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We approach a problem of realising algebraic objects in a certain universal equivariant
stable homotopy theory, the global homotopy theory of Schwede (2018). Specifically,
for a global ring spectrum R , we consider which classes of ring homomorphisms
�� W �

e
�R! S� can be realised by a map � WR! S in the category of global R–

modules, and what multiplicative structures can be placed on S. If �� witnesses S�
as a projective �e

�R–module, then such an � exists as a map between homotopy
commutative global R–algebras. If �� is in addition étale or S0 is a Q–algebra, then
� can be upgraded to a map of E1–global R–algebras or a map of G1–R–algebras,
respectively. Various global spectra and E1–global ring spectra are then obtained
from classical homotopy-theoretic and algebraic constructions, with a controllable
global homotopy type.
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Introduction

A key feature of the stable homotopy category is the interplay between algebra and
homotopy theory. We explore variations of the following realisation problem:

Given a ring spectrum R, when does a map of graded rings ��R! S�

come from a map of R–module spectra R! S ?
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Example 0.1 If R is an Eilenberg–Mac Lane spectrum and S� is concentrated in
degree zero, then the answer is “always”. One way to see this is to recognise the
full subcategory of the (1–)category of R–module spectra spanned by Eilenberg–
Mac Lane spectra as the (nerve of the) category of �0R–modules; see Lurie [23,
Proposition 7.1.1.13(3)]. In particular, this provides us with an Eilenberg–Mac Lane
R–module spectrum S with �0S Š S0 and a bijection of sets

HomModR
.R;S/Š HomMod�0R

.�0R;S0/:

In general though, the answer is more complicated. For a nonexample, consider the
periodic real K–theory spectrum KO and the ��KO –algebra S�D��KO˝F2 . Using
Toda brackets one can show there is no KO –module spectrum S with an isomorphism
of ��KO –modules ��S Š S� ; see Sagave [31, Lemma 8.4].

This question is also interesting when we consider multiplicative structures. If the
spectrum R of Example 0.1 is an E1–ring spectrum and �0R ! S0 a map of
commutative rings, then S obtains an essentially unique E1–structure such that R!S

is a map of E1–ring spectra; see [23, Proposition 7.1.3.18]. As expected, there are also
nonexamples in the multiplicative setting too. Consider the map of rings Z! Z.i/,
where the codomain is the ring of Gaussian integers. It is shown by Schwänzl, Vogt and
Waldhausen [32, Proposition 2] that one cannot construct an E1–ring spectrum S.i/

lifting (in the sense of [32, Definition 1]) the map Z! Z.i/; however, an additive
construction is simple — just take S˚S . Notice this map Z!Z.i/ is ramified at the
prime 2, hence it is not étale; see Examples 8.6 and 8.8 for more discussion.

One solution to the multiplicative problem can be obtained by paraphrasing the work
of Baker and Richter using obstruction theory for E1–ring spectra.

Theorem 0.2 (Baker and Richter [3]) Let A be an E1–ring spectrum and let
�� W ��A! B� be a map of graded commutative rings recognising B� as a projective
��A–module. Then there is a homotopy commutative A–algebra spectrum B and
a map of homotopy commutative ring spectra � WA! B such that �e

�� D �� . If in
addition �� is étale, then B has an E1–structure (unique up to contractible choice)
and � is a map of E1–ring spectra.1

1For the existence of the homotopy commutative A–algebra spectrum B, one can use the same arguments
as in the proof of [3, Theorem 2.1.1], as all that is important there is the fact B� is projective over ��A ;
see Sections 4 and 5 for more details. For the E1–structure, one can use the same arguments as in the
proof of [3, Proposition 2.2.3], as the vitally important extra assumption is that ��A! B� is étale; see
Section 6 for more details.
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The goal of this article is to explore this question of realisablity and extend Theorem 0.2
to the setting of global homotopy theory, and in this way obtain new global homotopy
types. In global homotopy theory, one has global spectra X, objects of a stable model
category, who have global homotopy groups, denoted as �G

� X for each compact
Lie group G. In particular, each global spectrum X has nonequivariant homotopy
groups, which are simply �G

� X when G D e is the trivial group. This concept of
a universal equivariant stable homotopy theory has been explored by Bohmann [9],
Greenlees and May [18] and Lewis, May and Steinberger [21]. We will be using
the category of orthogonal spectra with the global model structure as defined by
Schwede [33, Theorem 4.3.18]. This (model) category of global spectra Spgl is sym-
metric monoidal, so we can speak of monoids (which we call global ring spectra)
and commutative monoids (which we call ultracommutative ring spectra), as well as
modules and algebras over these various types of monoids. There also exist interme-
diary multiplicative structures of global spectra, such as homotopy associative and
commutative, E1–global and G1–ring spectra; see Definitions 1.7, 1.9 and 7.3, as
well as diagram (1.11), which explains how these concepts relate.

To generalise Theorem 0.2, one needs to keep in mind that we are not just looking for
any realisation of nonequivariant algebraic information by global spectra, but rather
realisations over which we understand their global homotopy type. For example,
the global spectra HA , HRU and HZ, the global Eilenberg–Mac Lane spectra of
the global Burnside ring, global complex representation ring and constant global
functor of Z (see Remark 3.2 for more details), all have the nonequivariant homotopy
type of the Eilenberg–Mac Lane spectrum HZ, but wildly different global homotopy
groups. To overcome this problem, we investigate a condition called globally flat; see
Definition 3.1.

Definition 0.3 Let R be a global ring spectrum and M a left R–module spectrum.
We say that M is globally flat as an R–module if a certain natural map

�G
� R˝�e

�R �
e
�M ! �G

� M

is an isomorphism for all compact Lie groups G. An R–algebra is called globally flat
if it is globally flat as an R–module.

Our main theorem then shows that, given an ultracommutative ring spectrum R, certain
maps �e

�R! S� of commutative �e
�R–algebras can be realised by maps of globally

flat R–modules R! S, and that a variety of multiplicative structures can be placed
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on such an S. The following theorem summarises Theorem 5.1, Corollary 6.16 and
Theorem 7.4:

Theorem A Let R be an ultracommutative ring spectrum and �� W �
e
�R ! S� a

map of graded commutative rings recognising S� as a projective �e
�R–module. Then

there exists a globally flat homotopy commutative global R–algebra S such that
�e
�S Š S� , unique up to global homotopy. If in addition �� is étale, then S can be

given an E1–global R–algebra structure , unique up to contractible choice , lifting the
homotopy commutative multiplication. Analogously, if S0 is a Q–algebra, then S

has a G1–structure lifting the homotopy commutative multiplication.

To prove the above theorem we need to further develop the tools in global homotopy
theory a little beyond [33]. In particular, we will relativise some statements made in [33]
from the stable global homotopy category Hogl.Sp/ to the stable global homotopy
category of R–modules Hogl.ModR/, and constantly work with the adjective globally
flat. As a result, we mimic an array of constructions from classical stable homotopy
theory in the setting of global homotopy theory whilst maintaining sufficient control of
global homotopy types. For example, one can perform simple localisation constructions,
realise Galois extensions of graded rings and lift nonequivariant spectra from chromatic
homotopy theory, all to the global setting. More explicitly, the following is shown as a
series of examples in Section 8:

Theorem B Let R be a fixed ultracommutative or cofibrant E1–global ring spectrum
(see Definition 1.9), and write KU and MU for the periodic global complex K–
theory and global complex cobordism spectra; see [33, Sections 6.4 and 6.1].

(1) For any (countable) subset S � �e
�R, there exists a globally flat E1–global

R–algebra RŒS�1� with

�e
�.RŒS

�1�/Š .�e
�R/ŒS

�1�I

see Example 8.4. Moreover , for every R–module M, there exists a globally flat
R–module M ŒS�1� with �e

�.M ŒS�1�/Š .�e
�M /ŒS�1�; see Example 8.5.

(2) If a prime p is invertible in �e
0
R and the .pn/th cyclotomic polynomial is

irreducible over �e
0
R, then there exists a globally flat E1–global ring spectrum

R.�/ realising the map of rings �e
0
R! .�e

0
R/.�/, where � is a .pn/th root of

unity; see Example 8.9.
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(3) If �e
�R! S� is a G–Galois extension of (graded ) rings for a finite group G,

then S� is realisable as a globally flat E1–global R–algebra S, and the G–
action on S� is realisable by a G –action of E1–global R–algebras on S ; see
Example 8.10.

(4) Every �e
�KU –module is realisable by a globally flat KU –module; see Example

8.11.

(5) For every prime p and every integer n � 0, there exists a globally flat homo-
topy associative MU.p/–algebra K .n/, a global height n Morava K–theory
spectrum , which is nonequivariantly equivalent to the Morava K–theory spec-
trum K.n/; see Example 8.13.

The uniqueness of the examples above is also discussed.

Let us now explain the ingredients of this article.

Outline

In Section 1, we recall some of the basic concepts and constructions of global homotopy
theory (the details of which can be found inside Schwede’s book [33]); in Section 2,
we relativise some of this content with respect to a global ring spectrum R; and in
Section 3, globally flat R–modules are defined and discussed. The next four sections
realise nonequivariant algebraic data in terms of global homotopy theory, first additively
in Section 4, multiplicatively up to a single homotopy in Section 5, multiplicatively
up to higher homotopies in Section 6, and multiplicatively with power operations in
Section 7. In Section 4, we study classical constructions and results (of Elmendorf,
Kriz, Mandell and May [16, Chapter IV] and Wolbert [38] and folklore) in the global
setting by carefully tracking global flatness, and in Section 5, we use the ideas of Baker
and Richter [3, Section 2] applied to the global homotopy category. In Section 6, we
state and prove some known results about endomorphism operads to help us use the
nonequivariant E1–obstruction theory of Goerss and Hopkins [17] and Robinson [29];
this section is by far the most technical in this article. In Section 7, we place Gn –
structures (equivalent to certain equivariant norm or multiplicative transfer structures)
on certain homotopy commutative global R–algebras S when working rationally,
essentially as a corollary of Sections 4 and 5. In Section 8, we see examples of many
of the statements made throughout the rest of the article, and construct new global
homotopy types by enriching known nonequivariant and algebraic constructions with
controllable global data.

Algebraic & Geometric Topology, Volume 21 (2021)
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Conventions

Algebraic All G –representations are finite-dimensional, real and orthogonal. Homo-
morphisms of graded rings and graded modules are all degree-preserving and graded
commutative rings satisfy graded commutativity, xy D .�1/jxjjyjyx . Given two
integers n and m and a graded module M, the mth level of the shifted module M Œn�

is Mm�n , so that for all spectra X we have

�m†
nX Š �m�nX Š ..��X /Œn�/m:

Categorical All categories are locally small, ie the mathematical object HomC .A;B/

is always a set for each pair of objects A and B in a category C. Let .C ;˝; 1/ be
a symmetric monoidal category. The categories of left and right R–modules will be
denoted as LModR and RModR , respectively. When R is a commutative monoid,
ModR will denote the category of R–modules. An n–fold monoidal product over R,
M ˝R � � � ˝R M, inside ModR will be written as M˝n . All statements made here
work equally well for left or right R–modules, with the appropriate changes made.

Global homotopical The entirety of this article takes place with respect to an arbitrary
multiplicative global family F ; see [33, Definition 1.4.1 and Proposition 1.4.12(iii)].
This means phrases such as “global equivalence”, “global model structure” and “globally
flat” are all made relative to this global family F. This added flexibility gives us
maximum generality, and includes the four most important global families, those of
all, finite and abelian compact Lie groups as well as the trivial family. This last global
family reduces this whole article to statements about the nonequivariant orthogonal
spectra of Mandell, May, Schwede and Shipley [25]. Let X be a global spectrum. For
positive integers n we define †nX as X˝Fe;0Sn and †�nX as X˝Fe;RnS0 using
the notation of [33, Construction 4.1.23]. The global spectra Fe;0Sn and Fe;RnS0 are
globally cofibrant in the model structure of Theorem 1.5.

Model categorical Given a topological category M, then MapM.A;B/ will denote
the mapping space between objects A and B of M. If M has a topological model struc-
ture, the above mapping space does not necessarily have the “correct homotopy type” un-
less A is cofibrant and B is fibrant in M. We will write ŒX;Y �MDHomHo.M/.X;Y /.
If R is a global ring spectrum (see Definition 1.7) and MDLModgl

R
(see Theorem 1.13),

we will write Œ � ; � �M D Œ � ; � �
gl
R

. With respect to this model structure the functor
˝R W RModgl

R
�LModgl

R
! Sp is not homotopical in either variable and will often be

Algebraic & Geometric Topology, Volume 21 (2021)
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left-derived, which can be modelled by taking a cofibrant replacement in either the
left, the right or both variables; see [33, Theorem 4.3.27]. If R is an ultracommutative
ring spectrum (see Definition 1.10) then the homotopy category Hogl.ModR/ has a
symmetric monoidal structure with product ˝L

R
and unit R, which follows from [33,

Corollary 4.3.29(ii)]. Homotopy limits and colimits are defined as in Bousfield and
Kan [10, Chapters XI–XII]. For each model category M that we use, fix cofibrant and
fibrant replacement functors . � /c and . � /f . We assume the reader is familiar with
texts on model categories such as Dwyer and Spaliński [15].

Topological Denote by Top the category of compactly generated weak Hausdorff
spaces and continuous maps (see [33, Appendix A]), which we will call the category of
spaces. Let � denote the point in Top and write Top�DTop�= for the category of based
spaces. Given a G–representation V , denote by SV the one-point compactification
of V , with the G –action inherited from V . We assume the reader is familiar with the
foundations and basics of modern stable homotopy theory from [16; 23; 25].
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and answering countless questions, as well as my PhD advisor Lennart Meier for many
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1 Background in global homotopy theory

Global homotopy theory is the study of spectra with compatible actions of all compact
Lie groups G in some global family F, a collection of compact Lie groups closed
under isomorphisms, closed subgroups and quotient groups; see [33, Definition 1.4.1].
We will work with orthogonal spectra, as this category, in a certain sense,“contains
enough symmetry” to model global spectra. All of the material in this section can be
found in [33] unless otherwise stated.

First, let us define O as the topological category whose objects are real inner product
spaces and whose morphism spaces are defined as

MapO .V;W /D Thf.w; '/ 2W �L.V;W / j w ? '.V /g;

Algebraic & Geometric Topology, Volume 21 (2021)
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where Thf�g denotes the Thom space of a vector bundle � and L.V;W / the space
of linear isometric embeddings from V to W . Composition in O is described in [33,
Construction 3.1.1]. Notice that if dim V D dim W , then O.V;W / is homeomorphic
to O.V /C ŠO.W /C , the orthogonal groups of V and W with an added basepoint.

Definition 1.1 [25, Example 4.4] An orthogonal spectrum is a topologically enriched
functor O ! Top� . A map of orthogonal spectra is a natural transformation. Let us
denote the category of orthogonal spectra by Sp.

For us the word spectrum will mean orthogonal spectrum. This category of spectra has
a symmetric monoidal structure with product ˝ and unit object the sphere spectrum S ;
see [25, Section 21] or [33, Section 3.5]. Following the notation of [23] we will also
write ˚ for the wedge (coproduct) of spectra.

We now make a crucial observation. Let X be a spectrum, G be a compact Lie group
in F and V be any G –representation. By considering V as a real inner product space,
we obtain a based space X.V /, which by functoriality of X has a G –action,

G!O.V /C ŠO.V;V / X
�!MapTop�.X.V /;X.V //:

This is how the category of orthogonal spectra encodes the representation theory of all
compact Lie groups G, and in a certain sense “contains enough symmetry”.

Definition 1.2 [24, Definition III.3.2] Let X be a spectrum and G a compact Lie
group. We define the zeroth G –homotopy group of X as the colimit

�G
0 X D colim

V 2s.UG/
ŒSV ;X.V /�G� ;

where Œ � ; � �G� denotes homotopy classes of continuous equivariant maps of based
G–spaces, s.UG/ denotes the poset of finite G–subrepresentations of a complete
G–universe UG (see [33, Definition 1.1.12]) and the maps in the colimit are defined
by the composition

ŒSV ;X.V /�G�
SU˝�
�����! ŒSU˚V ;SU

˝X.V /�G�

.�U;V W S
U˝X .V /!X .U˚V //�

����������������������! ŒSU˚V ;X.U ˚V /�G� ;

where the latter map is postcomposition with a certain structure morphism of X ; see
[33, page 232].
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The above definition does not depend on the chosen complete G –universe by a cofinality
argument; see [24, Remark V.1.10]. To define homotopy groups �G

q X for q ¤ 0 we
either smash the domain SV with Sq on the right for q > 0, or shift the codomain V

on the right by R�q for q < 0; see [33, (3.1.11)]. These sets �G
q X have a natural

abelian group structure for all compact Lie groups G and all integers q ; see [33,
page 233]. Write �G

� X for the graded abelian group
L

q2Z �
G
q X. There is a wealth

of structure between �G
q X and �K

q X for two compact Lie groups G and K in F.
For every continuous homomorphism of compact Lie groups ˛ WK ! G there is a
restriction map ˛� W �G

q X ! �K
q X, which is constructed by pulling G–actions back

to K–actions; see [33, Construction 3.1.15]. For each closed inclusion of compact Lie
groups H � G there is a transfer map trG

H
W �H

q X ! �G
q X, which is defined using

a Thom–Pontryagin construction; see [33, Section 3.2]. These two families of maps
generate the set of natural transformations from �G

0
to �K

0
as functors from Sp to Ab,

which are the natural operations on global homotopy groups; see [33, Proposition 4.2.5
and Theorem 4.2.6].

Definition 1.3 [33, Construction 4.2.1 and Definition 4.2.2] Let A be the preaddi-
tive global Burnside category, whose objects are compact Lie groups inside F and
morphism groups are defined by

HomA.G;K/D Nat.�G
0 ; �

K
0 /:

A global functor is an additive functor from A to the category of abelian groups. Let
GF denote the category of global functors and natural transformations.

By definition the assignment X 7! f�G
q X gG2F D �qX constitutes a global functor

for any spectrum X and any integer q . We define a graded global functor to be a
collection of global functors fFqgq2Z . For any global spectrum X we write ��X for
the graded global functor

L
q2Z �qX.

Suppose we have a map of orthogonal spectra f WX ! Y ; then, by Definition 1.2, we
see the construction of equivariant homotopy groups is functorial. We obtain an array
of induced maps for all compact Lie groups G in F and integers q , all of which we
call f� ,

f� W �
G
q X ! �G

q Y; f� W �
G
� X ! �G

� Y; f� W �qX ! �qY; f� W ��X ! ��Y:

Definition 1.4 [33, Definition 4.1.3] Let f WX ! Y be a map of orthogonal spec-
tra. We say f is a global equivalence if the induced map f� W ��X ! ��Y is an
isomorphism.
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A theorem of Schwede says the global equivalences are part of a model structure on Sp.

Theorem 1.5 [33, Theorem 4.3.17] There exists a topological stable model structure
on Sp, the global model structure , whose weak equivalences are global equivalences
and fibrant objects the global �–spectra (see [33, Definition 4.3.14]).

Denote by Spgl the category of orthogonal spectra with the global model structure of
Theorem 1.5. We remind the reader that for us the phrases “global equivalence” and
“global �–spectra” are relative to an ambient global family F. We will write Hogl.Sp/
for the homotopy category of Spgl . When the ambient global family is trivial (when
F D feg contains only the trivial group), Spgl will be written as Spe , which is equal
to the stable model category of orthogonal spectra defined in [25, Theorem 9.2].

Remark 1.6 In particular, by [33, Definition 4.3.14] we see a global equivalence
of spectra is a nonequivariant equivalence, and a global fibration is a nonequivariant
fibration. This also implies a nonequivariant cofibration is a global cofibration by
standard model categorical lifting properties; see [15, Proposition 3.13].

We would like to study global homotopy theory relative to a ring spectrum R. There
are many different types of ring spectra one can talk about, with various levels of
multiplicative structure. Let us first make the purely categorical definitions.

Definition 1.7 [33, Definition 3.5.15] A global ring spectrum is a monoid object
of Spgl . A homotopy associative (resp. commutative) global ring spectrum is an
associative (resp. commutative) monoid object of Hogl.Sp/.

Let us recall some operadic definitions.

Definition 1.8 A topological monoidal model category is a topological model category
(see [25, Definition 5.12]) endowed with a closed symmetric monoidal structure which
satisfies the pushout product axiom of [34, Definition 3.1].

Suppose .M;˝; 1/ is a topological monoidal model category; then, for any object X

of M, the nth level of the endomorphism operad of X is defined as the mapping space

.E ndMX /n DMapM.X
˝n;X /

with the tautological †n –action from X˝n . Let O be a topological operad. An
O–algebra in M is a map of topological operads  WO! E ndM.X /, which is only

Algebraic & Geometric Topology, Volume 21 (2021)
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homotopically well-defined if X is a bifibrant object of M. The category of topological
operads has a model structure, with weak equivalences (resp. fibrations) given by
levelwise topological weak equivalences (resp. fibrations); see [6, Example 3.3.2]. An
E1–operad is a †–cofibrant replacement of the terminal (commutative) operad, and
an E1–object in M is an O–algebra in M for any E1–operad O ; see [6, Section 1].
The definition of an E1–object is independent of the chosen E1–operad (see [6,
Section 4]), but for consistency let us fix a topological E1–operad O.

Definition 1.9 An E1–global ring spectrum is an E1–object of Spgl .

By [36, Theorem 4.4] (or [6, Example 4.6.4]), the category of E1–global ring spectra,
denoted as CAlggl , has an induced model structure from Spgl (as the latter satisfies the
monoid axiom by [33, Proposition 4.3.28]), so weak equivalences (resp. fibrations) are
given by global weak equivalences (resp. global fibrations) in Spgl .

The same holds for the trivial global family F D feg, and we denote by CAlge the
model category of nonequivariant E1–ring spectra, called E1–rings. Moreover, with
these definitions, we see the identity CAlggl

! CAlge is a right Quillen functor (with
left adjoint also given by the identity); this is further justified by [7, Theorem 2.14].

Let us warn the reader that an E1–global ring spectrum is not in general globally
equivalent to a strictly commutative orthogonal spectrum (unless the global family F

is trivial). There is a tangible difference between these two notions of commutativity in
equivariant and global homotopy theory: multiplicative norms and power operations;
see [8; 33, Section 5], respectively.

Definition 1.10 [33, Definition 5.1.1] An ultracommutative ring spectrum is a com-
mutative monoid of Spgl .

The sphere spectrum S , the Thom spectra MO and MU, and the connective global K–
theory spectrum ku are all ultracommutative ring spectra; see [33, page 303, Section 6.1
and Construction 6.3.9], respectively. The E1–global ring spectrum mO of [33,
page 303] is not ultracommutative, as demonstrated by a lack of power operations. Let
p be a prime greater than 3; then the Moore spectra S=p (the cofibres of multiplication
by p W S! S) are examples of homotopy commutative but not E1–global or even
simply global ring spectra; see [2, Example 3.3]. There is also a concept of a homotopy
commutative global spectrum with power operations, called G1–ring spectra, which
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mimic the nonequivariant H1–ring spectra of [11]. These are not E1–global ring
spectra by lifting the nonequivariant example of [27] into global homotopy theory; see
[37, Example 3.46].

In summary, we have the following diagram of implications between adjectives of
global spectra:2

.1.11/

ultracommutative ring spectrum global ring spectrum

G1–ring spectrum

E1–global ring spectrum homotopy commutative global ring spectrum

For a global ring spectrum R we have a categories of left and right R–modules, which
obtain global model structures through the extension of scalars adjunction

.1.12/ MapLModgl
R

.R˝X;M /ŠMapSpgl.X;M /:

Theorem 1.13 [33, Corollary 4.3.29] Let R be a global ring spectrum. There are
topological model structures on LModR and RModR whose weak equivalences (resp.
fibrations) are the weak equivalences (resp. fibrations) of Spgl . Moreover, if R is
an ultracommutative ring spectrum, then ModR is a monoidal model category with
respect to ˝R .

Denote by LModgl
R

and RModgl
R

the topological monoidal model categories given
above. In particular, when our ambient global family F is the trivial global family, we
will write LMode

R and RMode
R , which are equal to the nonequivariant model categories

of left and right R–module orthogonal spectra of [25, Theorem 12.1]. Taking RD S ,
we see Spgl is also a topological monoidal model category.

Definitions 1.7, 1.9 and 1.10 can all be relativised (by taking categories under R)
to define global R–algebras, homotopy commutative R–algebras, E1–global R–
algebras and ultracommutative R–algebras, respectively. In particular, the category of
E1–global R–algebras will be given a model structure by considering it as the category

2An E1–global ring spectrum is an A1–global ring spectrum (using the definition of an A1–object
from [6, Remark 4.6]) as a cofibrant replacement of the unique map from the associative operad to the
commutative operad implies all E1–algebras are A1–algebras. An application of [6, Remark 4.6] in
Spgl shows the model categories of A1–global ring spectra and global ring spectra are Quillen equivalent.
In particular, there is also an arrow in (1.11) from E1–global ring spectra to global ring spectra, but we
will not use this fact.
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of E1–global ring spectra under a fixed R; see Definition 1.9 and [15, Remark 3.10].
With this definition, the identity CAlggl

R
! CAlge

R is a right Quillen functor, with left
adjoint the identity too.

2 Homotopy theory over a global ring spectrum

In [33], the foundations of global homotopy theory were mostly established over the
global sphere spectrum. In this section we will extend some results of [33, Section 4]
to statements over an arbitrary global ring spectrum R.

Proposition 2.1 [33, Proposition 4.3.22(i) and Theorem 4.4.3] Let R be a global
ring spectrum. The triangulated category Hogl.LModR/ is compactly generated and
has coproducts indexed on arbitrary sets.

Proof Using [33, Theorem 4.4.3] and the fact (1.12) is a Quillen adjunction shows
the set of R–modules fR˝†1CBglGgG2F is a set of compact weak generators of
Hogl.LModR/; see [33, Definition 1.1.27 and Construction 4.1.7]. The statement about
coproducts follows by the same argument from [33, Proposition 4.3.22(i)], as coproducts
in Hogl.LModR/ can be modelled by a wedge of bifibrant objects in LModR .

Construction 2.2 The proof of [33, Theorem 4.4.3] uses the fact that the spectra
†
1Cq
C BglG represent the functors �G

q from Hogl.Sp/! Ab. If R is a global ring
spectrum, then the fact that the adjunction (1.12) is a Quillen adjunction with re-
spect to the model structures of Theorems 1.5 and 1.13 means the left R–module
R˝†

1Cq
C BglG represents the functor

�G
q W Hogl.LModR/! Ab:

This means that given a fibrant left R–module M and an element x 2 �e
qM, then we

can represent x by a map of left R–modules R˝†
1Cq
C Bgle D†

qR!M.

Proposition 2.3 [33, Theorem 4.5.1] Let R be a global ring spectrum. Then the
identity functor id W LModgl

R
! LMode

R is a right Quillen functor, whose derived left
adjoint L W Ho.LModR/! Hogl.LModR/ is fully faithful.

Proof From the definitions of the model structures on LModgl
R

and LMode
R , we

see the identity id W LModgl
R
! LMode

R is a right Quillen functor with id W LMode
R!
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LModgl
R

the associated left Quillen functor. The right Quillen functor takes all global
equivalences to weak equivalences so it need not be derived to induce a functor U on
homotopy categories. The unit �M WM ! ULM of the derived adjunction

ŒLM;N �
gl
R
Š ŒM;UN �eR;

is then an isomorphism for all objects M of Ho.LModR/. Hence L is fully faithful.

Definition 2.4 [33, Definition 4.5.6] Let R be a global ring spectrum. We say a left
R–module M is left-induced if M is in the essential image of the functor L.

Remark 2.5 [33, Remark 4.5.3] One can calculate the value of L on an R–module
M by taking a nonequivariant cofibrant replacement Mc !M of M. The global
homotopy type of Mc is then well-defined. Indeed, as id W LMode

R ! LModgl
R

is
a left Quillen functor, nonequivariant acyclic cofibrations are sent to global acyclic
cofibrations, and by Ken Brown’s lemma (see [15, Lemma 9.9]) we see nonequivariant
weak equivalences between nonequivariant cofibrant objects are in fact global equiva-
lences. In particular, we see that the derived adjunction counit �M WLUM !M can
be modelled by taking a nonequivariant cofibrant replacement of M.

This remark implies the following alternative characterisation of left-induced modules:

Corollary 2.6 Let R be a global ring spectrum and M a left R–module. Then the
following are equivalent :

(1) The left R–module M is left-induced.

(2) The derived adjunction counit �M WLUM ! M is an isomorphism in the
homotopy category Hogl.LModR/.

(3) A (and hence every) nonequivariant cofibrant replacement Mc!M of M in
LMode

R is in fact a global equivalence.

The same statement holds for right R–modules, mutatis mutandis. For use in this
proof, let e–P (resp. gl–P ) refer to a model categorical property P inside Mode

R

(resp. inside Modgl
R

). We will also use Remark 1.6 without mention.

Proof Without loss of generality M is gl–bifibrant. By Remark 2.5, parts (2) and (3)
are equivalent, and part (2) implies part (1) by definition. To see part (1) implies part (3),
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suppose that M is left-induced; then, by Remark 2.5, there exists an e–cofibrant R–
module Nc and an isomorphism Nc!M in Hogl.LModR/. From our (co)fibrancy
assumptions, this lifts to a strict map f WNc!M in LMode

R , and factors through an
e–cofibrant replacement of M,

Nc
g
�!Mc

h
�!M;

as Nc is e–cofibrant and h is an e–acyclic fibration. The map f is a gl–equivalence
by assumption, and by Remark 2.5 the e–equivalence g is also a gl–equivalence, hence
h is a gl–equivalence.

3 Globally flat R–modules

Studying the left-induced left R–modules of Definition 2.4 is one way to safely pass
from nonequivariant to global information. However, it is not as tangible as one might
like, which leads us to the following:

Definition 3.1 Let R be a global ring spectrum and M a left R–module. We say M

is globally flat if for all G inside F the canonical �G
� R–module morphisms

ƒG
M W �

G
� R˝�e

�R �
e
�M ! �G

� M; r ˝m 7! r �p�G.m/;

are isomorphisms, where pG WG! e is the unique map. An R–algebra (of any kind)
is globally flat if the underlying R–module is.

We will see some examples of R–modules in Proposition 3.4 which are globally flat,
and there are also natural nonexamples.

Remark 3.2 Consider a global Eilenberg–Mac Lane spectrum [33, Remark 4.4.12],
which is a global spectrum HF associated to a global functor F, defined uniquely up
to isomorphism in Hogl.Sp/ by the requirement that �0HF Š F and �qHF D 0 for
all q ¤ 0. Let us also consider the global functors A and RU, which are defined so
that for a finite group G the group A.G/ is the Burnside ring of finite G–sets and
RU .G/ is the complex representation ring of G ; see [33, Example 4.2.8]. We claim
that HRU could never be globally flat over HA (so long as F is not trivial) as the
Burnside ring A.G/ and the complex representation ring RU.G/ are not isomorphic
as abelian groups for all compact Lie groups G, the smallest example being G D C3 .
The same goes for the global Eilenberg–Mac Lane spectrum of the constant global
functor at Z over HA ; see [33, Example 4.2.8].
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Remark 3.3 For each G in F, the map ƒG
M

above is the image of p�
G
W �e
�M!�G

� M

under the extension of scalars adjunction induced by p�
G
W �e
�R! �G

� R,

HomLMod
�G
� R
.�G
� R˝�e

�R �
e
�M; �G

� M /Š HomLMod�e
�R
.�e
�M; �G

� M /:

For a global R–algebra S, as the map p�
G
W �e
�S ! �G

� S is a multiplicative map,
using an extension of scalars adjunction for graded �e

�R–algebras we see ƒG
S

is also
multiplicative in this case. Let us summarise some more properties of these maps
below.

Proposition 3.4 Let R be a global ring spectrum. Then for all G in F the maps ƒG
M

are natural in the R–module variable M, and form a morphism of graded global
functors

ƒM W ��R˝�e
�R �

e
�M ! ��M:

Moreover , if LModƒR denotes the full subcategory of LModgl
R

spanned by the globally
flat R–modules, then LModƒR is closed under arbitrary suspensions, wedges and
filtered homotopy colimits , and contains R.

Proof Defining ƒG
M

using the extension of scalars adjunction from Remark 3.3 shows
the naturality in M. For naturality in the compact Lie group variable we need to
show these maps commute with restrictions and transfers, as [33, Proposition 4.2.5 and
Theorem 4.2.6] imply these maps form a Z–basis of HomA.G;K/ for any G and K

in F. Fix some R–module M, and let f WK!G be any morphism of compact Lie
groups in F. The compatibility of these maps with restrictions then follows from the
equalities

.ƒK
M ı .f

�
˝ id//.r ˝m/D f �r �p�K mD f �r �f �p�GmD f �.r �p�G.m//

D .f � ıƒG
M /.r ˝m/:

The second equality comes from the equality pK D pG ıf of group homomorphisms,
and the third equality from the fact that restriction maps are �G

� R–module homo-
morphisms. For the transfers, let H be a closed subgroup of a compact Lie group G

inside F ; then we obtain the equalities

.ƒG
M ı .tr

G
H ˝ id//.r ˝m/D trG

H r �p�GmD trG
H .r � resG

H .p
�
Gm//D trG

H .r �p
�
H m/

D .trG
H ıƒ

H
M /.r ˝m/:

The second equality is a consequence of Frobenius reciprocity [33, Corollary 3.5.17(v)]
and the third equality from the equality pH D pG ı i as group homomorphisms. This
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shows the maps ƒG
M

are natural in G, hence ƒM is a morphism of graded global
functors.

For the “moreover” statement, notice R is in LModƒR as for all G in F the map ƒG
R

is the canonical isomorphism

�G
� R˝�e

�R �
e
�R

Š�! �G
� R:

If M is an object of LModƒR , then for all integers n, †nM is in LModƒR from the
natural isomorphisms

�G
� R˝�e

�R �
e
�†

nM Š .�G
� R˝�e

�R �
e
�M /Œn�Š .�G

� M /Œn�Š �G
� †

nM:

If Mi are objects of LModƒR for all i in some indexing set I, then
L

i2I Mi is also
in LModƒR from the natural isomorphisms

�G
� R˝�e

�R �
e
�

�M
i2I

Mi

�
Š �G

� R˝�e
�R

M
i2I

�e
�Mi Š

M
i2I

�G
� Mi Š �

G
�

�M
i2I

Mi

�
:

Finally, if we have a filtered system of left R–modules Mi inside LModƒR , then
hocolimi Mi is in LModƒR from the natural isomorphisms

�G
� R˝�e

�R �
e
�

�
hocolim

i
Mi

�
Š �G

� R˝�e
�R colim

i
.�e
�Mi/Š colim

i
.�G
� Mi/

Š �G
�

�
hocolim

i
Mi

�
:

Remark 3.5 One consequence of Definition 3.1 and the naturality of these maps ƒG
M

in M is the following simple observation. Let f WM !N be a map of globally flat
R–modules. Then f is a global equivalence if and only if �e

�f is an equivalence. The
“only if” direction follows from Definition 3.1, and the converse is a consequence of
the following naturality diagram of �G

� R–modules:

�G
� R˝�e

�R �
e
�M �G

� R˝�e
�R �

e
�N

�G
� M �G

� N

id˝�e
�f

Š ƒG
M

Š ƒG
N

Š

�G
� f

Notice how this resembles Remark 2.5, in that the global homotopy type of both the
classes of left-induced and of globally flat R–modules are controlled by nonequivariant
information.
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4 Realising algebra with R–modules

Our first step in realising algebra in global homotopy theory is additive, ie as R–
modules.

Proposition 4.1 Let R be a global ring spectrum and M� a projective left �e
�R–

module. There is a globally flat left R–module M and an isomorphism �g W �
e
�M ŠM�

of left �e
�R–modules.

Proof The projectivity condition means there is an idempotent morphism of �e
�R–

modules
f W

M
i2I

.�e
�R/Œni �!

M
i2I

.�e
�R/Œni �

for some indexing set I and ni 2 Z, and a �e
�R–module isomorphism �f W im.f /!

�e
�M. Define F as a fibrant replacement (in LModgl

R
) of

L
i2I †

ni R. By construction,
�e
�F Š

L
i2I .�

e
�R/Œni �. We can construct a map of left R–modules g W F ! F such

that �e
�g D f by Construction 2.2. This implies g is idempotent in Hogl.LModR/.

Proposition 2.1 allows us to use [26, Proposition 1.6.8] with respect to the idempotent
map g W F ! F, which gives us a commutative diagram in Hogl.LModR/,

.4.2/ F �M F �M ;

g

id

where �M is the homotopy colimit of F
g
�! F

g
�! � � � . As �e

�g D f , we see

�e
�
�M D �e

� hocolim.F g
�! F

g
�! � � � /

Š colim.�e
�F

f
�! �e

�F
f
�! � � � /Š im.f /Š �e

�M;

using the fact f 2 D f . Proposition 3.4 shows �M is globally flat.

Next we consider realising morphisms of �e
�R–modules by morphisms of R–modules.

Proposition 4.3 Let R be a global ring spectrum and M a globally flat left R–module
such that �e

�M is projective as a left �e
�R–module. Then , for all left R–modules N ,

the functor �e
� induces an isomorphism of abelian groups

ŒM;N �
gl
R

�e
��! HomLMod�e

�R
.�e
�M; �e

�N /:
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Proof First let us assume M is a wedge of suspensions of R, so

M D
M
i2I

†ni R:

Suppose N is an arbitrary left R–module and consider

.4.4/ ŒR;N �
gl
R

�e
��! HomLMod�e

�R
.�e
�R; �

e
�N /:

The above map is a bijection as both of the above sets are canonically in bijection
with �0N , the left by representability (see Construction 2.2) and the right by elementary
algebra. To extend this observation we consider the diagram of abelian groups

.4.5/

�L
i2I †

ni R;N
�gl
R

HomLMod�e
�R

�L
i2I .�

e
�R/Œni �; �

e
�N

�
Q

i2I Œ†
ni R;N �

gl
R

Q
i2I HomLMod�e

�R
..�e
�R/Œni �; �

e
�N /

Q
i2I ŒR; †

�ni N �
gl
R

Q
i2I HomLMod�e

�R
.�e
�R; .�

e
�N /Œ�ni �/

�e
�

Š Š

Š

Q
i2I �

e
�

Š

�e
�

Š

The vertical isomorphisms come from the universal property of coproducts, or properties
of shifts. The naturality of these maps gives us the commutativity of the above diagram.
The lower horizontal map is a product of the isomorphism (4.4) and the quick calculation
�e
�†
�ni N Š .�e

�N /Œ�ni �. This gives us our desired result in the case when M is a
wedge of suspensions of R.

Consider now a globally flat left R–module M such that �e
�M is projective over �e

�R.
By Proposition 4.1 we have a left R–module �M which realises �e

�M. Using the same
notation as in Proposition 4.1, we see by (4.2) that �M is a retract of F, so the top
horizontal isomorphism in (4.5) descends to an isomorphism

�e
� W Œ

�M ;N �
gl
R
Š�! HomLMod�e

�R
.�e
�
�M ; �e

�N /Š HomLMod�e
�R
.�e
�M; �e

�N /:

Setting N DM, we then lift the isomorphism �e
�
�M Š �e

�M to a map

� 2 HomHogl.LModR/
. �M ;M /:

As both M and �M are globally flat and �e
�� is an isomorphism by construction,

Remark 3.5 says � is an isomorphism inside Hogl.LModR/. The following commuta-
tive diagram of abelian groups then finishes our proof:
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ŒM;N �
gl
R

HomLMod�e
�R
.�e
�M; �e

�N /

Œ �M ;N �
gl
R

Hom�e
�LModR

.�e
�
�M ; �e

�N /

�e
�

��Š .�e
��/
�D��gŠ

�e
�

Š

A consequence of Proposition 4.3 is the following strengthening of Proposition 4.1:

Corollary 4.6 Let R be a global ring spectrum and M� a projective left �e
�R–module.

Then there exists a globally flat left R–module M with �e
�M ŠM� , unique up to

global equivalence.

Proof Proposition 4.1 gives us existence. Let .M; �f / and .M 0; �f 0/ be two globally
flat R–modules with isomorphisms �f W �e

�M Š M� and �f 0 W �e
�M

0 Š M� ; then
lifting the isomorphism ��1

f 0
ı �f W �

e
�M Š �e

�M
0 using Proposition 4.3 gives an

isomorphism � WM !M 0 in Hogl.LModR/ by Remark 3.5.

It was mentioned in Section 2 that left-induced left R–modules were hard to work
with, in particular their homotopy groups hard to calculate. The following theorem
shows that left-induced left R–modules are globally flat in special cases:

Theorem 4.7 Let R be a global ring spectrum, and M a left R–module such that
�e
�M is a projective left �e

�R–module. Then M is globally flat if and only if M is
left-induced.

Let us use the same notation as in the proof of Corollary 2.6.

Proof Without loss of generality we can take M to be a gl–fibrant R–module.
By Corollary 2.6, it is necessary and sufficient to show an e–cofibrant replacement
c WMc!M is a global equivalence if and only if M is globally flat.

As �e
�M is projective over �e

�R, we use the proof of Proposition 4.1, with respect
to the trivial global family, to obtain a left R–module �M D hocolime

i Mi , which is a
sequential e–homotopy colimit of wedges of suspensions of R, such that there exists
an isomorphism of left �e

�R–modules �� W �e
�
�M Š�e

�M. Using Proposition 4.3, again
with respect to the trivial global family, we see the natural map

Œ �M ;Mc �
e
R
�e
��! HomLMod�e

�R
.�e
�
�M ; �e

�Mc/
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is an isomorphism of abelian groups, leading us to recognise �� by a morphism
� W �M !Mc in Hoe.LModR/. As �M is e–cofibrant and Mc is e–fibrant, we can
take � to be a strict map in LMode

R . As � is an e–equivalence between e–cofibrant R–
modules, by Remark 2.5 we see � is a gl–equivalence. Moreover, by Proposition 3.4
and the fact that sequential e–homotopy colimits and sequential gl–homotopy colimits
can be modelled by mapping telescopes, we see �M is globally flat. The following
naturality diagram of graded global functors shows c is a gl–weak equivalence if and
only if M is globally flat:

��R˝�e
�R �

e
�
�M ��R˝�e

�R �
e
�Mc ��R˝�e

�R �
e
�M

�� �M ��Mc ��M

id˝.�e
��/

Š

Š ƒ �M

id˝�e
�c

Š

ƒMc ƒM

���

Š

��c

Proposition 4.8 Let R be a global ring spectrum and N a globally flat left R–module
such that �e

�N is a projective left �e
�R–module. Then , for any right R–module M,

there is an isomorphism of graded global functors

��M ˝�e
�R �

e
�N

Š�! ��.M ˝
L
R N /:

Proof The canonical map of this proposition is defined for each G in F as

‚G
M;N W �

G
� M ˝�e

�R �
e
�N ! �G

� .M ˝
L
R N /; m˝ n 7!m�p�G.n/:

Above the operation ��� is the derived R–relative box product pairing, which is
defined as follows: first one takes cofibrant replacements of M and N , say Mc and Nc ,
and then one considers the composition

.4.9/ �G
� Mc ��

G
� Nc! �G

� .Mc ˝Nc/! �G
� .Mc ˝R Nc/;

where the first morphism is the absolute box product pairing of [33, Construction 3.5.12]
and the second morphism is induced by postcomposition with the canonical map
Mc ˝Nc!Mc ˝R Nc . This postcomposition and [33, Theorem 3.5.14] imply that
(4.9) is bilinear over �G

� R, giving us the desired derived R–relative box product

�G
� M ˝�G

� R �
G
� N Š �G

� Mc ˝�G
� R �

G
� Nc! �G

� .Mc ˝R Nc/Š �
G
� .M ˝

L
R N /:

The maps ‚G
M;N

have similar properties to the ƒG
M

maps from Definition 3.1, which
is not remarkable as ƒG

M
D‚G

R;M
. The fact ‚G

M;N
is natural in the right R–module

variable M follows from the bifunctoriality of �˝L
R
�, and the fact these maps are
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natural in N and G follows from the same reasoning of Proposition 3.4. We now have
a map of graded global functors

‚M;N W ��M ˝�e
�R �

e
�N ! ��.M ˝

L
R N /:

Writing LMod‚R for the full subcategory of LModgl
R

consisting of left R–modules N

such that ‚M;N is an isomorphism for all right R–modules M. One observes R is
in LMod‚R and LMod‚R is closed under arbitrary suspensions, wedges and filtered
homotopy colimits, using similar reasoning to Proposition 3.4 and the fact that �˝L

R
�

commutes these constructions as Hogl.LModR/ is a closed symmetric monoidal cate-
gory. As N is globally flat and �e

�N is a projective �e
�R–module, Corollary 4.6 says

N is globally equivalent to an explicit model given in the proof of Proposition 4.1, ie
as a sequential homotopy colimit of wedges of shifts of R, so such an N is in LMod‚R ,
which finishes our proof.

Remark 4.10 (Tor and Ext spectral sequences) Propositions 4.3 and 4.8 resemble
degenerate cases of global Ext and global Tor spectral sequences, respectively (similar
to those found in [16, Section IV.4]). In fact, these two statements would need to be
used to construct such spectral sequences. This is done in [12, Section 2.3], although
the only practical application (according to the author) seems to be a weakening of the
hypothesis of projectivity in Proposition 4.8 to a flatness hypothesis.

The following is a generalisation of Proposition 4.1 along the lines of [38, Theorem 6]:

Proposition 4.11 Let R be a global ring spectrum and M� a left �e
�R–module of

projective dimension at most two such that , for all G in F, the groups

Tor�
e
�R

1
.�G
� R;M�/; Tor�

e
�R

2
.�G
� R;M�/

vanish. Then there exists a globally flat left R–module M with �e
�M ŠM� .

The necessity of the “Tor condition” above will be clear in the proof, and in particular
holds if M� or �G

� R is flat over �e
�R.

Proof This proof follows along the same lines as [38, Theorem 6]. First we deal with
the projective dimension 1 case, so let

0! P1
�

f
�! P0

� !M�! 0
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be a projective resolution of the left �e
�R–module M� . By Proposition 4.3 and

Corollary 4.6 we have globally flat left R–modules P1 and P0 , and a map of R–
modules g W P1!P0 realising the first map in the projective resolution above. Define
M as the cofibre of g . To see M is globally flat over R, consider the following
diagram of abelian groups with exact rows for each G in F :

.4.12/

Tor�
e
�R

1
.�G
� R;M�/ �G

� R˝�e
�RP1

� �G
� R˝�e

�RP0
� �G

� R˝�e
�RM� 0

� � � �G
� P1 �G

� P0 �G
� M � � �

ƒG

P1Š ƒG

P0Š ƒG
M

By assumption, the Tor1 –group above vanishes, hence g induces an injection on all
global homotopy groups, from which we immediately obtain, for each G inside F,
the short exact sequence of left �G

� R–modules

0! �G
� P1

! �G
� P0

! �G
� M ! 0:

By (4.12) and the five lemma we see M is globally flat. Setting G D e , we also obtain
�e
�M ŠM� .

Suppose M� now has projective dimension 2, or equivalently that we have two exact
sequences

.4.13/ 0! P2
� ! P1

� !Q�! 0; 0!Q�
f
�! P0

� !M�! 0;

where each P i
� is a projective left �e

�R–module. Notice that the second short exact
sequence above implies

Tor�
e
�R

1
.�G
� R;Q�/Š Tor�

e
�R

2
.�G
� R;M�/D 0:

Using the projective dimension 1 case above, we can realise the first sequence of (4.13)
by a cofibre sequence of globally flat left R–module spectra,

.4.14/ P2
! P1

!Q:

We can also use Corollary 4.6 to obtain a globally flat left R–module P0 recognis-
ing P0

� . Consider the commutative diagram of abelian groups

ŒQ;P0�
gl
R

ŒP1;P0�
gl
R

ŒP2;P0�
gl
R

0 HomLMod�e
�R
.Q�;P

0
� / HomLMod�e

�R
.P1
� ;P

0
� / HomLMod�e

�R
.P2
� ;P

0
� /
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The top row is exact by the cofibre sequence (4.14) and the bottom row by applying
Hom.�;P0

� / to the first short exact sequence of (4.13). Using Proposition 4.3 for P1

and P2 mapping into P0 , we see the middle and right vertical maps are isomorphisms.
A diagram chase then shows there is a map of left R–modules g WQ! P0 recognis-
ing f . Taking a fibrant replacement P0

f
of P0 in LModgl

R
(Q is already cofibrant),

we realise g WQ! P0
f

in LModgl
R

and define M as the cofibre of this map. To see
M is globally flat, we use the same argument as in the projective dimension 1 case.

5 Realising algebra with homotopy global ring spectra

In this section we obtain our first realisation result with multiplicative structure.

Theorem 5.1 Let R be an ultracommutative ring spectrum and �� W �
e
�R! S� a

map of graded commutative rings witnessing S� as a projective �e
�R–module. Then

there exists a globally flat homotopy commutative global R–algebra S with �e
�S ŠS�

such that , for all homotopy commutative R–algebras T and all maps of �e
�R–algebras

 � W S�!�e
�T , there exists a unique map  W S!T of homotopy commutative global

R–algebras such that �T D  ı �S inside Hogl.ModR/.

In particular, S is the initial globally flat homotopy commutative global R–algebra
recognising S� inside the homotopy category Hogl.LModR/.

Remark 5.2 The above theorem generalises to the case when R is a cofibrant E1–
global ring spectrum, as the only fact we need for the following proof is that the
homotopy category Hogl.ModR/ has a monoidal structure inherited from the (derived)
smash product over R. If R is a cofibrant E1–global ring spectrum, then write
O for an E1–operad and, by [7, Proposition 2.3], the enveloping algebra EnvO.R/
(see [7, Definition 1.11]) is a well-pointed monoid in Spgl . By [7, Theorem 1.10], the
category of global R–modules, defined in the operadic sense (see [7, Definition 1.1]), is
equivalent to the category of EnvO.R/–modules ModEnvO.R/ . By [7, Proposition 2.7(a)]
we see this category ModEnvO.R/ comes with a left-induced model structure from Spgl ,
which moreover has the expected monoidal structure. The monoidal structure on
ModEnvO.R/ then induces the desired monoidal structure on Hogl.ModR/.

Recall that if M is an R–module spectrum, then M˝n refers to the n–fold smash
product of M over R, and, similarly, for a �e

�R–module M� the iterated tensor
product is always over �e

�R.
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Proof of Theorem 5.1 This proof follows along the same lines as [3, Theorem 2.1.1].
We obtain existence of S by Corollary 4.6, which gives us a globally flat R–module S

with �e
�S Š S� . Proposition 4.8 iteratively calculates

�G
� S˝n

Š �G
� R˝�e

�R S˝n
�

for all G in F and Proposition 4.3 gives us the first isomorphism

ˆ W HomHogl.ModR/
.S˝n;N /Š HomMod�e

�R
.�e
�S
˝n; �e

�N /

Š HomMod�e
�R
.S˝n
� ; �e

�N /

for all R–modules N. Setting N D S, we transport the unit and multiplication
maps of the �e

�R–module S� along ˆ for nD 0 and 2, respectively, to obtain unit
and multiplication maps on S inside Hogl.ModR/. As ModR is a monoidal model
category and S is bifibrant, S˝n is also cofibrant by the pushout product axiom
(see [34, Definition 3.1]), and these unit and multiplication maps can be realised by
strict maps of R–modules � WR! S and � W S˝2! S. The unitality, associativity
and commutativity of these maps in Hogl.ModR/ come from ˆ for nD 1, 3 and 2,
respectively, again setting N D S.

To show the existence and uniqueness of  , let T be a homotopy commutative R–
algebra and �� W S�! �e

�T a map of �e
�R–algebras. Recall the set of morphisms of

commutative monoids in a symmetric monoidal category .C ;˝; 1/ can be written as
the equaliser

HomCAlg.C /.A;B/! HomC .A;B/� HomC .A
˝2;B/�HomC .1;B/;

where the parallel maps send f 7! .f ı�A; f ı�A/ and f 7! .�B ı.f ˝f /; �B/, and
CAlg.C / denotes the category of commutative algebra objects of C. Applying this to the
symmetric monoidal categories .Hogl.ModR/;˝

L
R
;R/ and .Mod�e

�R;˝�e
�R; �

e
�R/

with AD S and B D T , and using ˆ with N D T , we obtain the natural bijection

.5.3/ HomCAlg.Hogl.ModR//
.S;T / Š�! HomCAlg�e

�R
.S�; �

e
�T /:

This allows us to lift the map  � W S� ! �e
�T to a unique map  W S ! T in

CAlg.Hogl.ModR//.

6 Realising algebra with E1–global ring spectra

Using nonequivariant obstruction theory, we can place an E1–structure on the S

in Theorem 5.1, given some more conditions on �� W �
e
�R ! S� . To access this
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nonequivariant obstruction theory, we need some statements about endomorphism
operads. Recall the model structure on the category of topological operads from
[6, Example 3.3.2], where weak equivalences and fibrations are given levelwise.

Lemma 6.1 Let M be a topological monoidal model category. If f WX ! Y is an
acyclic fibration between bifibrant objects , then there is a zigzag of weak equivalences
of topological operads

E ndM.X /' E ndM.Y /:

Proof Define a topological operad E ndM.f / at level n by the pullback diagram of
spaces

.6.2/
E ndM.f /n MapM.Y

˝n;Y /D E ndM.Y /n

MapM.X
˝n;X /D E ndM.X /n MapM.X

˝n;Y /

�Y

�X .f˝n/�DMapM.f
˝n;Y /

f�DMapM.X
˝n;f /

The composition operation on E ndM.f / is the product of the composition operations
on E ndM.X / and E ndM.Z/, and in this way �X and �Y induce maps of topological
operads. To be a little more precise, given two nonnegative integers m and n, the
composition operation

E ndM.f /m � E ndM.f /n � E ndM.f /2! E ndM.f /mCn

is explicitly given by the assignment�
.X˝m gm

�!X;Y ˝m hm
�! Y /; .X˝n gn

�!X;Y ˝n hn
�! Y /; .X˝2 g

�!X;Y ˝2 h
�! Y /

�
7�!

�
X˝.mCn/ gm˝gn

�����!X˝2 g
�!X;Y ˝.mCn/ h1˝h2

����! Y ˝2 h
�! Y

�
:

This composition operation generalises to arbitrary n–tuples of nonnegative integers in
the obvious way. From this definition, it is clear that �X and �Y commute with the
various composition operations on E ndM.X /, E ndM.Y / and E ndM.f /, inducing
morphisms of topological operads.

As f is an acyclic fibration, X˝n is cofibrant and X and Y are fibrant, we see
f� is also an acyclic fibration of spaces. Similarly, as f ˝n is a weak equivalence,
X˝n and Y ˝n are cofibrant and Y is fibrant, we see .f ˝n/� is a weak homotopy
equivalence of spaces. We conclude �X is a weak equivalence as the category of
topological spaces is (right) proper, and �Y is also a weak equivalence (an acyclic
fibration even) as a base change of an acyclic fibration. As �X and �Y assemble

Algebraic & Geometric Topology, Volume 21 (2021)



Realising �e
�R–algebras by global ring spectra 1771

to form maps of topological operads, the above argument witnesses these assembled
maps as weak equivalences of topological operads. Hence we obtain a zigzag of weak
equivalences

E ndM.X /
'
 � E ndM.f /

'
�! E ndM.Y /:

Let M1 and M2 be two model categories with the same underlying category. Let i –P
be the adjective referring to the model categorical property P inside Mi for i D 1; 2.

Theorem 6.3 Let M1 and M2 be topological monoidal model categories with the
same underlying symmetric monoidal category M such that the 1–weak equivalences
are contained in the 2–weak equivalences and the 1–fibrations are contained in the
2–fibrations. If f WX ! Y is a 1–weak equivalence, where X is 2–bifibrant and
Y 1–bifibrant , then there is a zigzag of weak equivalences between the topological
endomorphism operads

E ndM2
.X /' E ndM1

.Y /:

In particular , if M1 DM2 as model categories , then a weak equivalence f WX ! Y

between bifibrant objects induces a zigzag of weak equivalences between endomorphism
operads.

Proof First we factorise f as a 1–acyclic cofibration followed by a 1–acyclic fibration

X i
�!Z

p
�! Y:

Notice the 1–acyclic fibrations are contained in the 2–acyclic fibrations, so by lifting
properties we see 2–cofibrations are contained inside 1–cofibrations. In particular,
2–cofibrant objects are 1–cofibrant. We then see that Z is 1–bifibrant as X is 1–
cofibrant and Y is 1–fibrant. We now define a topological operad E nd.i/ at level n

by the pullback diagram of spaces

.6.4/

E nd.i/n MapM1
.Z˝n;Z/

MapM2
.X˝n;X / MapM2

.X˝n;Z/DMapM1
.X˝n;Z/

�Z

�X .i˝n/�DMapM1
.Z˝n;Z/

i�DMapM2
.X˝n;i/

Similar to the proof of Lemma 6.1, the composition operation on E nd.i/ is the product
of that on E ndM2

.X / and E ndM1
.Z/ such that �X and �Z both induce morphisms

of topological operads. The product map i˝n is a 1–acyclic cofibration by the pushout
product axiom, and Z is 1–fibrant, so .i˝n/� is an acyclic fibration of spaces. Similarly,
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i� is a weak homotopy equivalence of spaces, as X˝n is 2–cofibrant, X and Z are
2–fibrant, and i is a 2–weak equivalence. Similar to Lemma 6.1, we see �X and �Z

are both weak homotopy equivalences of spaces. This gives us the zigzag of weak
equivalences of topological operads

E ndM2
.X / ' � E nd.i/ '�! E ndM1

.Z/:

Using Lemma 6.1 with respect to p we obtain the zigzag of weak equivalences of
topological operads

E ndM1
.Z/ ' � E ndM1

.p/ '�! E ndM1
.Y /:

Combining the two zigzags above, we obtain the desired result.

Setting M1 DM2 in Theorem 6.3, one obtains a generalisation of Lemma 6.1 to the
case when f is simply a weak equivalence between bifibrant objects. There is also a
dual statement to Theorem 6.3.

Corollary 6.5 Let M1 and M2 be topological monoidal model categories with
the same underlying monoidal category M such that the 1–weak equivalences are
contained in the 2–weak equivalences and the 1–cofibrations are contained in the
2–cofibrations. If f WX ! Y is a 1–weak equivalence, where X is 1–bifibrant and
Y 2–bifibrant , then there is a zigzag of weak equivalences between the topological
endomorphism operads

E ndM1
.X /' E ndM2

.Y /:

Proof First we factorise f as a 1–acyclic cofibration followed by a 1–acyclic fibration.
The result follows from the “in particular” statement of Theorem 6.3 for the 1–acyclic
cofibration. The rest of the proof is dual to the proof of Theorem 6.3.

Before we prove the main result of this section, let us recall [29, Definition 3.1], which
we relativise over a base E1–ring A. Notice this is a purely nonequivariant condition.

Definition 6.6 Let A be an E1–ring and B a homotopy commutative A–algebra.
Then we say the A–algebra B satisfies the perfect universal coefficient formula if the
following two conditions hold:

(1) The graded ring ��.B˝L
A

B/ is flat over ��B.
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(2) For every n� 1, the natural map

ŒB˝n;B�A
��
�! HomMod��A

.��.B
˝n/; ��B/

is an isomorphism, where the (derived) smash products above are taken relative
to A.

We can now state the main theorem of this section. Recall the definition of a étale
morphism of (graded) commutative rings from [5, Tag 00U0].

Theorem 6.7 Let R be an ultracommutative ring spectrum and S a homotopy com-
mutative global R–algebra which is left-induced as an R–module and which satisfies
the perfect universal coefficient formula as a nonequivariant homotopy commutative R–
algebra. Suppose that either �e

�R! �e
�S is an étale morphism of graded commutative

rings or it is a localisation.3 Then S has an E1–global R–algebra structure , unique
up to contractible choice in Modgl

R
, and the natural map

.6.8/ MapCAlggl
R

.S;S/
�e
��! HomCAlg�e

�R
.�e
�S; �

e
�S/

is a weak equivalence of spaces , where the codomain is discrete.

Unique up to contractible choice means a certain moduli space (à la [17]) is contractible.

Remark 6.9 Just as in Remark 5.2, the above theorem generalises to the case when
R is simply a cofibrant E1–global ring spectrum. We suggest the interested reader
follows the proof of Theorem 6.7 in the situation when R is ultracommutative, and
then comes back to this remark. Indeed, suppose we are in the situation of Theorem 6.7,
where R is only assumed to be an E1–global ring spectrum. First, we take a cofibrant
replacement of R inside CAlggl , using the model structure of Definition 1.9. An E1–
global R–algebra structure on S is an E1–structure on S in Spgl and a morphism
R! S in CAlggl . By [7, Lemma 1.7], we see this is equivalent to an OR –structure
on S in Spgl , where OR is the enveloping operad of the O–algebra R, where O is an
E1–operad; see [7, Definition 1.5]. One can then replace each occurrence of O (resp.
E nd�R. � /) in the whole of the proof of Theorem 6.7 below with OR (resp. E nd�S . � /),
using the facts that O is †–cofibrant and R is cofibrant in CAlggl in tandem with
[7, Proposition 2.3] to see OR is an admissible and †–cofibrant operad. The second

3The sentence “Suppose that . . . ” can be replaced by any sentence which implies that the � –cotangent
complex K.B=AIM / of [30, Section 3.2] is contractible, and the conclusion of the theorem will remain
valid.
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half of the proof (regarding the nonequivariant deformation theory) remains untouched
by this change.

The proof of Theorem 6.7 uses the vanishing of certain obstruction groups found in
[29]. The étale case can be found in [30], and the localisation case we do ourselves
now.

Lemma 6.10 Let A be a graded commutative ring (considered as an E1–dga with
trivial differential ) and S �A be a multiplicative subset of A. Then , for every graded
AŒS�1�–module M, the �–cotangent complex K.AŒS�1�=AIM / is contractible in
the derived category of AŒS�1�.

Proof The proof follows the analogous argument for the usual cotangent complex of
Quillen; see [28, Proposition 5.1]. Writing BDAŒS�1�, a simple fact about localisation
is that B˝A C 'B˝L

A
C is quasi-isomorphic to C for every B –complex C. This fact

and the flat base change of [30, Theorem 5.8(1)] give us the chain of quasi-isomorphisms

K.B=AIM /' K.B=AIM /˝L
A B ' K.B˝L

A B=BIM /' K.B=BIM /' 0;

where the last quasi-isomorphism comes from the definition [30, Paragraph 3.2].

Proof of Theorem 6.7 Using the same notation as the proof of Corollary 2.6, we can
without loss of generality take R to be gl–bifibrant, and the fact S is left-induced
means an e–cofibrant replacement of R–modules Sc ! S is a gl–equivalence; see
Corollary 2.6. As done in the proof of [3, Proposition 2.2.3], we use a relativised version
of [29, Corollary 5.8] (using our perfect universal coefficient formula assumption), and,
by either [30, Theorem 5.8(3)] in the étale case or Lemma 6.10 in the localisation case,
we obtain an e–E1–structure on Sc . In other words, we obtain an E1–structure
on Sc inside Mode

R , so a map of topological operads

 WO! E nde
R.Sc/;

where O is an E1–operad. We are now in the position to use Theorem 6.3 with respect
to M1 DModgl

R
, M2 DMode

R (see Remark 1.6) and f W Sc ! S, which gives us a
zigzag of weak equivalences of topological operads

.6.11/ E nde
R.Sc/' E ndgl

R
.S/:

In particular, we obtain a bijection of sets

ŒO; E nde
R.Sc/�TopOp Š ŒO; E ndgl

R
.S/�TopOp;

Algebraic & Geometric Topology, Volume 21 (2021)



Realising �e
�R–algebras by global ring spectra 1775

where TopOp denotes the category of topological operads with the model structure of
[6, Example 3.3.2]. Using the fact that O is cofibrant in TopOp and all objects are
fibrant, we define our gl–E1–structure on S to be the image of  under the above
isomorphism.

To show this E1–structure is unique up to homotopy, observe the chain of bijections
of �0 of (derived) mapping spaces of topological operads

.6.12/ �0MapTopOp.O; E ndgl
R
.S//Š �0MapTopOp.O; E nde

R.Sc//D �:

The first isomorphism is induced by (6.11), and the second by [30, Theorem 5.8(3)]
and either [29, Corollary 5.8] in the étale case or Lemma 6.10 in the localisation case.
At this stage we use  to view S (resp. Sc ) as an object of CAlggl

R
(resp. CAlge

R ). Let
SO be a cofibrant replacement of S in CAlggl

R
, and SO

c for a cofibrant replacement
of Sc in CAlge

R . Consider the composition

.6.13/ SO
c
'
�! Sc

'
�! S '

 � SO:

The first map is an e–equivalence between cofibrant nonequivariant E1–R–algebras
(hence cofibrant nonequivariant R–modules) and hence a gl–equivalence by Remark
2.5, and the second map is a gl–equivalence as S is left-induced (see Corollary 2.6),
hence the composition (6.13) is a global equivalence. By the usual arguments, SO

c is
bifibrant in CAlge

R , hence cofibrant in CAlggl
R

, and SO is bifibrant in CAlggl
R

, hence
(6.13) can be realised by a single map in CAlggl

R
. Considering these replacements now,

we drop the superscript O from our notation.

To see the E1–R–algebra structure on S is unique up to contractible choice, we
need to define a moduli space, which we do following [17, Section 5]. Considering
CAlggl

R
as a simplicial model category via the singular set functor, we let Mgl

R
.S/ be

the classifying space of the category E.S/ of E1–global R–algebras T which are
isomorphic to S inside the category of commutative algebra objects of Hogl.ModR/

(the isomorphism is not part of the data) and with morphisms that are gl–equivalences.
By [14] we see there are weak equivalences of spaces

.6.14/ Mgl
R
.S/'

a
ŒT �

M.T /'
a
ŒT �

BAut.T /;

where the coproduct is indexed by global equivalence classes of objects T in E.S/ (this
is a set using the definitions of [14]), M.T / is the classifying space of the subcategory
of CAlggl

R
consisting of objects equivalent to a chosen (bifibrant) representative T

and gl–equivalences, and Aut.T / is the monoid component of automorphisms of T
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in CAlggl
R

. Let us first notice that the space Mgl
R
.S/ is nonempty and path-connected

by (6.12), so Mgl
R
.S/ is contractible if and only if �M

gl
R
.S/ is contractible. From

(6.14) we see that

�M
gl
R
.S/'�BAut.S/' Aut.S/�MapCAlggl

R

.S;S/

is the path component of MapCAlggl
R
.S;S/ based at the identity. From the fibrancy

conditions compiled above for S and Sc , the fact S is left-induced gives us a chain of
weak equivalences of derived mapping spaces

.6.15/ MapCAlggl
R

.S;S/'MapCAlggl
R

.Sc ;S/'MapCAlge
R
.Sc ;S/

'MapCAlge
R
.Sc ;Sc/DM;

where the second weak equivalence is induced by the Quillen adjunction between
CAlggl

R
and CAlge

R given by the identity. Our goal now is to show M is discrete. Fol-
lowing the proof of [3, Theorem 2.2.4], we use a relativised version of [17, Theorem 4.5]
over R, with X D Y DE D S (the fact S satisfies the perfect universal coefficient
formula as an R–algebra implies the Adams condition required in [17, Definition 3.1]).
From this we obtain a second quadrant spectral sequence converging to the homotopy
groups of M based at the identity,

E
s;t
2
Š

(
HomCAlg�e

�S
.�e
�.S ˝

L
R

S/; �e
�S/ if .s; t/D .0; 0/;

Ders
�e
�S
.�e
�.S ˝

L
R

S/; .�e
�S/Œ�t �/ if t > 0;

�
) �t�sM;

where the homomorphism set is that of graded commutative �e
�S –algebras, and

Ders
A�
.B�;C�Œ�t �/ is the sth derived functor of A�–linear derivations into C�Ct

(see [17, Section 4]). Using the fact that K.�e
�S=�

e
�RIM / is contractible for all

�e
�S –modules M, the comparison results of [4] show that the above E2 –page is

concentrated in filtration t D 0, meaning it collapses on the E2 –page, and shows M
is weakly equivalent to a discrete space with

�0MŠ HomCAlg�e
�S
.�e
�.S ˝

L
R S/; �e

�S/Š HomCAlg�e
�R
.�e
�S; �

e
�S/:

In particular, we see that Mgl
R
.S/ is contractible, hence the E1–global R–algebra

structure on S is unique up to contractible choice. Moreover, this argument and (6.15)
show (6.8) is an isomorphism.

Theorem 6.7 ties nicely into our continuing story about realising objects in global
homotopy theory straight from algebraic information.
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Corollary 6.16 Suppose we are in the situation of Theorem 5.1. If �� W �e
�R! S�

is in addition an étale morphism of graded commutative rings, then the globally flat
homotopy commutative R–algebra S of Theorem 5.1 realising S� has an E1–global
R–algebra structure , unique up to contractible choice , and the natural map

MapCAlggl
R

.S;S/
�e
��! HomCAlg�e

�R
.S�;S�/

is a weak equivalence of spaces , where the codomain is discrete.

Proof The proof of Theorem 5.1 states that S can be modelled by a bifibrant globally
flat R–module, and Theorem 4.7 states that the projectivity of �e

�S over �e
�R implies

S is also left-induced. Moreover, Propositions 4.3 and 4.8 show that S satisfies the
perfect universal coefficient formula as an nonequivariant R–algebra (recall finite
relative tensor products of projective modules are projective modules), placing us
within the hypotheses of Theorem 6.7 above.

7 Realising algebra with G1–ring spectra

After Theorem 6.7, one might have the following query:

Why have we not placed an ultracommutative structure on the S from
Theorem 6.7 despite the fact R is an ultracommutative ring spectrum?

The answer is that the obstruction theory for ultracommutative ring spectra akin to the
E1–obstruction theory of [17; 29] has not been developed yet. However this section
aims to find a compromise.

The difference between ultracommutative ring spectra and E1–global ring spectra
that one can detect on their homotopy groups is the presence of power operations; see
[33, Definition 5.1.6 and Theorem 5.1.11]. The concept of a G1–structure on global
spectra is discussed in [33, Remark 5.1.16] and in depth in [37], and is the minimal
structure on a global homotopy type to have power operations. A G1–spectrum in
global homotopy theory is analogous to an H1–spectrum in classical homotopy theory;
see [33, Remark 5.1.14]. Let us first define the spectra we need.

Construction 7.1 Let G be a compact Lie group inside F. We define the global
spectra †1CBglG as †1CLG;V , where V is any faithful G–representation; see [33,
Constructions 1.1.27 and 4.1.7]. By [33, Proposition 1.1.26], this is well-defined up to
a preferred zigzag of global equivalences; see [33, Definition 1.1.27]. For any m� 0

we define †1CEgl†m to be the orthogonal spectrum †1CL†m;Rm , where Rm has the

Algebraic & Geometric Topology, Volume 21 (2021)



1778 Jack Morgan Davies

tautological †m –action [33, page 27, Construction 4.1.7]. It follows from [33, Proposi-
tion 1.1.26] that †1CEgl†m is globally contractible. Notice that the †m –coinvariants
of †1CEgl†m are precisely †1CBgl†m by [33, Definition 1.1.27], and †1CBgl†m

has the nonequivariant homotopy type of †1CB†m ; see [33, Remark 1.1.29].

We will also need to recall the following general construction:

Construction 7.2 Let G be a finite group and .C ;˝;1/ a closed symmetric monoidal
category with finite coproducts. For a monoid C of C we obtain a monoid C ŒG�D`

G C, whose multiplication is defined through the multiplication on C and the group G.
In particular, if C D Spgl and R is a global ring spectrum, then RŒG� is a global ring
spectrum with ��.RŒG�/Š .��R/ŒG�.

Recall again that iterated tensor products of R–modules are taken relative to R for
both module spectra and algebraic modules.

Definition 7.3 Let R be an ultracommutative ring spectrum and M an R–module.
For a fixed 1� n�1, a Gn –structure on M is a series of maps in Hogl.ModR/ for
all 1�m� n,

hm W LPm
R M !M;

LPm
R M DR˝ .†1CEgl†m˝†m

M˝m/Š .R˝†1CEgl†m/˝RŒ†m�M
˝m;

such that for all integers i , j, k and l with i C j � n and kl � n, the following
diagrams (from [37, Proposition 1.12]) commute in Hogl.ModR/:

LP i
R

M˝R LP j
R

M M˝R M LP2M

LP iCj
R

M M

hi˝hj

h2

hiCj

LPk
R

LP l
R

M LPk
R

M

LPkl
R

M M

Pk
R

hl

hk

hkl

We justify the use of the notation LPm
R

by [37, Theorem 3.30], which states the
definition of LPm

R
above is a model for the left-derived functor of the symmetric

R–algebra functor PR D
L

m�0. � /
˝m=†m .

Theorem 7.4 Let R be an ultracommutative ring spectrum and �� W �e
�R!S� a map

of graded commutative rings which witnesses S� as a projective �e
�R–module. If S0

is a ZŒ1=n!�–algebra for some n� 1, then there exists a globally flat homotopy com-
mutative R–algebra S such that �e

�S Š S� , with a unique (up to global equivalence)
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Gn –structure lifting the homotopy commutative multiplication on S. In particular , if
S0 is a Q–algebra , then S is a G1–R–algebra.

Remark 7.5 Similar to Remark 5.2, the proof of Theorem 7.4 also holds in the more
general case that R is an E1–global ring spectrum. This might seem a little surprising,
because the statement of the above theorem seems to imply that our R–module S

inherits its power operations from the ultracommutative ring spectrum R, however this
is a red herring. Indeed, in the proof below it is clear that the Gn –structure on S (ie
the power operations) comes from the fact that S0 is a ZŒ1=n!�–algebra, not the power
operations on R.

We will use a small lemma from homological algebra to obtain the above statement.

Lemma 7.6 Let R be a graded commutative ring, M a graded R–module and m

a positive integer. Suppose that each Mn , the submodule of M concentrated in
degree n 2 Z, is a ZŒ1=m!�–module. If M is projective as a graded R–module , then
M˝m is a projective left RŒ†m�–module , and .M˝m/†m

is a projective R–module.

Proof We will prove these facts in the opposite order. The tensor–hom adjunction
shows inductively that if M is a projective R–module then any tensor power of M

over R is projective as an R–module. In general, if a finite group H acts on an
R–module M by R–module homomorphisms, then, as long as M is a module
over ZŒ1=jH j�, the canonical map into the H –coinvariants M !MH has a splitting

MH !M; Œx� 7!
1

jH j

X
h2H

xh:

In particular, MH is a direct summand of the projective R–submodule of M. Hence
MH is projective over R. In our case this implies .M˝m/†m

is a projective R–
module. To see M˝m is projective over RŒ†m�, we use the extension of scalars
adjunction,

HomRŒ†m�.M
˝m; � /Š HomR.M

˝m
˝RŒ†m�R; � /Š HomR..M

˝m/†m
; � /;

corresponding to the unique map of groups †m ! e . The exactness of the above
functor now follows as .M˝m/†m

is a projective R–module.

Proof of Theorem 7.4 First realise S� by a globally flat homotopy commutative
R–algebra S with �e

�S Š S� using Theorem 5.1. The fact S0 is a ZŒ1=n!�–algebra
implies that multiplication by n! is an isomorphism on each S0 –module Sq for all
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q 2 Z. We can then apply Lemma 7.6 to see S˝m is an R–module with �e
�.S
˝m/ a

projective �e
�RŒ†m�–module. To calculate the homotopy groups of LPm

R
S for every

1�m� n, we employ Proposition 4.8, which when evaluated at the trivial group states

�e
�LPm

R S Š �e
�.R˝†

1
CEgl†m/˝�e

�RŒ†m� �
e
�.S
˝m/Š .S˝m

� /†m
:

It follows from Lemma 7.6 again that the R–module LPm
R

S satisfies the hypotheses
of Proposition 4.3. Hence we obtain a natural isomorphism

HomHogl.ModR/
.LPm

R S;S/
�e
��! HomMod�e

�R
..S˝m
� /†m

;S�/:

Using this isomorphism we define our desired maps hm , as the unique preimages of the
iterated multiplication map on S� factored through the †m –coinvariants. These maps
satisfy the properties of Definition 7.3 as the iterated multiplication maps on S˝m

�

factored through the †m –coinvariants do.

One can combine Theorems 6.7 and 7.4 to say that if �� W �e
�R! S� is also an étale

map and S0 is rational, then S has a G1–R–algebra structure and an E1–global
R–algebra structure. This is as close as we can get to saying S has the global homotopy
type of an ultracommutative ring spectrum with the technology of this article.

8 Examples

Using the work above, we can show that many classical constructions in stable homotopy
theory can be lifted to global homotopy theory, whilst maintaining control of the global
homotopy type. We will consider localisation constructions, realisations of Galois
extensions of (graded) commutative rings, some examples pertaining to periodic global
complex K–theory and some examples from chromatic homotopy theory.

For this section R will denote an ultracommutative or cofibrant E1–global ring
spectrum (in the latter case, we will use Remarks 5.2 and 6.9 without reference).

Example 8.1 (localisation of algebras by an element in �e
�R) Let x 2 �e

k
R be an

element in the nonequivariant homotopy groups of R, and let x WR!†�kR be the
map representing x under the representability isomorphism

ŒR; †�kR�
gl
R
Š �e

0†
�kRŠ �e

kRI

see Construction 2.2. Taking a fibrant replacement †�kR! .†�kR/f in Modgl
R

, one
can then recognise the composition of maps in Hogl.ModR/

R x
�!†�kR! .†�kR/f
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by a strict map in Modgl
R

, which we will denote also by x . One can define the R–
module RŒx�1� as the homotopy colimit of the tower

R x
�! .†�kR/f

.†�kR˝Rx/f
����������! .†�2kR/f

.†�2kR˝Rx/f
����������! � � � ;

where, as usual, . � /f denotes a fixed functorial fibrant replacement. As RŒx�1� is
defined by a filtered homotopy colimit, it is also easy to calculate �G

� .RŒx
�1�/ for

any G in F :

�G
� .RŒx

�1�/Š colim
�
�G
� R

�p�
G
.x/

����! �G
�CkR

�p�
G
.x/

����! �G
�C2kR

�p�
G
.x/

����! � � �
�

Š .�G
� R/Œp�G.x/

�1�:

By inspection we see RŒx�1� is globally flat. It is simple to place a homotopy com-
mutative R–algebra structure on RŒx�1�. The unit is given by the map R!RŒx�1�

from R into the first stage of the homotopy colimit, and the multiplication map is given
by the composite

.8.2/ RŒx�1�˝L
R RŒx�1�Š hocolim.R˝R RŒx�1� x

�!†�kR˝R RŒx�1�! � � � /

Š hocolim.RŒx�1� x
�!†�kRŒx�1�! � � � / Š �RŒx�1�;

where the last map is the inclusion into the first stage, which is a global equivalence using
the calculations above. The fact that the multiplication map (8.2) is an isomorphism in
Hogl.ModR/ shows RŒx�1� satisfies the perfect universal coefficient formula as an R–
algebra, as we shall see shortly in Lemma 8.3. The localisation part of Theorem 6.7 then
upgrades RŒx�1� to a globally flat E1–global R–algebra, whose global homotopy
groups we totally understand. Moreover, this E1–global R–algebra structure is unique
up to contractible choice.

Let us now prove that RŒx�1� satisfies the hypotheses of Theorem 6.7.

Lemma 8.3 The homotopy commutative R–algebra RŒx�1� of Example 8.1 satisfies
the perfect universal coefficient formula as an R–algebra.

Proof Part (1) of the conditions in Definition 6.6 is clear for RŒx�1� as an R–algebra,
as in Hogl.ModR/ we have RŒx�1�˝L

R
RŒx�1�ŠRŒx�1� as mentioned above. Using

this fact, and the analogous fact in algebra, part (2) then boils down to showing the map

ŒRŒx�1�;RŒx�1��eR
�e
�. � /
����! HomMod�e

�R
..�e
�R/Œx

�1�; .�e
�R/Œx

�1�/

is an isomorphism. By two extension of scalars adjunctions, one of E1–global ring
spectra R!RŒx�1� and one of graded rings �e

�R! .�e
�R/Œx

�1�, the above map is
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naturally equivalent to the isomorphism

�e
0.RŒx

�1�/Š ŒRŒx�1�;RŒx�1��e
RŒx�1�
�e
�. � /
����! Hom..�e

�R/Œx
�1�; .�e

�R/Œx
�1�/Š .�e

0R/Œx�1�;

where the hom set above is in the category Mod.�e
�R/Œx�1� .

Example 8.4 (localisation of algebras by a set in �e
�R) For any countable multiplica-

tive subset S � �e
�R, one can define a globally flat E1–global R–algebra RŒS�1�

such that
�e
�.RŒS

�1�/Š .�e
�R/ŒS

�1�:

Indeed, one definition for such an RŒS�1� is to enumerate S D fx1;x2; : : :g, represent
these elements by maps of R–modules as in Example 8.1, and then define

RŒS�1�D hocolim
�
R

x1
�! .†�k1R/f

.x1x2/
����! .†�k2R/f

.x1x2x3/
������! � � �

�
with ki D

X
1�j�i

jxj j;

where we have suppressed some (de)suspensions of maps. The same techniques from
Example 8.1 show that RŒS�1� is a globally flat homotopy commutative R–algebra
with �e

�.RŒS
�1�/ naturally isomorphic to .�e

�R/ŒS
�1�, and that RŒS�1� can be given

an E1–global R–algebra structure, unique up to contractible choice. It is important
here that we can commute maps representing elements in the homotopy groups of R

to obtain a well-defined object in Hogl.ModR/.

Let us note that the reason we cannot extend the above result to subsets S of arbitrary
size is that one would like to set

RŒS�1�D hocolim
finite T�S

RŒT �1�;

however, using the techniques of this article, it is not clear such a filtered diagram in
Hogl.ModR/ can be strictified to a diagram in Modgl

R
. This is of course possible, with a

more careful study of localisations, as done in [12] or [13] in the global setting, in [20]
in the equivariant setting and in [16, Section V] or [23, Section 7] in the nonequivariant
setting.

Example 8.5 (localisations of modules) Given a countable multiplicative subset
S � �e

�R and an R–module M, one can consider the localisation of M at S , defined
as the global R–module

M ŒS�1�DM ˝L
R RŒS�1�'M ˝R RŒS�1�:
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Using the description of RŒS�1�, one obtains an alternative formula for M ŒS�1�,

M ŒS�1�DM ˝L
R RŒS�1�' hocolim

�
M
�x1
�! .†�k1R/f ˝R M

�.x1x2/
�����! � � �

�
;

where we used the fact that homotopy colimits commute with derived relative smash
products (up to global equivalence). One can use this formula, the global flatness
of RŒS�1� and nonequivariant flatness of localisation to obtain the calculation

�G
� .M ŒS�1�/Š .�G

� M /ŒS�1�

for each compact Lie group G, where �e
�R acts on �G

� R through the algebra map
induced by the unique map pG WG! e .

It is possible to generalise the above localisation examples to algebras over E1–global
ring spectra, to localise global ring spectra at elements in equivariant homotopy groups
and to construct localisations with ultracommutative structure. These things are work
in progress; see [13].

Let us return to a counterexample from the introduction.

Example 8.6 (global Gaussian sphere (absolute version)) The fact that Z! ZŒi �

realises ZŒi � as a projective abelian group implies that the base change over �e
�S also

realises .�e
�S/Œi � as a projective �e

�S–module. By Theorem 5.1, we obtain a globally
flat homotopy commutative ring spectrum SŒi � realising the �e

�S–module .�e
�S/Œi �,

which is unique up to global equivalence. We claim that this homotopy commutative
global ring spectrum does not come from an E1–global ring spectrum. Indeed, by
the proof of Theorem 5.1, the object SŒi � is bifibrant in Spgl , and, by Theorem 4.7,
a cofibrant replacement c W SŒi �c! SŒi � in Spe is a global equivalence. Theorem 6.3
gives us a zigzag of weak equivalences of topological operads

.8.7/ E nde
S.SŒi �c/' E ndgl

S.SŒi �/:

For a contradiction, assume that there exists a map of topological operads  WO!
E ndgl

S.SŒi �/, where O is an E1–operad. Postcomposing  with (8.7) and using the
fact that O is cofibrant and all topological operads are fibrant, we obtain a morphism
of topological operads O! E nde

S.SŒi �c/. This gives us an E1–structure on SŒi �c ,
which, due to the projectivity of ��SŒi �c over ��S , shows the natural map of E1–rings
in Spe ,

SŒi �c ˝HZ!H.ZŒi �/;

is an equivalence, a contradiction of [32, Proposition 2].
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As in the nonequivariant case, the solution is to invert 2.

Example 8.8 (global Gaussian sphere (after inverting 2)) Let us now work over the
E1–global ring spectrum RD S

�
1
2

�
of Example 8.1. We then have R� D .��S/

�
1
2

�
and, using the same techniques as in Example 8.6, we obtain a realisation of the
morphism

�� W �
e
�S
�

1
2

�
!
�
�e
�S
�

1
2

��
Œi �

by a globally flat S
�

1
2

�
–module spectrum S

�
1
2
; i
�
. Moreover, by base change, we see

the morphism �� is étale as �0 W Z
�

1
2

�
! Z

�
1
2
; i
�

is étale, which is true as Z! ZŒi �

is smooth and ramified only at the prime 2. By Theorem 6.7, we obtain a realisation
of S� as a globally flat E1–global R–algebra, unique up to contractible choice, which
we will denote as S

�
1
2
; i
�
. Moreover, as S

�
1
2
; i
�

is globally flat over S
�

1
2

�
, for any

compact Lie group G we have

�G
�

�
S
�

1
2
; i
��
Š �G

�

�
S
�

1
2

��
˝�e
�SŒ1=2� S� Š .�

G
� S/

�
1
2
; i
�
:

One can generalise the above example, following [32].

Example 8.9 (adjoining roots of unity in good cases) Fix a prime p and an integer
n � 1. Suppose that p is invertible inside �e

0
R and that the .pn/th cyclotomic

polynomial

p̂n.X /D

p�1X
iD0

X ipn�1

is irreducible. One can then define a globally flat E1–global ring spectrum R.�/ as
the localisation

R.�/D .RŒCpn �/

��
1�

ˆ.t/

p

��1 �
;

where RŒCpn � is given as in Construction 7.2, t is a generator of Cpn and the localisation
is done à la Example 8.1. The reason this recognises the base change over �e

�R of
the map of rings �e

0
R! �e

0
R.�/ is due to the fact that, on �e

0
, inverting the element

1�ˆ.t/=p is the same as taking a quotient by ˆ.t/=p , as from our hypotheses these
elements are idempotents in �e

0
R; more details can be found in [32]. Furthermore,

one can check that the map of graded rings �e
�R ! �e

�R.�/ is étale and realises
�e
�R.�/ as a projective �e

�R–module, so Corollary 6.16 states the realisation R.�/ as
an E1–global R–algebra is unique up to contractible choice. Theorem 7.4 states that if
in addition p! is invertible in �e

0
R, then R.�/ has a Gp –R–algebra structure as well.
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Further generalisations of the previous two examples exist, following [3].

Example 8.10 (Galois extensions of rings) Let G be a finite group and �e
�R! S�

a G –Galois extension of graded commutative rings, which we now define. For a finite
group G, a G–Galois extension of rings has the data of a morphism of rings A! B

and a G –action on B as an A–algebra such that BG DA and the morphism of rings

„ W B˝A B!
Y
2G

B; b1˝ b2 7! .b1 .b2// ;

is an isomorphism; see [3, Definition 1.1.1] for example. The graded case is similar. By
[3, Theorem 1.1.4], we see that S� is a finitely generated projective �e

�R–module, so
we can apply Theorem 5.1 to obtain a globally flat homotopy commutative R–algebra S,
uniquely determined in Hogl.ModR/, recognising S� . Moreover, Theorem 5.1 also
realises the G–action on S� as a G–action on S inside Hogl.ModR/. We note that
�e
�R! S� is étale. Indeed, if A! B is a G–Galois extension of rings, then, using

the formulation of étale morphism as given in [23, Definition 7.5.0.1], we see it suffices
to show the A–algebra multiplication map B ˝A B ! B is the projection onto a
summand. This follows though, as by definition the map „ W B˝A B!

Q
G B is an

isomorphism, and the multiplication map is the composition of „ with the projection
onto the factor indexed by the identity element of G. Corollary 6.16 then shows that S

has an E1–global R–algebra structure, unique up to contractible choice. Moreover,
this corollary also states that the natural map

MapCAlggl
R

.S;S/
�e
��! HomCAlg�e

�R
.S�;S�/

is a weak equivalence of spaces, allowing us to lift the G–action on S� to a G–
action on S as an E1–global R–algebra. Furthermore, if n! is invertible in S0 , then
S obtains a Gn –R–algebra structure, compatible with the homotopy commutative
R–algebra structure by Theorem 7.4.

We now begin with two examples involving the global complex K–theory spectra
defined in [33].

Example 8.11 (all modules over �e
�KU are realisable) In [33, Section 6.4], Schwede

constructs the ultracommutative ring spectrum KU, the periodic global complex K–
theory spectrum, which, for each compact Lie group G and each finite CW–complex A,
comes with an isomorphism between the group KU 0

G
.AC/ and the Grothendieck

group of isomorphism classes of G –vector bundles over A; see [33, Corollary 6.4.23].
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Moreover, the underlying nonequivariant homotopy type of KU is the classical complex
K–theory spectrum; see [33, Remark 6.4.15]. This implies that �e

�KU Š ZŒˇ˙1�,
where ˇ 2 �e

2
KU is the Bott element; see [33, Construction 6.4.28]. It follows that all

�e
�KU –modules are 2–periodic, hence the data of two �e

0
KU –modules, ie the data

of two abelian groups. This implies that all graded �e
�KU –modules have projective

dimension of 1 or less. To apply Proposition 4.11, we need to check a particular Tor
condition, but this follows from the fact that �0KU ŠRU and global Bott periodicity
[33, Theorem 6.4.29].

Indeed, as for each compact Lie group G, the complex representation ring RU .G/

is a free Z–module, as any finite-dimensional complex G–representation splits as a
unique sum of simple G –complex representations. This shows p�� W �

e
0
KU ! �G

� KU

views the codomain as a free module over Z. Equivariant Bott periodicity states that
�G
� KU 'RU .G/Œˇ˙�, where ˇ is the image of the classical Bott periodicity element

from �2KU . In summary, we obtain the calculation

Tor�
e
�KU

k
.�G
� KU ;M�/Š TorZŒˇ˙�

k
.RU .G/Œˇ˙1�;M�/Š TorZ

k .RU .G/;M�/D 0

for k � 1 for every �e
�KU –module M� and every compact Lie group G.

This allows us to use Proposition 4.11, which states that every graded ZŒˇ˙1�–module
M� can be realised by a (not necessarily unique) globally flat KU –module.

Example 8.12 (periodic K–theory from connective K–theory) Writing kuc for
the ultracommutative ring spectrum of global connective complex K–theory (see [33,
Construction 6.4.32]) and ˇ 2�e

2
kuc for the Bott class (called � in [33, page 648]), we

claim that the E1–global ring spectrum kuc Œˇ�1� is globally equivalent to periodic
global complex K–theory KU. Indeed, there is a morphism of ultracommutative ring
spectra kuc!KU (see [33, (6.4.33)]) which becomes an equivalence after localising
at ˇ . This example is inherently tautological, as the definition of kuc requires the
definition of KU as an input anyhow.

The next example uses the well-defined global homotopy type MU of [33, Section 6]
to lift constructions from chromatic homotopy theory to global homotopy theory. The
techniques used here are essentially those of [16, Section V.4] combined with Section 3.

Example 8.13 (global Morava K–theory spectra) For this example, restrict to the
global family F D Ab of abelian compact Lie groups and fix a prime p . Let MU

be the ultracommutative global complex cobordism spectrum of [33, Example 6.1.53].
It is explained in [33, Example 6.1.53] that MU has the nonequivariant homotopy
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type of the classical complex cobordism spectrum MU found in [1, Example III.2.4].
Recall Quillen’s theorem and Lazard’s theorem, which combined state that

�e
�MU.p/ Š Z.p/Œx1;x2; : : :� with jxi j D 2i;

where we can assume that xpi�1 D vi , where the elements vi correspond to the
Hazewinkel generators. Writing M.k/ for the cofibre of the multiplication by xk map
on MU.p/ ,

�xk W†
2kMU.p/!MU.p/ for k � 0;

where x0Dp . Define, for any n� 0, the global nth Morava K–theory spectrum K .n/

as the MU.p/–module

K .n/D

� O
i¤pn�1

M.i/

�
˝

L
MU.p/

MU.p/Œv
�1
n �;

where the above smash product is relative to MU.p/ and derived, a countably infinite
relative smash product is defined as the sequential homotopy colimit of the finite
stages, and the localised E1–global ring spectrum MU.p/Œv

�1
n � is from Example 8.1.

Analysing the nonequivariant construction from [16, Section V.4] (or [22, Lecture 22]),
we see K .n/ has the nonequviariant homotopy type of classical height n Morava
K–theory as MU has the nonequivariant homotopy type as MU. We claim that each
M.k/ is globally flat over MU.p/ . To see this, we use the fact that the morphism
p�

G
W �e
�MU ! �G

� MU recognises �G
� MU as a free �e

�MU –module for all abelian
compact Lie groups G — a statement which we can transfer from that for a fixed abelian
compact Lie group G, found in [35, Theorem 1.3], as by [33, Example 6.1.5.3] the global
spectrum MU is a model for tom Dieck’s equivariant bordism for a fixed compact Lie
group G. This means the map induced by multiplication by xi 2 �

e
�MU.p/ ,

�p�G.xi/ W �
G
��2iMU.p/! �G

� MU.p/;

is injective. From this, the bottom row in the commutative diagram of �e
�MU.p/–

modules

�G
� M˝�e

�M �e
�†

2iM �G
� M˝�e

�M �e
�M �G

� M˝�e
�M �e

�M.i/ 0

0 �G
� †

kM �G
� M �G

� M.i/ 0

Š Š ƒG
M.i/

�p�
G
.xi /

is exact, where M DMU.p/ above. By the five lemma, we see M.i/ is globally flat
over MU.p/ . We can compute ��.M.i/˝L

MU.p/
M.j // for i ¤ j from the short

exact sequence

0! ��†
kM.i/

�vj
�! ��M.i/! ��.M.i/˝L

MU.p/
M.j //! 0:
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From this we see M.i/˝L
MU.p/

M.j / is globally flat over MU.p/ . By induction,
each finite stage in the sequential homotopy colimit defining the infinite derived relative
smash product �O

i¤n

M.i/

�
is globally flat over MU.p/ . By Proposition 3.4 we then see the MU.p/–module above
is also globally flat, and Example 8.5 leads us to the fact that K .n/ too is globally flat
over MU.p/ . Nonequivariant Morava K–theory is most useful when considered as a
ring spectrum, and either [16, Section V.4] or the proof of [22, Lecture 22, Lemma 2]
seamlessly work in our case too, giving K .n/ the structure of a globally flat homotopy
associative MU.p/–algebra.

Using the same techniques as [16, Section V.4], one can construct globally flat MU.p/–
modules of global Brown–Peterson spectra BP, its truncations BPhni, global height n

Johnson–Wilson theory E.n/ and global connective height n Morava K–theory k.n/.
We won’t mention the details of these objects here, as the only way these constructions
deviate from [16] is by using Schwede’s model for MU and the adjective globally
flat, and none of the realisation results of Sections 4–7 were used. We hope these ideas
could be used in combination with the recent work of Hausmann on a Quillen’s theorem
for compact abelian Lie groups (see [19]) to further the study of global chromatic
homotopy theory.
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