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Background: Pregnancy is a portentous stage in life, during which countless events are
precisely orchestrated to ensure a healthy offspring. Maternal microbial communities are
thought to have a profound impact on development. Although antibiotic drugs may interfere
in these processes, they constitute the most frequently prescribed medication during
pregnancy to prohibit detrimental consequences of infections. Gestational antibiotic
intervention is linked to preeclampsia and negative effects on neonatal immunity. Even
though perturbations in the immune system of themother can affect reproductive health, the
impact of microbial manipulation on maternal immunity is still unknown.

Aim: To assess whether antibiotic treatment influencesmaternal immunity during pregnancy.

Methods: Pregnant mice were treated with broad-spectrum antibiotics. The maternal gut
microbiome was assessed. Numerous immune parameters throughout the maternal
body, including placenta and amniotic fluid were investigated and a novel machine-
learning ensemble strategy was used to identify immunological parameters that allow
distinction between the control and antibiotic-treated group.

Results: Antibiotic treatment reduced diversity of maternal microbiota, but litter sizes
remained unaffected. Effects of antibiotic treatment on immunity reached as far as the
placenta. Four immunological features were identified by recursive feature selection to
contribute to the most robust classification (splenic T helper 17 cells and CD5+ B cells,
CD4+ T cells in mesenteric lymph nodes and RORgT mRNA expression in placenta).

Conclusion: In the present study, antibiotic treatment was able to affect the carefully
coordinated immunity during pregnancy. These findings highlight the importance of
inclusion of immunological parameters when studying the effects of medication used
during gestation.

Keywords: machine learning, placenta, mouse, gestation, pregnancy, antibiotics - immune effect, preeclampcia,
offspring immunity
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INTRODUCTION

Anymedication during pregnancy demands careful consideration.
However treatment is essential when infections need to be
controlled to ensure safe progression of the pregnancy. In
western society, antibiotics for systemic use are amongst the
most frequently prescribed drugs during gestation (1). Most
commonly, gestational respiratory tract infections or urinary
tract infections (UTI) require systemic anti-infectious medical
intervention (2–4). If left untreated, 20-40% of asymptomatic
UTI advance to acute UTI, which can lead to premature labor
in up to half of the women affected (5). Antibiotic intervention has
been shown to reduce complications of UTI such as preterm birth
and/or low birth weight (6). Approximately 1 in 5 pregnancies is
exposed to antimicrobial treatment nowadays (1, 7). While this
can safeguard pregnancy, microbial intervention during
pregnancy is known to have long-term effects on the offspring
as well. Gestational use of antibiotics is associated with an
increased risk for the offspring to develop non-communicable
diseases like asthma, obesity, and even increased susceptibility to
infections (8–10).

In general, antibiotic prescriptions require rational and critical
use, not only to limit the selection towards drug-resistant
pathogens (11). Awareness of the natural microbiomes’
contribution to physiology increases, and a diverse microbiome is
key to healthy immunity (12–14). Systemic antibiotics drastically
reduce the diversity of the gut microbiome and, depending on the
compound and its target, impact on bacterial taxa can last for years
(15, 16). This interference through broad-spectrum microbial
modulation resulted, among others, in colonic infiltration of
innate inflammatory cells in mice (17). In addition, antibiotic
treatment skewed T cells towards an activated T helper (Th) 1
profile, together with a reduced proportion of FOXP3+CD4+

regulatory T cells (Treg) (17). After antibiotic treatment, a
general increase in pro-inflammatory transcriptional and cellular
responses was observed, such as an activation of dendritic cells and
upregulation of genes of the pro-inflammatory cytokines
interleukin 6 (IL-6), IL-8 and CXCL2 (18). The adverse effects of
this inflammatory state might be limited in young adults (below
65 years of age) (18) but it is unsure if this holds true for
pregnant women.

Pregnancy relies on tightly regulated immunity to allow
trophoblast invasion and prevent infection, while excessive
inflammation of the prenatal environment has to be avoided as
well (19–27). Especially at the direct fetal environment,
dysregulated immunity can cause pregnancy complications,
such as preeclampsia (PE) and preterm birth, with long-term
consequences on the offspring’s development (28–30). As such,
antibiotic-mediated changes of maternal immunity can affect
neonatal health. Although several studies have shown offspring
immunity to be affected by prenatal microbial modulation (31–
33), to our knowledge, the effects on maternal immunity have not
been studied extensively.

Based on this, we questioned in this study whether gestational
antibiotic use translates to maternal immune adaptations with
possible impact on the feto-maternal interface. We here
evaluated immunity of different maternal immunological
Frontiers in Immunology | www.frontiersin.org 2
compartments, including the placenta, using a murine model
of gestational microbial modification.
MATERIALS AND METHODS

Animals
8-week-old, specific pathogen-free, male C57BL/6 mice and
8-week-old nulliparous female BALB/c, purchased from Envigo
(Horst, The Netherlands) were housed at the animal facility of
the Utrecht University (Utrecht, The Netherlands) on a reversed
12 h light/dark cycle with unlimited access to water and
semi‐purified AIN‐93G soy protein‐based rodent diet (Ssniff
Spezialdiäten GmbH, Soest, Germany). Upon arrival, mice
were habituated to the laboratory conditions for two weeks
prior to the start of the study. The male mice were mated with
a separate set of BALB/c females (Envigo, Horst, The
Netherlands) prior to the experiment, and males with proven
fertility were selected to mate with the experimental females.
Males were housed individually before and after mating, and
female mice were housed 2 per cage. Animal procedures were
approved by the Ethical Committee for Animal Research of the
Utrecht University and conducted according to the European
Directive 2010/63/EU on the protection of animals used for
scientific purposes (AVD108002016597).

Experimental Design
After 14 days of acclimatization, bedding from the cages of
assigned breeder males was added to the cages of experimental
female mice to facilitate synchronization of the females’ cycle.
After three days, males and females were housed together for 72
hours in a 1:2 ratio. Vaginal plugs were scored to assess the time
of mating. After mating, the females were randomly assigned into
the control group or the antibiotic treatment group. Antibiotic
treatment was carried out by adding a mix of 2.5 mg/mL
neomycin (Sigma Aldrich, Zwijndrecht, The Netherlands),
0.5 mg/mL metronidazole (Sigma Aldrich), and 0.09 mg/mL
polymyxin (Sigma Aldrich) in the drinking water. The treatment
consisted of two courses, starting with 4 days antibiotic treatment
with followed by 10 days without antibiotics and another 4 days
with antibiotics (Figure 1A). The animals were weighed before
mating and at the end of experiment to evaluate the weight gain.
The pregnant mice were killed by cervical dislocation on day 17
after mating, after which the number of fetuses and resorptions
were assessed and tissue samples were collected for further
analysis. During the sectioning, which was carried out in a
laminar flowhood, sterile surgical instruments were used.
Pregnant mice were killed in a separate part of the flowhood to
avoid contamination of the location where murine tissues were
collected. The skins of the mice were carefully swabbed with
ethanol, after which an intraperitoneal lavage was carried out by
flushing the peritoneal cavity with 2 ml of PBS to collect
intraperitoneal leukocytes. Hereafter, the abdominal cavity was
opened using one set of surgical instruments, carefully avoiding
contact of the skin with the abdominal cavity by pinning the skin
of the animals back. Another set of sterilized surgical instruments
August 2021 | Volume 12 | Article 685742
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was used to isolate placental and fetal tissues, and amniotic fluid
was collected from individual amniotic cavities of the fetuses.
Hereafter, other tissues (e.g. spleen, intestinal tissue and lymph
nodes) were isolated, for which purpose the carcass of the mouse
was moved to another section of the laboratory, to avoid
contamination of the laminar flowhood. Samples isolated for
analysis of mRNA-expression were immediately snap-frozen
using dry ice and stored at -80°C. Samples used for flow
cytometry or cell culturingwere kept on ice until further processing.

Microbiota-Analysis Placenta & Cecum
Total DNA was isolated from 50-225 microgram of cecal content
feces and 125-200 microgram of placental tissue using the
QIAamp Stool DNA mini kit (Qiagen). DNA was quantified
Frontiers in Immunology | www.frontiersin.org 3
by NanoDrop assay. The 16S rRNA gene profiling was analyzed
as described by Paganelli et al., 2019, by the Exposome HUB
Utrecht. Briefly, 16S rRNA regions V3 and V4 were sequenced
with an Illumina MiSeq reagent Kit v3 (600‐cycle) on an
Illumina MiSeq instrument (Illumina) (34). Samples were
analyzed with the QIIME™ 2 microbial community analysis
pipeline (35). For the cecum samples, significant differences
between treatment and control groups at genus level were
detected using the statistical framework analysis of composition
of microbiomes (ANCOM) (36). p‐values were adjusted for
multiple comparisons using false discovery rates. RStudio
1.4.1103 (RStudio Team) was used to calculate alpha diversity
using the Shannon index, and significance was calculated by the
Wilcoxon test. The global difference in microbiota composition
A

B

C

CC

D

FIGURE 1 | Antibiotic intervention in pregnant BALB/c mice. (A) Schematic representation of the experimental model. After randomly assigning mated mice to the
treatment groups, 11 mice of the control and 8 mice of the treatment group were pregnant and included for further analysis. (B) 16S rRNA composition of the cecal
samples per individual animal (1 sample of the antibiotic treatment group excluded due to read count <500). In the legend, genera shown in red were significantly
affected by the treatment (see also Supplementary Table T1). (C) Principal component analysis of 16S rRNA sequencing data on genus level. (D) Shannon Index
presenting microbial diversity.
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was assessed using principal component analysis (PCA), employing
zCompositions, centered log‐ratio (CLR) transformation, and
ggplot R packages.

SCFA Analysis Cecal Content
The cecal SCFA levels of acetic, propionic, butyric, isobutyric and
valeric acids were quantitatively determined as well as levels of
lactic acids as described previously (37, 38). The SCFA were
captured using a Shimadzu GC2010 gas chromatograph
(Shimadzu Corporation, Kyoto, Japan) equipped with a flame
ionization detector. SCFA concentrations were determined using
2-ethylbutyric acid as an internal standard. Lactic acids were
determined enzymatically using a d/l-lactic acid detection kit
with d- and l-lactate dehydrogenase (EnzyPlus, BioControl
Systems, Inc., Bellevue, WA, USA).

Lymphocyte Subset Analysis
For flow cytometric analysis of lymphocytes, single cells
suspensions were prepared from intraperitoneal lavage, isolated
placental tissue, spleens, mesenteric lymph nodes (MLN) and
inguinal lymph nodes (ILN). ILN and MLN single cell
suspensions were obtained by crushing the tissue through
70 µm cell strainers on ice. The strainers were washed with
RPMI 1640 medium, after which the cells were counted,
resuspended in PBS and kept on ice until further processing.
Splenocytes were similarly isolated, but red blood cells were
lysed prior to counting the cells using lysis buffer (8.3 g NH4Cl,
1 g KHCO3, and 37.2 mg EDTA dissolved in 1 L demi water
and filter sterilized). Placental tissues were cut into small
pieces and incubated with Accutase (Stempro, GIBCO Life
Technologies, Waltham, USA) for 35 min at 37°C under slight
agitation. Hereafter, red blood cells were lysed as described for
splenocytes, and placental cells were washed, counted,
resuspended in PBS and kept on ice until further processing.
Prior to staining cells for flow cytometric analysis, they were
washed in PBS and 50µl of cell suspension (4.106 cells/mL) was
incubated with a fixable viability dye eFluor® 780 (eBiosciences,
Thermo Fisher Scientific, San Diego, CA, USA) for 30 min at 4°
C. After washing, cells were incubated with anti-mouse CD16/
CD32 (1:100 dilution in PBS/1% BSA; Mouse BD Fc Block,
BD Pharmingen, San Jose, CA, USA) to block non-specific
binding sites. For flow cytometric analysis of surface marker
expression, cells were incubated at room temperature for 1 h in
the dark with corresponding antibody-cocktails, washed with
PBS/1% BSA and fixed in 1% paraformaldehyde-solution until
flow cytometric analysis. For the analysis of intracellular
markers, cells were first stained for extracellular markers,
washed with PBS/1% BSA and incubated overnight in Fix/
Perm buffer (eBiosciences). The following day, cells were
washed with permeabilization buffer (eBioscience), and
incubated with anti-mouse CD16/CD32 for 15 min at 4°C in
the dark. Next, the cells were stained for intracellular markers for
30 min at 4°C in the dark, washed in PBS/1% BSA and
immediately used for flow cytometric analysis. The following
fluorochrome-conjugated monoclonal antibodies were used:
CD4-PerCP-Cy5.5 (eBioscience), CD69-APC (eBioscience),
Frontiers in Immunology | www.frontiersin.org 4
CXCR3-PE (eBioscience), T1ST2-FITC (MD Biosciences, St.
Paul, MN, USA); CD11b- PerCP-Cy5.5 (eBioscience), NK1.1-
APC (eBioscience), CD49b-FITC (eBioscience), CD94-PE
(eBioscience); CD4- Brilliant Violet 510, CCR6-PE (BioLegend,
San Diego, CA, United States), CD25-PerCP-Cy5.5, (eBiosciences),
CD196 (CCR6)-PE (BioLegend), CD127-PE-Vio770 REA
(Miltenyi Biotec, Bergisch Gladbach, Germany), Neuropilin-
eFluor450 (eBioscience), RorgT-Alexafluor 647 (BD Pharmingen,
San Jose, CA, USA), CD1d-PerCP-Cy5.5 (BioLegend), CD5-
Alexa Fluow 647 (BioLegend), CD19-PE-Cy7 (BD), CD21/
CD35-FITC (BD), CD23-PE (BD), CD24-Brilliant Violet 510
(BD), Tim-1-Brilliant Violet 421 (BD), Viability-APC-Cy7
(eBioscience). Results were collected with BD FACSCanto II
flow cytometer (Becton Dickinson, Franklin Lakes, NJ, USA)
and analyzed with FlowLogic software (Inivai Technologies,
Mentone, VIC, Australia) and Kaluza software (v2.1, Beckman
Coulter, Fullerton, CA, USA).

Placental and Intestinal mRNA-Expression
Analysis
Total RNA was isolated from maternal intestinal tissues and
placenta using the RNeasy mini kit (Qiagen, Germantown, USA)
and cDNA was prepared using the iScript cDNA synthesis kit
(Bio Rad, Veenendaal, the Netherlands), according to the
manufacturer’s instructions. For quantitative real-time PCR,
the reaction mixture was prepared by adding specific forward
and reverse primers and iQSYBR Green Supermix (Bio-Rad
Laboratories, Hercules, CA, USA) to the cDNA samples, and
amplifications were performed according to the manufacturer’s
instructions using the CFX96 Touch™ Real-Time PCR
Detection System (Bio-Rad Laboratories, Hercules, CA, USA).
Validated qPCR primers for FOXP3, T-bet, GATA3, ROR-gT,
b-Actin and IL-10 were obtained from SABiosciences (Qiagen,
Germantown, USA). mRNA expression levels were calculated
relative to the expression of b-actin reference gene with CFX
Manager software (version 1.6).

Determination of Cytokine Profiles
(in Amniotic Fluid, and After Ex Vivo
Stimulation of Splenocytes)
Splenocytes collected from pregnant mice were cultured at a
concentration of 4.106 cells/mL RPMI 1640 culture medium in
96-well U-bottom culture plates at 37°C in a humidified
environment containing 5% CO2, in the presence or absence of
10 µg/mL lipopolysaccharide (LPS) (Sigma). Cell culture
supernatants were collected after 24 hours and stored at −20°C
until further analysis. A ProcartaPlex multiplex protein assay kit
(Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA) was
used to assess the concentrations of interleukin (IL)-1b, IL-2,
IL-4, IL-6, IL-10, IL-22, tumor necrosis factor (TNF)-a, and
interferon (IFN)-g in amniotic fluid and cell culture
supernatants, according to manufacturer’s instructions. To
calculate expression levels of cytokines by maternal
splenocytes, cytokine concentrations in supernatants of LPS-
stimulated cells were corrected for those measured in
supernatants of unstimulated cells.
August 2021 | Volume 12 | Article 685742
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Recursive Automatic Ensemble
Feature Selection
To discover the selection of immunological parameters that
allow classification as control or antibiotic-treated group, a
previously established ensemble feature selection was used (39,
40). This strategy allows for a more general selection of
stratifying features than a single classifier, overcoming the bias
of each individual algorithm. In brief, 8 classifiers (Bagging,
Gradient Boosting, Logistic regression, Passive-Aggressive
regression, Random Forest, Ridge Regression, SGD (Stochastic
Gradient Descent on linear models), and SVC (Support Vector
Machines Classifier with a linear kernel) classifier) generated a
list of relative feature importance that is scored for a combined
summary of top most relevant features. To ensure generality of
the results, each classifier was run 10 times together with a
10-fold cross validation. This was repeated in a stepwise
reduction of the 129 initial features by 20%, while determining
the accuracy for each classifier.

Univariate Analysis
Data were analyzed using R v.4.0.2 and the ggpubr, ggplot2,
ggsignif, tidyr packages. Non-parametric Mann-Whitney
test was performed. Values of p < 0.05 were considered
statistically significant.
RESULTS

Microbial Disruption Does Not Result in
Pregnancy Complications in Mice
Gestational antibiotic intervention of metronidazole, neomycin
and polymyxin was previously shown to influence immunity of
the offspring without observed pregnancy complications (41).
Following this established treatment regime (Figure 1A), we
assessed effective maternal microbial modification. 16S rRNA
analysis of the gut showed a distinct microbiota composition
in antibiotic-treated mice compared to the control group
(Figures 1B, C). In total 39 different genera showed a significant
change in relative abundance as well when both groups were
compared using ANCOM pipeline (Supplementary Table S1). In
addition, a significant decrease of total alpha diversity represented
by Shannon index diversity was observed in the antibiotic-treated
group (p-value = 0.0001616, Figure 1D). As major microbiota
metabolites, SCFAs are involved in regulating intestinal integrity
and intestinal immunity (42). Antibiotic treatment did not affect
SCFA levels in maternal cecum, as no significant differences were
observed regarding levels of acetic acid, propionic acid and butyric
acid (Supplementary Figure S1A). Iso-butyric acid, valeric acid,
and iso-valeric acid were not quantifiable in the cecal content of all
sampled mice. To investigate a possible direct microbial effect of
treatment on the prenatal environment, the 16S rRNA profiles of
placental tissue were analyzed as well. Although some samples had
reads as revealed by Qiime2 and DADA2 analysis, these
represented mostly unspecific contamination, probably due to
the high concentration of eukaryotic DNA in the samples.
Therefore, based on our methods, we could not identify the
Frontiers in Immunology | www.frontiersin.org 5
presence of a specific bacterial community in the placentas
analyzed. Pregnancy outcome was assessed as the number of
pregnancies, intact and resorbed fetuses. No statistically
significant differences were observed between groups. Eleven
pregnant mice of the control group, and 8 of the antibiotic-
treated group had a mean litter size of 7.8 (range 3-11, mean
resorption rate 1) and 9.4 (range 3-11, mean resorption rate 0.8),
respectively (Supplementary Figures S1B, C). No clinical
symptoms in the antibiotic-treated group were observed that
would suggest adverse effects on maternal health and, as a
consequence, pregnancy. Building on this intervention model,
we then proceeded to analyze the consequences of antibiotic
treatment on the maternal immune system.

Antibiotic Treatment Associated With Shift
in Immune Parameters Differentiating
From Control Group
Maternal immunity was assessed by flow cytometry of placenta,
spleen, ILN, MLN and peritoneal cavity lavage fluid (PCLF),
mRNA of intestines and placenta, and cytokine levels of amniotic
fluid and supernatants of ex vivo splenocyte-cultures. A total of
129 different parameters were analyzed (Supplementary
Table S2). To detect the classifying immune alterations
occurring upon antibiotic treatment, a previously validated
machine-learning ensemble classification strategy was used (39,
40), which is suited for robust feature selection in the given low
sample size setting. This method combines 8 classification
algorithms, which compensates for possible biases inherent to
the individual algorithm. The output of the 8 classification
algorithms each yielded a ranked list of features, representing
the contribution of the 129 immune features to classification.
Each list was weighted based on coefficients and frequency of an
individual feature contributing to classification (40) to aggregate
classifiers to a single ranking. Classification algorithms were
repeatedly run using the top 80% of the ensemble ranking
(recursive feature selection). Each classification run was carried
out 10 times, each run being subjected to 10-fold cross validation.
At a global average accuracy of 90% as cutoff to ensure robust
classification (Figure 2A), ensemble accuracy for each iteration
of feature combinations showed optimal classification when
combining 4 features: frequency of Th17 cells and CD5+ B
cells of the spleen, fold-change of RORgT assessed in placental
tissue, and frequencies of CD4+ T cells of MLN (normalized
expression values, Figure 2B). Principal component analysis
illustrated separation of maternal immunity after antimicrobial
intervention from healthy control (Figure 2C). The area under
the curve (AUC) of 0.99 of the receiver operating characteristic
(ROC) analysis confirmed robust classification based on the 4
identified features (Figure 2D).

Systemic and Placental T Cell Adaptations
Mediated by Gestational Antibiotics
Immune features of adaptive immunity contributed to
stratification as shown by machine-learning. Additionally, by
univariate analysis, extra attention was payed to the different T
cell subsets, whose differentiation is known to be influenced by
August 2021 | Volume 12 | Article 685742
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symbiotic microbiota (43–45). While frequencies of Th1
(CD4+CXCR3+) and Th2 (CD4+T1/ST2+) (46) in spleen, ILN,
MLN and PCLF were not affected by treatment (Supplementary
Figures S3A, B), a significant increase in placental Th2 cell
frequencies was observed (29.0% ± 2.8% compared to 20.8% ±
4.4% in the control group, Figure 3A). Percentages of
CD4+CCR6+RorgT+ Th17 cells were lower in the spleens of mice
treated with antibiotics (1.4% ± 0.1% compared to 1.1% ± 0.1% in
the control group, Figure 3B) but no such differences were observed
in other tissues. A significantly lower percentage of splenic
CD4+CD25+FOXP3+ regulatory T cells (Treg) was observed in
the antibiotic-treated group (5.3% ± 0.4% compared to 6.7% ± 0.3%
in the control group, Figure 3C), but not in other compartments
(Supplementary Figure S3C). Overall, T cell activation as observed
through CD25 and CD69 expression was not affected in any of the
tissues (Supplementary Figure S3D). Functional assessment of
maternal lymphocytes through splenocytes stimulated ex vivo
with LPS revealed only limited alterations of detectable cytokine
levels in the supernatant. IL-6 production was significantly affected
by the antibiotic treatment (Figure 3D) and a trend towards a
higher IL-22 production was observed (p 0.061, Figure 3E). No
significant differences were observed for any of the other cytokines
analyzed (IFNg, TNFa, IL-1b, IL-10, IL-2).
Frontiers in Immunology | www.frontiersin.org 6
DISCUSSION

In utero exposure to antibiotics could impact neonatal immunity
through twodifferent routes: by disruptingmicrobial colonizationof
the child, needed for healthy immune development, or by the
antibiotics’ impact on maternal immunity. The latter is associated
withpregnancy complications known toalter offspringdevelopment
(47–50). In the current study, we examined the effect of antibiotic
treatment onmaternal immunity using amurine gestational model.
The chosen microbial intervention strategy was shown to affect
offspring immunity (41). In line with this previous investigation of
this combination of antibiotics, antibiotic treatment significantly
decreasedmicrobial diversity in the ceca of pregnantmice, but none
of themice were observed to have any clinical symptoms or reduced
reproductive success. It was however possible to detect a maternal
shift in immunological profile by using amachine learning ensemble
classification strategy to assess >100 immune parameters of different
sampling sides simultaneously (39, 40). Recursive feature
elimination reduced the assessed parameters to a selection of 4
immunological features that distinguished control from antibiotic-
treatedmother animals with an accuracy of >90%.Of note, immune
adaptations were observed throughout the maternal body, reaching
as far as the placenta.
A B

C D

FIGURE 2 | Multivariate analysis of immunologic assessment across samples of spleen, mesenteric lymph node, inguinal lymph node, peritoneal cavity lavage fluid,
amniotic fluid, and placenta. (A) Recursive feature reduction used in an ensemble machine-learning strategy to determine the number of top features needed to
achieve robust (>90% accuracy) classification. (B) Top 4 immune features that allow for distinction between s. Normalized expression levels are depicted.
(C) Principal component analysis based on the top 4 features that allowed for optimal classification. (D) Individual classification algorithms were run with the top 4
features of the ensemble ranking. The receiver operating curve of Ridge regression is shown. The same results were observed using Passive-Aggressive or Logistic
regression. Additional receiver operating curves are depicted in Supplementary Figure S2. AB, treated with antibiotics; MLN, mesenteric lymph nodes.
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Antibiotics are known to affect intestinal immunity due to
microbial manipulation of this immunological compartment (17,
51). Little is known on how this translates to other immune sites,
especially regarding gestational tissues. In this exploratory
approach, samples of placenta and amniotic fluid were
included, and immune features were obtained through multiple
methods, i.e. a combination of flow cytometry, mRNA
expression, and analysis of soluble factors, to cover a wide
range of possible effects. Using machine-learning and recursive
feature selection allowed for an open assessment of studied
parameters. This dimensionality reduction enabled an unbiased
focus on the strongest induced changes. Additionally, the applied
ensemble strategy offered stable feature selection in this low
sample size setting. After mating, of the 40 females that were
randomly allocated to the control and treatment group, 11 and 8
mice respectively were pregnant and available for a final readout.
Small sample size and large variation of the input data could
weaken reproducibility when single selection algorithms are
used, a limitation that could be overcome by the applied
ensemble approach (40, 52). The presented high accuracy of
Frontiers in Immunology | www.frontiersin.org 7
the classification underlines how computational methods may
help to reduce the number of animals needed for in vivo studies.

While earlier findings showed that antibiotic treatment
resulted in a macrophage-dependent increase in inflammatory
colonic Th1 responses mice (17), we did not observe any
differences in Th lymphocyte populations in the MLN, the gut-
draining lymph nodes, of the antibiotic-treated animals. Of note,
the study by Scott and colleagues investigated immunity in male
mice (17) and thus could not take into account the highly
specialized immune dynamics of pregnancy. We additionally
investigated placental and amniotic fluid samples, showing that
systemic immune features do not represent immunity of
gestational tissues. For example, placental CD4+CD25+FOXP3+

Treg populations remained unaffected, whereas the percentage of
splenic Treg in antibiotic-treated mice was reduced. Especially
Treg of the fetal-maternal interface are considered critical to
maintaining the anti-inflammatory environment necessary
during the implantation period and throughout gestation (53).
The increase in decidual Treg upon conception is hypothesized
to be facilitated locally; through seminal fluid (54), human
A

D E

B

C

FIGURE 3 | Univariate analysis comparing T cell subsets of antibiotic-treated and control mice. (A) Frequencies of T helper 2 cells within T cells isolated from
placental tissue, staining CD4+T1ST2+. (B) Splenic CD4+CD25+FOXP3+ regulatory T cells as frequency of total T cells. (C) CD4+CCR6+RORT+ T helper 17 cells
isolated from spleen, peritoneal cavity lavage fluid, inguinal lymph nodes, mesenteric lymph nodes, and placenta. (D) Concentrations of IL-6 and (E) IL-22 in
supernatant of splenocytes after 24h lipopolysaccharide stimulation. Cytokine expression levels were corrected for concentrations measured in unstimulated
splenocytes. Data were compared by Mann-Whitney/Wilcoxon tests (non-parametric), *p < 0.05 **p < 0.01. ILN, Inguinal lymph nodes; LPS, lipopolysaccharide;
MLN, mesenteric lymph nodes; ns, non-significant.
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chorionic gonadrotropin secreted by the blastocyst (55),
extravillous trophoblast cells (56), or local immune cells such
as decidual macrophages (56). This local induction, independent
from systemic immunity, might be connected to the observed
lack of antibiotic effect on placental Treg. On the other hand, we
detected an increase in the Th2 cell populations in the placentas
after antibiotic treatment. Based on the premise that gestational
immunity depends on a tightly regulated Th1/Th2 mediated
cytokine balance (57), it is tempting to consider this a protective
counteraction to prevent from a possible proinflammatory load
upon external modifications during gestation. Thus, while the
underlying mechanisms of how gestational antibiotics may
perturb maternal immunity and fetal development are not yet
clear, our results emphasize the need to study parameters of the
fetal environment. The observed altered immunological profile
upon antibiotics may be linked to side effects that were
previously exclusively ascribed to its antimicrobial effect.

During pregnancy, any dysregulation of immunity might
affect placentation and thus fetal development (21, 58–60).
Gestational immune adaptations are highly specialized to
enable selective tolerance towards invading fetal cells, immune-
competence to overcome pathogenic invasion, and immune-
mediated support of establishing vascularization during
placenta formation (61–64). Imbalance of immunity is thought
to hamper correct placentation and thus contribute to the
etiology of preeclampsia (PE) (65, 66). Indeed, prescription of
antibiotics during pregnancy is associated with an increased risk
of PE, which is also concerning considering that a fairly large
proportion of pregnant women are prescribed antibiotics
without an indication (67, 68). Still, it is unclear whether
infections like UTI themselves, or their treatment is associated
with an increased risk of developing PE (69). In case of an
infection that requires antibiotic intervention, the involved
inflammatory cascade may elicit systemic maternal
inflammation and endothelial injury, which could also increase
the risk of PE (70–73). Nevertheless, in vitro assays have shown
that an alteration of immune responses can also occur
independent of altered microbiota as phagocytosis by
macrophages was inhibited directly through addition of
antibiotics (74). Moreover, the current study shows that also in
absence of infection, antibiotics affect the immune balance
during pregnancy. While the results from the current study
cannot directly link antibiotics use to the development of
PE, we show that also that also in the absence of infection,
antibiotics affect immune balance during pregnancy. This
dysregulated immune response, reaching as far as the
placenta, could impact upon the progression of implantation
and placentation.

In conclusion, either mediated by manipulation of the
microbial profile or by direct effects of antibiotics, treatment
affects the tightly regulated immunity of pregnancy. The
associated poorly understood - but possibly far-reaching -
consequences underscore the need for careful assessment and
restraint use of antibiotics during pregnancy. Pregnant women
are generally excluded from clinical trials, and, other than what
can be deduced from retrospective studies, few approaches take
Frontiers in Immunology | www.frontiersin.org 8
into account the unique adaptations occurring to maintain a
healthy pregnancy. These present results highlight the
importance of in vivo studies on medication used during
gestation to employ pregnancy models, taking into account the
unique immunological properties, and possible tissue-specific
effects, of this period.
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