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a b s t r a c t

Li et al. (2018) have proposed a regularization of the forward–backward sweep iteration
for solving the Pontryagin maximum principle in optimal control problems. The authors
prove the global convergence of the iteration in the continuous time case. In this article
we show that their proof can be extended to the case of numerical discretization by
symplectic Runge–Kutta pairs. We demonstrate the convergence with a simple numerical
experiment.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

Recently, Li et al. [1] proposed a new indirect iteration for optimal control problems in the context of deep neural
networks, that utilizes the ‘method of successive approximations’, i.e. forward and backward integrations, combined
with an ‘augmented Lagrangian’ regularization that ensures global convergence. The authors argue that this approach is
particularly suitable for high-dimensional optimal control problems as encountered in deep learning. Large scale optimal
control problems figure centrally in a number of modern applications such as deep neural networks [1], reinforcement
learning [2,3], filtering and data assimilation methods [4,5] and mean field and stochastic differential games [6]. In this
paper we describe how the iteration of Li et al. combines naturally with symplectic/variational integrators to yield a
convergent numerical scheme.

Optimal control problems possess a natural variational structure that gives rise to Hamiltonian dynamics which
may be exploited in a numerical treatment [7]. Symplectic methods for Hamiltonian initial value problems have been
much studied since the mid-1990s due to their demonstrated superiority for conserving energy and other first integrals
[8–10]. In contrast, optimal control problems lead to boundary value problems, and it is unclear that the advantages of
symplectic integrators for IVPs should translate to the BVP setting. Recent papers that address the use of symplectic
Runge–Kutta methods for optimal control stress the conservation of quadratic invariants [11,12] and the persistence
of critical orbits in modified equation expansions [13]. See also recent work on the preservation of bifurcations under
symplectic discretization of boundary value problems [14].

In the first three sections of the paper we review the Hamiltonian structure of optimal control problems (Section 1), the
regularized forward–backward sweep iteration proposed by Li et al. [1] (Section 1.2) and the discrete variational approach
to constructing symplectic Runge–Kutta methods (Section 2). In Section 3 we prove the convergence of the discrete
regularized forward–backward sweep iteration, which follows closely the proof of [1] for the continuous case.It is the
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symplectic structure of the discretization that facilitates this proof. Finally, in Section 4 we demonstrate the convergence
of the method for a simple example using two symplectic discretizations.

1. Background

In this section we define continuous optimal control of differential equations and discuss their Hamiltonian structure,
and we review the regularized forward–backward sweep iteration of Li et al. [1].

1.1. Hamiltonian structure of optimal control problems

The state of the system to be controlled is described by a vector x(t) : T → Rd, where T = [0, T ] represents a time
interval. The control function u(t) is for each t an element of the set of admissable controls U ⊂ Rm. The motion of the
system is described by a differential equation

ẋ(t) = f (x(t), u(t)), x(0) = ξ, (1)

where f : Rd
× U → Rd and ξ ∈ Rd is the initial state. The control u(t) is chosen to minimize the objective functional

J[u] = Φ(x(T )) +

∫ T

0
h(x(t), u(t)) dt, (2)

where Φ : Rd
→ R is the end cost and h : Rd

× U → R is the running cost. The cost functional (2) and the motion (1) are
assumed to be given input to the problem.

In [1] no running cost h is considered. We include it here because it is present in many applications and its treatment
is straightforward. As in [1] (cf. Eqs. (A1) and (A2) of that article) we assume that Φ and f are twice continuously
ifferentiable with respect to x and satisfy Lipschitz conditions for all x, x′

∈ Rd, u ∈ U and t ∈ T . We require similar
ssumptions on h:

|Φ(x) − Φ(x′)| + ∥Φx(x) − Φx(x′)∥ ≤ K∥x − x′
∥,

∥f (x, u) − f (x′, u)∥ + ∥fx(x, u) − fx(x′, u)∥ ≤ K∥x − x′
∥,

|h(x, u) − h(x′, u)| + ∥hx(x, u) − hx(x′, u)∥ ≤ K∥x − x′
∥,

(3)

where hx denotes the vector of partial derivatives of h with respect to x and fx denotes the Jacobian matrix of partial
derivatives of f with respect to x. Here and throughout the article, we denote by ∥ · ∥ the Euclidean norm on vector
spaces. Note that the solution x(t) of (1) is well-defined for appropriate u(t) so that we may think of J as a functional
essentially depending only on u(t).

The problem can be reformulated as a constrained optimization problem by introducing the Lagrange multiplier
function λ(t) : T → Rd and the Lagrangian functional

L[x, λ, u] = Φ(x(T )) + λT
0(x(0) − ξ ) +

∫ T

0
h(x, u) + λT (ẋ − f (x, u)) dt. (4)

(Throughout the paper we use the transpose and dot product notation interchangeably, whichever is more convenient.)
The variational derivatives of the functional L with respect to the functions x(t), λ(t) and u(t), denoted Lx, Lλ and Lu, are
defined with respect to the L2 inner product. The first order necessary conditions for an optimum of (4) are given by the
Euler–Lagrange equations (Lx ≡ Lλ ≡ Lu ≡ 0):

ẋ = f (x, u), x(0) = ξ, (5)

λ̇ = −fx(x, u)Tλ + hx(x, u), λ(T ) = −Φx(x(T )), (6)

0 = fu(x, u)Tλ − hu(x, u). (7)

In particular, if f and h are smooth and u is an optimal control in the interior of U , then it satisfies (5)–(7). It is convenient
to define a function g(x, λ, u) for the right side of (6):

g(x, λ, u) = −fx(x, u)Tλ + hx(x, u). (8)

A Legendre transform yields the Hamiltonian function

H(x, λ, u) = λT f (x, u) − h(x, u), (9)

and Hamilton’s equations are

ẋ = Hλ(x, λ, u), (10)

λ̇ = −Hx(x, λ, u), (11)

0 = Hu(x, λ, u). (12)
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Note that minimizing the objective functional J corresponds to maximizing the Hamiltonian with respect to u. The
condition (12) can be generalized to apply to controls u(t) constrained to lie in U by replacing (12) with Pontryagin’s
aximum principle

ẋ = f (x, u∗), x(0) = ξ, (13)

λ̇ = g(x, λ, u∗), λ(T ) = −Φx(x(T )) (14)

u∗(t) = arg max
u(t)∈U

H(x, λ, u), ∀t ∈ T (15)

1.2. Regularized forward–backward sweep iteration

Solution of (13)–(15) is challenging due to the boundary conditions. One approach is to solve in succession (13) for
x(t), (14) for λ(t) and (15) for u∗(t) and iterate. Such a forward–backward sweep iteration typically diverges unless the
Lipschitz constant K and the time interval T are small [15]. In a recent article, Li et al. [1] proposed a modified iteration
based on a regularized Lagrangian approach. They introduce the augmented Hamiltonian function

H̃(x, λ, u, p, q) = H(x, λ, u) −
ρ

2

(
∥p − Hλ(x, λ, u)∥2

+ ∥q + Hx(x, λ, u)∥2) , (16)

where ρ > 0 is a regularization parameter. Subsequently, the forward–backward sweep iteration is modified to solve
consecutively:

ẋ(k+1)
= H̃λ(x(k+1), λ(k), u(k), ẋ(k+1), λ̇(k)), (17)

λ̇(k+1)
= −H̃x(x(k+1), λ(k+1), u(k), ẋ(k+1), λ̇(k+1)), (18)

u(k+1)
= arg max

u(t)∈U
H̃(x(k+1), λ(k+1), u, ẋ(k+1), λ̇(k+1)). (19)

It is important to note that along solutions to (13) and (14), the right two terms of (16) are zero. Consequently, only (19)
is modified with respect to (15). However, Li et al. show that this modification is sufficient to ensure convergence [1].

Li et al. introduce the regularized forward–backward sweep iteration to train deep neural networks [1] and argue that
an advantage of this approach is that it is suitable for application to high dimensional systems.

The analysis of [1] addresses only the continuous time case. Li et al. point out that the question of whether Pontryagin’s
principle holds under numerical discretization is ‘a delicate one’ and refer to counterexamples. In this paper we show
that for variational/symplectic RK methods, an analysis analogous to that of Li et al. holds. In particular, their proof of
convergence may be translated directly to discrete form.

2. Variational integrators and symplectic Runge–Kutta pairs

Symplectic Runge–Kutta methods possess two properties that make them attractive for numerical integration of
Hamiltonian initial value problems: they conserve certain quadratic first integrals and they conserve a modified Hamil-
tonian function over exponentially long time intervals. See the monographs [8–10] for a complete discussion. Symplectic
Runge–Kutta methods can be derived using a discrete variational formalism, see [16].

Variational methods are also well known in the optimal control literature see e.g. the work of Marsden, Leok and Ober-
Blöbaum [17] and references therein. In a recent review, Sanz-Serna [11] argues that it is the property of conservation of
quadratic integrals that it is most relevant in the adjoint context.

For optimal control, the use of the variational integrator framework may have additional advantages: first, by
discretizing the integral before optimizing, one constructs a discrete problem for which an optimum may be established,
whereas directly discretizing the Euler–Lagrange equations relies on the approximation property in the limit τ → 0,
where τ > 0 is the step size, to guarantee an optimum. Second, backward error analysis implies the existence of a
modified Hamiltonian, near the continuous Hamiltonian, which may have consequences for optimality in the presence of
nonunique minima. Backward error analysis may also be applicable for control problems on long time intervals, or for
problems with multiple time scales for which the time interval is long on a fast time scale.

We discretize the interval T into N > 0 equal steps of size τ = T/N . An s-stage Runge–Kutta method for the state
equation (1) is

xn+1 = xn + τ

s∑
i=1

bif (Xi,n,Ui,n), (20)

Xi,n = xn + τ

s∑
j=1

aijf (Xj,n,Uj,n), i = 1, . . . , s, (21)

where n = 0, . . . ,N − 1 denotes the time step index and the coefficients bi and aij, i, j = 1, . . . , s, are chosen to ensure
accuracy, stability, and additional properties. See the monographs [18,19] for a thorough treatment. Numerical consistency
requires the coefficients b satisfy

∑
b = 1. In this paper we will also assume that b ≥ 0, i = 1, . . . , s.
i i i i
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To simplify notation we will frequently suppress the time step index n in the internal stage variables Xi,n and Ui,n. In
all formulas the stage variables are evaluated at time level n, so there should be no ambiguity.

A variational integrator for the Lagrangian (4) is a quadrature formula consistent with the above RK method. Enforcing
he internal stage relations (21) requires the introduction of additional Lagrange multipliers. The discrete Lagrangian
ecomes

L[x, λ,X, u,G] = Φ(xN ) + λT
0(x0 − ξ ) + τ

N−1∑
n=0

{
s∑

i=1

bih(Xi,Ui) + λT
n+1

(
xn+1 − xn

τ
−

s∑
i=1

bif (Xi,Ui)

)

−

s∑
i=1

biGi ·

⎛⎝Xi − xn − τ

s∑
j=1

aijf (Xj,Uj)

⎞⎠⎫⎬⎭ . (22)

ere and henceforth we denote x = {xn | n = 0, . . . ,N}, X = {Xi,n | i = 1, . . . , s; n = 0, . . . ,N−1}, etc. An exception is the
control variable, which only appears at internal stage values. Consequently we may denote u = {Ui,n | i = 1, . . . , s; n =

0, . . . ,N − 1} without ambiguity. We also denote un = {Ui,n | i = 1, . . . , s}.
The associated discretization of the cost function (2) is

Jτ [u] = Φ(xN ) + τ

N−1∑
n=0

s∑
i=1

bih(Xi,Ui). (23)

One can formally construct a discrete variational derivative of (22) with respect to discrete function spaces and a discrete
inner product. However for uniform time step τ it is sufficient to consider just partial derivatives of L. The Euler–Lagrange
equations become:

∂L
∂λn

= 0 = xn+1 − xn − τ

s∑
i=1

bif (Xi,Ui), x0 = ξ, (24)

∂L
∂Gi

= 0 = Xi − xn − τ

s∑
j=1

aijf (Xj,Uj), (25)

∂L
∂xn

= 0 = −λn+1 + λn + τ

s∑
i=1

biGi, λN = −Φx(xN ), (26)

∂L
∂Xk

= 0 = bkhx(Xk,Uk) − bkfx(Xk,Uk)Tλn+1 − bkGk + τ

s∑
i=1

biaikfx(Xk,Uk)TGi, (27)

∂L
∂Uk

= 0 = bkhu(Xk,Uk) − bkfu(Xk,Uk)Tλn+1 − τ

s∑
i=1

biaikfu(Xk,Uk)TGi. (28)

The relations (24)–(25) are clearly equivalent to (20)–(21). Solving (26) for λn+1, substituting into (27) and defining the
coefficients ãij = bj − bjaji/bi, one finds

Gi = −fx(Xi,Ui)T

⎡⎣λn + τ

s∑
j=1

ãijGj

⎤⎦+ hx(Xi,Ui).

Similarly (28) is written

0 = hu(Xi,Ui) − fu(Xi,Ui)T

⎡⎣λn + τ

s∑
j=1

ãijGj

⎤⎦ . (29)

t is useful to introduce the auxiliary stage variable Λi to represent the term in square brackets in the previous two
xpressions:

Λi = λn + τ

s∑
i=1

ãijGj,

uch that (cf. (8))

G = g(X , Λ ,U ) = −f (X ,U )TΛ + h (X ,U )
i i i i x i i i x i i
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and the condition (29) becomes

0 = hu(Xi,Ui) − fu(Xi,Ui)TΛi.

In terms of the new variable, the variational Runge–Kutta discretization of Pontryagin’s maximum principle is

xn+1 = xn + τ

s∑
i=1

bif (Xi,Ui), x0 = ξ, (30)

Xi = xn + τ

s∑
j=1

aijf (Xj,Uj), i = 1, . . . , s, (31)

λn+1 = λn + τ

s∑
i=1

big(Xi, Λi,Ui), λN = −Φx(xN ), (32)

Λi = λn + τ

s∑
j=1

ãijg(Xj, Λj,Uj), i = 1, . . . , s, (33)

0 = hu(Xi,Ui) − fu(Xi,Ui)TΛi, i = 1, . . . , s. (34)

This system consists of the state equations (30) and (31), the adjoint equations (32) and (33), and the optimality condition
(34).

Recalling the Hamiltonian (9), we can also write the above relations in a form that emphasizes the Hamiltonian
structure:

xn+1 = xn + τ

s∑
i=1

biHλ(Xi, Λi,Ui), x0 = ξ, (35)

Xi = xn + τ

s∑
j=1

aijHλ(Xj, Λj,Uj), i = 1, . . . , s, (36)

λn+1 = λn − τ

s∑
i=1

biHx(Xi, Λi,Ui), λN = −Φx(xN ), (37)

Λi = λn − τ

s∑
j=1

ãijHx(Xj, Λj,Uj), i = 1, . . . , s, (38)

0 = Hu(Xi, Λi,Ui), i = 1, . . . , s. (39)

In some cases, it is appropriate to replace the latter condition by the more general

Ui = argmax
u∈U

H(Xi, Λi, u), i = 1, . . . , s. (40)

s noted in [11], a pair of RK methods defined by coefficients {bi, aij} and {bi, ãij}, where ãij = bj − bjaij/bi, constitute
symplectic partitioned RK pair. That is, if these methods are applied to a pair of differential equations ẋ = Hλ(x, λ),

˙ = −Hx(x, λ), then the resulting map from tn to tn+1 is a symplectic map. Hence, we obtain the well-known result that
he discrete variational approach automatically produces a symplectic integrator for the Euler–Lagrange equations.

.1. Symplectic Euler method

The elementary example of a symplectic variational integrator is the symplectic Euler method, which corresponds to
he RK pair with s = 1, b1 = 1, a11 = 0 = 1 − ã11. In this case all the internal stage relations can be eliminated, leaving
he discrete Lagrangian

L[x, λ, u] = Φ(xN ) + λT
0(x0 − ξ ) + τ

N−1∑
n=0

h(xn, un) + λT
n+1

(
xn+1 − xn

τ
− f (xn, un)

)
. (41)

he discrete Pontryagin maximum principle is

xn+1 = xn + τ f (xn, un), (42)

λn+1 = λn − τ fx(xn, un)Tλn+1 + τhx(xn, un), (43)

0 = fu(xn, un)Tλn+1 − hu(xn, un), (44)

with boundary conditions x = ξ , λ = −Φ (x ).
0 N x N
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Note that (42)–(44) can also be written in terms of the Hamiltonian H:
xn+1 − xn

τ
= Hλ(xn, λn+1, un), (45)

λn+1 − λn

τ
= −Hx(xn, λn+1, un), (46)

0 = Hu(xn, λn+1, un). (47)

.2. Reduced notation for Runge–Kutta methods

Hager [20] introduced notation that casts general symplectic Runge–Kutta methods (35)–(39) in a form consistent with
he symplectic Euler method. Define

f τ (x, u) =

s∑
i=1

bif (Xi(x, u),Ui(u)), hτ (x, u) =

s∑
i=1

bih(Xi(x, u),Ui(u)), (48)

here we view the stage values Xi and Ui as functions of grid point value x and discrete control u = {U1, . . . ,Us} according
o

Xi(x, u) = x + τ

s∑
j=1

aijf (Xj(x, u),Uj(u)), i = 1, . . . , s. (49)

imilarly, define the Hamiltonian

Hτ (x, λ, u) = λT f τ (x, u) − hτ (x, u). (50)

ith this notation, the discretization of Pontryagin’s maximum principle with any symplectic Runge–Kutta pair can be
ritten as

xn+1 − xn
τ

= Hτ
λ (xn, λn+1, un), (51)

λn+1 − λn

τ
= −Hτ

x (xn, λn+1, un), (52)

0 = Hτ
u (xn, λn+1, un). (53)

To see the equivalence, note that evaluating (49) at xn yields the implicit relations (31). Taking the derivative of (50) with
respect to λ and substituting (48) shows (51) to be equivalent to (30). The proof of the relation (52) is more involved. We
adapt the proof from [20] to our notation.

Let Ψi(x) = ∂xXi(x, u) and denote Ψi = Ψi(xn). Then computing the derivative of (49) at xn yields the linear system

Ψi = I + τ
∑

j

aijfx(Xi,Ui)Ψj. (54)

The derivative on the right side of (52) is

Hτ
x (xn, λn+1, un) =

s∑
j=1

bjΨ T
j fx(Xj,Uj)Tλn+1 − bjΨ T

j hx(Xj,Uj). (55)

earranging (27) gives

bjGj − τ

s∑
i=1

biaijfx(Xj,Uj)TGi = bjhx(Xj,Uj) − bjfx(Xj,Uj)Tλn+1.

Premultiplying by Ψ T
j and summing over j give

s∑
j=1

bjΨ T
j Gj − τ

s∑
i,j=1

biaijΨ T
j fx(Xj,Uj)TGi

=

s∑
bjΨ T

j hx(Xj,Uj) − bjΨ T
j fx(Xj,Uj)Tλn+1 = −Hτ

x (xn, λn+1, un), (56)

j=1
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where the last equality follows from (55). Now changing the index of summation in the first sum on the left, we obtain

−Hτ
x (xn, λn+1, un) =

s∑
i=1

biΨ T
i Gi − τ

s∑
i=1

⎛⎝ s∑
j=1

aijΨ T
j fx(Xj,Uj)T

⎞⎠ biGi

=

s∑
i=1

biGi

=
λn+1 − λn

τ
,

where the second equality follows from (54), thus confirming (52).
The proof of (39) follows similar arguments, see [20]. Note the analogy between the relations (35)–(39) and (45)–(46)

for the symplectic Euler method.

3. Convergence analysis

In this section we prove the convergence of the regularized forward–backward sweep iteration (17)–(19) for sym-
plectic Runge–Kutta methods. The proof here follows closely that of Li et al. for the continuous case [1]. It is the
symplectic/variational structure that facilitates this analogy.

Using the compact notation (48) and (50), we define the discrete regularized Hamiltonian function

H̃τ (x, λ, u, q, p) = Hτ (x, λ, u) −
ρ

2

(
∥q − Hτ

λ (x, λ, u)∥2
+ ∥p + Hτ

x (x, λ, u)∥2) . (57)

In iterate k, the symplectic Runge–Kutta discretization of the regularized forward–backward sweep iteration (17)–(19)
solves, in sequence,

x(k+1)
n+1 = x(k+1)

n + τ H̃τ
λ

(
x(k+1)
n , λ

(k)
n+1, u

(k)
n ,

x(k+1)
n+1 − x(k+1)

n

τ
,
λ
(k)
n+1 − λ

(k)
n

τ

)
, (58)

λ
(k+1)
n+1 = λ(k+1)

n − τ H̃τ
x

(
x(k+1)
n , λ

(k+1)
n+1 , u(k)

n ,
x(k+1)
n+1 − x(k+1)

n

τ
,
λ
(k+1)
n+1 − λ

(k+1)
n

τ

)
, (59)

u(k+1)
n = argmax

u∈U
H̃τ

(
x(k+1)
n , λ

(k+1)
n+1 , u,

x(k+1)
n+1 − x(k+1)

n

τ
,
λ
(k+1)
n+1 − λ

(k+1)
n

τ

)
, (60)

roceeding as follows: (58) by forward integration with u and λ fixed, then (59) by backward integration with x and u
ixed, and finally (60) solved for each time step independently (e.g. in parallel), with x and λ fixed.

It is important to recall that with u fixed, along solutions of (58) and (59) the extra regularization terms in the extended
amiltonian H̃τ are identically zero and

H̃τ
λ

(
xn, λn+1, un,

xn+1 − xn
τ

,
λn+1 − λn

τ

)
= Hτ

λ (xn, λn+1, un),

H̃τ
λ

(
xn, λn+1, un,

xn+1 − xn
τ

,
λn+1 − λn

τ

)
= Hτ

x (xn, λn+1, un),

i.e., the regularization terms only affect the maximization step (60).

Notation and identities
In the following we consider a single iteration of (58)–(60). We think of Hτ , x and λ as functions of u. Consequently

e denote by xun and λu
n the numerical solutions to (51) and (52) given a candidate control u.

It is convenient to define the composite notation

zn =

(
xn

λn+1

)
, Hτ

z (zn, un) =

(
Hτ

x (xn, λn+1, un)
Hτ

λ (xn, λn+1, un)

)
.

We consider two control sequences u and v, and we are interested in bounding the change in H̃τ when u is replaced by
v. To that end we define an operator that denotes the difference between quantities dependent on u and v:

δuxn = xv
n − xun.

We use this notation also for functions, e.g.

δuHτ
|n= Hτ (zv

n , vn) − Hτ (zun , un).

We denote by δ̄uHτ the change due to an update in u with x and λ fixed as functions of u:
¯ τ τ u u τ u u
δuH |n= H (xn, λn+1, vn) − H (xn, λn+1, un). (61)
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We denote the temporal forward difference operator by δt :

δtxn =
xn+1 − xn

τ
,

and remark that δt commutes with δu when applied to variables, i.e. δuδtxn = δtδuxn.
Next we note the discrete integration by parts formula:

τ

N−1∑
n=0

λT
n+1δtxn =

N−1∑
n=0

λT
n+1(xn+1 − xn)

= −λT
0x0 + λT

0x0 − λT
1x0 + λT

1x1 + · · · − λT
NxN−1 + λT

NxN

= λT
nxn
⏐⏐N
0 − τ

N−1∑
n=0

(δtλn)T xn.

This formula holds for any discrete functions defined for n = 0, . . . ,N , and in particular we may insert the difference
operator δu to obtain two useful alternatives:

τ

N−1∑
n=0

λu
n+1 · δtδuxn = λu

n · δuxn
⏐⏐N
0 − τ

N−1∑
n=0

δtλ
u
n · δuxn, (62)

τ

N−1∑
n=0

δuλn+1 · δtδuxn = δuλn · δuxn
⏐⏐N
0 − τ

N−1∑
n=0

δtδuλn · δuxn. (63)

stimates
In the Appendix we show that – possibly with a restriction on step size – the Lipschitz conditions (3) on f and h

ranslate into related Lipschitz conditions on f τ and hτ . Henceforth choosing K to be a generic Lipschitz constant we
btain the bounds

∥f τ (x, u) − f τ (x′, u)∥ + ∥f τ
x (x, u) − f τ

x (x
′, u)∥ ≤ K∥x − x′

∥,

|hτ (x, u) − hτ (x′, u)| + ∥hτ
x (x, u) − hτ

x (x
′, u)∥ ≤ K∥x − x′

∥.
(64)

ote also that the leftmost terms in the above inequalities as well as the analogous ones of (3) imply global bounds on
he derivatives (which may be relaxed, see [1])

∥Φx(x)∥ ≤ K , ∥fx(x, u)∥ ≤ K , ∥hx(x, u)∥ ≤ K , ∥f τ
x (x, u)∥ ≤ K , ∥hτ

x (x, u)∥ ≤ K . (65)

We use two discrete forms of Grönwall’s lemma [21]. Let {bn} be a given, monotone sequence and τ , K > 0. Then the
ollowing implication holds:

an+1 ≤ (1 + τK )an + τbn, ∀n ⇒ an ≤ eτnKa0 + K−1eτnKbn−1. (66)

nder the same conditions, the following implication holds:

an+1 ≤ bn+1 + τK
n∑

m=0

am, ∀n ⇒ an ≤ eτnKbn. (67)

From (55) and (93), and using the bounds (65) on fx and hx,

∥λn∥ ≤ ∥λn+1∥ + τ∥Hτ
x (xnλn+1, un)∥ ≤ (1 + τK )∥λn+1∥ + τK ,

here we have absorbed the constant from (93) into K . Further using Grönwall bound (66) and the bound (65) on Φx(x),

∥λn∥ ≤ K1 := (K + 1)eτKN
= (K + 1)eKT . (68)

From δuxn+1 = δuxn + τδuf τ
|n and δux0 = 0 we calculate

∥δuxn∥ ≤ τ

n−1∑
m=0

∥δuf τ
|m∥

≤ τ

n−1∑
m=0

∥δ̄uf τ
|m∥ + ∥f τ (xv

m, vm) − f τ (xum, vm)∥

≤ τ

n−1∑
∥δ̄uf τ

|m∥ + K∥δuxm∥,
m=0
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and using Grönwall bound (67),

∥δuxn∥ ≤ τeKT
N−1∑
m=0

∥δ̄uf τ
|m∥. (69)

Similarly, from δuλn = δuλn+1 + τδuHτ
x (xn, λn+1, un) we obtain

∥δuλn∥ ≤ ∥δuλN∥ + τ

N−1∑
m=n

∥δuHτ
x |m∥

≤ K∥δuxN∥ + τ

N−1∑
m=n

∥δ̄uHτ
x |m∥ + τK

N−1∑
m=n

∥δuλm+1∥ + τK (K1 + 1)
N−1∑
m=n

∥δuxm∥,

where the last term uses (3) and the Lipschitz condition (64) on Hτ
x . The discrete Grönwall’s lemma gives

∥δuλn∥ ≤ KeKT
(

∥δuxN∥ + τ (K1 + 1)
N−1∑
m=0

∥δuxm∥

)
+ τeKT

N−1∑
m=0

∥δ̄uHτ
x |m∥.

Finally, making use of (69) gives

∥δuλn∥ ≤ τK2

N−1∑
m=0

∥δ̄uf τ
|m∥ + τeKT

N−1∑
m=0

∥δ̄uHτ
x |m∥, K2 = Ke2KT (1 + (K1 + 1)T ). (70)

he following estimates make use of Taylor’s theorem in the mean value form:

δuHτ
z |n·δuzn = δ̄uHτ

z |n·δuzn + δuzn · Hτ
zz(z

u
n + r1δuzn, un) · δuzn, (71)

or some r1 ∈ [0, 1], where Hτ
zz denotes the Hessian matrix of second partial derivatives of Hτ .

δuΦx(xN ) · δuxN = δuxN · Φxx(xuN + r2δuxN ) · δuxN , (72)

or some r2 ∈ [0, 1]. Similarly,

Φx(xuN ) · δuxN = Φ(xv
N ) − Φ(xuN ) −

1
2
δuxN · Φxx(xuN + r3δuxN ) · δuxN , (73)

for some r3 ∈ [0, 1].

δuHτ
= δ̄uHτ

+ Hτ
z (z

u
n , v) · δuzn +

1
2
δuzn · Hτ

zz(z
u
n + r4δuzn, vn) · δuzn, (74)

for some r4 ∈ [0, 1].

Convergence of the iteration
Convergence of the regularized forward–backward sweep iteration relies on Lemma 2 of [1], the proof of which we

adapt for the symplectic RK method here. The result we want states that under the assumptions (3), there exists a constant
C > 0 such that for any two discrete controls u, v ∈ U , the discrete cost function (23) satisfies

Jτ (v) ≤ Jτ (u) − τ

N−1∑
n=0

δ̄uHτ
|n+Cτ

N−1∑
n=0

∥f τ (xun, vn) − f τ (xun, un)∥2

+ Cτ

N−1∑
n=0

∥Hτ
x (x

u
n, λ

u
n+1, vn) − Hτ

x (x
u
n, λ

u
n+1, un)∥2

= Jτ (u) − τ

N−1∑
n=0

δ̄uHτ
|n+Cτ

N−1∑
n=0

∥δ̄uHτ
z |n∥

2. (75)

Define the discrete functional

I(x, λ, u) = τ

N−1∑
n=0

λT
n+1δtxn − Hτ (xn, λn+1, un) − hτ (xn, un) ≡ 0. (76)

The functional I is identically zero for sequences x and λ satisfying (51)–(52). Note the identity

δ (λ · δ x ) = λu
· δ δ x + δ λ · δ xu + δ λ · δ δ x , (77)
u n+1 t n n+1 t u n u n+1 t n u n+1 t u n
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we find

0 ≡ I(xv, λv, v) − I(xu, λu, u) =

τ

N−1∑
n=0

λu
n+1 · δtδuxn + δuλn+1 · δtxun + δuλn+1 · δtδuxn

−τ

N−1∑
n=0

(
Hτ (xv

n, λ
v
n+1, vn) − Hτ (xun, λ

u
n+1, un)

)

−τ

N−1∑
n=0

(
hτ (xv

n, vn) − hτ (xun, un)
)
.

n our notation this is

0 ≡ δuI = τ

N−1∑
n=0

λu
n+1 · δtδuxn + δuλn+1 · δtxun + δuλn+1 · δtδuxn − δuHτ

|n−δuhτ
|n. (78)

emark. This is the point where the symplectic/variational property of the symplectic RK method is important. Since xn
nd λn are discretized by a symplectic partitioned Runge–Kutta method, we see that I is also equivalent to the constraint
art of the discrete Lagrangian:

I = τ

N−1∑
N=0

λT
n+1

(
xn+1 − xn

τ
− f τ (xn, un)

)
,

which is identically zero along a solution to the state dynamics (51). Of course, one could define I as above for an arbitrary
choice of the λn. Then I would be identically zero, but one would not be able to translate this into a statement about the
Hamiltonian.

Using (62) the first two terms on the right side of (78) are equal to

τ

N−1∑
n=0

λu
n+1 · δtδuxn + δuλn+1 · δtxun

= λu
n · δuxn

⏐⏐N
0 + τ

N−1∑
n=0

f τ (xun, un) · δuλn+1 + Hτ
x (x

u
n, λ

u
n+1, un) · δuxn,

or in compact notation

τ

N−1∑
n=0

λu
n+1 · δtδuxn + δuλn+1 · δtxun = λu

n · δuxn
⏐⏐N
0 + τ

N−1∑
n=0

Hτ
z (z

u
n , un) · δuzn. (79)

Similarly, using (63) the third term on the right side of (78) is equal to

τ

N−1∑
n=0

δuλn+1 · δtδuxn =
1
2
τ

N−1∑
n=0

δuλn+1 · δtδuxn +
1
2
τ

N−1∑
n=0

δuλn+1 · δtδuxn

=
1
2
δuλn · δuxn

⏐⏐N
0 +

1
2
τ

N−1∑
n=0

(
Hτ

x (x
v
n, λ

v
n+1, vn) − Hτ

x (x
u
n, λ

u
n+1, un)

)
· δuxn

+
(
Hτ

λ (x
v
n, λ

v
n+1, vn) − Hτ

λ (x
u
n, λ

u
n+1, un)

)
· δuλn+1,

or,

τ

N−1∑
n=0

δuλn+1 · δtδuxn =
1
2
δuλn · δuxn

⏐⏐N
0 +

1
2
τ

N−1∑
n=0

δuHτ
z |n·δuzn. (80)

Remark. Again the symplectic property of the discretization allows us to express this as the gradient of the Hamiltonian
collocated at the numerical solution of the forward and backward equations, which in turn will allow cancellation with
the second term of the Taylor expansion in (83).
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Combining (78)–(80) gives

0 ≡ δuI = (λu
n +

1
2
δuλn) · δuxn

⏐⏐N
0 +

τ

N−1∑
n=0

Hτ
z (z

u
n , un) · δuzn +

1
2
δuHτ

z |n·δuzn − δuHτ
|n−δuhτ

|n. (81)

Given that δux0 = 0, the boundary term in (81) reduces to

(λu
N +

1
2
δuλN ) · δuxN = −Φx(xN ) · δuxN −

1
2

(
Φx(xv

N ) − Φx(xuN )
)
· δuxN . (82)

e substitute (71) and (74) into the second and third summands of (81), (82) into the boundary term, and subsequently
he estimates (72) and (73) to yield:

0 ≡ δuI = −

(
Φ(xv

N ) − Φ(xuN ) −
1
2
δuxN · Φxx(xuN + r3δuxN ) · δuxN

)
−

1
2

(
δuxN · Φxx(xuN + r2δuxN ) · δuxN

)
+ τ

N−1∑
n=0

−δuhτ
|n+Hτ

z (z
u
n , un) · δuzn

+
1
2

(
δ̄uHτ

z |n·δuzn + δuzn · Hτ
zz(z

u
n + r1δuzn, un) · δuzn

)
−

(
δ̄uHτ

|n+Hτ
z (z

u
n , vn) · δuzn +

1
2
δuzn · Hτ

zz(z
u
n + r4δuzn, vn) · δuzn

)
,

or,

δuΦ(xN ) + τ

N−1∑
n=0

δuhτ (xn, un) =

−
1
2
δuxN ·

(
Φxx(xuN + r2δuxN ) − Φxx(xuN + r3δuxN )

)
· δuxN

− τ

N−1∑
n=0

δ̄uHτ
|n+

1
2
τ

N−1∑
n=0

δ̄uHτ
z |n·δuzn

+
1
2
τ

N−1∑
n=0

δuzn ·
(
Hτ

zz(z
u
n + r1δuzn, vn) − Hτ

zz(z
u
n + r4δuzn, vn)

)
· δuzn. (83)

ext, we use the estimates (69) and (70) and the fact that the quadratic terms are bounded by some constant K3 to
alculate

Jτ [v] − Jτ [u] ≤ − τ

N−1∑
n=0

δ̄uHτ
|n

+ K3∥δuxN∥
2
+ K3τ

N−1∑
n=0

(
∥δuxn∥2

+ ∥δuλn+1∥
2)

+
1
2
τ

N−1∑
n=0

∥δuxn∥∥δ̄uf τ
|n∥ +

1
2
τ

N−1∑
n=0

∥δuλn+1∥∥δ̄uHτ
x |n∥

≤ − τ

N−1∑
n=0

δ̄uHτ
|n+C

(
τ

N−1∑
n=0

∥δ̄uf τ
|n∥

)2

+ C

(
τ

N−1∑
n=0

∥δ̄uHτ
x |n∥

)2

≤ − τ

N−1∑
n=0

δ̄uHτ
|n+Cτ

N−1∑
n=0

∥δ̄uf τ
|n∥

2
+ Cτ

N−1∑
n=0

∥δ̄uHτ
x |n∥

2,

hich is the result sought (cf. (75)).
It now remains to show that the regularized forward–backward sweep iteration converges. We first show that an

stimate of the same form as (75) holds for δuHτ when the regularized Hamiltonian is maximized. These can be combined
o show monotone decay of the objective function Jτ [u]. Thereafter, it is shown that the sum of the decrements is finite,
hich implies convergence of the differences.
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Let v denote the improved control obtained by solving (60). The resulting change in H̃τ must be nonnegative, hence

0 ≤ τ

N−1∑
n=0

δ̄uH̃τ
|n = τ

N−1∑
n=0

δ̄uHτ
|n

−
ρ

2

[
∥
xun+1 − xun

τ
− f τ (xun, vn)∥2

+ ∥
λu
n+1 − λu

n

τ
+ Hτ

x (x
u
n, λ

u
n+1vn)∥2

]
+

ρ

2

[
∥
xun+1 − xun

τ
− f τ (xun, un)∥2

+ ∥
λu
n+1 − λu

n

τ
+ Hτ

x (x
u
n, λ

u
n+1, un)∥2

]
. (84)

he last term in square brackets vanishes since xun and λu
n satisfy (51)–(52). Consequently, the above expression is

quivalent to

0 ≤ τ

N−1∑
n=0

δ̄uH̃τ
|n= τ

N−1∑
n=0

δ̄uHτ
|n−

ρ

2

[
∥δ̄uf τ

|n∥
2
+ ∥δ̄uHτ

x |n∥
2
]
. (85)

Combining this with Lemma 2 gives

Jτ [v] − Jτ [u] ≤ −(1 −
2C
ρ

)τ
N−1∑
n=0

δ̄uHτ
|n. (86)

The summation on the right side is nonnegative, as a consequence of (85) . Therefore, choosing ρ > 2C ensures that Jτ is
onincreasing. Next suppose we iterate (58)–(60). Let u(k) denote the control variable in iteration k. Then it holds that

M∑
k=0

τ

N−1∑
n=0

δ̄uHτ
|
(k)
n ≤ D−1(Jτ [u(0)

] − Jτ [u(M+1)
]) ≤ D−1(Jτ [u(0)

] − inf
u∈U

Jτ [u]),

here D = (1 − 2C/ρ) > 0. Consequently, in the limit M → ∞ this sum is bounded, which implies
N−1∑
n=0

δ̄uHτ
|n→ 0,

roving convergence of the iteration.

. Numerical illustration

In this section we study numerically the convergence of the discrete regularized forward–backward sweep iteration.
s a test problem we control the motion of a damped oscillator in a double well potential. The controlled motion is given
y

x =

(
q
p

)
, f (x, u) =

(
p

q − q3 − νp + u

)
, (87)

here ν > 0 is a damping parameter. The control u(t) acts only on the velocity. As initial condition we choose ξ = (−1, 0)
n the left potential well, and we seek to minimize the cost function

J[u] =
α

2
∥x(T ) − xf ∥2

+

∫ T

0

1
2
u(t)2 dt, (88)

where the target final position is xf = (1, 0), in the right potential well. For the numerical computations we take T = 6,
ν = 1, and α = 10.

We solve the optimal control problem using the discrete regularized forward–backward sweep iteration (58)–(60) and
the symplectic Euler scheme (42)–(44). We iterate until the update to the control variable u is less than a prescribed
tolerance

N−1∑
n=0

∥u(k)
n − u(k−1)

n ∥ < ε,

where ε = 1e−8. The computed optimal path x(t) = (q(t), p(t)) is shown as a solid blue curve on the left plot of Fig. 1. The
background contours are level sets of the total energy function E =

1
2p

2
+

1
4q

4
−

1
2q

2. The optimal control must accelerate
he motion of the particle to reach an energy level above the saddle point, allowing it to cross to the potential well on
he right.

For this computation we chose ρ = 100 for the regularization parameter. Convergence occurs in 4206 iterations.
ig. 2 shows the discrete cost function (23) during the first 2000 iterations for values ρ = 50, ρ = 100 and ρ = 200.
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Fig. 1. Optimal motion in q–p plane, computed with the symplectic Euler method (left) and implicit midpoint method (right), for N = 160 (solid
blue line) and N = 20 (dash–dot red line).

Fig. 2. Convergence of the cost function for the regularized forward–backward sweep iteration using the symplectic Euler method (42)–(44), with
ρ = 50 (blue), ρ = 100 (red) and ρ = 200 (yellow). (For interpretation of the references to colour in this figure legend, the reader is referred to
he web version of this article.)

or ρ = 100, the convergence is monotone as predicted by the theory of the previous section (cf. (86)). For ρ = 50,
e observe an initial reduction in cost, which eventually oscillates and does not converge. For ρ = 200, the iteration
onverges but at a slower rate than for ρ = 100. Hence, our experience suggests there is a critical value of ρ below which
here is no convergence of the regularized forward–backward sweep iteration, and above which the convergence becomes
teadily slower.
The minimal cost obtained using the symplectic Euler method and N = 160 was J = 0.7712. We also computed the

ptimal solution for N = 20 time steps, shown as the red dash–dot line in the left plot of Fig. 1. As noted in Section 2, by
iscretizing the Lagrangian we obtain a discrete optimal control problem for each N . For the case N = 20 the optimal path
eviates significantly from that for N = 160. Because the Lipschitz constant is larger for this solution, it was necessary
o take ρ = 400 for convergence. The optimal cost in the case N = 20 is J = 0.7006, which is less than the optimal cost
btained in the case N = 160.
We also solved the optimal control problem using the implicit midpoint rule, a second order symplectic Runge–Kutta

ethod with s = 1 and coefficients a11 = b1 = 1/2. The solutions for N = 20 and N = 160 are shown in the right plot
f Fig. 1. Here we see that the discrete optimum at low resolution is much closer to that at high resolution. The optimal
osts were computed J = 0.7837 for N = 20 and J = 0.7769 for N = 160. Both resolutions converged with ρ = 100.
Although the convergence is monotone in the cost J for large enough ρ, the forward–backward sweep iteration

ay require a large number of iterations to attain a sufficiently small cost. Acceleration techniques suchas Anderson
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Fig. 3. Comparison of the Anderson accelerated (blue) and fixed point (red) iterations. Shown are the cost functions using the symplectic Euler
method (42)–(44), with ρ = 100. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

acceleration [22] may be employed to improve the convergence rate. We implement (58)–(60) as a fixed point iteration
on the control function u, i.e. u(k+1)

= F(u(k)). Subsequently we apply Anderson acceleration with restarts every three
iterations. In Fig. 3 we see that the cost function converges in 221 iterations (nearly a factor 20 fewer), but the cost
no longer decays monotonically. See [23] for a more sophisticated strategy with adaptive damping and preserving
monotonicity. In our experience the choice of a good acceleration algorithm depends heavily on the problem. For instance,
in other work we are investigating the use of this method for sparse control of the Cucker–Smale model with ℓp norm of
the control in the running cost (see, e.g. [24]). The approach described above using Anderson acceleration works well for
p = 2, but gives no observable advantage for p = 1.

5. Summary

In this article we have extended the convergence proof of a regularized forward–backward sweep iteration [1] for
solving optimal control problems to the discrete setting. We showed that if the continuous problem is discretized by
a symplectic partitioned Runge–Kutta pair (using a variational integrator approach), then the convergence proof of [1]
may be easily adapted. Numerical experiments with the first order, explicit symplectic Euler method and the second
order implicit midpoint rule demonstrate monotonic convergence of the cost function if the regularization parameter
ρ is chosen large enough. For insufficiently large ρ the cost undergoes bounded oscillations; whereas for excessively
large ρ the convergence is slower. In our experiments, convergence was observed even with large step sizes, however
the resulting discrete optimization problem is an inaccurate approximation of the continuous problem. In an efficient
implementation, the regularized forward–backward sweep iteration may be combined with an acceleration technique for
nonlinear iterations such as Anderson acceleration [22].

Appendix

In this appendix we prove that the bounds (64) follow from (3).
Since bi ≥ 0, i = 1, . . . , s,

∥f τ (x′, u) − f τ (x, u)∥ ≤

s∑
i=1

bi∥f (Xi,Ui) − f (X ′

i ,Ui)∥, (89)

where X ′

i satisfies

X ′

i = x′
+ τ

s∑
j=1

aijf (X ′

j ,Uj).

Denoting ∆Xi = Xi − X ′

i and using the Lipschitz condition on f (cf. (3)), we find

∥∆Xi∥ ≤ ∥x − x′
∥ + τ

s∑
|aij| · K∥∆Xj∥.
j=1
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Denote by |A| the matrix with elements |aij|, by |∆X | the vector with elements ∥∆Xi∥, and let 1 be the vector of dimension
s with all elements equal to 1. Then the above inequality becomes

(I − τK |A|)|∆X | ≤ ∥x − x′
∥1. (90)

For explicit Runge–Kutta methods, the matrix on the left always has positive inverse given by

(I − τK |A|)−1
=

s−1∑
i=0

(τK |A|)i.

For implicit Runge–Kutta methods, the matrix on the left of (90) is an M-matrix with positive inverse if we impose the
step size restriction

τ ≤ (K max
ij

|aij|)−1. (91)

In either of the above cases we find

∥Xi − X ′

i ∥ ≤ K τ
∥x − x′

∥, K τ
= ∥(I − τK |A|)−11∥∞. (92)

Returning to (89) we obtain

∥f τ (x′, u) − f τ (x, u)∥ ≤

s∑
i=0

biKK τ
∥x − x′

∥ = KK τ
∥x − x′

∥.

proving the first bound in (64).
To prove the second bound, recall (54). Taking norms, and using the bound (3),

∥Ψi∥ ≤ 1 + τ

s∑
j=1

|aij|K∥Ψj∥,

from which we conclude that

∥Ψi∥ ≤ K τ . (93)

We also find

∥Ψi − Ψ ′

i ∥ ≤ τ

s∑
j=1

|aij|∥fx(Xj,Uj)Ψj − fx(X ′

j ,Uj)Ψ ′

j ∥

= τ

s∑
j=1

|aij|∥fx(Xj,Uj)(Ψj − Ψ ′

j ) + (fx(Xj,Uj) − fx(X ′

j ,Uj))Ψ ′

j ∥

≤ τ

s∑
j=1

|aij|(K∥Ψj − Ψ ′

j ∥ + KK τ
∥Xj − X ′

j ∥)

≤ τ

s∑
j=1

|aij|(K∥Ψj − Ψ ′

j ∥ + K (K τ )2∥x − x′
∥)

≤ τ (max
i

s∑
j=1

|aij|)K (K τ )3∥x − x′
∥,

where the last inequality follows by inverting the matrix of (90)—in the case of implicit RK methods under the step size
restriction (91). Similarly, we compute

∥f τ
x (x, u) − f τ

x (x
′, u)∥ ≤

s∑
i=1

bi∥fx(Xi,Ui)Ψi − fx(X ′

i ,Ui)Ψ ′

i ∥

=

s∑
i=1

bi∥fx(Xi,Ui)(Ψi − Ψ ′

i ) + (fx(Xi,Ui) − fx(X ′

i ,Ui))Ψ ′

i ∥

≤

s∑
i=1

bi(K∥Ψi − Ψ ′

i ∥ + KK τ
∥Xi − X ′

i ∥)

≤ (τ max
i

s∑
j=1

|aij|)K 2(K τ )3 + K (K τ )2∥x − x′
∥,

proving the second bound in (64).
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The bounds on hτ and hτ
x in (64) follow the same reasoning.
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