+1 and Vl+1 are such that

dk ≥ dl.
For d a positive integer, we will write S∗〈d〉 for the full subcategory of S∗

spanned by the d-connected spaces. We will carry out many constructions using

the ∞-category S∗〈1〉 of pointed p-local simply-connected spaces. Recall that

our convention is to leave the adjective p-local implicit and assume it applies

throughout. The ∞-category S∗〈1〉 is easily seen to be compactly generated.

Definition 3.1. The ∞-category LfnS∗〈1〉 is the localization of S∗〈1〉 with

respect to the map Vn+1 → ∗. We write Lfn : S∗〈1〉 → S∗〈1〉 for the correspond-

ing localization functor, so that LfnS∗〈1〉 is the essential image of Lfn.

Here the word localization is intended in the sense of Definition 5.2.7.2

of [36]. Thus LfnS∗〈1〉 is the full subcategory of S∗〈1〉 on the objects that are

local with respect to the map Vn+1 → ∗, and the inclusion of this subcategory

into S∗〈1〉 is a right adjoint functor. This is the ∞-categorical analogue of left

Bousfield localization of model categories.

When comparing our definition of Lfn to Bousfield’s in 4.3 of [12] there

might seem to be a discrepancy: Bousfield also localizes with respect to prime

to p Moore spaces. Since we work in the p-local setting throughout, this point

can be safely ignored.

Lemma 3.2. An object Y ∈ LfnS∗〈1〉 is compact if and only if it is equiv-

alent to a retract of one of the form LfnX for X a compact object of S∗〈1〉.
Moreover, the ∞-category LfnS∗〈1〉 is compactly generated.

Proof. Since Vn+1 is finite, the class of Lfn-local objects of S∗〈1〉 is closed

under filtered colimits and Lfn preserves filtered colimits. The lemma follows

easily from this. �

At this point the reader might wonder to what extent the localization Lfn
depends on the choice of Vn+1. It turns out only its connectivity is relevant.

To be precise, let us say that spaces W and W ′ have the same Bousfield class

if the localizations with respect to W → ∗ and W ′ → ∗ are the same. We write

〈W 〉 for the equivalence class of W with respect to this relation and call it

the Bousfield class of W . Define 〈W 〉 ≤ 〈W ′〉 if every space local with respect

to W ′ → ∗ is also local with respect to W → ∗. Then Bousfield establishes

the following unstable analogue of a stable classification result of Hopkins and

Smith (see Theorem 9.15 of [10]), which we state here for future reference:
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LIE ALGEBRAS AND vn-PERIODIC SPACES 235

Theorem 3.3. For W and W ′ finite suspension spaces of type greater

than zero, the following are equivalent :

(i) 〈W 〉 ≤ 〈W ′〉,
(ii) type(W ) ≥ type(W ′) and conn(W ) ≥ conn(W ′).

The localization functor Lfn captures the vi-periodic homotopy groups for

i ≤ n, but kills them for i > n. More precisely, let X be any pointed simply-

connected space and F ∈ S∗〈1〉 a finite pointed type i space with a vi self-map

vi : ΣdF → F . Then Theorem 5.2 of [10] gives

πkL
f
0X ' πkX ⊗Q if k > d1

and 4.6 of [12] states, for i, n ≥ 1, that

v−1
i π∗(L

f
nX;F ) '

{
v−1
i π∗(X;F ) if i ≤ n,

0 if i > n.

We will need a functor Mf
n that captures only the vn-periodic homotopy

groups of a pointed space. For this we use the following:

Lemma 3.4. An Lfn−1-local pointed space is also Lfn-local, so that Lfn−1 '
LfnL

f
n−1.

Proof. This is immediate from Theorem 3.3 and the fact that 〈Vn+1〉≤〈Vn〉.
�

By the previous lemma, the natural transformation Lfn → LfnL
f
n−1 induces

a natural transformation Lfn → Lfn−1.

Definition 3.5. The functor Mf
n is the fiber of Lfn → Lfn−1.

Our previous description of the periodic homotopy groups of LfnX gives

the following for i, n ≥ 1:

v−1
i π∗(M

f
nX;F ) '

{
v−1
n π∗(X;F ) if i = n,

0 if i 6= n.

Of course Mf
0 = Lf0 . We have described the behavior of Lfn and Mf

n with

respect to periodic homotopy groups. However, it is not quite true that these

functors detect periodic homotopy equivalences in any reasonable sense, since

they do not affect the homotopy groups of a space in dimensions below the

connectivity of Vn+1. This can be fixed by Theorem 3.7 below. First we need

to know how Lfn interacts with taking highly connected covers. The following

is Proposition 13.1 of [10]:
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236 GIJS HEUTS

Proposition 3.6. The functor Lfn commutes with dn+1-connected covers.

More precisely, for any X ∈ S∗, the space Lfn(X〈dn+1〉) is dn+1-connected, so

that there is a natural map

Lfn(X〈dn+1〉)→ (LfnX)〈dn+1〉,
and this map is an equivalence.

The reader should note that vn-periodic homotopy groups are invariant

under taking arbitrarily highly connected covers (at least for n ≥ 1), so that

replacing X by X〈dn+1〉 is harmless from the point of view of periodic homo-

topy. The compatibility expressed by Proposition 3.6 is very useful because of

the following two theorems. We write S∗〈dn+1〉 for the full subcategory of S∗
spanned by dn+1-connected spaces; also, we write L

f
n for the Lfn-localization

of S∗〈dn+1〉, which is the full subcategory of S∗〈dn+1〉 spanned by the Lfn-local

spaces.

Theorem 3.7. A map ϕ : X → Y in S∗〈dn+1〉 is a vi-periodic equivalence

for each 0 ≤ i ≤ n if and only if (Lfnϕ)〈dn+1〉 is an equivalence. Furthermore,

it is a vn-periodic equivalence if and only if (Mf
nϕ)〈dn+1〉 is an equivalence.

Proof. The first sentence is Corollary 4.8 of [12]. If n = 0, then the

second sentence adds no information, since Lf0 = Mf
0 . Therefore take n > 0.

Note first that ϕ is a vn-periodic equivalence if and only if (Mf
nϕ)〈dn+1〉 is

a vn-periodic equivalence. Indeed, this follows from our description of the

homotopy groups of Mf
n above, together with the observation that the vn-

periodic homotopy groups of (Mf
nX)〈dn+1〉 are the same as those of Mf

nX

and similarly for Mf
nY . Note that we may as well say that (Mf

nϕ)〈dn+1〉
is a vi-periodic equivalence for 0 ≤ i ≤ n, since this is vacuous for i < n.

We claim that (Mf
nX)〈dn+1〉 and (Mf

nY )〈dn+1〉 are Lfn-local; the conclusion

that (Mf
nϕ)〈dn+1〉 is a vn-periodic equivalence if and only if it is an actual

equivalence then follows from the first part of the theorem. To establish this

claim, observe that Mf
nX is Lfn-local because it is the fiber of a map between

Lfn-local spaces. Applying Proposition 3.6 we find

(Mf
nX)〈dn+1〉 ' (LfnM

f
nX)〈dn+1〉 ' Lfn

(
(Mf

nX)〈dn+1〉
)

and similarly for Y , which completes the proof. �

Theorem 3.8. The functor

S∗〈dn+1〉 → Lfn : X 7→ LfnX

preserves finite limits.

In other words, when restricted to dn+1-connected spaces the localization

Lfn is left exact. This will be important when comparing Goodwillie calculus

in S∗ to Goodwillie calculus in L
f
n. For the proof of Theorem 3.8, we need two

lemmas.
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LIE ALGEBRAS AND vn-PERIODIC SPACES 237

Lemma 3.9. Let C and D be ∞-categories admitting finite limits, and let

F : C→ D be a functor satisfying the following :

(i) F preserves terminal objects,

(ii) the evident natural transformation FΩ→ ΩF is an equivalence.

Then for any pullback square P in C, the square ΩF (P ) is a pullback in D.

Proof. Consider a pullback square P as follows:

A C

B D.

Write η for the resulting map F (A) → F (B) ×F (D) F (C). We will define a

map

ε : ΩF (C)×ΩF (D) ΩF (B)→ ΩF (A)

and show it is homotopy inverse to the composition of Ωη and the evident

“switch map”

τ : ΩF (B)×ΩF (D) ΩF (C) ' ΩF (C)×ΩF (D) ΩF (B).

To do this consider the following diagram, in which all squares are pullbacks:

ΩA ΩB ∗

ΩC ΩD A×C ∗ ∗

∗ ∗ ×B A A C

∗ B D.

Applying F to this and replacing the square in the upper left-hand corner by

a pullback, we obtain a diagram

ΩF (C)×ΩF (D) ΩF (B) ΩF (B) ∗

ΩF (C) ΩF (D) F (A×C ∗) ∗

∗ F (∗ ×B A) F (A) F (C)

∗ F (B) F (D).
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238 GIJS HEUTS

Note that we have used assumptions (i) and (ii) in identifying the objects in

this diagram. The four squares in the top left compose to give a larger square,

whose homotopy-coherent commutativity defines the necessary map

ε : ΩF (C)×ΩF (D) ΩF (B)→ ΩF (A).

Note that the definition of ε immediately implies that ε ◦ τ ◦ Ωη is homotopic

to the identity map of ΩF (A), as one observes by precomposing with

τ ◦ Ωη : ΩF (A)→ ΩF (C)×ΩF (D) ΩF (B)

in the upper left-hand corner. The map η arises from the square on the lower

right. An elementary chase of the homotopies defined by the diagram now

shows that Ωη ◦ ε is homotopic to τ , which completes the proof. �

Lemma 3.10. A map ϕ in L
f
n is an equivalence if Ωϕ is an equivalence

and ϕ is a rational equivalence. Here Ω is to be interpreted in the ∞-category

L
f
n, so that it is the dn+1-connected cover of the usual loop space functor.

Proof. Assume ϕ satisfies the two conditions of the lemma. Note that Ωϕ

is a vi-periodic equivalence for each 1 ≤ i ≤ n if and only if ϕ itself is, since

the vi-periodic homotopy groups of a pointed space X (for i ≥ 1) coincide up

to a shift with those of ΩX (or any highly connected cover of it). Combining

this with the second assumption, we see that ϕ is a vi-periodic equivalence for

0 ≤ i ≤ n and Theorem 3.7 applies. �

Proof of Theorem 3.8. Lemma 12.5 of [12] implies that the functor

Lfn : S∗〈dn+1〉 → Lfn

preserves fiber sequences. Indeed, one simply uses that fibers in S∗〈dn+1〉 and

L
f
n are computed by taking the dn+1-connected cover of the usual homotopy

fiber. Moreover, the functor Lfn above clearly preserves the terminal object

and therefore satisfies the conditions of Lemma 3.9. It is well-known that ra-

tionalization preserves homotopy pullback squares of simply-connected spaces;

alternatively, this is not hard to derive directly from the preservation of fiber

sequences mentioned above. We can now apply Lemma 3.10 together with

the conclusion of Lemma 3.9 to see that Lfn (in the dn+1-connected setting)

preserves pullbacks. Any functor between ∞-categories with finite limits that

preserves terminal objects and pullbacks preserves all finite limits (cf. the dual

of Corollary 4.4.2.5 of [36]), which completes the proof. �

3.2. The∞-category Svn . We aim to describe a homotopy theory of spaces

in which the equivalences are the vn-periodic equivalences, so that Theorem 3.7

clearly suggests the following:
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LIE ALGEBRAS AND vn-PERIODIC SPACES 239

Definition 3.11. The∞-category Svn is the full subcategory of S∗ spanned

by the spaces of the form (Mf
nX)〈dn+1〉.

We write i for the inclusion of Svn in S∗ and M for the functor

S∗ → Svn : X 7→ (Mf
nX)〈dn+1〉.

This section is devoted to proving the necessary properties of Svn . We briefly

summarize these at the end when we state the proofs of Theorems 2.2 and 2.3.

Lemma 3.12. There is a natural equivalence M ◦ i ' idSvn
.

Proof. This is easy for n = 0, so let us assume n > 0 for the rest of this

proof. Let X = (Mf
nY )〈dn+1〉 for some pointed space Y . By definition there

is a fiber sequence

Mf
nX → LfnX → Lfn−1X.

Since X is already Lfn-local and dn+1-connected, we have

X ' LfnX ' LfnX〈dn+1〉

and it suffices to prove that the first map in the sequence is an equivalence. In

other words, it suffices to prove that Lfn−1X is contractible. For this, we apply

Lfn−1〈dn〉 to the fiber sequence

Mf
nY → LfnY → Lfn−1Y

and apply Theorem 3.8 to conclude that

Lfn−1(Mf
nY )〈dn〉 → Lfn−1(LfnY )〈dn〉 → Lfn−1Y 〈dn〉

is a fiber sequence in L
f
n−1. Since Lfn−1L

f
n ' Lfn−1, the map on the right is an

equivalence and the fiber Lfn−1(Mf
nY )〈dn〉 is contractible. To finish the proof,

we claim that the map

Lfn−1X = Lfn−1((Mf
nY )〈dn+1〉)→ Lfn−1(Mf

nY )〈dn〉

is an equivalence. This follows from Theorem 3.7 if

(Mf
nY )〈dn+1〉 → (Mf

nY )〈dn〉

is a vi-periodic equivalence for all i. This is clear for i = 0 (since both spaces are

rationally trivial) and true for i > 0 since the homotopy groups of (Mf
nY )〈dn+1〉

and (Mf
nY )〈dn〉 can differ only in the finite range of dimensions [dn + 1, dn+1].

�

Corollary 3.13. A map ϕ : X → Y in Svn is an equivalence if and only

if it is a vn-periodic equivalence.
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240 GIJS HEUTS

Proof. Assume ϕ is a vn-periodic equivalence. Then M(iϕ) is an equiva-

lence by Theorem 3.7. The previous lemma gives a commutative square

M(iX) M(iY )

X Y

M(iϕ)

ϕ

in which the vertical arrows are equivalences, so that ϕ is an equivalence by

two-out-of-three. �

The last ingredient we will need for the proof of Theorem 2.3 is the fol-

lowing:

Proposition 3.14. The∞-category Svn is compactly generated. For n>0

and V a finite dn+1-connected type n space that is also a suspension, the space

LfnV is contained in Svn and is a compact generator.

To prove this result let us introduce an auxiliary ∞-category:

Definition 3.15. The ∞-category Vn is the full subcategory of Lfn gener-

ated under colimits by pointed spaces of the form LfnV , with V ranging over

suspension spaces that are finite, dn+1-connected, and of type n.

Clearly Vn is compactly generated by the spaces LfnV . Also, the inclusion

Vn → L
f
n preserves all colimits (by definition). The adjoint functor theorem

(Corollary 5.5.2.9 of [36]) implies that it admits a right adjoint r : Lfn → Vn. We

will prove that Vn and Svn coincide. Thus Svn is a colocalization of Lfn, meaning

a full subcategory for which the inclusion functor admits a right adjoint.

Lemma 3.16. The subcategory Vn is contained in the subcategory Svn .

Proof. Let V be as in Definition 3.15. Then Lfn−1V is null by the classifi-

cation of Bousfield classes of spaces described in Theorem 3.3. (Note that this

uses that V is a suspension.) It follows that Lfn−1X is null for any X ∈ Vn, so

that X 'Mf
nX 'Mf

nX〈dn+1〉. �

Proof of Proposition 3.14. It is easy to see that V0 = M
f
0 , since both are

in fact the∞-category of d1-connected rational pointed spaces, so we focus our

attention on the case n > 0. The right adjoint r : Lfn → Vn restricts to give

a right adjoint r : Svn → Vn to the inclusion ι : Vn → Svn . We will prove that

the latter adjoint pair is an equivalence. First, the unit

η : idVn → r ◦ ι

is an equivalence because ι is fully faithful (being an inclusion of full subcate-

gories). We claim (see below) that r detects equivalences. It follows that the
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LIE ALGEBRAS AND vn-PERIODIC SPACES 241

adjoint pair (ι, r) is an adjoint equivalence by the following standard argument:

to check that the counit ε : ι ◦ r → idSvn
is an equivalence we may check that

rε is an equivalence. This follows from the triangle identity

r ◦ ι ◦ r

r r

ηrrε

and the fact that ηr is an equivalence.

To establish our claim, consider a map ϕ : X → Y in Svn and assume r(ϕ)

is an equivalence. Pick a highly connected finite type n suspension space W

(so that LfnW ∈ Vn) that admits a vn self-map v : ΣdW →W . By assumption,

the following map is an equivalence:

Map∗(L
f
nW, rX)→ Map∗(L

f
nW, rY ).

By adjunction these spaces can be identified with Map∗(W,X) and Map∗(W,Y )

respectively (omitting the inclusion i from the notation). It follows immedi-

ately that Φv(ϕ) is an equivalence, so that ϕ is a vn-periodic equivalence, and

Corollary 3.13 implies that ϕ itself is an equivalence.

Since Vn = Svn , it follows that Svn is compactly generated. The argument

above actually shows that W is a generator. But for any V as in the statement

of Proposition 3.14, some suspension of V admits a vn self-map, so that V is

a generator as well. �

Proof of Theorem 2.2. This theorem is a straightforward consequence of

Lemma 3.12 and our constructions. Indeed, consider the functor

i∗ : Funvn(S∗,C)→ Fun(Svn ,C) : F 7→ F ◦ i.

Then i∗M∗ is equivalent to the identity simply because M ◦ i ' idSvn
. To show

that M∗i∗ is equivalent to the identity, consider a functor F : S∗ → C that

sends vn-periodic equivalences to equivalences in C. For X a pointed space,

there is a natural zigzag of maps

X X〈dn+1〉 LfnX〈dn+1〉 iM(X),

and all of these are vn-periodic equivalences. Consequently there is a natural

zigzag of equivalences

F (X) F (X〈dn+1〉) F (LfnX〈dn+1〉) F (iM(X)),

showing in particular that F is naturally equivalent to M∗i∗F . �

Proof of Theorem 2.3. The first sentence of the theorem is Lemma 3.12.

Item (i) is part of Theorem 3.7, whereas the fact that Φ factors through M
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is immediate from Theorem 2.2. For part (iii) of the theorem, note that M is

the composition of functors

S∗〈dn+1〉
Lf
n−−−−−→ Lfn

r−−−−→ Svn .

The first one preserves finite limits by Theorem 3.8 and filtered colimits by

the fact that it is a left adjoint. The second functor preserves finite limits

because it is a right adjoint and filtered colimits since its left adjoint sends

a compact generator of Svn to a compact object of L
f
n; cf. Lemma 3.2 and

Proposition 3.14. That proposition of course also implies part (iv).

Finally, we should establish the existence of the left adjoint Θ to Φ. Bous-

field shows that Θ exists on the level of homotopy categories in Theorem 5.4(i),

(ii) of [12]. However, his techniques also prove the stronger result. Indeed, first

one considers a type n space V with vn self-map v and the resulting telescopic

functor

Φv : Lfn → SpT (n).

The ∞-categories involved can be constructed from the simplicial model cate-

gories Bousfield uses and he shows that Φv is a simplicial right Quillen functor

between those categories (Lemma 10.6 of [12]). Therefore its adjoint, being a

simplicial left Quillen functor, gives a functor

Θv : SpT (n) → Lfn

after passing back to the corresponding ∞-categories. (An alternative exposi-

tion of the same ideas can be found in Section 6 of [34].) The Bousfield–Kuhn

functor Φ is a homotopy limit of telescopic functors Φv. Indeed, following

Kuhn [34], [30], one fixes a directed system of finite type n spectra

F (1)→ F (2)→ F (3)→ · · ·

with a map to the sphere spectrum

lim−→
k

F (k)→ S,

which is a T (n)-equivalence. Then

Φ ' lim←−
k

DF (k)⊗ Φ,

and each term DF (k)⊗Φ is equivalent to a telescopic functor of the form Φv.

It follows that Φ preserves limits, being a limit of right adjoints. Since it also

preserves filtered colimits, it is accessible, and the adjoint functor theorem

(Corollary 5.5.2.9 of [36]) applies to guarantee the existence of a left adjoint

Θ: SpT (n) → Lfn.
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Theorem 5.4 of [12] guarantees that the essential image of Θ is contained in Svn ,

so that the adjoint pair (Θ,Φ) restricts to give an adjunction between SpT (n)

and Svn . �

We will come back to Θ in Section 3.4 and describe it more explicitly. To

end this section we record the following for later use:

Lemma 3.17. The inclusion ι : Svn → L
f
n preserves colimits and finite

limits.

Proof. We already concluded above that Svn = Vn is a colocalization of Lfn
meaning, in particular, that the inclusion ι preserves colimits. Now consider a

finite diagram

F : I → Svn .

Writing lim←−L
f
n
ιF for its limit when considered as a diagram in L

f
n, we have a

fiber sequence in L
f
n as follows:

Mf
n (lim←−

L
f
n

ιF )〈dn+1〉 → lim←−
L
f
n

ιF → Lfn−1(lim←−
L
f
n

ιF )〈dn+1〉.

But Lfn−1(ιF (i)) is null for every i ∈ I, so that Theorem 3.8 implies that the

rightmost expression is contractible. Thus we find

lim←−
Svn

F = Mf
n (lim←−

L
f
n

ιF )〈dn+1〉 ' lim←−
L
f
n

ιF. �

3.3. The stabilization of Svn . In this section we determine the stabilization

of Svn and verify a claim made in Section 2. The results in this section will

also be useful later, when we determine the Goodwillie tower of Svn .

The localization functor Lfn studied before has a stable counterpart, where

one localizes the∞-category Sp with respect to the map V → ∗ for a finite type

n+ 1 spectrum (rather than space) V . Note that here we mean localization in

the stable sense, so that a spectrum E is Lfn-local if and only if [ΣiV,E] = 0

for all i ∈ Z, rather than just i ≥ 0. We write

Lfn : Sp→ LfnSp

for this localization; whether the stable or unstable Lfn is meant should always

be clear from context.

Proposition 3.18. The functor LfnΣ∞ : Lfn → LfnSp induces an equiva-

lence of stable ∞-categories Sp(Lfn)→ LfnSp.

Proof. This follows from universal properties. Indeed, let C be any pre-

sentable stable∞-category. The universal property of the stabilization Sp(Lfn)
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is that there is a natural equivalence

FunL(Sp(Lfn),C)→ FunL(Lfn,C),

where FunL denotes the ∞-category of colimit-preserving functors. By the

universal property of localization, the latter is naturally equivalent to

FunLVn+1
(S∗〈dn+1〉,C),

where the subscript Vn+1 indicates the full subcategory of FunL(S∗〈dn+1〉,C)

spanned by functors sending the map Vn+1 → ∗ to an equivalence. We can

now conclude by observing the natural equivalences

FunL(LfnSp,C)→ FunLΣ∞Vn+1
(Sp,C)→ FunLVn+1

(S∗〈dn+1〉,C). �

Considering Svn as a full subcategory of Lfn, we can restrict the functor of

the previous proposition to obtain a functor

LfnΣ∞ : Svn → LfnSp.

As before there is a functor Mf
n defined as the fiber between the stable localiza-

tions Lfn → Lfn−1. We write Mf
nSp for the full subcategory of LfnSp on spectra

of the form Mf
nX. The subcategory Mf

nSp is precisely the one generated under

colimits by spectra of the form LfnV for V ranging over finite type n spectra.

The reader not familiar with these facts can consult Section 3 of [12] for an

exposition. The notation Mf
n is Bousfield’s and refers to the term monocular

spectra, which was coined by Ravenel.

Since Svn is generated under colimits by the Lfn-localization of a highly

connected finite type n suspension space, the essential image of the functor

LfnΣ∞ is contained in the subcategory Mf
nSp.

Proposition 3.19. The left adjoint functor LfnΣ∞ induces an equivalence

of stable ∞-categories Sp(Svn) → Mf
nSp. Its right adjoint Mf

nSp → Svn is

the functor MΩ∞, or equivalently just the dn+1-connected cover of the usual

functor Ω∞.

Proof. Consider the following commutative diagram of ∞-categories,

where the superscripts ω indicate the full subcategories on compact objects:

(Svn)ω (Svn)ω (Svn)ω · · ·

(Lfn)ω (Lfn)ω (Lfn)ω · · · .

Σ

ι

Σ

ι

Σ

ι

Σ Σ Σ

The vertical functors are fully faithful, so that the colimit

Sp(Svn)ω → (LfnSp)ω
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LIE ALGEBRAS AND vn-PERIODIC SPACES 245

is fully faithful as well. This functor factors through the full subcategory

(Mf
nSp)ω. To see that this subcategory is also its essential image, we only

have to show that this image contains a generator of Mf
nSp. As already men-

tioned, the Lfn-localization of a finite type n spectrum is such a generator. Any

generator of Svn as described in Proposition 3.14 is sent to such a spectrum

by LfnΣ∞. The identification of the right adjoint MΩ∞ is immediate from the

fact that M : Lfn → Svn is right adjoint to the inclusion Svn → L
f
n. To conclude

the final statement of the proposition, note that for a spectrum X ∈ Mf
nSp,

the space Ω∞X is Lfn-local and that its vi-periodic homotopy groups vanish

for i < n. Theorem 3.7 then implies that Lfn−1(Ω∞X)〈dn+1〉 ' 0, so that

MΩ∞X = (Mf
nΩ∞X)〈dn+1〉 ' (LfnΩ∞X)〈dn+1〉 ' Ω∞X〈dn+1〉. �

Remark 3.20. It is a standard fact (and easy to show) that the functors

Mf
nSp SpT (n)

LT (n)

Mf
n

form an adjoint equivalence of stable ∞-categories, where SpT (n) denotes the

Bousfield localization of Sp with respect to T (n)-homology; see, for example,

Theorem 3.3 of [12]. Note that there is no corresponding simple statement in

the unstable setting. The relation between the∞-category Svn and the localiza-

tion LT (n)S∗ is much more subtle. The interested reader is encouraged to delve

into Bousfield’s detailed results expressing the relation between vn-periodic

equivalences and T (n)∗-equivalences of spaces, e.g., Theorem 13.15 of [10].

The adjoint equivalence above shows that the adjoint pair

Svn SpT (n)

Σ∞
T (n)

Ω∞
T (n)

exhibits SpT (n) as the stabilization of Svn as well. Here Σ∞T (n) = LT (n)(L
f
nΣ∞) '

LT (n)Σ
∞ and for the right adjoint, we have the formula

Ω∞T (n) = MΩ∞ ◦Mf
n = (Ω∞Mf

n )〈dn+1〉.

3.4. The Bousfield–Kuhn functor. In this section we collect some facts

about the Bousfield–Kuhn functor and its left adjoint Θ, some of which we

will use later.

Proposition 3.21. The Bousfield–Kuhn functor Φ: Svn → SpT (n) pre-

serves filtered colimits.

Proof. Let F : I → Svn be a filtered diagram. We need to verify that the

canonical map

lim−→
I

Φ ◦ F → Φ(lim−→
I

F )
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is an equivalence of T (n)-local spectra. It suffices to check this after smashing

both sides with DV for some finite type n space V . We may choose V so

that it has a vn self-map v : ΣdV → V and thus (by property (i) of Φ given in

Section 2) reduce to checking that

lim−→
I

Φv ◦ F → Φv(lim−→
I

F )

is an equivalence. But Φv is easily seen to preserve filtered colimits, since it is

built from functors of the form Map(V,−) with V finite. �

Corollary 3.22. The left adjoint Θ: SpT (n) → Svn preserves compact

objects.

Remark 3.23. An object of SpT (n) is compact precisely if it is a retract of

a spectrum of the form LT (n)F , with F a finite spectrum of type n.

In fact one can be much more explicit about the values of Θ when evaluated

on (the T (n)-localizations of) finite type n spectra (cf. Corollary 5.9 of [12]):

Lemma 3.24. Let V be a (dn+1 − 2)-connected finite type n space, so

that LfnΣ2V ∈ Svn . If V admits a vn self map v : ΣdV → V , then there is a

canonical equivalence

LfnΣ2V ' Θ(Σ∞T (n)Σ
2V ).

Proof. For any i ≥ 1, the space Σicof(v) is a dn+1-connective suspension

space of type n + 1. Theorem 3.3 then implies that Map∗(Σ
icof(v), X) is

contractible for X ∈ L
f
n. The evident long exact sequence argument gives the

first isomorphism in the following sequence of identifications:

π0Map∗(Σ
2V,X)∼= v−1π0Map∗(Σ

2V,X)

∼= π0

(
D(Σ2V )⊗ Φ(X)

)
∼= π0Map(Σ∞Σ2V,Φ(X))

∼= π0Map∗(Θ(Σ∞T (n)Σ
2V ), X).

This implies the lemma. �

Remark 3.25. If one assumes that the type n+1 space Vn+1 used to define

the localization Lfn has been chosen so that its connectivity is as low as possible,

then the assumption on the connectivity of V in the previous lemma can be

omitted. Indeed, the connectivity c of Σcof(v) is by assumption at least that

of Vn+1. But c = conn(V )+1, so that V itself is at least (dn+1−1)-connective,

or equivalently (dn+1 − 2)-connected.

A consequence of the previous lemma is the following. Consider a finite

type n spectrum F . To describe Θ(LT (n)F ), choose a vn self-map v : ΣdF → F
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LIE ALGEBRAS AND vn-PERIODIC SPACES 247

and pick j sufficiently large so that ΣjdF is equivalent to a suspension spectrum

Σ∞Σ2V for some highly connected finite pointed space V . Then the choice of

v and the preceding lemma give equivalences

Θ(LT (n)F ) ' Θ(LT (n)Σ
jdF ) ' LfnΣ2V.

From this one also gets a description of the value of Θ on the localized

sphere spectrum LT (n)S. Indeed, first one chooses a directed system of finite

type n spectra

F (1)
f(1)−−→ F (2)

f(2)−−→ F (3)
f(3)−−→ · · ·

with a T (n)-equivalence

lim−→
k

F (k)→ S.

Thus we also have Θ(S) ' lim−→k
Θ(F (k)). To make this more explicit using

Lemma 3.24, one “lifts” the diagram of F (k)’s to a diagram of pointed spaces

of the following form (much as in Section 6.3 of [34]):

Σ2+i(1)d(1)V (1) Σ2+i(2)d(2)V (2) Σ2+i(3)d(3)V (3)

Σ2V (1) Σ2V (2) Σ2V (3) · · · .

v(1)i(1) v(2)i(2) v(3)i(3)

To build this diagram, one first chooses a vn self-map u(k) : Σd(k)F (k)→ F (k)

for every k ≥ 1. Then one chooses V (k) to be a dn+1-connective finite

type n space for which Σ∞Σ2V (k) is equivalent to Σj(k)d(k)F (k) for some

sufficiently large j(k) and for which Σj(k)−2u(k) desuspends to a self-map

v(k) : Σd(k)V (k) → V (k). Enlarging the j(k) if necessary, one can assume

they are such that there is a commutative diagram

Σ(i(k)+j(k))d(k)F (k) Σj(k+1)d(k+1)F (k + 1)

Σj(k)d(k)F (k) Σj(k)d(k)F (k + 1)

u(k)i(k)

f(k)

u(k+1)J

f(k)

for all k, where j(k)d(k) + Jd(k + 1) = j(k + 1)d(k + 1) and where we have

omitted the necessary suspensions of f(k) and u(k) from the notation. Fur-

thermore, one can assume that the top horizontal map desuspends to a map

Σ2+i(k)d(k)V (k)→ Σ2V (k + 1),

which is the map featuring in the earlier diagram above. After applying Lfn to

that diagram, all the vertical arrows of course become equivalences. Moreover,
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Lemma 3.24 and the fact that Θ is left adjoint show that the colimit of the

resulting diagram in Svn produces Θ(S). Informally one might write

Θ(S) ' lim−→
k

Lfn(Σ2V (k)),

although one should keep in mind that the spaces V (k) themselves do not quite

form a directed system.

4. Lie algebras in T (n)-local spectra

As with any adjunction, the adjoint pair (Θ,Φ) gives a monad ΦΘ on the

∞-category SpT (n). In other words, ΦΘ has the structure of a monoid in the

∞-category of functors from SpT (n) to itself, of which the monoidal structure

is given by composition of functors. A left module (also called an algebra) for

this monad is a T (n)-local spectrum X equipped with a map ΦΘ(X)→ X,

and homotopies expressing the coherent associativity and unitality of this ac-

tion. We write LModΦΘ(SpT (n)) for the ∞-category of such left modules. The

reader can consult Section 4.7 of [37] for a detailed treatment of monads in the

∞-categorical setting or [46] for a different perspective.

The Bousfield–Kuhn functor factors through this ∞-category of algebras

to give a functor

φ : Svn → LModΦΘ(SpT (n)).

In joint work with Eldred, Mathew, and Meier [20] we prove the following

theorem. We include a sketch of the proof for the reader’s convenience.

Theorem 4.1. The functor φ is an equivalence of ∞-categories. In other

words, the adjoint pair (Θ,Φ) is monadic.

Sketch of proof. We verify the following two facts:

(1) The functor Φ is conservative; i.e., a map ϕ in Svn is an equivalence if and

only if Φ(ϕ) is an equivalence. This follows from Theorem 2.2(i).

(2) The functor Φ preserves geometric realizations (i.e., colimits of diagrams

indexed by ∆op). We prove this below.

It follows that Φ satisfies the conditions of Lurie’s version of the Barr–Beck

theorem (cf. Theorem 4.7.4.5 of [37] or Theorem 7.2.4 of [46]), which proves

the theorem. To check (2), note that the same argument as in the proof of

Proposition 3.21 implies that it suffices to check that

Φv : Svn → SpT (n)

preserves geometric realizations, where Φv is the telescopic functor associated

to a vn self-map v : ΣdVn → Vn. Recall from the beginning of Section 3 that

the construction of Svn involves choosing a finite type n + 1 space Vn+1. For

the purposes of this proof, we choose this space so that its connectivity dn+1
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LIE ALGEBRAS AND vn-PERIODIC SPACES 249

is larger than the dimension of Vn. (Note that the statement of the theorem

does not depend on this choice.) Consider a diagram

F : ∆op → Svn .

The inclusion Svn → L
f
n preserves colimits, so the colimit of F may be com-

puted in the latter∞-category. Since L
f
n is a localization of S∗〈dn+1〉, we have

lim−→
∆op

F ' Lfn lim−→
∆op

(i ◦ F ),

where the colimit on the right is computed in S∗〈dn+1〉, or equivalently just

in S∗. Since Lfn preserves vn-periodic homotopy groups, it follows that there is

a natural equivalence

Φv(lim−→
∆op

F ) ' Φv(lim−→
∆op

(i ◦ F )).

Thus it suffices to show that the functor

Φv : S∗〈dn+1〉 → SpT (n)

preserves geometric realizations. This functor can be expressed as the following

colimit:

Φv ' lim−→
(
Σ∞Map∗(V,−)→ Σ∞−dMap∗(V,−)→ Σ∞−2dMap∗(V,−)→ · · ·

)
.

But each of the functors

Map∗(V,−) : S∗〈dn+1〉 → S∗

preserves geometric realizations, since the connectivity dn+1 of the spaces in-

volved exceeds the dimension of V (see Proposition 4.2 of [20]). This finishes

the proof. �

We record the following aspect of this proof for future reference:

Lemma 4.2. The Bousfield–Kuhn functor Φ: Svn → SpT (n) preserves

sifted colimits.

Proof. By Corollary 5.5.8.17 of [36] it suffices to show that Φ preserves

filtered colimits and geometric realizations. The first is Proposition 3.21, and

xthe second was part of the proof of Theorem 4.1 above (which first appeared

as Proposition 4.1 in [20]). �

The purpose of this section is to prove Theorem 2.6, stating that Svn is

equivalent to the ∞-category of Lie algebras in SpT (n). Given Theorem 4.1

above this amounts to understanding the monad ΦΘ. The algebraic and coal-

gebraic structures we consider in this section are conveniently described using

operads and cooperads. We now give a brief informal review of these, as well

as of bar-cobar (or Koszul) duality between the two. Then we outline our

strategy for the remainder of this section.
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For C a symmetric monoidal category, a symmetric sequence in C is a

collection {O(k)}k≥1 of objects of C, where O(k) is equipped with an action of

the symmetric group Σk. If C has sufficiently many colimits, such a symmetric

sequence determines a functor

FO : C→ C : X 7→
∐
k≥1

(O(k)⊗X⊗k)Σk
.

The category of functors Fun(C,C) is monoidal, with tensor product given by

composition of functors. The category SymSeq(C) of symmetric sequences in

C carries a corresponding monoidal structure ◦, called the composition product

of symmetric sequences, which is essentially determined by the requirement

that the assignment
O→ FO

is monoidal, so that
FO′◦O ' FO′ ◦ FO.

An operad in C is a monoid in the category of symmetric sequences (with

respect to this composition product). Thus, an operad O gives rise to a monoid

FO in Fun(C,C) or, in other words, a monad on C. Similarly, a cooperad is a

comonoid with respect the composition product, and a cooperad gives rise to

a comonad on C. The reader should note that the operads and cooperads we

consider here are nonunital, in the sense that there is no O(0) term.

An algebra over an operad O is the same thing as an algebra for the

monad FO, i.e., an object X ∈ C equipped with a structure map FO(X)→ X

satisfying the usual axioms. The evident dual of this definition does not give

the usual notion of coalgebra for a cooperad; indeed, for a cooperad C, a

coalgebra for the comonad FC is sometimes referred to as a conilpotent divided

power coalgebra (e.g., in [22]). This issue will not play a role for us here.

Algebras and coalgebras in differential graded categories are related by

bar-cobar duality, or Koszul duality, and this duality was extended to operads

in influential papers of Ginzburg and Kapranov [24] and subsequently Get-

zler and Jones [23]. In particular, they identified the cobar construction of

the commutative cooperad as (a degree shift of) the Lie operad. This bar-

cobar duality was extended to the setting of stable homotopy theory by Ching

[14], [15], who works with operads and cooperads in the category of spectra.

His motivating example is an operad whose underlying symmetric sequence of

spectra {∂kid}k≥1 is given by the Goodwillie derivatives of the identity func-

tor. This operad is the cobar construction on the derivatives of the functor

Σ∞Ω∞, which form a cooperad essentially because Σ∞Ω∞ is a comonad. This

cooperad is easily identified as the commutative cooperad; consequently, the

derivatives of the identity functor form an analogue of the (shifted) Lie operad

in stable homotopy theory. (Taking integral homology of the spectra ∂kid also

reproduces a degree shift of the ordinary Lie operad in abelian groups.)
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In Section 4.1 we discuss symmetric sequences, operads and cooperads

in the ∞-category of T (n)-local spectra and define the T (n)-local Lie operad

as the cobar construction of the T (n)-local commutative cooperad. We will

use Lurie’s version of bar-cobar duality between monoids and comonoids in an

∞-categorical setting.

In Section 4.2 we study the functor ΦΘ and prove that it satisfies the

formula
ΦΘ(X) '

⊕
k≥1

LT (n)(∂kid⊗X⊗k)hΣk

claimed in Section 2. In other words, ΦΘ is the functor corresponding to the

(T (n)-local) symmetric sequence of derivatives of the identity functor.

In Section 4.3 we study the monad structure of ΦΘ and show it arises

from the commutative cooperad by a cobar construction. In other words, the

algebras for the monad ΦΘ are precisely Lie algebras in T (n)-local spectra.

We use this result to prove Theorem 2.6.

Section 4.4 discusses Theorems 2.13 and 2.14 as applications of our results.

Finally, Section 4.5 establishes Corollary 2.8, which is a K(n)-local version of

Theorem 2.6.

4.1. Operads and cooperads of T (n)-local spectra. There are several ap-

proaches to the theory of operads in an ∞-categorical setting, for example the

∞-operads of Lurie [37] as well as the dendroidal sets of Moerwijk–Weiss [43]

and Cisinski–Moerdijk [17]. These all describe a theory of higher operads in

spaces; the theory of ∞-operads in general symmetric monoidal ∞-categories

was first considered in [16]. We will not need the general theory here. Rather,

in this section we demonstrate that it is rather simple to develop a theory

of operads in the symmetric monoidal ∞-category SpT (n) of T (n)-local spec-

tra (with the T (n)-localized smash product as monoidal structure) using some

facts from (dual) Goodwillie calculus. We take an approach using symmetric

sequences, since our main examples arise in this way and because it allows for

a smooth treatment of bar-cobar duality.

Definition 4.3. A functor F : SpT (n) → SpT (n) is coanalytic if there is a

natural equivalence
F (X) '

⊕
k≥1

(O(k)⊗X⊗k)hΣk

for {O(k)}k≥1 a symmetric sequence in SpT (n). Write coAn(SpT (n)) for the full

subcategory of Fun(SpT (n), SpT (n)) on the coanalytic functors.

The term coanalytic is motivated by Theorem 4.5 below, which states that

a functor is coanalytic if and only if its “dual Goodwillie tower” converges. (Be-

ware that this is not precisely dual to Goodwillie’s notion of analytic functor,

which involves explicit connectivity estimates on the maps in the Goodwillie

tower of a functor.) Observe that a smash product of coanalytic functors is
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again coanalytic. More importantly, the composition of coanalytic functors is

coanalytic; therefore, the composition of functors restricts to give a monoidal

structure on the ∞-category coAn(SpT (n)). This ∞-category will serve as the

monoidal ∞-category of symmetric sequences of T (n)-local spectra. We will

justify this in Proposition 4.8 below. For future reference, we first state the

following rather obvious fact, characterizing the coefficients of a symmetric

sequence in terms of Goodwillie derivatives [25, §5], [37, §6.3]:

Lemma 4.4. Let F ∈ coAn(SpT (n)), and write ∂kF for the kth Goodwillie

derivative of F . Then there is a natural equivalence

F (X) '
⊕
k≥1

(∂kF ⊗X⊗k)hΣk
.

Proof. The formulation of Goodwillie derivatives of functors between sta-

ble ∞-categories commutes with filtered colimits and direct sums. The con-

clusion follows from

∂j(O(k)⊗ (−)⊗k)hΣk
'

{
O(k) if j = k,

0 otherwise.
�

It will be useful to have a characterization of the class of coanalytic func-

tors in terms of dual Goodwillie calculus (as introduced by McCarthy [42]).

We review the kind of dual calculus we have in mind in Appendix A. In par-

ticular, for a functor F : SpT (n) → SpT (n) preserving filtered colimits, its dual

k-excisive approximation is a natural transformation P kF → F that is uni-

versal with respect to natural transformations from k-excisive functors (which

also preserve filtered colimits) into F . These dual approximations assemble

into a filtration

P 1F P 2F P 3F · · ·

F

that is formally dual to the usual Goodwillie tower. In particular, there is a

natural map

lim−→
k

P kF → F.

We will apply the following recognition theorem in the next section to

prove that ΦΘ is coanalytic:

Theorem 4.5. Let F : SpT (n) → SpT (n) be a reduced functor preserving

filtered colimits. Then F is coanalytic if and only if the map

lim−→
k

P kF → F

is an equivalence.
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This result hinges on a nilpotence lemma of Mathew, which is contained

in Appendix B. Although Goodwillie’s k-excisive approximation Pk commutes

with filtered colimits of functors, this is generally not the case for the dual

approximation P k. Nonetheless, in the T (n)-local setting the following holds

(cf. Lemma B.1):

Lemma 4.6. If

F '
∞⊕
j=1

Fj ,

with Fj : SpT (n) → SpT (n) a j-homogeneous functor, then the natural map

k⊕
j=1

Fj → P kF

is an equivalence.

Proof of Theorem 4.5. Suppose F is coanalytic. Then Lemma 4.6 clearly

implies that lim−→k
P kF → F is an equivalence. Conversely, suppose that this

natural transformation is an equivalence. Kuhn [32] shows that every k-excisive

functor from SpT (n) to itself has a split Goodwillie tower, meaning it is the

direct sum of homogeneous functors:

P kF '
k⊕
j=1

DjP
kF.

He proves this by exploiting work of McCarthy [42], which classifies the Good-

willie towers of functors from Sp to itself in terms of certain Tate spectra

associated to the symmetric groups. Kuhn shows that T (n)-locally such Tate

spectra vanish. (An alternative proof of the same fact is given in [18].) Taking

the colimit over k we conclude that F is of the form

F (X) '
⊕
k≥1

(O(k)⊗X⊗k)hΣk

for some symmetric sequence O, so F is coanalytic. Of course it also follows

that O(k) = ∂kF . �

Note that the preceding argument in fact shows that for any reduced func-

tor F : SpT (n) → SpT (n) preserving filtered colimits, the functor lim−→k
P kF is

coanalytic. Generally, for functors F from the ∞-category Sp to itself, the

assignments F 7→ lim←−k PkF and F 7→ lim−→k
P kF are not localizations or colo-

calizations; indeed, they need not even be idempotent. However, Theorem 4.5

and Lemma 4.6 show that the situation is much better in the T (n)-local case:

Corollary 4.7. Write Funω∗ (SpT (n), SpT (n)) for the ∞-category of re-

duced functors from SpT (n) to itself that preserve filtered colimits. Then the

inclusion

coAn(SpT (n))→ Funω∗ (SpT (n),SpT (n))
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254 GIJS HEUTS

admits a right adjoint F 7→ lim−→k
P kF . In particular, the inclusion preserves

all colimits.

Proof. It suffices to prove that for any F ∈ Funω∗ (SpT (n), SpT (n)) and any

coanalytic functor G, the natural map

Nat(G, lim−→
k

P kF )→ Nat(G,F )

is an equivalence. Since G ' lim−→j
P jG, it suffices to prove the claim for every

P jG; i.e., we may reduce to the case where G is j-excisive for some j ≥ 0. In

the diagram

Nat(P jG, lim−→k
P kF ) Nat(P jG,F )

Nat(P jG,P j(lim−→k
P kF )) Nat(P jG,P jF ),

the two vertical maps are equivalences by the universal property of P j . More-

over, the lower horizontal map is an equivalence by Lemma 4.6. Therefore the

upper horizontal map is an equivalence as well. �

Proposition 4.8. The∞-category coAn(SpT (n)) of coanalytic functors is

equivalent to the ∞-category SymSeq(SpT (n)) of symmetric sequences of T (n)-

local spectra.

Proof. Consider the functor

S : SymSeq(SpT (n))→ coAn(SpT (n))

that assigns to a symmetric sequence {O(k)}k≥1 the functor given by the for-

mula of Definition 4.3. Then S is essentially surjective by definition. To see it

is fully faithful, consider coanalytic functors F and G, corresponding to sym-

metric sequences O and P respectively. We can analyze the space of natural

transformations from F to G by first observing that

Nat(F,G)'
∏
k≥1

Nat
(
(O(k)⊗ (−)⊗k)hΣk

, G
)

'
∏
k≥1

Nat
(
(O(k)⊗ (−)⊗k)hΣk

, P kG
)
.

Since G is coanalytic, Lemma 4.6 applies and

P kG(X) ' ⊕kj=1(P(j)⊗X⊗j)hΣj
.

The space of natural transformations between homogeneous functors to SpT (n)

of different degrees is trivial. Indeed, if K and L are homogeneous of degrees
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LIE ALGEBRAS AND vn-PERIODIC SPACES 255

k and l respectively and k > l, then

Nat(K,L) ' Nat(PlK,L) ' ∗

since PlK vanishes. On the other hand, if k < l, we observe

Nat(K,L) ' Nat(K,P kL) ' ∗.

Here we have used that L is also l-cohomogeneous (i.e., of the form (∂lL ⊗
(−)⊗l)hΣl), which is another application of the T (n)-local vanishing of Tate

spectra [32].

We conclude

Nat(F,G) '
∏
k≥1

Nat
(
(O(k)⊗ (−)⊗k)hΣk

, (P(k)⊗ (−)⊗k)hΣk

)
.

But the space of natural transformations between homogeneous degree k func-

tors is equivalent to the space of Σk-equivariant maps between their coeffi-

cients, by Goodwillie’s classification of homogeneous functors (cf. Theorem 3.5

of [25]). Consequently, Nat(F,G) is equivalent to the space of maps between

the symmetric sequences O and P, from which the lemma easily follows. �

Remark 4.9. It is useful to note that any coanalytic functor F preserves

sifted colimits. This is a straightforward consequence of the fact that the

functor X → X⊗k preserves sifted colimits for any k ≥ 1. In the next section,

specifically Proposition 4.18, we will show that the converse is true as well. It is

rather striking that coanalytic functors on SpT (n) can be characterized in this

way; the corresponding statement does not hold without T (n)-localization.

Definition 4.10. An operad in T (n)-local spectra is an associative algebra

object of coAn(SpT (n)). Likewise, a cooperad in T (n)-local spectra is an asso-

ciative coalgebra object of coAn(SpT (n)) or, equivalently, an associative algebra

object of the opposite ∞-category coAn(SpT (n))
op.

Thus an operad in T (n)-local spectra is a monad on SpT (n) whose under-

lying functor is coanalytic. Therefore it also makes sense to speak of algebras

for such an operad, by using the definition of algebras for a monad.

We conclude this section with a brief review of Koszul duality for such

operads and cooperads, which is a special case of bar-cobar duality between

associative monoids and comonoids. The relevant results for us are contained

in Section 5.2 of [37].

Note that the identity functor of SpT (n), which is the unit object of the

monoidal∞-category coAn(SpT (n)), is both an operad and a cooperad in T (n)-

local spectra in an essentially unique way; we will denote both by 1. An

augmentation of an operad O in T (n)-local spectra is a morphism of operads

O → 1. Dually, a coaugmentation of a cooperad C in T (n)-local spectra is a

morphism of cooperads 1 → C. We write Opaug(SpT (n)) and coOpaug(SpT (n))
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256 GIJS HEUTS

for the ∞-categories of augmented operads and coaugmented cooperads in

T (n)-local spectra respectively. By Theorem 5.2.2.17 and the subsequent Re-

mark 5.2.2.19 of [37], these ∞-categories are related by an adjunction

Opaug(SpT (n)) coOpaug(SpT (n)).
Bar

Cobar

If ε : O→ 1 is an augmented operad, the underlying coanalytic functor of the

bar construction Bar(O) can be described as the geometric realization of a

simplicial object as follows:

· · · O ◦ O O 1.

Here the simplicial face maps are formed using the augmentation and the mul-

tiplication of O, whereas the degeneracies use the unit 1 → O. In different

words, regarding 1 as both a left and a right module over O via the augmen-

tation ε, we can view Bar(O) as the geometric realization of the two-sided bar

construction:

Bar(O) = |Bar(1,O,1)•|.

Dually, for a coaugmented cooperad 1→ C, the underlying coanalytic functor

of the cobar construction Cobar(C) is the totalization of a cosimplicial object

as follows:

1 C C ◦ C · · · .

Lurie establishes the bar-cobar adjunction by considering augmented associa-

tive algebras in the twisted arrow category. For an ∞-category E, the twisted

arrow category TwArr(E) is the ∞-category whose n-simplices are maps

∆n ? (∆n)op → E.

Restricting to the first and second part of this join gives a map

TwArr(E)→ E× Eop.

Moreover if E is monoidal, then Eop and TwArr(E) inherit monoidal structures

in a natural way and the map above can be made a monoidal functor. In partic-

ular, an associative algebra object of TwArr(E) then projects to an associative

algebra object of E and an associative algebra object of Eop. Lurie proves that

maps Bar(O)→ C (or equivalently maps O→ Cobar(C)) are classified by lifts

of the pair (O,C) along the functor above to an augmented algebra object of

the monoidal ∞-category TwArr(E). More precisely, his results give natural

equivalences of spaces

MapAlgaug(E)(O,Cobar(C))'{O} ×Algaug(E) Algaug(TwArr(E))×Algaug(Eop) {C}
'MapcoAlgaug(E)(Bar(O),C).
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LIE ALGEBRAS AND vn-PERIODIC SPACES 257

If one has an object O → C of TwArr(E) with the structure of an augmented

associative algebra, its simplicial bar resolution gives a diagram in E as follows:

· · · O ◦ O O 1

· · · C ◦ C C 1.

The commutativity of this diagram indeed induces maps in E of the form

Bar(O) → C (by considering the top row) and O → Cobar(C) (by considering

the bottom row). The content of Lurie’s result is that these are in fact maps

of associative (co)algebra objects and that every such map arises in this way.

The example of a cooperad in T (n)-local spectra that will concern us

here is the commutative cooperad. As a symmetric sequence, it is simply the

localized sphere spectrum LT (n)S in every degree. In fact, we will take our cue

from the observation of Arone and Ching that the usual commutative cooperad

in the category of spectra arises form the derivatives of the comonad Σ∞Ω∞;

see Section 15 of [3]. We will show in the next section (Theorem 4.16) that

there is a natural equivalence

Σ∞T (n)Ω
∞
T (n)(X) ' LT (n)

∞⊕
k=1

X⊗khΣk

so, in particular, Σ∞T (n)Ω
∞
T (n) is coanalytic. It is also a comonad and therefore

an associative coalgebra object of coAn(SpT (n)).

Definition 4.11. The commutative cooperad in T (n)-local spectra is the

comonad Σ∞T (n)Ω
∞
T (n).

Ching [14] constructs an operad structure on the derivatives of the identity

functor by observing that they arise from the commutative cooperad by the

cobar construction. The resulting operad plays the role of the (shifted) Lie

operad in stable homotopy theory. We therefore define the following:

Definition 4.12. The Lie operad in T (n)-local spectra is the cobar con-

struction of the commutative cooperad.

4.2. The functor ΦΘ. The goal of this section is to analyze the functor

ΦΘ and prove Theorem 4.13 below. In the next section we investigate the

monad structure of ΦΘ and relate it to Lie algebras in T (n)-local spectra.

Theorem 4.13. There is a natural equivalence as follows :

ΦΘ(X) ' LT (n)

⊕
k≥1

(∂kid⊗X⊗k)hΣk
.

Here ∂kid denotes the kth derivative of the identity functor on S∗.
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258 GIJS HEUTS

The theorem is a consequence of the following two results and Lemma 4.4:

Theorem 4.14. The kth derivative of ΦΘ is equivalent to the spectrum

LT (n)∂kid, where ∂kid is the kth derivative of the identity functor of S∗.

Theorem 4.15. The functor ΦΘ is coanalytic.

Proof of Theorem 4.14. Since Θ preserves colimits and Φ preserves finite

limits and filtered colimits, we have

Pk(ΦΘ)(X) ' ΦPkidSvn
(ΘX).

The Goodwillie tower of the identity functor of Svn is easily determined. Recall

that we write ι : Svn → L
f
n for the inclusion and r for its right adjoint. The

latter preserves filtered colimits, so we find

PkidSvn
' Pk(r ◦ ι) ' rPk(idL

f
n
)ι.

The localization Lfn preserves finite limits, so that

PkidL
f
n
(X) ' LfnPkid(X)

for X ∈ L
f
n. Putting these together gives

PkidSvn
'M ◦ Pkid ◦ i.

It follows that

DkidSvn
(X) 'MDkid(iX) 'MΩ∞(∂kid⊗ Σ∞X⊗k)hΣk

.

Note that MΩ∞ ' Ω∞T (n) and the expression in parentheses is T (n)-equivalent

to the smash product of T (n)-local spectra

LT (n)∂kid⊗ Σ∞T (n)X
⊗k.

We conclude that

DkidSvn
(X) ' Ω∞T (n)(LT (n)∂kid⊗ Σ∞T (n)X

⊗k)hΣk
.

Comparing coefficients gives ∂kidSvn
' LT (n)∂kid. �

Our original proof of Theorem 4.15 is rather involved and consists of the

following steps:

(i) When evaluated on any shift LT (n)S` of the T (n)-local sphere spectrum,

the natural transformation lim−→k
P k(ΦΘ) → ΦΘ of Theorem 4.5 is an

equivalence. This gives the formula

ΦΘ(LT (n)S`) '
2pn⊕
k=1

LT (n)(∂kid⊗ (S`)⊗k)hΣk
.

We will come back to this formula in Corollary 4.23. This first step

is the most delicate. It uses the results of Arone-Mahowald [5] on the
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LIE ALGEBRAS AND vn-PERIODIC SPACES 259

convergence of the vn-periodic Goodwillie tower of spheres, combined

with an explicit analysis of the effect of the Bousfield–Kuhn functor on

the space Θ(LT (n)S`) of which we gave a description in Section 3.4.

(ii) The natural transformation lim−→k
P k(ΦΘ) → ΦΘ is also an equivalence

when evaluated on a finite sum

X = LT (n)(S`1 ⊕ · · · ⊕ S`m)

of copies of shifts of the T (n)-local sphere spectrum. This statement can

be deduced from (i) by using the Hilton-Milnor theorem and its interac-

tion with the Goodwillie tower (as in Theorem 2.4 of [13]) to decompose

the spectra P kΦΘ(X) into summands featuring only ΦΘ evaluated on a

single copy of a (shifted) sphere spectrum.

(iii) To conclude that lim−→k
P k(ΦΘ) → ΦΘ is an equivalence in general, one

uses that both sides commute with sifted colimits. For the domain, this is

clear since it is a coanalytic functor; for the codomain, this follows because

Θ commutes with all colimits and Φ with sifted colimits (cf. Lemma 4.2).

A general T (n)-local spectrum can be written as a sifted colimit of finite

sums of copies of the sphere spectrum, so that one reduces the general

case to (ii).

The proof of Theorem 4.15 we will present here proceeds differently. A

corollary of the coanalyticity of ΦΘ is that the functor Σ∞T (n)Ω
∞
T (n) is coanalytic

as well (essentially only using that the latter is the bar construction of the for-

mer). This result can be proved directly though, following work of Kuhn [33].

We shall take this fact as our starting point for a proof of Theorem 4.15.

Theorem 4.16. The functor Σ∞T (n)Ω
∞
T (n) is coanalytic. More precisely,

there is a natural equivalence

Σ∞T (n)Ω
∞
T (n)X ' LT (n)

∞⊕
k=1

(X⊗k)hΣk
.

Proof. For a spectrum E, apply Φ to the unit map Ω∞E
Ω∞η−−−→ Ω∞Σ∞Ω∞E

and use that ΦΩ∞ is equivalent to the localization functor LT (n) to find a

natural map

λ : E → LT (n)Σ
∞Ω∞E.

The codomain of λ is a nonunital commutative T (n)-local ring spectrum (since

Ω∞E is an E∞-space), so that λ extends to a map of nonunital T (n)-local ring

spectra

LT (n)Sym∗(E) = LT (n)

∞⊕
k=1

(E⊗k)hΣk
→ LT (n)Σ

∞Ω∞E.

Theorems 2.5, 2.10, and 2.12 of [33] imply that this map is an equivalence

whenever E is dn+1-connected and T (i)∗E = 0 for 0 < i < n. Now consider a
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T (n)-local spectrum X. Recall from Remark 3.20 that the functor Ω∞T (n) may

be described as the composition of the equivalence Mf
n : LT (n)Sp→Mf

nSp and

the functor Ω∞〈dn+1〉 : Mf
nSp→ Svn . Hence we can write

Σ∞T (n)Ω
∞
T (n)X = LT (n)Σ

∞Ω∞((Mf
nX)〈dn+1〉).

The spectrum E = (Mf
nX)〈dn+1〉 is dn+1-connected and T (i)-acyclic for i < n,

so that we find a natural equivalence

LT (n)Σ
∞Ω∞T (n)X ' LT (n)

∞⊕
k=1

(E⊗k)hΣk
.

This finishes the proof, using that LT (n)E ' LT (n)X. �

Remark 4.17. It is tempting to think of Theorem 4.16 as an analog of the

Snaith splitting

Σ∞Ω∞Σ∞X '
∞⊕
k=1

(Σ∞X⊗k)hΣk

for a pointed space X, but this line of thought can be deceiving. Indeed, the

latter splitting arises from the extension of the natural map

Σ∞η : Σ∞X → Σ∞Ω∞Σ∞X

to a map of commutative ring spectra. The T (n)-localization of this map is in

general not homotopic to the map

λ : LT (n)Σ
∞X → LT (n)Σ

∞Ω∞Σ∞X

used in the proof above; we refer the reader to Kuhn’s paper [33] for further

discussion. The difference between the two maps can be expressed in terms of

Rezk’s logarithm [45].

Theorem 4.16 turns out to have the following powerful consequence:

Proposition 4.18. Let F : SpT (n) → SpT (n) be a functor that preserves

sifted colimits. Then F is coanalytic.

Before proving Proposition 4.18 we observe the following:

Proof of Theorem 4.15. The functor Θ is a left adjoint, so it preserves

sifted colimits. The Bousfield–Kuhn functor Φ preserves sifted colimits by

Lemma 4.2. The result now follows immediately from Proposition 4.18. �

The following argument was suggested to us by Jacob Lurie:

Proof of Proposition 4.18. Let F be as in the statement of the proposi-

tion. We will show that F can be written as a colimit of coanalytic functors.

Corollary 4.7 shows that the full subcategory of coanalytic functors is closed
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under colimits inside the ∞-category Funω∗ (SpT (n), SpT (n)), so it will follow

that F itself is coanalytic.

For any spectrum E, the natural map

lim−→
k

Σ∞−k(Ω∞−kE)〈dn+1〉 → E

is an equivalence. Indeed, if E is already dn+1-connected, this is clear (and

coincides with the claim that the first Goodwillie derivative of the functor

Σ∞Ω∞ is the identity functor of Sp). For a finite spectrum E, the claim

then follows because (Ω∞−kE)〈dn+1〉 ' Ω∞−kE for k sufficiently large; more

precisely, large enough for ΣkE to be dn+1-connected. For a general spectrum,

the claim follows by writing it as a filtered colimit of finite spectra. We conclude

that for a T (n)-local spectrum E, we have

F (E) ' lim−→
k

F
(
LT (n)Σ

∞−k(Ω∞−kMf
nE)〈dn+1〉

)
,

so it suffices to show that the functor

E 7→ F
(
LT (n)Σ

∞−k(Ω∞−kMf
nE)〈dn+1〉

)
is coanalytic for any k.

The functor LT (n)Σ
∞−k : S∗ → SpT (n) preserves colimits, so that F ◦

LT (n)Σ
∞−k preserves sifted colimits. The ∞-category S∗ is projectively gener-

ated (Definition 5.5.8.23 and Example 5.5.8.24 of [36]) with compact projective

generators given by finite pointed sets. In particular, any functor

S∗ → SpT (n)

preserving sifted colimits is the left Kan extension of its restriction along the

inclusion

i : Fin∗ → S∗.

Let us write f : Fin∗ → SpT (n) for the composition F ◦LT (n)Σ
∞−k ◦ i. The left

Kan extension of f along i can be computed by a coend given by the following

formula:

Lanif(X) '
∫ I∈Fin∗

Map∗(I,X)⊗ f(I).

This coend can equivalently be described as a colimit over the twisted arrow

category TwArr(Fin∗). (Recall that we already discussed the twisted arrow

construction in the previous section.) Indeed, it is the colimit of the composi-

tion of functors

TwArr(Fin∗)→ (Fin∗)
op × Fin∗

Map(−,X)×f−−−−−−−−→ S∗ × SpT (n)
⊗−→ SpT (n),

where the last step denotes the tensoring of SpT (n) over S∗. Note that we are

implicitly assuming a choice of functor

Map∗(−,−) : Sop
∗ × S∗ → S∗,
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which can be taken to be any functor classified by the left fibration TwArr(S∗)

→ S
op
∗ × S∗. The upshot of these observations is that F ◦ LT (n)Σ

∞−k can be

written as a colimit of functors of the form

Map∗(I,−)⊗ F
(
LT (n)Σ

∞−k(J)
)

: S∗ → SpT (n)

for finite pointed sets I and J .

It follows that the functor

SpT (n) → SpT (n) : E 7→ F
(
LT (n)Σ

∞−k(Ω∞−kMf
nE)〈dn+1〉

)
can be obtained as a colimit of functors of the form

E 7→ Map∗
(
I, (Ω∞−kMf

nE)〈dn+1〉
)
⊗ C

for C a T (n)-local spectrum. Thus to prove the theorem it suffices to show

that

E 7→ LT (n)Σ
∞Map∗

(
I, (Ω∞−kMf

nE)〈dn+1〉
)

is coanalytic. Let I0 denote the complement of the basepoint in I. Then

LT (n)Σ
∞Map∗

(
I, (Ω∞−kMf

nE)〈dn+1〉
)
' LT (n)Σ

∞((Ω∞−kMf
nE)〈dn+1〉×I0

)
.

The right-hand side naturally breaks up as a sum of T (n)-local smash powers

of the spectrum

LT (n)Σ
∞((Ω∞−kMf

nE)〈dn+1〉
)
' Σ∞T (n)Ω

∞
T (n)(Σ

kE).

Theorem 4.16 implies that the last expression is coanalytic, finishing the proof.

�

4.3. The monad structure of ΦΘ. Since the monad ΦΘ is a coanalytic

functor, it is an operad in T (n)-local spectra in the sense of Definition 4.10.

It is in fact an augmented operad in an obvious way, by using the natural

transformation

ΦΘ→ P1(ΦΘ) ' idSpT (n)
.

In terms of the splitting of Theorem 4.13 this augmentation is projection onto

the first summand. Dually, the cooperad Σ∞T (n)Ω
∞
T (n) is coaugmented via the

inclusion of the first summand, which is the natural transformation

idSpT (n)
' P 1(Σ∞T (n)Ω

∞
T (n))→ Σ∞T (n)Ω

∞
T (n).

The aim of this section is to show that ΦΘ is the Lie operad, i.e., that ΦΘ is

equivalent to the cobar construction on the commutative cooperad, which is

the coanalytic functor Σ∞T (n)Ω
∞
T (n). Our first step will be to construct a map

γ : ΦΘ→ Cobar(Σ∞T (n)Ω
∞
T (n)).

As discussed in Section 4.1, such a map corresponds to a lift of the pair

(ΦΘ,Σ∞T (n)Ω
∞
T (n)) to an augmented algebra object

Γ: ΦΘ→ Σ∞T (n)Ω
∞
T (n)
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of the twisted arrow category of coAn(SpT (n)). The natural transformation Γ

is defined by using the natural transformations

Φ
Φη−−→ΦΩ∞T (n)Σ

∞
T (n) ' Σ∞T (n),

Θ
ηΘ−−→Ω∞T (n)Σ

∞
T (n)Θ ' Ω∞T (n).

Note that Γ factors as

ΦΘ
ΦηΘ−−−→ ΦΩ∞T (n)Σ

∞
T (n)Θ ' idSpT (n)

→ Σ∞T (n)Ω
∞
T (n).

We can rewrite this factorization as a diagram

ΦΘ Σ∞T (n)Ω
∞
T (n)

idSpT (n)
idSpT (n)

,

Γ

=

which will define the augmentation of Γ as an object of the twisted arrow

category of coAn(SpT (n)).

To find a suitable algebra structure on Γ, one could try to reason as follows:

(i) The twisted arrow category of coAn(SpT (n)) is a subcategory of the ∞-

category

Fun(TwArr(SpT (n)),TwArr(SpT (n))).

The inclusion sends an arrow F → G between coanalytic functors to the

functor loosely described by

(X → Y ) 7→ (F (X)→ G(Y )),

where the latter arrow is the composition of the arrows F (X) → G(X)

and G(X)→ G(Y ).

(ii) There are functors

TwArr(SpT (n))→ TwArr(Svn) : (X → Y ) 7→ (ΘX → Ω∞T (n)Y )

and

TwArr(Svn)→ TwArr(SpT (n)) : (V →W ) 7→ (ΦV → Σ∞T (n)W ),

with the former left adjoint to the latter. Hence their composition gives

a monad on TwArr(SpT (n)) or, in other words, an associative algebra

object of Fun(TwArr(SpT (n)),TwArr(SpT (n))).

(iii) The algebra object of item (ii) is in the image of the inclusion (i), so that

one finds the desired algebra object Γ of TwArr(coAn(SpT (n))).

This plan can be made precise, but it is a rather tedious exercise that re-

quires some care. We will argue slightly differently, taking our cue from a strat-

egy used by Lurie in Section 4.7 of [37]. The ∞-category Fun(SpT (n), SpT (n))
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264 GIJS HEUTS

is a simplicial monoid in an evident way, using composition of functors. More-

over, this simplicial monoid acts on the simplicial set Fun(Svn , SpT (n)), again

by composition. This allows us to regard Fun(Svn , SpT (n)) as left-tensored

over Fun(SpT (n), SpT (n)). The functor TwArr preserves products, so that

also TwArr(Fun(Svn ,SpT (n))) is left-tensored over the monoidal ∞-category

TwArr(Fun(SpT (n), SpT (n))).

In general, if D is an∞-category left-tensored over a monoidal∞-category

C, and one has an action a : E ⊗D → D with E ∈ C and D ∈ D, then Lurie

calls E an endomorphism object of D if it is universal for actions on D, i.e., if

for every C ∈ C the induced map

(1) MapC(C,E)
−⊗D−−−→ MapD(C ⊗D,E ⊗D)

−◦a−−→ MapD(C ⊗D,D)

is an equivalence. In our situation, we have the following (compare Lemma

4.7.4.1 of [37]):

Lemma 4.19. The natural transformation

(ΦΘ→ Σ∞T (n)Ω
∞
T (n)) ∈ TwArr(Fun(SpT (n), SpT (n)))

is an endomorphism object of

(Φ→ Σ∞T (n)) ∈ TwArr(Fun(Svn ,SpT (n))).

Proof. Implicit in the statement of the lemma is that the action of (ΦΘ→
Σ∞T (n)Ω

∞
T (n)) on (Φ → Σ∞T (n)) is given by the counit of (Φ,Θ) and the unit of

(Σ∞T (n),Ω
∞
T (n)), as in

ΦΘΦ Σ∞T (n)Ω
∞
T (n)Σ

∞
T (n)

Φ Σ∞T (n).

Φε Σ∞
T (n)

η

Let C = (F → G) be an object of TwArr(Fun(SpT (n), SpT (n))). Letting E =

(ΦΘ→ Σ∞T (n)Ω
∞
T (n)), the map (1) above takes the form

Map(F → G,ΦΘ→ Σ∞T (n)Ω
∞
T (n))→ Map(FΦ→ GΣ∞,Φ→ Σ∞T (n)),

with the mapping spaces computed in the relevant twisted arrow categories.

One defines a map in the opposite direction by

Map(FΦ→ GΣ∞T (n),Φ→ Σ∞T (n))

→ Map(FΦΘ→ GΣ∞T (n)Ω
∞
T (n),ΦΘ→ Σ∞T (n)Ω

∞
T (n))

→ Map(F → G,ΦΘ→ Σ∞T (n)Ω
∞
T (n)),

where the first map is precomposition by (Θ → Ω∞T (n)) in both variables and

the second map is precomposition in the first variable by the following map in
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LIE ALGEBRAS AND vn-PERIODIC SPACES 265

TwArr(SpT (n), SpT (n)):

F G

FΦΘ GΣ∞T (n)Ω
∞
T (n).

Fη Gε

The triangle identities show that the map defined in this way is homotopy

inverse to (1), proving the lemma. �

Remark 4.20. The preceding lemma and its proof are entirely formal; they

apply to any two pairs of adjoint functors

C D C
L K

R S

equipped with an identification of left adjoints KL ' idC (and an induced

identification idC ' RS). The relevant natural transformation R→ K is then

defined as the composition

R
Rη−−→ RSK ' K.

In Section 4.7.2 of [37] Lurie proves that an endomorphism object can

be given the structure of an associative algebra in an essentially unique way

(Theorem 4.7.2.34). Therefore Lemma 4.19 above provides the desired alge-

bra object Γ of TwArr(Fun(SpT (n), SpT (n))). It is straightforward to see that

this algebra structure is compatible with the augmentation of Γ we defined

above, for example by modifying the argument of the previous lemma to show

that Γ with its augmentation is universal not just in the twisted arrow cate-

gory TwArr(Fun(SpT (n), SpT (n))), but also in the slice category of such twisted

arrows augmented over the arrow idSpT (n)
= idSpT (n)

. This concludes our dis-

cussion of the construction of Γ and the associated morphism of operads γ.

Theorem 4.21. The map of operads

γ : ΦΘ→ Cobar(Σ∞T (n)Ω
∞
T (n))

is an equivalence.

Proof. Since γ is, in particular, a natural transformation between coana-

lytic functors, it suffices (by Lemma 4.4) to check that γ induces an equivalence

on kth derivatives, for every k ≥ 1, or equivalently on k-excisive approxima-

tions Pk for every k. The cobar construction Cobar(Σ∞T (n)Ω
∞
T (n)) is the total-

ization (in the ∞-category of coanalytic functors) of the cosimplicial object

idSpT (n)
Σ∞T (n)Ω

∞
T (n) Σ∞T (n)Ω

∞
T (n)Σ

∞
T (n)Ω

∞
T (n) · · · ,
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which in turn arises from the cosimplicial object

Ω∞T (n)Σ
∞
T (n) Ω∞T (n)Σ

∞
T (n)Ω

∞
T (n)Σ

∞
T (n) (Ω∞T (n)Σ

∞
T (n))

3 · · ·

by precomposing with Θ and postcomposing with Φ. In other words,

Cobar(Σ∞T (n)Ω
∞
T (n)) ' Tot

(
Φ(Ω∞T (n)Σ

∞
T (n))

•+1Θ
)
.

The cosimplicial object (Ω∞T (n)Σ
∞
T (n))

•+1 has an evident coaugmentation

(namely, the unit η) from idSvn
. Unravelling the definitions, the natural trans-

formation underlying γ can then be identified as follows:

ΦΘ = ΦidSvn
Θ

ΦηΘ−−−→ Tot
(
Φ(Ω∞T (n)Σ

∞
T (n))

•+1Θ
)
.

We stress again that the totalizations in the previous two displays are to be

computed in the ∞-category of coanalytic functors. As in the proof of Theo-

rem 4.14 one can compute the k-excisive approximation of ΦΘ by

Pk(ΦΘ) = ΦPk(idSvn
)Θ

and similarly on the right-hand side one has

PkTot
(
Φ(Ω∞T (n)Σ

∞
T (n))

•+1Θ
)
' ΦTot

(
Pk((Ω

∞
T (n)Σ

∞
T (n))

•+1)
)
Θ.

Now the totalization on the right-hand side is computed in the ∞-category of

functors from Svn to itself; the equivalence uses the fact that a limit of k-excisive

functors is k-excisive, so that the right-hand side is indeed a coanalytic (even

k-excisive) functor. It now suffices to verify that the natural transformation

Pk(idSvn
)→ Tot

(
Pk((Ω

∞
T (n)Σ

∞
T (n))

•+1)
)

is an equivalence for every k. But this is a variation on a crucial result of

Arone and Ching, namely, Theorem 0.3 of [3]. It is also formulated in a way

that applies here directly as Proposition B.4 of [26]. �

Recall that our main result, Theorem 2.6, states that Svn is equivalent

to the ∞-category of Lie algebras in SpT (n). We have now established the

necessary ingredients to conclude its proof:

Proof of Theorem 2.6. Combine Theorems 4.1 and 4.21. �

4.4. Some applications. In this section we indicate how to deduce The-

orems 2.13 and 2.14 from the results established above. Also, we include a

discussion of the values of ΦΘ on (shifts of) the T (n)-local sphere spectrum.

Theorem (Theorem 2.13). Suppose V is a pointed finite type n space with

a vn self-map and write W = Σ2V . Then there is an equivalence of spectra as

follows :

Φ(W ) ' LT (n)

⊕
k≥1

(∂kid⊗ Σ∞W⊗k)hΣk
.
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LIE ALGEBRAS AND vn-PERIODIC SPACES 267

Proof of Theorem 2.13. By Lemma 3.24 and the subsequent remark we

have

LfnW ' Θ(Σ∞T (n)W ).

(Here we are tacitly taking the space Vn+1 defining Lfn as in Remark 3.24; the

statement of Theorem 2.13 is clearly independent of this choice.) Therefore

Φ(W ) ' Φ(LfnW ) ' ΦΘ(Σ∞T (n)W ),

and applying Theorem 4.13 to the last expression gives the desired conclusion.

�

Our next goal is to give a formula for ΦΘ(LT (n)S`) for any integer `. For

this we use work of Arone and Mahowald [5] on the vn-periodic Goodwillie

tower of spheres:

Theorem 4.22 (Arone–Mahowald). Let X be a pointed space for which

LT (n)Σ
∞X is equivalent to LT (n)S`, i.e., a shift of the T (n)-local sphere spec-

trum, with ` any integer. Then ΦDkid(X) is contractible for k > pn (if ` is

odd) or k > 2pn (if ` is even). In other words, the tower

· · · → ΦP3id(X)→ ΦP2id(X)→ ΦP1id(X)

becomes constant at stage pn or 2pn, depending on the parity of `.

Proof. In Sections 4.1 and 4.2 of [5], Arone and Mahowald prove that for

X = S` a sphere of dimension at least 1, the spectrum

LT (n)(∂kid⊗ Σ∞X⊗k)hΣk

is contractible for k > pn if ` is odd or k > 2pn otherwise. Also, if ` is odd, then

it is always contractible if k is not a power of p (or twice a power of p in case

` is even). These statements only depend on the T (n)-localization of Σ∞X,

so that they are true for any pointed space X whose suspension spectrum is

T (n)-equivalent to LT (n)S` for ` ≥ 1. The calculations of Arone and Mahowald

are equally valid for negative values of `; this observation is already known at

least to Greg Arone and Nick Kuhn. There are also various ways to deduce

the result for negative ` from the positive one. In private communication

Kuhn suggests using the Thom isomorphism to relate the mod p cohomology

of (∂kid ⊗ Y ⊗k)hΣk
to that of (∂kid ⊗ Σ2Y ⊗k)hΣk

, where one determines the

action of the Steenrod algebra on the latter by examining the effect of Steenrod

operations on the Thom class. Once one establishes that the cohomology of

these spectra is free over an appropriate subalgebra of the Steenrod algebra,

a standard vanishing line argument in the Adams spectral sequence gives the

required vanishing of T (n)-localizations. Rather than spell this out we offer

an alternative proof using duality results of Arone and Dwyer.
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268 GIJS HEUTS

First we make a reduction using the EHP sequence, following Propositions

4.6 and 4.7 of [5] or Section 2.1 of [7]. For positive odd `, it gives a fiber sequence

S` → ΩS`+1 → ΩS2`+1.

By taking derivatives of the functors involved, one concludes that for any k > 0,

the corresponding sequence

Dk(E)→ ΩDk(ΣE)→ ΩD k
2

(
ΣE⊗2

)
becomes a fiber sequence when evaluated on shifts of the sphere spectrum E =

S` for any odd ` (not necessarily positive). The last term is to be interpreted

as 0 when k is odd. Here Dk denotes the functor that gives Dk after applying

Ω∞, i.e.,

Dk(E) = (∂kid⊗ E⊗k)hΣk
.

The fiber sequence above resolves the Goodwillie layers for an even sphere in

terms of the layers of odd spheres, so it suffices to treat the odd case.

Take ` to be a positive odd integer. We aim to show that the spectrum

LT (n)(∂kid⊗ (S−`)⊗k)hΣk

is contractible for k > pn. Note that the Thom isomorphism implies that if k

is not a power of p, then this spectrum is null, even before T (n)-localization,

simply because the mod p homology of these layers vanishes for positive odd

spheres. Therefore it suffices to consider the case k = pm for m > n. Re-

call that the derivative ∂kid is the Spanier–Whitehead dual of the partition

complex,

∂kid ' D(ΣPart�k).

The spectrum under consideration can be described as

LT (n)

(
D(ΣPart�k ⊗ (S`)⊗k)

)
hΣk
'
(
LT (n)D(ΣPart�k ⊗ (S`)⊗k)

)hΣk

'LT (n)D
(
(ΣPart�k ⊗ (S`)⊗k)hΣk

)
,

where the first equivalence uses that Tate spectra for finite groups vanish in

the ∞-category of T (n)-local spectra. Theorem 1.16 of [2], which concerns a

certain self-duality of the partition complex, gives an equivalence

LT (n)

(
(ΣPart�k ⊗ (S`)⊗k)hΣk

)
' LT (n)D

(
Σ2k(∂kid⊗ (S`)⊗k)hΣk

)
.

The spectrum on the right is contractible by the result of Arone and Mahowald

for positive odd spheres. �

Corollary 4.23. There is a natural equivalence

ΦΘ(LT (n)S`) ' LT (n)

2pn⊕
k=1

(∂kid⊗ (S`)⊗k)hΣk
,

where 2pn may be replaced by pn if ` is odd.
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LIE ALGEBRAS AND vn-PERIODIC SPACES 269

Proof. Since Σ∞T (n)Θ is equivalent to the identity functor of SpT (n), the

spaces Θ(LT (n)S`) satisfy the hypotheses of Theorem 4.22. The conclusion

follows by applying Theorem 4.13. �

Arone and Mahowald prove that when X is a sphere, the natural map

Φ(lim←−
k

Pkid(X))→ lim←−
k

ΦPkid(X)

is an equivalence. The previous corollary shows that the same is true when

X = Θ(LT (n)S`), thus giving a new class of nontrivial examples of Φ-good

spaces. These spaces can be thought of as “fake spheres.” Their suspension

spectra are T (n)-locally equivalent to those of spheres, but their vn-periodic

homotopy groups are quite different. Indeed, the spectrum ΦΘ(LT (n)S`) splits

as a sum of layers corresponding to the derivatives of the functor ΦΘ, whereas

the Goodwillie tower for Φ(X) does not split when X is an ordinary sphere.

For example, when the height n is 1 there is a fiber sequence

Φ(S2`+1)→ ΦD1id(S2`+1)→ ΣΦDpid(S2`+1).

For p odd, work of Bousfield [11] shows that this sequence can be identified

with a fiber sequence

Φ(S2`+1)→ LT (1)S2`+1 p`−→ LT (1)S2`+1,

so that Φ(S2`+1) ' LT (1)S2`/p`. In particular, the “attaching map” between

D1 and Dp is nontrivial. By contrast, one finds

ΦΘ(LT (1)S`) ' LT (1)

(
S` ⊕ S`−1).

The remainder of this section is devoted to the following result from Sec-

tion 2:

Theorem (Theorem 2.14). For X ∈ Svn , the suspension spectrum Σ∞T (n)X

admits a natural filtration with associated graded the spectrum

Sym∗(Φ(X)) = LT (n)

⊕
k≥1

Φ(X)⊗khΣk
.

We will now describe the filtration of the theorem. Recall that by Theo-

rem 4.1 every X ∈ Svn has a standard bar resolution

· · · ΘΦΘΦΘΦX ΘΦΘΦX ΘΦX X

and therefore the suspension spectrum Σ∞T (n)X will have a corresponding res-

olution

· · · ΦΘΦΘΦX ΦΘΦX ΦX Σ∞T (n)X,
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using that Σ∞T (n)Θ ' idSpT (n)
. We filter Σ∞T (n)X by filtering the terms in this

resolution. Define

F kΣ∞T (n)X := |P k
(
(ΦΘ)•Φ

)
|(X).

This gives an increasing filtration

ΦX ' F 1Σ∞T (n)X → F 2Σ∞T (n)X → F 3Σ∞T (n)X → · · ·

of Σ∞T (n)X. Since Φ preserves limits, we also have

P k
(
(ΦΘ)•Φ

)
(X) ' P k

(
(ΦΘ)•

)
Φ(X).

Recall that ΦΘ corresponds to the symmetric sequence given by the (T (n)-

local) derivatives of the identity functor, and (ΦΘ)• corresponds to the •-fold

composition product of that symmetric sequence with itself. The functor

P k
(
(ΦΘ)•

)
then simply corresponds to the first k terms of that composition

product. (This is also how Behrens and Rezk define a filtration in Section 4

of [8], although there the relevant operad is the commutative rather than the

Lie operad. They refer to this as the Kuhn filtration, which is developed much

more generally in [35].) Thus the object P k
(
(ΦΘ)•

)
Φ(X) consists of k graded

pieces. The simplicial structure maps respect this grading, except possibly for

(P k applied to) the “final face maps”

(ΦΘ)•Φ(X) = (ΦΘ)•−1ΦΘΦ(X)
(ΦΘ)•−1Φε−−−−−−−→ (ΦΘ)•−1Φ(X)

coming from the ΦΘ-algebra structure of Φ(X). Note that Theorem 4.15

implies that

lim−→
k

P k
(
(ΦΘ)•

)
' (ΦΘ)•,

so that the filtration we have defined is exhaustive:

lim−→
k

F kΣ∞T (n)X ' Σ∞T (n)X.

We offer further remarks on this filtration after we have settled the following:

Proof of Theorem 2.14. Write grkΣ∞T (n)X for the cofiber of F k−1Σ∞T (n)X→
F kΣ∞T (n)X. As already noted above,

gr1Σ∞T (n)X = F 1Σ∞T (n)X ' ΦX,

simply because the simplicial object P 1
(
(ΦΘ)•

)
ΦX is constant with value ΦX.

For k > 1, we find

grkΣ∞T (n)X ' |D
k
(
(ΦΘ)•

)
ΦX|

'
(
DkBar(ΦΘ)

)
(ΦX)

'
(
DkΣ∞T (n)Ω

∞
T (n))(ΦX)

'LT (n)(ΦX)⊗khΣk
.
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LIE ALGEBRAS AND vn-PERIODIC SPACES 271

Here on the second line, Bar(ΦΘ) is the geometric realization of the simplicial

object

· · · ΦΘΦΘ ΦΘ idSpT (n)
.

This simplicial object arises by precomposing with Ω∞T (n) and postcomposing

with Σ∞T (n) from the standard resolution of the identity functor of Svn associated

with the comonad ΘΦ:

· · · ΘΦΘΦΘΦ ΘΦΘΦ ΘΦ idSvn
.

In particular, Bar(ΦΘ) ' Σ∞T (n)Ω
∞
T (n), giving the equivalence between the sec-

ond and the third line above. The identification of the first and second line

follows because the “final face” maps in the simplicial object Dk
(
(ΦΘ)•

)
ΦX

are canonically null; compare also the proof of Proposition 4.5 of [8]. Theo-

rem 4.16 gives the equivalence between the third and fourth line. �

Remark 4.24. The kind of filtration we have just defined exists quite gen-

erally for algebras over an operad. In the case of commutative ring spectra

used by Behrens and Rezk [8] it essentially originates with Kuhn’s work [31],

whereas a much more general version is treated by Kuhn and Pereira [35].

In fact, the filtration of Theorem 2.14 already exists at the level of algebras.

Let us only outline this informally, since we will not need it. Consider an op-

erad O in spectra (or some other stable symmetric monoidal homotopy theory

with sufficiently many colimits), and for simplicity assume O(1) = S and our

operads are nonunital (i.e., there is no O(0) term). The stabilization of the

∞-category of O-algebras can be identified with the∞-category of spectra (this

was first observed, perhaps in different language, by Basterra-Mandell [6]), and

the corresponding functor

Σ∞ : Alg(O)→ Sp

can be thought of as derived O-indecomposables and is also called topological

Quillen homology. We will describe a filtration of any O-algebra A that repro-

duces the kind of filtration considered above after applying Σ∞. Consider the

category Op≤k of k-truncated operads in spectra, which are simply truncated

symmetric sequences {O(j)}1≤j≤k equipped with the usual structure maps re-

quired of an operad, as long as they make sense; in other words, multiplication

maps

O(m)⊗O(j1)⊗ · · · ⊗O(jm)→ O(j1 + · · ·+ jm)

are only defined if j1 + · · · + jm ≤ k. There is an evident forgetful functor

Op → Op≤k from all operads to k-truncated operads. This functor has both

a left and a right adjoint. The right adjoint is easy to describe: it simply

extends a truncated symmetric sequence by zero in arities above k. The left

adjoint (let us write fk) is more interesting: for a truncated operad O≤k, the
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operad fkO≤k agrees with O≤k in arities up to k and is “freely generated”

above that. In other words, all generators and relations are determined by

O≤k. One could give an explicit formula for fk using the construction of free

operads, but we will not. For an operad O, write εk : fk(O≤k) → O for the

counit. Corresponding to the morphism εk there is an adjunction

Alg(fk(O≤k)) Alg(O).
(εk)!

ε∗k

For an O-algebra A, one now obtains the promised filtration by

(ε1)!ε
∗
1A→ (ε2)!ε

∗
2A→ (ε3)!ε

∗
3A→ · · · → A.

Note that the operad f1(O≤1) is simply the trivial operad, and the adjoint pair

((ε1)!, ε
∗
1) can be identified with the free-forgetful adjunction for the∞-category

Alg(O). Composing topological Quillen homology with the free algebra functor

gives the identity, so the composition of topological Quillen homology with the

first stage of the filtration (ε1)!ε
∗
1 is the forgetful functor; note that the “for-

getful functor” Φ for ΦΘ-algebras was also the starting point of our filtration

of Σ∞T (n)X.

A final remark is that the filtration {(εk)!ε
∗
k}k≥1 of the identity functor of

Alg(O) plays a role dual to that of the Goodwillie tower of the identity: the

functor (εk)!ε
∗
k can be shown to be k-coexcisive, and we would like to say that

it is the universal k-coexcisive functor with a natural transformation to the

identity functor. One obstruction to proving this is the lack of a good theory

of dual Goodwillie calculus in an unstable setting. We will comment more on

issues related to dual calculus in Appendix A.

4.5. A variation for K(n)-local homotopy theory. The purpose of this sec-

tion is to derive the following from Theorem 2.6:

Corollary (Corollary 2.8). The localization of Svn at the ΦK(n)-equiv-

alences exists. More precisely, there exists a full subcategory MK(n) → Svn for

which the inclusion admits a left adjoint, satisfying the following two proper-

ties :

(i) The unit is a ΦK(n)-equivalence.

(ii) A map in MK(n) is an equivalence if and only if it is a ΦK(n)-equivalence.

Moreover, the ∞-category MK(n) is equivalent to the ∞-category Lie(SpK(n))

of Lie algebras in K(n)-local spectra.

Essentially one only needs the following observation:

Lemma 4.25. The functor ΦΘ preserves K(n)-equivalences of T (n)-local

spectra.
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Proof. If f : X → Y is a K(n)-equivalence, then so is Z ⊗ f for any

spectrum Z. Moreover, K(n)-equivalences (or equivalences for any homology

theory) are closed under colimits. Hence the induced map

LT (n)

⊕
k≥1

(∂kid⊗X⊗k)hΣk
→ LT (n)

⊕
k≥1

(∂kid⊗ Y ⊗k)hΣk

is a K(n)-equivalence. The lemma now follows by applying Theorem 4.13. �

We write Lie(SpK(n)) for the full subcategory on objects of Lie(SpT (n))

whose underlying spectrum is K(n)-local. Corollary 2.8 is a straightforward

consequence of Theorem 2.6 together with the following:

Proposition 4.26. The inclusion Lie(SpK(n)) → Lie(SpT (n)) admits a

left adjoint, which on the level of underlying spectra is the K(n)-localization

functor LK(n). In particular, Lie(SpK(n)) is the localization of Lie(SpT (n)) at

the K(n)-equivalences.

The idea is that if E is a T (n)-local spectrum that is an algebra for the

monad ΦΘ, then LK(n)E is also an algebra by using the map

ΦΘ(LK(n)E)→ LK(n)ΦΘ(LK(n)E) ' LK(n)ΦΘ(E)→ LK(n)E.

The first map is K(n)-localization, the last map is the K(n)-localization of

the structure map ΦΘ(E) → E, and the middle equivalence follows from

Lemma 4.25. The proof of Proposition 4.26 is simply an exercise in making

this precise.

Proof of Proposition 4.26. Let us first give an explicit description of the

∞-category LModΦΘ(SpT (n)). In Section 4.2.1 of [37] Lurie defines an ∞-

operad LM⊗; it is the ∞-operad associated to the ordinary operad LM (in

sets) on two colors a and m, for which an algebra is precisely an associative

monoid (corresponding to a) and a left module over it (corresponding to m).

In particular, the full suboperad of LM on the color a is isomorphic to the

associative operad.

Let us write FunK(n)(SpT (n),SpT (n)) for the full subcategory of

Fun(SpT (n), SpT (n))

on functors that preserve K(n)-equivalences. Lemma 4.25 states that ΦΘ is

contained in this subcategory. The simplicial set FunK(n)(SpT (n),SpT (n)) is in

fact a simplicial monoid, using composition of functors. Moreover, SpT (n) is a

left module for this monoid. This situation can thus be described as an algebra

for the operad LM in the category of simplicial sets; passing to nerves, this

algebra classifies a coCartesian fibration of∞-operads that we denote by N⊗ →
LM⊗. Its fiber over the vertex a is FunK(n)(SpT (n),SpT (n)), and the fiber

over m is SpT (n). As in Definition 4.2.1.19 of [37], one says that N⊗ exhibits
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SpT (n) as left tensored over FunK(n)(SpT (n), SpT (n)). By Definition 4.2.1.13,

the ∞-category LModΦΘ(SpT (n)) is the ∞-category of sections (preserving

inert morphisms) of the fibration N⊗ → LM⊗ that restrict to the associative

monoid ΦΘ along the inclusion of the associative ∞-operad into LM⊗.

Now consider the full subcategory SpK(n) → SpT (n). There is a corre-

sponding full subcategory N⊗K(n) ⊆ N⊗; an object C1 ⊕ · · · ⊕ Cn of N⊗ lies in

N⊗K(n) if all the Ci that lie over m ∈ LM⊗ are contained in SpK(n) (cf. the

definition at the start of Section 2.2.1 of [37]). We consider the two localiza-

tion functors LK(n) : SpT (n) → SpK(n) and (trivially) the identity functor of

FunK(n)(SpT (n), SpT (n)). These localizations are compatible with the LM⊗-

monoidal structure of N⊗ in the sense of Definition 2.2.1.6 of [37]. Indeed, this

statement is simply the fact that for F ∈ FunK(n)(SpT (n),SpT (n)), the map

F (E) → F (LK(n)E) is a K(n)-equivalence for every T (n)-local spectrum E.

Proposition 2.2.1.9 of [37] then states that there is a morphism of ∞-operads

N⊗ N⊗K(n)

LM⊗

L⊗
K(n)

such that L⊗K(n) is left adjoint to the inclusion and restricts to the functor

LK(n) on SpT (n). This morphism L⊗K(n) gives the desired left adjoint functor

Lie(SpT (n)) = LModΦΘ(SpT (n))→ LModΦΘ(SpK(n)) = Lie(SpK(n))

by applying it to sections. �

Remark 4.27. One can also argue that LK(n)ΦΘ has the structure of a

monad on the ∞-category SpK(n) of K(n)-local spectra and that Lie(SpK(n))

can equivalently be described as the∞-category of algebras for this monad. In-

deed, one uses that the ∞-category Fun(SpK(n),SpK(n)) is a (monoidal) local-

ization of the ∞-category FunK(n)(SpT (n), SpT (n)) used in the preceding proof

to construct a further morphism of ∞-operads from N⊗K(n) to the ∞-operad

that exhibits SpK(n) as left-tensored over Fun(SpK(n), SpK(n)). This mor-

phism will induce an equivalence of ∞-categories between LModΦΘ(SpK(n))

and LModLK(n)ΦΘ(SpK(n)).

4.6. The Whitehead bracket. The aim of this short section is to make sense

of Remark 2.7, relating the classical Whitehead bracket to the Lie algebra

structure on the Bousfield–Kuhn functor we have established. Essentially the

relation will follow from applying Goodwillie calculus to the Hilton–Milnor

theorem. Consider two pointed connected spaces X and Y . The Hilton–Milnor

theorem provides a certain splitting of the space ΩΣ(X ∨Y ). To state it, write
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B2 = {x, y, [x, y], . . .} for an ordered set of Lie words in the symbols x and y

forming a basis for the free Lie algebra on two generators x and y. For every

such word w, define a space w(X,Y ) by letting the bracket act as the smash:

for example, a word w = [x, y] gives w(X,Y ) = X∧Y . The Whitehead bracket

(or Samelson product) corresponding to w defines a map

w(X,Y )→ ΩΣ(X ∨ Y ),

which canonically extends to a loop map

ΩΣw(X,Y )→ ΩΣ(X ∨ Y ).

The theorem of Hilton–Milnor now states that multiplying these maps, for

w ranging through B2, defines an equivalence from the restricted product

(meaning the filtered colimit of finite products) over the set B2 of the spaces

ΩΣw(X,Y ) to the space ΩΣ(X ∨ Y ). Applying the Bousfield–Kuhn functor

and using that it preserves products and filtered colimits, one finds a decom-

position ⊕
w∈B2

Φ(Σw(X,Y ))
'−→ Φ(Σ(X ∨ Y )).

Let us write ιw for the restriction of this map to the summand Φ(Σw(X,Y ))

corresponding to w. Now suppose α, β ∈ π∗Φ(X) are represented by maps

Sa+1 α−→ Φ(X), Sb+1 β−→ Φ(X).

By adjunction (and suppressing T (n)-localizations from the notation), these

determine a map

Θ(Sa+1 ⊕ Sb+1)
α̂+β̂−−−→ X.

We define the Whitehead bracket [α, β] ∈ πa+b+1Φ(X) to be the class repre-

sented by the following composite, with w = [x, y]:

Sa+b+1 = Σw(Sa, Sb) ιw−→ ΦΘ(Sa+1 ⊕ Sb+1)
Φ(α̂+β̂)−−−−−→ Φ(X).

The Lie algebra structure of the functor Φ induces another product on homo-

topy groups. Indeed, identifying ∂2id with S−1, the algebra structure of any

L ∈ Lie(SpT (n)) in particular gives a map

µ : S−1 ⊗ L⊗2 → (S−1 ⊗ L⊗2)hΣ2 → ΦΘ(L)→ L.

Here the second arrow is the inclusion of the degree 2 part of the free Lie

algebra functor ΦΘ (cf. Theorem 4.13). The maps α and β now give rise to a

composite

Sa+b+1 = S−1 ⊗ Sa+1 ⊗ Sb+1 S−1⊗α⊗β−−−−−−→ S−1 ⊗ (ΦX)⊗2 µ−→ ΦX

that deserves to be called the Lie bracket of the two.
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Clearly there is nothing particular about Sa and Sb here; one might as well

use general T (n)-local spectra A and B with maps α : ΣA→ ΦX and β : ΣB →
ΦX, in which case both procedures defined above then give a “bracket” ΣA⊗
B → ΦX. To show that the two operations agree, it suffices to treat the

universal case whereX = Θ(Σ(A⊕B)) and α and β are adjoint to the inclusions

iA : Θ(ΣA)→ X and iB : Θ(ΣB)→ X respectively. The brackets constructed

above then yield two natural transformations

ΣA⊗B → ΦΘ(Σ(A⊕B))

between two-variable functors SpT (n)×SpT (n) → SpT (n). Let us call them BW
and BL respectively.

Proposition 4.28. The natural transformations BW and BL, correspond-

ing to the Whitehead and Lie brackets respectively, agree up to a natural auto-

morphism of the pair (A,B), i.e., an automorphism of the identity functor of

SpT (n) × SpT (n).

Remark 4.29. The indeterminacy in the statement of the proposition stems

from the fact that we did not precisely specify the various identifications made

in the definitions of the two products. With more care this can be avoided.

Proof. Write F (A,B) = ΣA⊗B and G(A,B) = ΦΘ(Σ(A⊕B)). The point

is that BW and BL admit the same characterization in terms of (multivariable)

Goodwillie calculus (as in [4], [13]). Indeed, both exhibit F as D1,1G, the

linearization of G in both variables separately. For the Whitehead bracket,

defined in terms of the Hilton–Milnor splitting, this follows from Lemma 2.4

of [13]. Indeed, that result shows that only the term corresponding to the

word w = [x, y] can contribute to D1,1G and that moreover the inclusion

ιw : F (A,B)→ G(A,B) induces an equivalence

F (A,B) = ΣA⊗B '−→ D1(Φ)(Σw(ΘA,ΘB)) ' D1,1G(A,B).

For the Lie bracket, one first applies [13, Lemma 2.1, Rem. 2.2] to see that the

inclusion

D2(ΦΘ)(Σ(A⊕B))→ ΦΘ(Σ(A⊕B)) = G(A,B)

induces an equivalence on (1, 1)-derivatives. Secondly, it is clear that the map

ΣA⊗B → D2(ΦΘ)(Σ(A⊕B)) = (S−1 ⊗ (Σ(A⊕B))⊗2)hΣ2

used to define the Lie bracket is precisely the (1, 1)-derivative of the right-hand

side. �

5. The Goodwillie tower of Svn

The main goal of this section is to explain the statement and give a proof of

Theorem 2.10. First we discuss the notion of a Goodwillie tower associated to

This content downloaded from 
�������������131.211.12.11 on Tue, 19 Oct 2021 09:14:56 UTC������������� 

All use subject to https://about.jstor.org/terms
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a suitable∞-category developed in [26]. If C is a pointed compactly generated

∞-category (such as S∗ or Svn), then it admits a Goodwillie tower, which is a

tower of pointed compactly generated ∞-categories

C

· · · P3C P2C P1C

Σ∞3
Σ∞2

Σ∞1

in which all functors are left adjoints. The first approximation P1C can be

identified with the stabilization Sp(C) of C. Writing Ω∞k for the right adjoint

of Σ∞k , this tower enjoys the following properties:

(i) The identity functor idPkC of PkC is a k-excisive functor.

(ii) The natural transformation Σ∞k Ω∞k → idPkC induced by the counit of the

adjoint pair (Σ∞k ,Ω
∞
k ) gives an equivalence

Pk(Σ
∞
k Ω∞k )→ idPkC.

(iii) The functor Ω∞k Σ∞k is k-excisive, and the unit idC → Ω∞k Σ∞k gives an

equivalence

PkidC → Ω∞k Σ∞k .

In fact, property (i) can be strengthened to say that PkC is a k-excisive

∞-category (see Definition 2.3 of [26]). The details of this property will not

concern us here, but it might be helpful to know that an ∞-category is 1-

excisive precisely if it is stable. The functors Σ∞k : C → PkC have a universal

property expressed in Theorem 2.7 of [26]. In particular, the Goodwillie tower

of C is unique up to canonical equivalence.

The results of [26] provide an explicit description of PkC in terms of

(k-truncated) Tate coalgebras in Sp(C). In the case of pointed spaces, i.e.,

C = S∗, a Tate coalgebra in Sp is roughly a commutative coalgebra X for

which the comultiplication maps

δk : X → (X⊗k)hΣk

are required to be compatible with certain Tate diagonals

τk : X → (X⊗k)tΣk .

This leads to an equivalence between the ∞-category of simply-connected

pointed spaces with the∞-category of simply-connected Tate coalgebras in Sp.

The point here is not to give a detailed description of these Tate coalgebras,

but rather to note that the situation simplifies drastically in the T (n)-local

setting. There all Tate constructions for finite groups are contractible, mean-

ing that there is no essential distinction between Tate coalgebras and “ordi-

nary” commutative coalgebras. In Section 5.1 we will prove Theorem 2.10,

which describes the Goodwillie tower of Svn in terms of coAlgind(Sp⊗T (n)), the
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∞-category of commutative ind-coalgebras in T (n)-local spectra (see Defini-

tion 5.4).

The Goodwillie tower of a pointed compactly generated ∞-category C in

particular gives a functor

C→ lim←−
k

PkC,

which is generally not an equivalence of ∞-categories. However, it is fully

faithful when restricted to the full subcategory Cconv ⊆ C on objects X for

which the Goodwillie tower of the identity converges, in the sense that the

canonical map

X → lim←−
k

PkidC(X)

is an equivalence. This means that the Goodwillie tower of the∞-category Svn
is a potentially useful tool in studying the spaces X ∈ Svn that are Φ-good.

In Section 5.2 we will demonstrate that this is indeed the case by proving

Theorem 2.11 and Corollary 2.12.

5.1. Stabilizations and Goodwillie towers. The main result of [26] is a clas-

sification of Goodwillie towers of ∞-categories. To explain what we need of

this classification, we begin with a digression on stable∞-operads. We will use

Lurie’s version of the theory of ∞-operads, developed in [37]. His ∞-operads

are certain fibrations O⊗ → NFin∗, enjoying properties similar to those of

(the nerve of) the category of operators associated to a simplicial operad. The

∞-operads we need are nonunital, meaning that their structure map factors

through NSurj ⊆ NFin∗, with Surj denoting the category of finite pointed sets

and surjections. The following definition is used in [26]:

Definition 5.1. A nonunital ∞-operad p : O⊗ → NSurj is stable if it sat-

isfies the following conditions:

(1) It is corepresentable, meaning that the map p is a locally coCartesian fi-

bration. Equivalently, for every nonempty collection X1, . . . , Xn of objects

of O, the functor

O⊗(X1, . . . , Xn;−) : O→ S,

parametrizing operations of O with the given inputs, is corepresentable. We

will denote the corepresenting object by X1 ⊗ · · · ⊗Xn. This determines

for every nonempty finite set I a functor

⊗I : OI → O : {Xi}i∈I 7→ ⊗I{Xi}i∈I .

(1) Its underlying ∞-category O is stable and compactly generated.

(2) For every finite set I, the functor ⊗I preserves colimits in each of its

variables separately.
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As the tensor product notation already suggests, one can produce ex-

amples of stable ∞-operads from symmetric monoidal stable ∞-categories.

More precisely, if p : C⊗ → NFin∗ is a stable compactly generated symmetric

monoidal ∞-category for which the tensor product commutes with colimits in

each variable separately, one obtains a stable ∞-operad by pulling back the

map p along the inclusion NSurj→ NFin∗. However, not all stable∞-operads

arise in this way. Generally, the definition forces the “tensor products” ⊗I to

be associative only in a weak sense; see Remark 2.11 of [26] and Section 6.3

of [37] for more discussion of this point. In this paper we will only be con-

cerned with the special class of examples coming from symmetric monoidal

∞-categories.

Now consider a pointed compactly generated ∞-category C. One can

form a symmetric monoidal ∞-category C× → NFin∗ by using the Cartesian

product as monoidal structure (cf. Section 2.4.1 of [37]). Pulling back to NSurj

gives a nonunital ∞-operad for which we write C×nu. Lurie proves that this

∞-operad admits a stabilization Sp(C)⊗ (cf. Section 6.2.5 of [37]). For our

purposes, this is another nonunital ∞-operad equipped with a map of ∞-

operads Ω⊗,∞C : Sp(C)⊗ → C×nu satisfying the following properties:

(1) The ∞-operad Sp(C)⊗ is stable.

(2) The map Ω⊗,∞C coincides with the functor Ω∞C : Sp(C) → C on underlying

∞-categories.

(3) The natural transformation

×I ◦ (Ω∞C )I → Ω∞C ◦ ⊗I

induced by the map of ∞-operads Ω⊗,∞C exhibits ⊗I as the multilineariza-

tion of ×I .
The example to keep in mind is C = S∗, in which case Sp(C)⊗ is the symmetric

monoidal∞-category Sp⊗ of spectra with their smash product. Generally, one

can show that the functor

⊗k : Sp(C)k → Sp(C)

induced by the stable ∞-operad Sp(C)⊗ gives the kth derivative of Σ∞C Ω∞C ;

more precisely,
Dk(Σ

∞
C Ω∞C )(X) ' (X⊗k)hΣk

.

One can think of the stable ∞-operad Sp(C)⊗ as capturing these derivatives

together with their cooperadic structure. See Section 6.3 of [37] or Section 2

of [26] for more discussion of this correspondence.

The ∞-category PkC, for k ≥ 1, can now be described in terms of certain

k-truncated Tate coalgebras in the stable ∞-operad Sp(C)⊗. Such a coalgebra

is a spectrum X ∈ Sp(C) equipped with comultiplication maps

δj : X → (X⊗j)hΣj
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for j ≤ k, together with a coherent system of homotopies expressing the asso-

ciativity of these comultiplications. (We will give a precise definition below in

the case of interest to us here.) Moreover, these maps should be compatible

with certain “Tate diagonals”

τj : X → (X⊗j)tΣj

that are determined by C. In this paper we will only be concerned with stable

∞-categories in which all Tate spectra for finite groups are null. Then Corollary

2.23 of [26] gives the following:

Proposition 5.2. Let C be a pointed compactly generated ∞-category for

which all Tate spectra associated to the symmetric groups are null in Sp(C).

Then for every k ≥ 1, there is a canonical equivalence of ∞-categories

PkC ' coAlgind(τkSp(C⊗)),

where coAlgind(τkSp(C)⊗) denotes the∞-category of k-truncated ind-coalgebras

in Sp(C)⊗ (Definition 5.21 of [26]; see Definitions 5.3 and 5.4 below).

In particular, under the conditions of the previous proposition the Good-

willie tower of C is completely determined by Sp(C)⊗. For us the relevant

stable ∞-operad will be Sp⊗T (n), the symmetric monoidal ∞-category of T (n)-

local spectra with smash product. In this case the definition of ind-coalgebras

of [26] is unnecessarily complicated and one may use the following instead. We

will compare the two definitions in Appendix C. All our coalgebras will be

without counits; we will not include explicit mention of this in our terminology

or notation:

Definition 5.3. The∞-category coAlg(Sp⊗T (n)) of commutative coalgebras

in T (n)-local spectra is the opposite of the ∞-category of nonunital commu-

tative algebra objects in the symmetric monoidal ∞-category (Spop
T (n))

⊗. Re-

call that a nonunital commutative algebra object of a symmetric monoidal

∞-category C⊗ is a section of the structure map C⊗
p−→ NFin∗ defined over

NSurj, preserving inert morphisms (cf. Definitions 2.1.2.7 and 5.4.4.1 of [37]):

C⊗

NSurj NFin∗.

p

Similarly, a k-truncated nonunital commutative algebra object is such a section

defined over NSurj≤k, with Surj≤k the full subcategory of Surj on finite sets
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of cardinality at most k:

C⊗

NSurj≤k NFin∗.

p

Finally, the ∞-category coAlg(τkSp⊗T (n)) of k-truncated commutative coalge-

bras in T (n)-local spectra is the opposite of the ∞-category of k-truncated

nonunital commutative algebra objects in the symmetric monoidal∞-category

(Spop
T (n))

⊗.

Definition 5.4. The ∞-category of commutative ind-coalgebras in T (n)-

local spectra is defined by

coAlgind(Sp⊗T (n)) := Ind(coAlgfin(Sp⊗T (n))),

where coAlgfin(Sp⊗T (n)) is the full subcategory of coAlg(Sp⊗T (n)) on coalgebras

whose underlying spectrum is a compact object of SpT (n). The ∞-category

of k-truncated commutative ind-coalgebras in T (n)-local spectra is defined

similarly:

coAlgind(τkSp⊗T (n)) := Ind(coAlgfin(τkSp⊗T (n))).

Remark 5.5. It should be noted that there are evident “truncation func-

tors”

coAlgind(Sp⊗T (n))→ coAlgind(τkSp⊗T (n))

obtained by precomposing with the inclusion NSurj≤k → NSurj. These func-

tors are the identity on underlying objects X, but they simply forget the part

of the coalgebraic structure concerning comultiplication maps

δj : X → (X⊗j)hΣj

for j > k.

Remark 5.6. Introducing ind-coalgebras, as opposed to just coalgebras, is

a necessary complication in [26], since the methods of Goodwillie towers apply

to compactly generated ∞-categories only. The ∞-category coAlg(Sp⊗T (n)) is

presentable (see Corollary 3.1.4 of [38]), so the inclusion

coAlgfin(Sp⊗T (n))→ coAlg(Sp⊗T (n))

gives by left Kan extension a colimit-preserving functor

j : coAlgind(Sp⊗T (n))→ coAlg(Sp⊗T (n)).

However, there seems to be no reason why a finite coalgebra X should be a

compact object of the latter∞-category, so that this functor need not be fully

faithful. (In fact it is doubtful that the∞-category of coalgebras in T (n)-local
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spectra has any nonzero compact objects at all.) The situation is much better

in the truncated setting: a truncated coalgebra X ∈ coAlgfin(τkSpT (n)) is a

compact object of coAlg(τkSpT (n)) and hence the corresponding functor

j : coAlgind(τkSp⊗T (n))→ coAlg(τkSp⊗T (n))

is fully faithful (Corollary 6.15 of [26]).

In order to apply Proposition 5.2 we need to identify the stable∞-operad

Sp(Svn)⊗. First of all, there is the morphism of ∞-operads

Ω⊗,∞ : Sp⊗ → S×∗

that exhibits Sp⊗ as the stabilization of S×∗ . We could also replace S∗ by

S∗〈dn+1〉 and take the dn+1-connected cover of Ω∞, because taking dn+1-

connected covers is a product-preserving functor. We can now restrict Ω⊗,∞

to the full symmetric monoidal subcategory of spectra that are Lfn-local and

obtain a morphism of ∞-operads

Ω⊗,∞
Lf
n

: LfnSp⊗ → (Lfn)×.

Recall the right adjoint functor r : Lfn → Svn which, because it preserves prod-

ucts, induces a morphism

r× : (Lfn)× → (Svn)×.

Restricting Ω⊗,∞
Lf
n

further and postcomposing with r× gives a morphism

Ω⊗,∞
Mf

n
: Mf

nSp⊗ → (Svn)×.

This expression Mf
nSp⊗ makes sense because Mf

n is closed under smash prod-

ucts in Lfn, which is immediate from the fact that Lfn is a smashing localization.

Proposition 5.7. The morphism

Ω⊗,∞
Mf

n
: Mf

nSp⊗ → (Svn)×

exhibits Mf
nSp⊗ as the stabilization of (Svn)×. In other words, it induces an

equivalence

Mf
nSp⊗ ' Sp(Svn)⊗.

The result we are after follows immediately from this:

Proof of Theorem 2.10. As in Remark 3.20, we are free to replace Mf
nSp⊗

by Sp⊗T (n). The theorem then follows by combining Proposition 5.7 with Propo-

sition 5.2. �
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Proof of Proposition 5.7. We already showed that rΩ∞ : Mf
nSp→ Svn ex-

hibits Mf
nSp as the stabilization of Svn (see Proposition 3.19). Therefore it

remains to show that the natural maps

×I ◦ (rΩ∞)I → rΩ∞ ◦ ⊗I

induced by Ω⊗,∞
Mf

n
exhibit the smash product functors ⊗I on Mf

nSp as the

multilinearization of the product functors ×I on Svn . The product ×I on the

left is to be interpreted in the ∞-category Svn , but by Lemma 3.17 it can be

computed simply as the usual product of pointed spaces.

To form the multilinearization of ×k, one first forms its coreduction (see

Construction 6.2.3.6 of [37]), denoted cored(×k), and then linearizes this core-

duction in each of its variables. The coreduction of ×k is the initial functor

that is reduced in each of its variables and receives a natural transformation

from ×k. It can be constructed as follows:

cored(×k)(X1, . . . , Xk) ' Lfncof
(

lim−→
S({1,...,k}

∏
i∈S

Xi →
∏

i=1,...,k

Xi

)
.

Therefore

cored(×k)(X1, . . . , Xk) ' Lfn(X1 ∧ · · · ∧Xk).

Linearizing this expression in each of its variables gives

lim−→
j1,...,jk

Ωj1+···+jkLfn(Σj1X1 ∧ · · · ∧ ΣjkXk)

' lim−→
j1,...,jk

LfnΩj1+···+jk(Σj1X1 ∧ · · · ∧ ΣjkXk)

' LfnΩ∞(Σ∞X1 ⊗ · · · ⊗ Σ∞Xk).

Here the first equivalence uses Theorem 3.8 and the second uses the fact that

the smash product of spectra is the multilinearization of the smash product of

spaces. This concludes the proof of the proposition. �

5.2. The Goodwillie tower of the Bousfield–Kuhn functor. The goal of this

section is to prove Theorem 2.11 and Corollary 2.12. We begin with a discus-

sion of the functor

prim: coAlg(Sp⊗T (n))→ SpT (n)

taking the primitives of a coalgebra, as well as its variant

primind : coAlgind(Sp⊗T (n))→ SpT (n)

taking the primitives of an ind-coalgebra. We will construct the latter as the

right adjoint of the trivial ind-coalgebra functor

trivind : SpT (n) → coAlgind(Sp⊗T (n)).
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This functor will be the left Kan extension of a corresponding functor

trivfin : Spfin
T (n) → coAlgfin(Sp⊗T (n))

defined on compact objects (which are the retracts of T (n)-localizations of

finite type n spectra). Since finite spectra are dualizable with respect to the

smash product, Spanier–Whitehead duality gives an equivalence of symmetric

monoidal ∞-categories (see Section 3.2 of [38])

D :
(
Spfin

T (n)

)⊗ → (
(Spfin

T (n))
op
)⊗

and hence also an equivalence (which we denote by the same symbol)

D : coAlgfin(Sp⊗T (n))→
(
CAlgnu((Spfin

T (n))
⊗)
)op

.

Here CAlgnu(C⊗) denotes the ∞-category of nonunital commutative algebras

in a symmetric monoidal ∞-category C.

This∞-category of nonunital commutative algebras admits a stabilization

Ω∞CAlg : Spfin
T (n) → CAlgnu((Spfin

T (n))
⊗).

This follows from Theorem 7.3.4.7 of [37] for the ∞-category of augmented

commutative algebras, which is equivalent to that of nonunital commutative

algebras via the functor taking the augmentation ideal. The functor Ω∞CAlg can

be thought of as equipping an object with the trivial (nonunital) commutative

algebra structure. It preserves finite limits, and the composition of Ω∞CAlg with

the forgetful functor is naturally equivalent to the identity functor of Spfin
T (n).

It can be extended to a functor

Ω∞CAlg : SpT (n) → CAlgnu((SpT (n))
⊗)

and as such it admits a left adjoint

Σ∞CAlg : CAlgnu((SpT (n))
⊗)→ SpT (n).

This is the functor taking the derived indecomposables or topological André–

Quillen homology of a commutative ring spectrum. It was originally described

in this fashion by Basterra and Mandell [6]. Section 7.3 of [37] includes a

treatment in the ∞-categorical setting.

As promised, we define the trivial coalgebra functor for compact objects

of SpT (n) to be the composition

Spfin
T (n)

D−→ (Spfin
T (n))

op
Ω∞CAlg−−−−→ CAlgnu((Spfin

T (n))
⊗)op D−1

−−−→ coAlgfin(Sp⊗T (n)),

and we write

trivind : SpT (n) → coAlgind(Sp⊗T (n))

for the left Kan extension of this functor. Since it preserves colimits and

the ∞-category of ind-coalgebras is presentable, the adjoint functor theorem
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(Corollary 5.5.2.9(1) and Remark 5.5.2.10 of [36]) applies to guarantee the

existence of the desired right adjoint

primind : coAlgind(Sp⊗T (n))→ SpT (n).

Moreover, this right adjoint preserves filtered colimits by virtue of the fact that

trivind preserves compact objects, which is true by construction. Composing

with the truncation functor (cf. Remark 5.5)

coAlgind(Sp⊗T (n))→ coAlgind(τkSp⊗T (n))

we obtain (k-truncated) trivial coalgebra functors

trivind
k : SpT (n) → coAlgind(τkSp⊗T (n))

with right adjoints

primind
k : coAlgind(τkSp⊗T (n))→ SpT (n).

Of course we could also take a left Kan extension of trivfin to a functor

triv : SpT (n) → coAlg(Sp⊗T (n))

that has a corresponding adjoint

prim: coAlg(Sp⊗T (n))→ SpT (n),

using that coAlg(Sp⊗T (n)) is a presentable ∞-category (cf. Remark 5.6). Simi-

larly one defines trivk and primk.

Remark 5.8. It is useful to note that in the truncated case the distinction

between primind
k and primk is of little importance; indeed, as in Remark 5.6

the ∞-category of k-truncated ind-coalgebras is a full subcategory of that of

k-truncated coalgebras via the fully faithful colimit-preserving functor

j : coAlgind(τkSp⊗T (n))→ coAlg(τkSp⊗T (n)).

Writing s for its right adjoint, we have sj ' id. By construction we have

j ◦ trivind
k = trivk, so that by adjunction primind

k ◦ s = primk. Thus, for a

k-truncated ind-coalgebra X, we have

primind
k X ' primind

k (sjX) ' primk(jX).

For this reason we will not distinguish in notation between primind
k and primk

any longer and simply write the latter.

Remark 5.9. The adjoint pair (trivind, primind) is related to the forgetful-

cofree pair by a diagram

SpT (n) coAlgind(Sp⊗T (n)) SpT (n)

trivind forget

primind cofree
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in which both horizontal composites are naturally equivalent to the iden-

tity functor of SpT (n). This is of course reminiscent of the pairs (Θ,Φ) and

(Σ∞T (n),Ω
∞
T (n)) with the identities Σ∞T (n)Θ ' idSpT (n)

and ΦΩ∞T (n) ' idSpT (n)
.

In fact, we will demonstrate shortly that trivind can be identified with the

composite of Θ and the functor

Svn → coAlgind(Sp⊗T (n))

assigning to X ∈ Svn its T (n)-local suspension spectrum with its natural ind-

coalgebra structure.

Lemma 5.10. Let X ∈ coAlgfin(Sp⊗T (n)) be a finite coalgebra. Then primX

' DΣ∞CAlg(DX). More precisely, there is a natural equivalence of functors

between the restriction of prim to coAlgfin(Sp⊗T (n)) and the composition

coAlgfin(Sp⊗T (n))
D−→ CAlgnu((Spfin

T (n))
⊗)op

Σ∞CAlg−−−−→ (SpT (n))
op D−→ SpT (n).

Proof. The proof follows from straightforward manipulations of the ad-

junctions described above and is easily summarized by the following chain of

natural equivalences for Y a compact object of SpT (n):

MapSpT (n)
(Y, prim(X)) ' MapcoAlgfin(Sp⊗

T (n)
)(triv(Y ), X)

' MapCAlgnu((Spfin
T (n))

⊗)(DX,Ω
∞
CAlg(DY ))

' MapSpT (n)
(Σ∞CAlg(DX),DY )

' MapSpT (n)
(Y,DΣ∞CAlg(DX)). �

Remark 5.11. From the previous lemma one can also conclude that primind

can be characterized as the best possible approximation of the functor

X 7→ DΣ∞CAlg(DX)

by a functor that preserves filtered colimits.

The suspension spectrum Σ∞T (n) : Svn → SpT (n) is a symmetric monoidal

functor with respect to smash products. Every X ∈ Svn is canonically a

commutative coalgebra with respect to the Cartesian product and hence also

with respect to the smash product, simply using the natural map from product

to smash product. Hence, we obtain a functor

(Svn)ω → coAlgfin(Sp⊗T (n))

that on underlying objects is simply Σ∞T (n). (The reader looking for a more

detailed account can consult Construction 5.20 of [26].) Formally extending

by filtered colimits (i.e., taking a left Kan extension) gives a functor

CT (n) : Svn → coAlgind(Sp⊗T (n)).
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Lemma 5.12. The composite

SpT (n)
Θ−→ Svn

CT (n)−−−→ coAlgind(Sp⊗T (n))

is naturally equivalent to

trivind : SpT (n) → coAlgind(Sp⊗T (n)).

In fact, our proof will yield a preferred equivalence.

Proof. Restricting to compact objects gives a functor

CT (n) ◦Θ: Spfin
T (n) → coAlgfin(Sp⊗T (n))

that preserves finite colimits. Under Spanier–Whitehead duality we obtain a

functor

θ := (D ◦ CT (n) ◦Θ ◦D)op : Spfin
T (n) → CAlgnu((Spfin

T (n))
⊗)

that preserves finite limits. Therefore θ canonically factors over the stabiliza-

tion

Ω∞CAlg : Spfin
T (n) → CAlgnu((Spfin

T (n))
⊗)

i.e., we find an exact functor ψ : Spfin
T (n) → Spfin

T (n) and an equivalence θ '
Ω∞CAlg ◦ ψ. We will show that ψ is equivalent to the identity functor. Indeed,

writing

U : CAlgnu((Spfin
T (n))

⊗)→ Spfin
T (n)

for the forgetful functor and using the natural equivalence U ◦Ω∞CAlg ' idSpT (n)

gives an equivalence Uθ ' ψ. On the other hand, for X ∈ SpT (n),

Uθ(X) =UDCT (n)Θ(DX)

'DΣ∞T (n)Θ(DX)

'DDX

'X.

Here the second line uses the fact that the underlying spectrum of a coalgebra

CT (n)(Y ) is Σ∞T (n)Y and the third line uses the equivalence Σ∞T (n)Θ ' idSpT (n)
.

Thus ψ ' idSpT (n)
and we conclude that θ ' Ω∞CAlg. By our definition of triv, it

follows that we have found an equivalence CT (n)◦Θ ' triv, at least on compact

objects. But since both functors preserve colimits, this suffices. �

Remark 5.13. Lemma 5.12 yields a variant of the comparison map of

Behrens and Rezk (as in Section 6 of [8]). Indeed, write DT (n) for the right

adjoint of CT (n), of which the existence is again guaranteed by the adjoint

functor theorem. Taking right adjoints of the functors of the lemma gives an

equivalence

Φ ◦DT (n) ' primind,
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and the unit of the adjoint pair (CT (n), DT (n)) then induces a natural map

Φ→ Φ ◦DT (n) ◦ CT (n) ' primind ◦ CT (n),

which is the version of the comparison map we will employ here.

Recall the functors

Svn
Σ∞k−−→ PkSvn ' coAlgind(τkSp⊗T (n)),

where the second is the equivalence of Proposition 5.2. This composite can be

described explicitly as

Svn
CT (n)−−−→ coAlgind(Sp⊗T (n))

τk−→ coAlgind(τkSp⊗T (n)),

where the second functor is the truncation discussed in Remark 5.5. Then

Lemma 5.12 immediately implies the following:

Corollary 5.14. Under the identification of Proposition 5.2 the com-

posite

SpT (n)
Θ−→ Svn

Σ∞k−−→ PkSvn

is naturally equivalent to

trivk : SpT (n) → coAlgind(τkSp⊗T (n)).

The proof of Lemma 5.12 induces a preferred such equivalence.

Proof of Theorem 2.11. As observed before, the fact that Φ preserves lim-

its guarantees PkΦ ' ΦPkidSvn
. In turn, the natural transformation idSvn

→
PkidSvn

can be identified with the unit of the adjoint pair

Svn PkSvn .
Σ∞k

Ω∞k

In particular, PkΦ ' ΦΩ∞k Σ∞k . The composite ΦΩ∞k is right adjoint to Σ∞k Θ

and therefore equivalent to primk by Corollary 5.14. Using Σ∞k ' τkCT (n) we

conclude that

PkΦ ' primk ◦ τkCT (n)

as claimed. �

Recall that a space X ∈ Svn is Φ-good if the natural map

Φ(X)→ lim←−
k

PkΦ(X)

is an equivalence. Thus to prove Corollary 2.12 it suffices to combine The-

orem 2.11 with Lemma 5.15 below. Note that the statement concerns the

functor

prim: coAlg(SpT (n))
⊗ → SpT (n)

rather than its variant for ind-coalgebras.
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Lemma 5.15. The evident natural transformation

prim ' lim←−
k

(primk ◦ τk)

is an equivalence.

Proof. For Y ∈ SpT (n) and X ∈ coAlg(SpT (n)), observe the following

natural equivalences:

MapSpT (n)
(Y, lim←−

k

(primk(τkX))' lim←−
k

MapcoAlg(τkSp⊗
T (n)

)(trivkY, τkX)

' lim←−
k

MapcoAlg(τkSp⊗
T (n)

)(τktrivY, τkX).

Lemma C.30 of [26] implies that the evident functor

coAlg(Sp⊗T (n))→ lim←−
k

coAlg(τkSp⊗T (n))

is an equivalence, which gives further equivalences

lim←−
k

MapcoAlg(τkSp⊗
T (n)

)(τktrivY, τkX)'MapcoAlg(Sp⊗
T (n)

)(trivY,X)

'MapSpT (n)
(Y,primX),

finishing the proof. �

Appendix A. Dual Goodwillie calculus

The calculus of functors was developed by Goodwillie in [25]. It provides

for every suitable functor F : S∗ → S∗ (or S∗ → Sp, Sp → Sp, etc.) a natural

transformation F → PkF for every k ≥ 0. Here PkF is a k-excisive functor

and the natural transformation is initial with respect to maps to k-excisive

functors. Goodwillie’s arguments are sufficiently conceptual to generalize to a

wide variety of homotopy theories. We make use of the version of the theory

described in Chapter 6 of [37], which works for ∞-categories satisfying only a

few mild assumptions.

Write Funω(SpT (n), SpT (n)) for the ∞-category of functors from SpT (n) to

itself that preserve filtered colimits and Fun≤k(SpT (n), SpT (n)) for the full sub-

category on k-excisive such functors. Writing SpωT (n) for the full subcategory on

compact objects of SpT (n), restriction along the inclusion gives an equivalence

of ∞-categories

Funω(SpT (n),SpT (n))→ Fun(SpωT (n),SpT (n))

and similarly for subcategories of k-excisive functors. Theorem 6.1.1.10 of [37]

shows that the inclusion Fun≤k(SpωT (n), SpT (n)) → Fun(SpωT (n),SpT (n)) admits

a left adjoint

Fun(SpωT (n), SpT (n))→ Fun≤k(SpωT (n),SpT (n)) : F 7→ PkF.

This content downloaded from 
�������������131.211.12.11 on Tue, 19 Oct 2021 09:14:56 UTC������������� 

All use subject to https://about.jstor.org/terms



290 GIJS HEUTS

In the body of this paper we also need a notion of dual calculus. A dual version

of calculus for functors to spectra was developed by McCarthy [42]. We will

not need much theory though, only the following statement:

Theorem A.1. The inclusion

Fun≤k(SpωT (n),SpT (n))→ Fun(SpωT (n),SpT (n))

admits a right adjoint F 7→ P kF . In other words, the subcategory of k-excisive

functors is also a colocalization of Fun(SpωT (n), SpT (n)).

Proof. We apply Theorem 6.1.1.10 of [37] to the opposite ∞-category

Fun(SpωT (n), SpT (n))
op = Fun((SpωT (n))

op,Spop
T (n)).

The reason that this works is that Spop
T (n), being stable and cocomplete, is still

a differentiable ∞-category in the sense of Definition 6.1.1.6 of [37]. �

Of course this theorem does not use any of the specifics of the∞-category

SpT (n) and works for any complete stable ∞-category. We have stated it only

for emphasis and ease of reference. In applications we will always identify

Fun(SpωT (n),SpT (n)) with Funω(SpT (n),SpT (n)).

Theorem A.1 uses in an essential way that SpT (n) is stable to conclude

that its opposite category is also differentiable. One could try to develop a

dual version of the theory of Goodwillie calculus for functors valued in an

∞-category that is not stable. In this case one can ask if any functor F

admits a universal approximation P kF → F by a k-coexcisive functor. (In

the stable setting there is no distinction between k-excisive and k-coexcisive

functors.) The fundamental role of the stabilization of an∞-category C would

then be taken over by its costabilization coSp(C). For the ∞-category S∗, the

costabilization coSp(S∗) is trivial, as a consequence of the fact that any infinite

suspension space is contractible, and any attempt at a formally dual theory of

Goodwillie calculus for functors to S∗ therefore seems futile. However, the same

cannot be said of Svn , which contains many infinite suspension objects, namely

spaces of the form Θ(E). Similarly, the∞-category of algebras over an operad

in the category of spectra has many infinite suspension objects, namely the free

algebras. Moreover, as already explained in Remark 4.24, there seems to be a

natural candidate for the dual Goodwillie filtration of the identity functor of

Svn , or of the ∞-category of algebras over an operad in general, which should

be formally dual to the Goodwillie tower of the identity. We intend to return

to these questions in future work.

Appendix B. A nilpotence lemma for differentiation

B.1. Statement of the lemma. The goal of this section is to explain that

the dual k-excisive approximation P k (for functors from SpT (n) to itself) com-

mutes with a very specific kind of colimit, as in the following:

This content downloaded from 
�������������131.211.12.11 on Tue, 19 Oct 2021 09:14:56 UTC������������� 

All use subject to https://about.jstor.org/terms



LIE ALGEBRAS AND vn-PERIODIC SPACES 291

Lemma B.1 (Mathew). If

F =
∞⊕
j=1

Fj

with Fj : SpT (n) → SpT (n) a j-homogeneous functor, then the natural map

k⊕
j=1

Fj → P kF

is an equivalence.

We learned of this result from Akhil Mathew. Since a proof has not yet

appeared in the literature, we offer it here.

Remark B.2. Our strategy of proof will apply equally well to show that

in the T (n)-local setting one has

Pk

( ∞∏
j=1

Fj

)
'

k∏
j=1

Fj ,

even though the k-excisive approximation Pk need not commute with infinite

products in general.

The lemma above is equivalent to the following statement:

Lemma B.3. With Fj as above, the functor

D`
( ∞⊕
j=k+1

Fj

)
is null for every ` ≤ k.

The dual derivative D` of a functor F may be constructed from the cocross

effects of F . In detail, the cocross effect cr` is the functor of ` variables defined

by the total cofiber

(cr`F )(X1, . . . , X`) = tcof(FX),

where X is the cube

X : P(`)→ SpT (n) : (U ⊆ {1, . . . , `}) 7→
∨
i∈U

Xi.

Here P(`) denotes the power set of {1, . . . , `}, regarded as a poset under inclu-

sion. Colinearizing the cocross effect in each variable defines a functor

L(X1, . . . , X`) := lim←−
m

Σm`(cr`F )(Σ−mX1, . . . ,Σ
−mX`),

and the dual derivative is given by

D`F (X) ' L(X, . . . ,X)hΣ` .
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Write ∆` for the diagonal functor

SpT (n) → Sp`T (n) : X 7→ (X, . . . ,X).

Lemma B.3 above will be a consequence of the following “uniform nilpotence”

result:

Lemma B.4. Let V be a finite type n spectrum. Then there exists a con-

stant C with the following property : for any j > ` and j-homogeneous func-

tor H , the natural transformation

V ⊗ (ΣC`cr`(H) ◦ Σ−C∆)→ V ⊗ (cr`(H) ◦∆)

is null.

Remark B.5. The reason for calling this uniform nilpotence is that the

constant C only depends on V , but not on j, `, and H.

Proof of Lemma B.3. Write G for the functor featuring in the lemma, so

that we should show D`G ' 0. A consequence of Lemma B.4 is that the

pro-system

{V ⊗ (Σm`cr`(G) ◦ Σ−m∆)}m≥0

is pro-trivial; indeed, it is the direct sum of pro-systems that are nilpotent of

exponent C. Therefore

V ⊗ lim←−
m

(
Σm`cr`(G) ◦ Σ−m∆

)
' 0

and the lemma follows. �

The remainder of this section is concerned with the proof of Lemma B.4.

B.2. Some preliminaries on nilpotence. We will denote by V a finite type

n spectrum, which is fixed throughout. We work in the∞-category SpT (n) and

consistently omit LT (n) from the notation. For example, S will stand for the

T (n)-local sphere spectrum. In this section we review some material from [41]

and observe a few elementary consequences.

Definition B.6. Let G be a finite group.

(i) An object X ∈ Fun(BG, SpT (n)) is nilpotent if it belongs to the thick

subcategory generated by free G-objects, i.e., objects of the form G+⊗Z
for Z ∈ SpT (n).

(ii) If X ∈ Fun(BG, SpT (n)) is nilpotent, we define the exponent of X, de-

noted exp(X), as in 2.2 of [41]. To be precise, write F for the collec-

tion {G+ ⊗ Z |Z ∈ SpT (n)} and define full subcategories Thickm(F)

of Fun(BG, SpT (n)) inductively as follows. The ∞-category Thick1(F)

is the full subcategory on retracts of objects in F. An object X ∈
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Fun(BG, SpT (n)) is in Thickm(F) if it is a retract of an object X0 that

fits in a cofiber sequence

Y → X0 → Z,

where Y ∈ Thick1(F) and Z ∈ Thickm−1(F). Finally, the exponent of a

nilpotent object X is the least m for which X ∈ Thickm(F).

(iii) For a subgroup H ≤ G, one similarly defines H-nilpotence and the

H-exponent expH(X) by using the collection of induced objects

{G/H+ ⊗ Z |Z ∈ Fun(BH,SpT (n))}

in place of F.

The following is the crucial feature of exponents, indicating their use in

the theory of descent. The proof is straightforward.

Lemma B.7. Suppose X ∈ Fun(BG, SpT (n)) has H-exponent m, and sup-

pose

X0 → X1 → · · · → Xm = X

is a sequence of maps such that each Xi → Xi+1 becomes null when restricted

to Fun(BH,SpT (n)). Then the composite X0 → X is null in Fun(BG, SpT (n)).

If X ∈ Fun(BG, SpT (n)) is nilpotent, then XtG = 0. Indeed, this is clearly

the case for free G-objects, so that it is equally true for any object in the thick

subcategory generated by such. This implication can be reversed for compact

objects of SpT (n) (cf. Section 4.1 of [41]):

Lemma B.8. For any X ∈ Fun(BG, SpT (n)), the object V ⊗X is nilpotent.

Moreover, the exponent exp(V ⊗X) depends only on V .

Proof. Clearly it suffices to prove that V (with trivial G-action) is nilpo-

tent; indeed, the observation that Y ⊗ X is a free G-object whenever Y is

free immediately shows that V ⊗ X will be nilpotent with exponent at most

exp(V ) for any G-object X. The lemma is a consequence of the T (n)-local

vanishing of Tate spectra; compare the proof of Theorem 4.9 of [41]. Indeed,

write EG• = G•+1 for the usual simplicial model of the universal G-space and

skmEG for its m-skeleton. Since Tate spectra of objects in Fun(BG, SpT (n))

vanish in SpT (n), the homotopy fixed point functor preserves filtered colimits

and

ShG ' lim−→
m

(
(skmEG)+ ⊗ S

)hG
.

The homotopy fixed points ShG form a ring spectrum; we write

S η−→ ShG
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for its unit. Since V is compact in SpT (n), the map V ⊗ η factors as

V ⊗ S→ V ⊗
(
(skmEG)+ ⊗ S

)hG → V ⊗ ShG

for some m. By adjunction it follows that there is a retract diagram

V → V ⊗ (skmEG)+ → V

in Fun(BG, SpT (n)), where V has the trivial G-action. But V ⊗ (skmEG)+ is

in the thick subcategory generated by V ⊗G+ and therefore nilpotent. �

Lemma B.9. There exists a constant C (depending only on V ) with the

following property : for any finite group G, subgroup H ≤ G with vp(G) −
vp(H) ≤ 1, and any object X ∈ Fun(BG, SpT (n)), the H-exponent of V ⊗X ∈
Fun(BG, SpT (n)) is at most C . (Here vp(G) is the p-adic valuation of the order

of G.)

Proof. One easily reduces to p-groups, so that H has index p in G and is

therefore normal with G/H ' Cp. One can now take C to be the exponent of

V in Fun(BCp,SpT (n)), which exists by Lemma B.8. �

We write ρj for the standard j-dimensional (real) representation of Σj and

ρ̄j for the reduced standard representation obtained from ρj by quotienting out

the diagonal, on which Σj acts trivially. As usual, we write Sρj and Sρ̄j for the

associated representation spheres, which are the (suspension spectra of the)

one-point compactifications. The natural Σj-equivariant map

X⊗j → Ω((ΣX)⊗j)

when evaluated at X = S gives a map

S e−→ Sρ̄j

that is the Euler class of ρ̄j .

Lemma B.10. Take C as in Lemma B.9 and j ≥ 2. Then the map

V ⊗ eC : V → V ⊗ SCρ̄j

is nullhomotopic in Fun(BΣj ,SpT (n)).

Proof. Pick a Young subgroup H < Σj with vp(Σj) − vp(H) ≤ 1. The

existence of such H is easy to establish; for j not a power of p, one can even

arrange vp(Σj) = vp(H), whereas for j = pm, one could use H = Σpm−1 ×· · ·×
Σpm−1 . When restricted to H, the representation ρ̄j admits a nonzero fixed

point, which implies that the restriction of e to Fun(BH,SpT (n)) is null. The

lemma now follows by combining Lemmas B.7 and B.9. �
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B.3. Proof of Lemma B.4. To orient the reader, let us first treat the case

` = 1. Write L for the multilinear functor of j variables corresponding to H

via Goodwillie’s classification of homogeneous functors, so that

H ' (L ◦∆j)hΣj
.

Take C as in Lemma B.10 applied to the Spanier–Whitehead dual DV of V .

Then it suffices to show that the Σj-equivariant map

V ⊗ ΣCL ◦ (Σ−C∆j)→ V ⊗ L ◦∆j

is null. Indeed, the claim of the lemma then follows upon taking homotopy

orbits for Σj . After evaluating at X ∈ SpT (n) this map can be written

V ⊗ SC(1−ρj) ⊗ L(X, . . . ,X)→ V ⊗ S⊗ L(X, . . . ,X),

with SC(1−ρj) the representation sphere of the (virtual) representation C(1−ρj)
= −Cρ̄j . Thus it suffices to show that the map

V ⊗ S−Cρ̄j → V ⊗ S

is null in Fun(BΣj ,SpT (n)). By Spanier–Whitehead duality this is equivalent

to showing that

DV ⊗ S→ DV ⊗ SCρ̄j

is null (this map is the Cth power of the Euler class of ρ̄j , as before), which is

precisely the content of Lemma B.10.

We now treat the case of general `. We will show that the Σj-equivariant

natural transformation

V ⊗ ΣC`cr`(L ◦ Σ−C∆j)→ V ⊗ cr`(L ◦∆)

is null. The multilinear functor L can be written as

L(X1, . . . , Xj) ' ∂L⊗X1 ⊗ · · · ⊗Xj

for some spectrum ∂L with Σj-action. Using this, one easily verifies that

ΣC`cr`(L ◦ Σ−C∆j) '
( ⊕
f : j→l

S−Cρ̄f−1{1} ⊗ · · · ⊗ S−Cρ̄f−1{`}
)
⊗ (L ◦∆j),

where the sum is over all surjections f : {1, . . . , j} → {1, . . . , `} and the nota-

tion

S−Cρ̄f−1{1} ⊗ · · · ⊗ S−Cρ̄f−1{`}

indicates the action of the stabilizer Σf−1{1}×· · ·×Σf−1{`} of a surjection f . In

other words, the sum on the right-hand side is a sum of representation spheres

induced from Young subgroups

Σj1 × · · · × Σj` ≤ Σj
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with j1 + · · ·+ j` = j. (Note that the assumption j > ` guarantees that there

exists i with ji ≥ 2.) Thus it suffices to show that for each such subgroup, the

corresponding map

V ⊗ S−Cρ̄j1 ⊗ · · · ⊗ S−Cρ̄j` → V ⊗ S

is null in Fun(B(Σj1 × · · · ×Σj`),SpT (n)). Dualizing as before, we may as well

consider the map

DV ⊗ S→ DV ⊗ SCρ̄j1 ⊗ · · · ⊗ SCρ̄j` .

This map is the smash product of ` maps of which at least one is null by the

conclusion of Lemma B.10. �

Appendix C. Coalgebras

We owe the reader a comparison between the notion of commutative coal-

gebras in a symmetric monoidal∞-category C⊗ used in this paper and the one

used in [26]. To simplify notation it will be convenient to replace C by Cop and

compare the following two notions of commutative algebras:

(1) Lurie defines a commutative algebra in C⊗ to be a section of the structure

map p : C⊗ → NFin∗ that preserves inert morphisms and writes CAlg(C)

for the ∞-category of such objects (cf. Definition 2.1.3.1 of [37]).

(2) Definition 5.14 of [26] (after passing to opposites and including units) spe-

cializes to the following: a commutative algebra object of C⊗ is a fibration

of ∞-operads f : X⊗ → C⊗ such that

(a) the composite pf : X⊗ → NFin∗ is a coCartesian fibration (making X⊗

a symmetric monoidal ∞-category),

(b) the map f is a symmetric monoidal functor,

(c) the map of underlying ∞-categories X→ C is of the form C/X → C for

some X ∈ C.

More informally, giving X the structure of a commutative algebra is equiv-

alent to upgrading the slice category C/X to a symmetric monoidal ∞-

category (compatible with the forgetful functor to C). We write CAlg′(C)

for the ∞-category of commutative algebra objects of C according to this

second definition.

To compare the two we define an ∞-category A as follows. An object of

A is an object X⊗ → C⊗ of CAlg′(C) together with a map s : NFin∗ → X⊗

that preserves inert morphisms, and such that the composition

NFin∗
s−→ X⊗

f−→ C⊗
p−→ NFin∗

is the identity, and so that s(〈n〉) is a final object of X⊗〈n〉 for every n. These

last two properties can be summarized by saying that s is a final section of the

structure map

X⊗
pf−→ NFin∗.
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In particular, s defines a commutative algebra object of the symmetric monoidal

∞-category X⊗ in the sense of (1). The ∞-category A can be defined as the

full subcategory of (Cat∞)NFin∗//C⊗ on the objects (X⊗ → C⊗, s) as above.

Note that there are evident forgetful maps

CAlg(C)
ϕ1←− A

ϕ2−→ CAlg′(C).

Here ϕ1 forms the composition fs : NFin∗ → C⊗ and forgets X⊗, whereas ϕ2

forgets s and simply retains X⊗ → C⊗.

Proposition C.1. The maps ϕ1 and ϕ2 are equivalences.

Proof. The map ϕ2 is a trivial fibration as a consequence of (the dual of)

Proposition 2.4.4.9 of [36], which states that final sections of a coCartesian

fibration are homotopically unique in a strong sense. For ϕ1, one can define

a section σ : CAlg(C) → A that assigns to a commutative algebra object A

the slice C⊗/A (as in Notation 2.2.2.3 of [37]). This slice encodes the symmetric

monoidal structure of C/A induced by the commutative algebra structure of A.

Then ϕ1σ is the identity by construction and it remains to show that the func-

tor σϕ1 is naturally isomorphic to idA. The space of natural transformations

from σϕ1 to idA can be expressed as a homotopy limit of spaces of the form

MapNFin∗//C⊗(C⊗/X ,X
⊗),

where Map here is the maximal Kan complex in the∞-category of all functors

from C⊗/X to X⊗ compatible with the maps from NFin∗ and to C⊗. In turn

this space can be expressed as a homotopy limit of the spaces

Map{〈n〉}//C⊗〈n〉
(C×n/X ,X

⊗
〈n〉).

The ∞-category X⊗〈n〉 is equivalent to (X⊗〈1〉)
×n = C×n/X , and under this equiva-

lence the vertex {〈n〉} → X⊗〈n〉 is equivalent to the final object (idX , . . . , idX).

Therefore the space above is equivalent to an n-fold Cartesian product of the

space

Map{〈1〉}//C(C/X ,C/X).

The map {〈1〉} → C/X picks out the vertex idX and is right anodyne. The

projection C/X → C is a right fibration, so that the space under consideration

is equivalent to the one-point space

Map{〈1〉}//C({idX},C/X) ∼= ∆0.

Since any limit of contractible spaces is contractible, there is an essentially

unique natural transformation from σϕ1 to idA. The same argument applies

in the other direction, from which we conclude that σϕ1 and idA are naturally

isomorphic. �
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MR 2039768. Zbl 1063.55009.

[32] N. J. Kuhn, Tate cohomology and periodic localization of polynomial functors,

Invent. Math. 157 no. 2 (2004), 345–370. MR 2076926. Zbl 1069.55007. https:

//doi.org/10.1007/s00222-003-0354-z.
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