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A B S T R A C T   

This paper presents a classical estimation problem for calculating the energy generated by photovoltaic solar 
energy systems, on a daily, annual, regional and national basis. Our methodology relies on two data sources: 
PVOutput, an online portal with solar energy production measurements, and modelled irradiance data available 
for large parts of Africa and Europe, from the Royal Netherlands Meteorological Institute. Combining these, we 
obtain probability functions of observing energy production, given the irradiation. These are applied to a PV 
systems database, using Monte Carlo sampling, allowing daily and annual solar energy production to be calcu-
lated. These are, in turn, used to calculate solar energy production per municipality. As a case study, we apply 
this methodology to one country in particular, namely the Netherlands. By examining the variation in our es-
timates as a result of taking different subsets of PVOutput systems with certain specifications such as azimuth, 
tilt and inverter loading ratio, we obtain specific annual energy yields in the range of 877 − 946kWh/kWp and 
838 − 899kWh/kWp for 2016 and 2017 respectively. The current method used at Statistics Netherlands assumes 
this to be 875kWh/kWp, irrespective of irradiation, meaning the yields were underestimated in 2016 and 
overestimated in 2017. In the case of the Netherlands, this research demonstrates that an irradiation based 
measure of solar energy generation is necessary. More generally, this research shows that different types of open 
data sources may be combined to develop models that calculate the energy production of PV system populations.   

1. Introduction 

Over the past decade, photovoltaic (PV) systems have seen an 
explosive growth around the world (IEA, 2020). In the European Union, 
for example, the installed capacity has increased from 29 GWp in 2010 
(EUobserver, 2011) to 131 GWp in 2019 (EUobserver, 2020). With 
policy measures, targeted at drastically increasing the renewables share, 
starting to take effect, attention to detailed and accurate measurements 
of solar energy production on a highly frequent and regional basis are 
becoming ever more important for policy makers. To achieve this, extra 
information may be acquired from a wealth of openly available data 
sources such as citizen science projects (e.g. Kirk et al., 2021) or satellite 
data (e.g. Malof et al., 2016). Through combining such data sources with 
more traditional data sources, new, simple statistical methods may be 
devised and applied, providing fast and timely ways of estimating local 
and daily production from PV systems. 

1.1. Past research 

A vast number of different research papers, concerned with now-
casting or forecasting regional energy production, is available. Here, we 
highlight some of the methods, relevant to our research, that are 
comprehensively presented in Bright et al. (2018) and Saint-Drenan 
et al. (2019). Often, so–called upscaling methods are used to extrapolate 
information from a small set of reference PV systems to a set of target PV 
systems, hence circumventing the general penury of largely available 
open measurement data. Bright et al. (2018) identify three different 
subcategories within the realm of upscaling: the first is to use various 
methods to extrapolate reference systems’ measurements to target sys-
tem information through e.g. inverse distance weighting or a different 
form of calibration (e.g. Schierenbeck et al., 2010; Bessa et al., 2015). 
The second technique includes performing quality controls to account 
for variability in the measurement and meta data as well as other sys-
tematic effects, before subsequently applying the first approach, (e.g. 
Killinger et al., 2017). The last category of upscaling methods is more 
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involved: reference systems’ power is converted into irradiance. Sub-
sequently the irradiance is interpolated to the target system locations 
and then translated back into power (e.g. Marion and Smith, 2017; 
Killinger et al., 2017). Besides upscaling methods, other methods exist 
which use meteorological data as input to a model which predicts the 
output at various locations as a function of PV system parameters (e.g. 
Junior et al., 2015; Saint-Drenan et al., 2017). Various other methods 
exist and are explored in more depth in Bright et al. (2018). 

1.2. Current method at Statistics Netherlands 

In this paper, we report on a new, general, statistical method, which 
we validate by applying it to the situation of the Netherlands. Statistics 
Netherlands (SN) is the body responsible for publishing solar energy 
production statistics in the Netherlands (SN, 2020). Like in the EU, the 
recorded capacity has substantially increased from 0.09 GWp in 2010 
versus 10.2 GWp in 2020 (SN, 2020). While small households made up 
the bulk of the PV systems in the past, as of 2019 just over half of the 
capacity was made up of large PV systems (> 15 kWp) such as solar parks 
(SN, 2019). The foundation for these statistics is a traditional database, 
containing almost all Dutch PV systems, detailing their location, 
installation date and system size amongst others. While subsidy schemes 
for large PV systems have meant that their monthly energy production is 
recorded (CertiQ, 2020), this is not the case for small households, with 
the solar energy production unfortunately unknown. 

A framework for measuring the total energy production from 
household PV systems was introduced to combat the paucity of mea-
surement data and is outlined in the Netherlands Enterprise Agency’s 
protocol of renewable energy (RVO et al., 2015). At the centre of this 
framework is an Eq. (1) that translates the average installed PV capacity 
in a specific year, into an average annual energy production (Ya), using 
the specific annual yield, currently fixed at Ys,a = 875kWh/kWp (van 
Sark et al., 2014): 

Ya =

⎛

⎜
⎜
⎝

∑N1

n=1
Pn +

∑N365

n=1
Pn

2

⎞

⎟
⎟
⎠Ys,a, (1)  

where Pn is the system size of one PV system in the database, N1 and N365 
the number of PV systems in the database on the first and last days of the 
year respectively. This calculation is currently performed by SN on a 
national basis. 

The Ys,a = 875kWh/kWp figure originates from a previous analysis of 
two datasets of PV systems’ performances in 2012 and 2013. For both 
years in question Ys,2012 = 877 ± 140 and Ys,2013 = 874 ± 140kWh/kWp 

were determined (van Sark et al., 2014). A disadvantage of using Eq. (1) 
is the assumption that Ys,a = 875 kWh/kWp does not vary between 

years. The total annual irradiation was H2012 = 989 and H2013 = 1003 
kWh/m2, both of which are similar to the 30 year average of 986 kWh/ 
m2. The past four years (2016–2019) have been substantially sunnier 
with H2016 = 1040,H2017 = 1020,H2018 = 1137,H2019 = 1099 kWh/m2 

(KNMI, 2017; KNMI, 2018; KNMI, 2019; KNMI, 2020). It is therefore 
very likely that Ys,a > 875 kWh/kWp for these years. 

PV energy production is not just a function of H. While the afore-
mentioned research pinpointed a value for Ys,a in those two years, it 
could be improved upon in terms of corrections for lack of representa-
tiveness. It is known from the literature that various aspects of PV sys-
tems are influential in determining Ys,a or Ya (Reinders et al., 2016). 
When extrapolating Ys,a to the whole country, for instance, it is impor-
tant to account for the true distributions of azimuth (ϕ), tilt (θ) and 
inverter loading ratio (∊ = Pi/P) of the entire PV systems population. 
Similarly, it is also imperative to account for the geographical density of 
PV systems through their longitude (l) and latitude (b) since weather 
varies locally. It is known that Western parts of the Netherlands receive 
up to 10% more H, on an annual basis, compared to Eastern parts (Lit-
jens et al., 2017). Western parts of the country have the highest popu-
lation density, implying high density of household PV systems, whereas 
sparser Northern and Eastern areas allow for larger PV systems such as 
solar parks. Finally, technological advancement must also be accounted 
for. 

1.3. Objectives and paper outline 

In light of the discussion we have set out in the previous sections, we 
have developed a method to solve a classical statistical estimation 
problem: a population of PV systems exists for which we wish to esti-
mate Yd and Ya on a national and regional basis, but we only have a 
non–probability sample of measurements which we need to extrapolate 
to the whole population. Through the application of simple Monte Carlo 
sampling techniques, we may achieve this. Finally, we investigate the 
sensitivity of our results for Yd and Ya by selecting different priors 
relating to different distributions of PV systems characteristics (ϕ, θ and 
∊). While this method was born out of a necessity to improve Dutch solar 
energy statistics, it can be performed in any national context, should 
three different types of data sources be present around which our 
method revolves: measurement data of some reference PV systems, 
irradiance data and a PV systems database. In our case, we used 
PVOutput and modelled irradiance data from the Royal Netherlands 
Meteorological Institute as well as our own database of PV systems at 
SN. 

In Section 2 we briefly provide more detail of the three aforemen-
tioned data sources and the variables they contain. Section 3 details our 
methodology, followed by a refinement to our method in light of 
representativeness in Section 4. Daily and annual, national and regional 

Nomenclature 

Abbreviations 
PV Photovoltaic 
pc4/6 Postal code 4 or 6 area in the Netherlands 
KNMI Royal Netherlands Meteorological Institute 
SN Statistics Netherlands 

Symbols 
ϕ Azimuth angle of a PV system (◦) 
θ Tilt angle of a PV system (◦) 
∊ Inverter loading ratio of a PV system (Pi/P) 
P Total power of PV system (Wp) 
Pp Panel power of a PV system (Wp) 
Pi Inverter size of a PV system (W) 

Yinst Instantaneous energy production of a PV system (kWh) 
Ycum Cumulative energy production of a PV system (kWh) 
Ya Annual energy production (GWh) 
Yd Daily energy production (GWh) 
Ys,a Specific annual yield (kWh/kWp) 
Ys,d Specific daily yield (kWh/kWp) 
G Modelled global horizontal irradiance (kW/m2) 
Ha Modelled annual global horizontal irradiation (kWh/m2) 
Hd Modelled daily global horizontal irradiation (kWh/m2) 
l Longitude (◦) 
b Latitude (◦) 
d Installation date of a PV system in the PV Systems database 
Nd Number of systems in the PV Systems database on date d  
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estimates are presented in Section 5: we provide discussion and contrast 
our results with other literature values (where known), before 
concluding and summarising in Section 6. 

2. Data 

A brief overview of the three data sources is provided here, with 
appendix A detailing the cleaning and processing of these data sources. 

2.1. PVOutput 

PVOutput is an Australian online portal with near real–time infor-
mation of PV energy generation at various locations throughout the 
world, with substantial registered capacity in Australia, USA, the 
Netherlands, Italy, Germany, UK and Belgium. As of October 2019, the 
Dutch capacity stands shy of 50 MW (PVOutput, 2020), which is ∼ 0.9% 
of the total Dutch capacity and amounting to some 5600 PV systems in 
2016 and 2017. The following information is available in the metadata 
and measurement data1:  

• power: Number of panels (Np), panel power (Pp), total system size 
(P), inverter size (Pi) and number of inverters (Ni).  

• geometry: azimuth (ϕ) and tilt (θ).  
• brand: panel and inverter brands.  
• location: Postal code 4 (pc4) area2, longitude (l) and latitude (b).  
• time: installation date of the system (d).  
• comments: explanatory comments can be added by the user.  
• energy: instantaneous (Yinst) and cumulative energy measurements 

(Ycum)  
• date and time of energy measurements. 

2.2. Dutch meteorological weather data 

The Koninklijk Nederlands Meteorologisch Instituut or Royal 
Netherlands Meteorological Institute (hereafter KNMI) is the body 
responsible for measuring variables related to the weather in the 
Netherlands (KNMI, 2020). Besides the 30 different ground–based 
weather stations, which measure various different meteorological 

variables, the institute has also developed a physics based empirical 
model to calculate variables, such as irradiance amongst others, for large 
parts of Africa and Europe (Deneke et al., 2008; Greuell et al., 2013).3 

This model uses input data from the Spinning Enhanced Visible and 
Infrared Imager (SEVIRI) instrument (Schmid, 2019) on board the 
Meteosat Second Generation satellites, located in a geostationary orbit at 
36,000 km. SEVIRI observes properties of the atmosphere every 15 min 
and has a resolution of 3x3 km2 at nadir (KNMI, 2019). Due to projection 
effects, this results in a resolution of 3x6 km2 for the Netherlands. It is 
important to note that the irradiance data are only available at times 
when the Sun’s elevation exceeds 12◦ (Greuell et al., 2013). The 
modelling does not work well outside this regime due to 3D cloud ef-
fects. These data contain the following variables:  

• irradiance (G) in units of kW/m2  

• grid cell centre l and b 

Fig. 1 shows Hd for two consecutive days in June 2016, nicely 
illustrating the effect of different weather conditions. 

2.3. PV Systems Database 

Statistics Netherlands constructs its own database of PV systems 
based on different data sources. The biggest and most important of these 
is the Product Installation Register or PIR (SN, 2019), provided by the 
network operators. This data source is incomplete and is estimated to 
contain around ∼ 85% of small household systems. This is why, in recent 
years, additional systems, not present in the PIR, have been identified 
using data from the Dutch tax authority. People are incentivised to 
purchase PV systems by registering a VAT return for the cost and 
installation of the panels. Although this is not obligatory, it is assumed 
that this can entice a lot of people to do so. Even after adding tax returns 
the register is still incomplete. This data source contains the following 
variables:  

• power: total system size (P).  
• time: installation date (d).  
• location: house number and postal code. 

Fig. 1. Hd per surface area (kWh/m2) for two different days in June 2016: 21 (left) and 22 (right).  

1 For more details regarding these data, please see PVOutput (2020)  
2 Postal codes in the Netherlands consist of four digits (pc4), followed by two 

letters (pc6). 3 Please consult https://msgcpp.knmi.nl/ for the interactive viewer. 
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As mentioned in the Introduction, Statistics Netherlands has 
administrative data on P and monthly energy production (Ym) from large 
PV systems (e.g. solar farms) from the government–led certification 
process for renewable energy as executed by CertiQ (CertiQ, 2020), a 
100% subsidiary of TenneT, the European electricity transmission sys-
tem operator for the Netherlands (TenneT, 2019). We do not use the 
CertiQ measurement data because our model is aimed at computing Yd 
(rather than Ym), as a function of different PV system parameters such as 
ϕ, θ and ∊, all of which we also do not know for the CertiQ systems. 

3. Methods 

We outline our new method for determining Yd and Ya for the 
Netherlands in Section 3.1. An overview, in formal notation, is presented 
in Sections 3.1.1, with the different aspects of the method expanded 
upon in Sections 3.1.2. In Section 3.2, we describe our method to convert 
the national estimates into regional estimates. 

3.1. National solar energy production 

3.1.1. Procedure 
Our main aim is to calculate pd(Y): the distribution of Yd emanating 

from the population of PV systems in the Netherlands, which we can 
aggregate to Ya. The relationship between these three quantities are 
defined by Eqs. 2 and 3: 

Yd =

∫

pd(Y)dY, (2)  

Ya =
∑d=365

d=1
Yd. (3)  

Eq. (3) may be re–expressed as a function of the weather and more 
specifically H, which is denoted by Eq. (4). De–constructing pd(Y,H)4 

into two separate functions pd(Y|H) and pd(H) and integrating this over 
the number of PV systems in the database (Nd) gives Eq. (5): 

pd(Y) =
∫

pd(Y,H)dH, (4)  

pd(Y) =
∫ Nd

pd(Y|H)pd(H)dH =

∫ Nd

pd(Ys|H)pd(P)pd(H)dH, (5)  

where in the final step, we have re–expressed pd(Y) in terms of pd(Ys)

and pd(P), the specific yield and power of the systems respectively. 
Evaluating pd(H) is trivial: the distribution of H of all database locations 
is obtained by matching each database system to its nearest irradiance 
grid cell. Evaluating pd(Ys|H) is more complex since we construct this 
with our non–probability sample PVOutput, which we use as a proxy 
for the population. We can evaluate pd(Ys|H) as the marginal likelihood, 
in terms of the PV system characteristics x = {ϕ,θ,∊}, given by Eq. (6): 

pd(Ys|H) =

∫

pd(Ys|x)pd(x|H)dx. (6)  

By selecting a certain prior pd(x|H), we obtain a realisation of the 
PVOutput data: pd(Ys|H), satisfying the aforementioned prior. Since for 
an observed value of H, there is a corresponding spread in Ys, there is no 
way of knowing which Ys to allocate to a database location. We therefore 
randomly draw all the systems in the database and assign them a value 
for Ys, such that the ensemble of Ys values assigned to the database lo-
cations, respects the proportions observed in PVOutput. This procedure 
of Monte Carlo sampling may be repeated a number of times, allowing us 
to repeatedly evaluate Eq. (5) and, in turn, Eq. (2). The result of this is an 
estimate of the mean energy production (μYd

) and standard deviation 
(σYd ). 

Our calculations for Eq. (5) will strongly depend on the choices we 
make for the prior, relating to the distribution of x = {ϕ,θ,∊}, in Eq. (6). 
By exploring various scenarios, i.e. different choices of our prior, we can 
explore the margins of our estimates. We will further expand these ideas 
and equations in Sections 3.1.2 and 4. 

3.1.2. Evaluating Yd with Monte Carlo sampling 
We have seen in Section 3.1.1 that our method relies on evaluating 

Eq. (5). Before being able to do so, it is necessary to construct the 
functions pd(Ys|H) and pd(H). Both of these are obtained by linking 
either PVOutput locations, in the case of pd(Ys|H), or database PV 
systems, in the case of pd(H), to Hd grid cells, following a simple pro-
cedure set out in Appendix B. Once linked, pd(Ys|H) may be easily 
constructed according to the following procedure: for any given day 
d and PVOutput location i, we can use the cumulative energy mea-
surement Ycum (or Yd in other words) to obtain Ys,d, according to: Ys,d i =

Yd,i/Pi. The system sizes are those quoted in the PVOutput metadata. 
We refer the reader to Appendix A for a short explanation on how we 
compute Hd from the quarter hourly G values. Fig. 2 shows two examples 

Fig. 2. Hd vs. Ys,d for all PVOutput systems on 13/06/2016 (left) and 13/09/2016 (right).  

4 Please note that when we write pd(Y,H) or any other example with pd, the 
subscript is also implied for the quantities in the function i.e. Yd and Hd. We 
drop these subscripts to avoid cluttering. 
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of the number density of reliable5 PVOutput systems in the Hd − Ys,d 

plane. The left panel (13/06/2016) shows a day with large variations in 
Hd and Ys,d, whereas the right panel (13/09/2016) shows an excep-
tionally clear day over the whole country, nevertheless producing a wide 
spread in Ys,d, due to different efficiencies of PVOutput systems which 
are a function of parameters such as ϕ and θ. 

With all the necessary elements in hand, we evaluate Eq. (5) by 
re–writing the integral as a sum. This is more intuitive in light of the 
graphical representation of pd(Ys|H) we discussed in Fig. 2. We can 
define that for a number of irradiation (NHd ) and energy production 
(NYd ) bins, the probabilities of Ys,d being observed must sum to one (Eq. 
(7)). Using pd(H), we compute the number of systems Nl per bin l, which 
must satisfy Eq. (8), where Nd is the number of systems in the database. 
We can use this information to compute the number of systems per bin 
Nkl (Eq. (9)). Keeping track of which systems fall in bin l, we can perform 
a random sample of Nkl systems from a total of Nl systems for bin k, l and 
insert this into Eq. (10), where Pm is the system power of one system in 
that Nkl sample of systems. 

∑NYd

k=1

∑NHd

l=1
pkl(Ys,d) = 1, (7)  

Nd =
∑NHd

l=1
Nl, (8)  

Nkl =
pkl

∑NYd

k=1
pkl

Nl

Nd
, (9)  

Yd =
∑NYd

k=1

∑NHd

l=1
NklYs kl

∑Nkl

m=1
Pm. (10)  

We can perform Monte Carlo sampling by repeatedly evaluating Eq. (10), 
resulting in a probability density function, indicating the mean (μYd

) and 
standard deviation (σYd ) of our estimates for Yd. Fig. 3 shows what these 
functions look like for four different days (Spring and Autumn equi-
noxes, Summer and Winter solstices). These functions were constructed 
by performing the Monte Carlo sampling 500 different times, allowing for 
uncertainty margins to be quantified. 

Our decision to bin the data in 0.5kWh/m2x0.5kWh/kWp bins, as can 
be seen in Fig. 2 is motivated by practical concerns. We want to produce 
a simple, easy and intuitive model allowing us to easily read off pkl(Ys). 
The size of our bins is chosen in such a way that the resolution is high 
enough such that meaningful differences in Ys may be discerned, while 
at the same time keeping the resolution low enough, increasing the 
chances that each value of H at a location in the database is also 
observed in pd(Ys|H) from PVOutput. For those systems which have a 
value H that is not observed in pd(Ys|H), we use our estimate of Ys,d for 
all the present systems and multiply this by the systems’ P. We note that 
the fraction of such systems is always lower than 1%. 

3.2. Regional solar energy production 

3.2.1. Procedure 
Estimating regional solar energy production is a lot less work now 

that we have set out the framework in Section 3.1. Up until now we 
grouped database systems together in 0.5kWh/m2 bin sizes such that we 
could construct pd(Ys|H) and hence estimate Yd and Ya (see Fig. 2). This 
of course means that many systems were placed together in bins and 
assigned the same value Ys, even though their observed H could differ by 
as much as the size of the bin, i.e. 0.5kWh/m2. By returning to each 
database location, we can re–determine Yd using the exact measurement 
of Hd. 

First we convert μYd 
into μYs,d

, using the total system size of the PV 
systems population in the database on that day. Then, we make the 
assumption that the mean specific yield μYs,d 

must correspond to the 
mean irradiation (μHd

) observed on that day in the Netherlands. 
Therefore, for a system at a location j, we can read off once again Hd,j and 

Fig. 3. Distributions of Yd for all database PV systems (according to scenario 1) on the Summer and Winter solstices and the Spring and Autumn equinoxes. These 
energy production distributions are calculated using Monte Carlo sampling, using Eqs. (7)–(10). 

5 For an explanation on what reliable means, we refer the reader to Appendix 
A for further reading regarding data cleaning. 
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calculate its offset relative to μHd 
and offset Ys,d j accordingly (Eq. (11)). 

It is then possible to aggregate each system to a regional level of our 
choosing such as a municipality, given by Eq. (12). We discuss our 
regional results in Section 5.2. 

Ys,d j = μYs,d
+ μYs,d

(
Hd,j

μHd

− 1

)

, (11)  

Yd,mun =
∑Nd,mun

j=1
Ys,d jPj. (12)  

4. Representativeness 

From the description of our method so far, it is clear that any results 
we compute for Yd and Ya will be strongly driven by the composition of 
the PVOutput sample on any given day i.e. pd(Ys|H). For example: in 
appendix A we described that our daily PVOutput samples fluctuate 
daily, i.e. each day does not contain the same number or type of systems 
(see blue line in Fig. 4). This is due to the data cleaning process: very few 
systems reliably deliver data 100% of the time. We are therefore esti-
mating Yd on the basis of populations that are not directly comparable. 
Were we to construct a method that could make these samples very 
similar over all the days of the year, we would still be faced with another 
issue, namely deciding what the true population of PV systems looks like 
and adapting the PVOutput samples accordingly. We already briefly 
explored this in Section 3.1.1, when talking about our decision for the 
prior pd(x|H). 

In this section, we therefore propose two refinements to our method 
allowing us to address these challenges. In Section 4.2 we outline a 
sensitivity analysis: what is the effect on the computation of Yd and Ya 
when selecting different priors (or subpopulations)? Before doing so, we 
first define a method in Section 4.1 which allows us to re–weight pd(Ys|

H) such that the same populations are contained within each pd(Ys|H) of 
the entire year. To make any progress on either of these refinements, we 
need to determine which variables characterise the population. In Sec-
tion 1.1 we already highlighted that x = {ϕ, θ, ∊} and (l, b) of the PV 
systems will influence the determination of Yd and Ya. 

4.1. Re–sampling PVOutput 

New PV systems are continually placed throughout the year, with a 
peak in the Spring and Summer months(SN, 2019). This means, at least 
in theory, that the distributions of system variables ϕ, θ and ∊ can vary as 
a function of time. In the absence of these distributions, we argue that 
they can be assumed to remain constant in time. This we motivate 
through large number statistics: if a large population already exists with 
some distribution p(x), and a small – relative to the total already present 
– new number of systems is continually placed, then it seems probable 

that these effects will average or smooth out. An obvious exception to 
this would be a large solar park which started generating energy from 
one day to the next and had a set up capable of heavily skewing p(x). 
While our assumption would seem to hold over the course of different 
days, it is less obvious whether this should be the case over several years. 
Past research has also investigated the issue of representativeness e.g. 
Killinger et al. (2018) derive probability distribution functions for ϕ,θ, 
capacity and Y. Unfortunately, in the case of the Netherlands, this is 
based largely on PVOutput data (75% of PV systems) supplemented 
with other smaller data sources. 

4.1.1. Re–sampling ϕ, θ and ∊ 
Making days consistent with each other, in terms of x can be ach-

ieved by choosing a ground truth for p(x) and adjusting pd(x) accord-
ingly. Rather than inventing p(x), we can choose it to be p1(x): the 
distribution on the first day of the year:6 

pd(ϕ, θ, ∊) ∼ p1(ϕ, θ, ∊), where 1 < d⩽365. (13)  

Integer weighting can be used to satisfy Eq. (13): certain systems are 
randomly selected more than once, while others may be dropped. This 
process is repeated until Eq. (13) is satisfied. Our choice for integer 
weighting, as opposed to floating point weighting, is motivated by the 
fact that PV systems are discrete quantities. If we adopted floating point 
weights, this would produce odd situations whereby systems can be 
partially duplicated or discarded. To satisfy Eq. (13), we can bin a 
PVOutput variable x according to Eq. (16). Then, summing all these 
bins for variable x, we satisfy Eq. 17, which must always equal one. 
Finally xi and xi+1 in Eq. (16) are defined by Eq. 15, which does nothing 
more than defining the lower and upper limits of bin i for a given bin size 
Δx. Finally, the number of bins is defined by Eq. (14). 

Nbins =
xmax − xmin

Δx
, (14)  

xi =
∑Nbins

i=1
xmin + iΔx, (15)  

pi(x) =
1
N

∑N

n=1

⎧
⎨

⎩

xi < xn < xi+1 1
else 0, (16)  

pd(x) =
∑Nbins

i=1
pi(x) = 1. (17)  

Fig. 4. Timeseries of the number of reliable PV systems (after data cleaning is performed) for 2016 (blue), along with an integer weighted set (green). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

6 In the case of 2016 this is in fact 366 since this is a leap year. This also 
applies to Eq. (18) 
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4.1.2. Re–sampling H 
Now we must account for one final variable: pd(l,b). With the aim of 

making pd(Ys|H) as accurate as possible, the geographic number density 
of systems in PVOutput should match the density observed in the 
database. If, for example, 40% of the PVOutput systems, used to 
construct pd(Ys|H), lie in the West of the country on day d, while in the 
database this is 20%, then our estimation of Yd could end up being too 
optimistic or pessimistic depending on the weather on that day. 

In practice, it’s very difficult to apply integer weighting to pd(l, b), 
since one would have to agree on bin sizes for (l,b). Such aggregation bin 
sizes would have to change daily depending on the weather (or H): on a 
perfectly sunny day over the whole country (e.g. 13 September in Fig. 2), 
it could make sense to define one bin for (l, b) encompassing the whole 
country, whereas on a day with a lot of local weather effects, a different 
aggregation level would be necessary. Since the sample size of 
PVOutput is too small in any case to split it up into smaller portions, we 
can use a proxy for (l, b), which is H itself. We can apply integer 
weighting to H observed in PVOutput such that its distribution satisfies 
the distribution in the database D, given by Eq. (18)): 

pd(H) ∼ Dd(H), where 1⩽d⩽365. (18)  

4.1.3. Integer Weighting: Discussion 
Table 1 shows the minima, maxima and bin sizes for ϕ, θ, ∊ and H. It 

should be noted that bins for ∊ do not correspond to anything physically: 
0 means ∊ = 1, − 1 means ∊ > 1 and 1 that ∊ < 1. Our choice for the 
other bin sizes is motivated by practical limitations: Δϕ = 45◦ because 
PVOutput only allows the input of four cardinal and four intercardinal 
directions. We choose Δθ = 15◦ such that we retain a statistically sig-
nificant number (∼ 100 − 200) of PV systems per bin. We choose ΔH =

0.5kWh/m2 since this is what we already decided earlier on in Section 

3.4 when combining Hd and Yd (see Fig. 2). 
We draw the reader’s attention to the fact that our earlier decision 

for integer weighting means we cannot exactly satisfy Eqs. 13 and 18. 
This is why we allow for a leeway of 1.5% when trying to satisfy these 
equations. The choice for this number is a pragmatic one: it is lenient 
enough to allow us to efficiently implement our procedure, but strict 
enough that the equations are almost exactly satisfied. Fig. 4 shows the 
effect of integer weighting: On some days, the overall number of systems 
increases while on most days the set decreases. Fig. 5 shows p1/6/16(ϕ, θ,
∊) and p1/6/16(H), which have been re–sampled so they satisfy Eqs. 13 
and 18. 

As stated above, the procedure of integer weighting has the conse-
quence that the two constraints in practice will never both be satisfied 
exactly. By making these constraints ‘softer’, i.e. allowing an interval 
around an exact match, they become probabilistic in nature, so that it is 
advisable to generate multiple realisations of the distributions, all within 
that small allowed interval. Given that each realisation is itself a sample 
of between 800 and 1400 instances, a modest number of 50 realisations 
of the distributions is sufficient to ensure that an average over that 
ensemble of distributions can be used for this analysis. 

4.2. Choosing different priors 

We now return to our second refinement. In Eq. (6) of Section 3.1.1, 
we saw that it is possible to evaluate p(Ys|H) as the marginal likelihood, 
with a prior p(x|H). We can now decide to make different selections for 
p(x|H) and propagate these through in our calculations. For example, 
what will Yd and Ya be if only all South–facing systems are selected? 
Experimenting with different choices of p(x|H) will give us a sense of 
how much our current estimates at SN could vary depending on what the 
true specifics are of the Dutch PV system population. 

4.3. Schematic summary of method 

We summarise our methodological framework from Sections 3 and 4 
for the reader:  

1. Make a choice for the prior p(x|H), e.g. all systems face South.  
2. Select all systems in PVOutput on 1 January that satisfy p(x|H). 

Table 1 
Minima, maxima and bin sizes for the four different parameters: ϕ, θ, ∊ and H.  

parameter min max Δ parameter  

ϕ  0◦ 360◦ 45◦

θ  0◦ 90◦ 15◦

∊  − 1 1 1 
H min(H) max(H) 0.5kWh/m2   

Fig. 5. p1/6/16(ϕ, θ, ∊) and p1/6/16(H), integer weighted w.r.t. p1/1/16(ϕ, θ, ∊) and p1/1/16(H), according to scenario 1. Integer weighting is performed by satisfying Eq. 
(13) (ϕ, θ and Np) and Eq. (18) (H). 
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3. Re–sample such that pd(ϕ, θ, ∊) ∼ p1(ϕ, θ, ∊) for day 1 < d⩽365 
and pd(H) ∼ Dd(H) for day 1⩽d⩽365.  

4. Repeat step 3, 50 times.  
5. Randomly select one of the 50 ‘realisations’ of pd(Ys|x) and insert 

into pd(Ys|H).  
6. Calculate pd(Y).  
7. Repeat the last two steps 500 times.  
8. Estimate μYd 

and σYd .  
9. Aggregate to time frame of choice: daily or annually.  

10. Convert national estimates to regional estimates, for any given 
choice of p(x|H), by comparing local H to μHd 

and offsetting local 
Ys,d accordingly.  

11. Aggregate to spatial frame of choice: municipality. 

5. Results and Discussion 

5.1. Daily and annual national energy production 

We present the results of the various different ‘scenarios’ – or 
different choices for our prior: p(x|H) – in Table 2. The choice for these 
specific scenarios is driven by their feasibility: PVOutput samples are 

not very large and so we are limited to those scenarios which retain 
enough systems. For example, determining Yd and Ya by selecting only 
North–facing systems (ϕ = 0◦) would only leave a handful of systems. 
With the exception of scenario 1, which takes p(ϕ, θ, ∊) as a given, the 
other scenarios explore different choices for ϕ (scenarios 2–6), θ (sce-
narios 7–9) and ∊ (scenarios 10–13). Scenarios 14 and 15 explore 
combinations of all three different parameters. 

Scenario 2, closely followed by 15, shows the slargest Ys,a, which is 
consistent with the expectation that South–facing systems outperform 
other set–ups. Restricting θ to a more optimal angle range (scenario 15) 
at the expense of relaxing ϕ, gives similar results though. Scenario 15 
outperforms scenario 14 by a small margin, suggesting that a smaller Pi 
could be beneficial. Scenario 6 delivers the poorest Ya, which is unsur-
prising, given that all South–facing systems are excluded. A final note-
worthy mention is scenario 7: restricting PV systems to near–flat or fully 
flat systems, produced the second lowest Ya, presumably due to low 
solar elevation angles in Winter. The Ya of the other scenarios lie in 
between these extrema. Fig. 6 shows Yd for 2016 according to the best 
performing scenario 2. This visualisation nicely demonstrates what the 
differences are in Yd in Summer compared to Winter. It is worth noting 
that a high–irradiation Winter’s day delivers relatively high Yd 

Table 2 
Ys,2016,Y2016,Ys,2017 and Y2017 (with 1σ uncertainty margins) for 15 different scenarios.  

Sc ϕ  θ  ∊  Ys,2016  Ys,2017  Y2016  Y2017      

(kWh/kWp) (kWh/kWp) (GWh) (GWh) 

1 ∀ ∀ ∀ 910 ± 0.14  868 ± 0.19  1632 ± 0.26  2131 ± 0.49  
2 = 180◦ ∀ ∀ 946 ± 0.16  899 ± 0.21  1697 ± 0.30  2209 ± 0.52  
3 {135◦..225◦} ∀ ∀ 927 ± 0.14  882 ± 0.20  1663 ± 0.26  2168 ± 0.49  
4 {90◦..180◦} ∀ ∀ 929 ± 0.14  885 ± 0.20  1668 ± 0.26  2176 ± 0.49  
5 {180◦..270◦} ∀ ∀ 921 ± 0.15  877 ± 0.19  1652 ± 0.28  2154 ± 0.48  
6 ∕= 180◦ ∀ ∀ 877 ± 0.16  838 ± 0.21  1573 ± 0.29  2059 ± 0.51  
7 ∀ {0◦..30◦} ∀ 895 ± 0.18  860 ± 0.22  1605 ± 0.32  2113 ± 0.55  
8 ∀ {30◦..90◦} ∀ 920 ± 0.14  872 ± 0.20  1652 ± 0.26  2143 ± 0.50  
9 ∀ {30◦..45◦} ∀ 923 ± 0.16  875 ± 0.21  1656 ± 0.29  2150 ± 0.51  
10 ∀ ∀ {1} 903 ± 0.15  860 ± 0.21  1619 ± 0.27  2114 ± 0.52  
11 ∀ ∀ { − 1} 921 ± 0.20  875 ± 0.25  1652 ± 0.36  2150 ± 0.62  
12 ∀ ∀ {0,1} 905 ± 0.14  864 ± 0.20  1624 ± 0.26  2122 ± 0.48  
13 ∀ ∀ { − 1,0} 922 ± 0.18  879 ± 0.24  1654 ± 0.33  2158 ± 0.59  
14 {135◦..225◦} {30◦..45◦} {1} 938 ± 0.17  889 ± 0.22  1684 ± 0.31  2183 ± 0.54  
15 {135◦..225◦} {30◦..45◦} ∀ 943 ± 0.15  893 ± 0.21  1695 ± 0.28  2195 ± 0.51   

Fig. 6. Yd in 2016, according to scenario 2.  
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especially when comparing to a low–irradiation Summer’s day. 
Fig. 7 shows Yd, during the months of January and July, for scenarios 

2–15, normalised w.r.t. Yd from scenario 1. The y–axis is thus an index 
where a number higher than 100, means that particular scenario led to a 
higher Yd than scenario 1 and vice versa. We include this figure because 
it says something about the validity of our model. We highlight one of 
many interesting patterns from this figure to illustrate our point. Sce-
nario 7 can be contrasted with the other scenarios, for the two months in 
questions. It can be seen that this set–up leads to lower and higher Yd in 
January and July respectively, which is wholly consistent with the fact 
that these are low tilt systems. The less than optimal θ of these systems 

acts differently in the Summer with the negative effects in the Winter 
mitigated by a bonus in the Summer. We draw the reader’s attention to 
the fact that for some scenarios, one can indirectly deduce the weather 
on that day: when contrasting scenarios 2, 3 and 4 with each other in 
July, one can see whether the weather was better in the morning, in the 
afternoon or the same. These observations support the soundness of the 
presented model. 

The uncertainty margins σYs,a and σYa are on the order of 0.05%. We 
see four possible explanations for these small margins: the PVOutput 
sample is quite small and therefore the variation between the 50 ‘real-
isations’ of the data for any choice of p(x|H) is small. Secondly, the large 
size of the Hd − Yd bins (0.5kWh/m2x0.5kWh/kWp) when evaluating 
pd(Y|H), can cause a lot of smaller scale effects to smooth out. Future 
work could include examining by how much σYa and σYd change as a 
function of the bin resolution. Thirdly, differences on a micro level can 
average out due to the very large size of the PV systems database, which 
contains hundreds of thousands of entries. This is further compounded 
by the fact that differences in Yd will average out anyway when aggre-
gating to Ya. This is confirmed by the observation that σYd is an order of 
magnitude higher than σYa . Finally, we would like to remind the reader 

Fig. 7. The ratio of Ys,d,2− 15/Ys,d,1 for January (top) and July (bottom).  

Table 3 
Comparison of monthly to annual energy production ratios (Ym/Ya) in 2016 for scenario 1 and the large PV systems in Certiq.  

2016 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

scenario 1 2.5 4.9 8.1 11.6 13.9 11.9 13.2 12.5 10.6 5.8 2.9 2.2 
CertiQ 2.5 4.7 8.0 11.5 14.2 12.5 13.5 12.4 10.1 5.6 2.9 2.2  

Table 4 
Ys,a according to SolarCare (Solar Magazine, 2020), SN and our research.  

Year SolarCare (kWh/kWp) SN (kWh/kWp) This research (kWh/kWp) 

2012 900 875 n.a. 
2013 890 875 n.a. 
2016 920 875 910 
2017 880 875 868  
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that a bias is possible due to the choices we made when we cleaned the 
data. 

Now we turn to the underlying assumptions that have been made 
throughout this paper w.r.t. Monte Carlo sampling. This type of sampling 
assumes that observations are independently and identically distributed 
(i.i.d.). It is possible that on the micro level i.i.d. is not fully satisfied due 
to correlations that can arise e.g. in a street with terraced houses facing 
the same way, it is probable that Ys,d is quite similar for all of the PV 
systems (assuming ∊ and other factors are negligible). Our method does 
not take these correlations into account. We would argue that the degree 
to which such correlations matter, depends on what aggregation levels 
one selects for Yd. Since it is not our goal to present results for Yd on a 
micro–level, we argue that this effect must average out on a national 
level, where hundreds of thousands of database PV systems are gener-
ating energy. In this regime, p(Ys|H) and p(H) will be the far more 
dominant factors when determining μYd

. If, for example, we are missing 
an important subpopulation of PV systems in p(Ys|H), this will have a 
rather larger impact. We briefly return to i.i.d. in Section 5.2, when 
discussing our regional results. 

5.1.1. Comparison with Statistics Netherlands figures 
Our results for 2016 are consistently higher than those currently 

measured by SN: 877⩽Ys,2016⩽946kWh/kWp and 
1605⩽Y2016⩽1697GWh. We remind the reader that these should be 

contrasted with SN’s estimate of Ys,2016 = 875kWh/kWp and Y2016 =

1602 GWh (SN, 2020). The result is even more significant, given that the 
lower range of 877kWh/kWp corresponds to an unrealistic set up: no 
South–facing panels (scenario 6). The picture is more mixed for 2017: 
838⩽ Ys,2017⩽899kWh/kWp and 2059⩽Y2016⩽2209 GWh, with Ys,a lying 
somewhere within our estimated range. 

5.1.2. Comparison with CertiQ and SolarCare 
In Section 2.3 we mentioned that SN also has Ym measurements for ∼

1800 large PV systems (CertiQ). Unfortunately the specifics such as ϕ, θ 
and ∊ are unknown. Indeed this is the reason we chose not to include the 
data source in our method, preferring to use it as a form of validation. 
Table 3 shows our calculations for Ym/Ya for PVOutput (according to 
scenario 1) and CertiQ. While the Winter months seem to be spot on, 
there are small discrepancies for the Summer months, with PVOutput 
showing lower Ym, where June and September have the most striking 
offset. We see two possible explanations for this. Firstly, the configura-
tion of the large PV systems may be more optimal (e.g. ϕ), thus deliv-
ering better Ym in the Summer months. Secondly, panel temperatures 
are likely to be higher on roofs than in fields, resulting in lower con-
version efficiencies (typically 5–10% lower), and thus Ym (Drews et al., 
2007). Finally, we note that Ys,2016 = 904kWh/kWp, which we obtain 
from CertiQ data, is in close agreement with PVOutput’s scenario 1: 
Ys,2016 = 910kWh/kWp. 

Fig. 8. The performance ratio (Ys,m/Hm) for 2016 (blue) and 2017 (green). (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 

Fig. 9. Ys,2016 (left) and Ys,2017 (right) per Dutch municipality according to scenario 2.  
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SolarCare (Solar Magazine, 2020) publish results for Ys,a and are 
summarised in Table 4. These figures are based on some 2500 PV sys-
tems across the whole country, making their estimates very robust and 
worthy of comparison. We notice a small offset for 2016 and 2017 of ∼
10kWh/kWp between SolarCare and our results, with our results a little 
more conservative. Our results are therefore broadly in line with those 
recorded in CertiQ and SolarCare. 

5.1.3. Comparison between 2016 and 2017 
Our measurement of Ys,2016 seems to be consistent with the – higher 

than 30 year average – measurement of H2016 = 1039kWh/m2, as 
recorded by the KNMI’s central weather station: De Bilt (please see 
Section 1.1 for more information regarding the 30 year average) (KNMI, 
2017; KNMI, 2013; KNMI, 2014). This cannot be said for Ys,2017, which, 
despite a higher than average irradiation (1020kWh/m2) (KNMI, 2018), 
remains rather average when comparing to SN’s Ys = 875kWh/kWp. 
Fig. 8 shows the monthly performance ratio PRm = Ys,m/Hm, using Hm as 
was measured at De Bilt, for 2016 (blue) and 2017 (green), according to 

scenario 1 (see e.g. Reich et al. (2012) for more information regarding 
the performance ratio). In this figure, it is striking that PRmay and PRjun 

are lower in 2017 than 2016, suggesting the conversion of H to Y seems 
to have been less efficient. We note that June 2017, in particular, was an 
abnormally warm month with eight Summer days (Tmax > 25◦C) and 
two tropical days (Tmax > 30◦C). From the weather records, it appears 
that June 2017 was the warmest June month on record KNMI (2017). 
June 2016 contained five Summer days, consistent with the average 
number expected in June. From the literature it is known that panel 
efficiency drops with about 0.4% per ◦C. For a sunny day with high 
ambient temperature a panel on a roof can reach 80◦C, thus leading to a 
relative reduction of 25% in efficiency (see e.g. Figure 5 in Drews et al. 
(2007)). We therefore hypothesise that a possible temperature effect was 
responsible for the decrease in Y2017. 

5.2. Daily and annual regional energy production 

Fig. 9 shows Ys,mun for 2016 and 2017, as a result of calculating Eqs. 

Fig. 10. Ys,d per Dutch municipality for each day in June 2016.  
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11 and 12. These figures validate our model because it shows patterns 
one expects: coastal regions enjoy more sunshine and therefore also 
higher Ys,a or Ya. The lower Ys,2017 compared to Ys,2016 is also entirely 
consistent with other results (see Section 5.1). The overall pattern of Ys,a 

looks similar between 2016 and 2017. Finally Fig. 10 shows the Ys,d,mun 

for every day in June 2016, showing a large variation in the daily 
patterns. 

While our method is constructed in such a way that we produce Yd 
per database location, we would like to emphasise that this does not 
mean that we can accurately predict Yd produced at any location in the 
Netherlands. Rather, the point of our method is that, when aggregated to 
sufficiently large enough areas, we expect Yd,mun on those levels to come 
close to reflecting reality, should the PV systems be installed according 
to the scenario set–ups as specified in Table 2. Even then, it should be 
noted that if the relative share of e.g. a large solar park is high compared 
to household PV systems in a given municipality, then this could influ-
ence the measurement of Yd,mun. In light of the earlier discussion on i.i.d., 
it should be noted that re–computing the energy production locally in 
this fashion, accounts to some degree for the correlations we mentioned 
earlier. 

We remind the reader again of the fact that G is only provided when 
the solar elevation is higher than 12◦. This means that the offsets that are 
calculated in Eq. (11) become more uncertain the closer we get to the 
Winter solstice: the Sun’s highest elevation angle keeps reducing, 
meaning that larger portions of the day will not be captured in the totals 
of Hd. It is, for example, possible that Ys,d j ≈ μYs,d

, but that there was a 
lot more Hd,j than average in the early morning and late afternoon, 
which would increase Yd,j. This is not captured in our method. Future 
work could include supplementing these irradiance data with ERA5 data 
(Hersbach et al., 2019) for low elevations periods, thus obtaining com-
plete irradiance measurements. Finally it should be noted that the 
calculation of Eq. (11) assumes Hd,j acts on Yd,j in the same way, 
regardless of the location. This also need not be true, since other local 
weather factors, especially temperature, could have an effect on Yd,j. 

6. Conclusion and summary 

We have presented a new method, in the form of a classical esti-
mation problem, to determine the daily, annual, national and regional 
energy production generated by photovoltaic systems. This new method 
is validated by applying it to the situation of the Netherlands. We 
combined information from two different types of data sources. The first 
was a non–probability sample of solar energy production measurements 
in the form of citizen science on the online portal PVOutput. The second 
was high resolution irradiance data, derived from satellite based ob-

servations, obtainable from the Royal Netherlands Meteorological 
Institute. By matching these two data sources on their location, we 
generated daily probabilistic functions indicating the most likely spe-
cific daily yield, as observed in PVOutput, given the irradiation. These 
functions were applied to our database containing almost all PV systems 
in the Netherlands, producing daily and national energy production 
estimates, whose uncertainties were estimated through Monte Carlo 
sampling. The national figures were converted to regional estimates, by 
comparing the local and mean irradiation observed and offsetting the 
energy production proportionally. 

The effect of choosing different priors, relating to the distributions of 
azimuth, tilt and inverter loading ratio of the systems, was explored for 
the daily and hence annual energy production estimates. For 2016, we 
found specific annual yields in the range of 877 − 946kWh/kWp, which is 
consistently higher than 875kWh/kWp used in the current method. For 
2017, Statistics Netherlands may have overestimated the energy pro-
duction, since we found specific yields in the range of 
838 − 899kWh/kWp. These results highlight, in the case of the 
Netherlands, the need for a specific yield to be determined on a daily and 
annual basis which is a function of the irradiation. More generally, our 
developed method may be applied in a variety of different national and 
regional contexts, provided similar or the same data sources are present. 
The outcomes of this method can be of great use for policy making at a 
regional level, where efforts are often undertaken to stimulate renew-
able energy initiatives. 
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Appendix A. Data Cleaning and Processing 

A.1. PVOutput 

We identified two data cleaning challenges for PVOutput. The first was uniformising and correcting the metadata such that apparently similar 
quantities, inputted by different owners, mean the same thing. The second involved analysing the real–time PVOutput data to determine how realistic 
the data is, also in relation to the metadata. 

Uniformising and correcting the metadata. While most variables are reasonably consistent (e.g. ϕ is limited to choosing a cardinal or intercardinal 
sign), the reliability of some other variables is less clear e.g. Pp,Np and P. If inputted correctly, then P = Np⋅Pp; however, for about 10% of all PV 
systems, this was not the case. To resolve this, we chose P to be the more reliable variable, on the assumption that PVOutput owners were more likely 
to make a mistake concering Np or Pp. 

Since PVOutput contains two types of co–ordinates: pc4 and (l,b), we check the reliability of both of these by comparing them to each other. Postal 
codes in the Netherlands consist of four digits (pc4), followed by two letters. The pc4 provided in PVOutput, narrows the locations down to a spatial 
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area of ∼ 1 − 8km2. The (l, b) allow for pinpointing an exact location. For each PVOutput location, we calculated the distances between (l, b) and the 
pc4 centroids. For about 5% of these systems the distance is more than 5 km. Manual inspection of the pc4 – (l, b) distances for a few municipalities 
shows an interesting pattern: half of the households took the effort to indeed specify (l, b) nearby their dwelling, whereas the other half seems to have 
chosen a generic (l, b) based on the municipality. These findings led us to retain the pc4 centroid as the location at the expense of losing – in some cases 
– more accurate information from (l,b), where we assume that owners are more likely to know what their pc4 is. This level of precision is also sufficient 
for our research goals. Fig. 11 displays the pc4 – (l, b) distances for the reliable set (see next section) of systems in 2016. 

Constructing a reliable set of measurements per day. Having corrected the metadata, we now turn to the measurements. Two examples of PVOutput 
Y-profiles can be seen in Fig. 12 (blue lines). We devise four different quality criteria, which are performed per PV system and day. Daily measurements 
are deemed reliable if they pass all four checks. 

In Section 3.1.1 we saw that two different energy measurements are provided by PVOutput: Yinst and Ycum. The reliability of the latter can be 
checked by re–calculating the cumulative measurements (Ycum,calc.), using the former (Eq. (A.1)). A measurement is deemed acceptable if it satisfies Eq. 
(A.2), i.e. allowing for a 10% relative difference with Ycum,calc. The second check involves identifying the peak energy per day of a system (Pinst,peak) and 
checking it makes sense when comparing to P quoted in the metadata (Eq. (A.3)), allowing for a value exceeding P by 20%. The second criterion could 
be too harsh on some days when cloud–induced superirradiance is capable of temporarily producing Pinst,peak which is higher than P (Zhang et al., 
2018). We decide not to take this into account as it is difficult for us to ascertain when this local effect may be occurring. 

Ycum,calc. =
∑N

n=1
YinstΔt (A.1)  

0.9Ycum < Ycum,calc. < 1.1Ycum (A.2)  

Pinst,peak⩽1.2P (A.3)  

The third quality check (Eq. (A.4)) examines the time intervals (Δt) between each Yinst on a given day. Some PV systems suffer from measuring gaps e. 
g. a system may measure Yinst consistently, during several hours, with Δt = 5min, before recording a gap e.g. Δt = 2 h. This check, in turn, influences 
quality check number one (Eq. (A.1)). The final check sees if there is a measurement for each day of the year for a given PV system (Eq. (A.5)). 

Δt⩽15min (A.4) 

Fig. 11. PC4 centroid–lat/lon distances for the reliable set of PV systems in 2016.  

Fig. 12. G (orange) and Y (blue) at two different locations on 19/05/2016. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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Nmeas > 0 (A.5)  

It should be noted that the decision to remove PV systems for certain days resulting from Eqs. A.4 and A.5 is not straightforward. We cannot ascertain 
whether the gaps or missing days are as a result of Wi–Fi stability issues and/or malfunctioning software or whether the PV system is really not 
producing any energy or has been turned off. The blue line in Fig. 4 shows the number of systems per day for 2016 after data cleaning is performed. 

A.2. Dutch meteorological weather data 

We do not perform data cleaning on the KNMI irradiance data, since these have been thoroughly checked by KNMI itself. Having downloaded the 
quarterly hour Gk data, we aggregate Gk to daily irradiation totals Hd (Eq. (A.6)), following the same procedure as Eq. (A.1). 

Hd =
∑K

k=1
GkΔt (A.6)  

where Δt = 15min. We notice that, occasionally, an Gk is missing and we therefore adapt Δt in Eq. (A.6) accordingly. We decided not to compare 
modelled G data with weather station G data because this has already been done in (Greuell et al., 2013), who showed that discrepancies between the 
two are minimal and negligible. Fig. 1 shows Hd for two consecutive days in June 2016, nicely illustrating the effect of different weather conditions. 

Appendix B. Linking PV systems to irradiance grid cells 

PVOutput systems or database systems are linked to irradiance grid cells in exactly the same way. Firstly, all addresses within a pc4 area are 
approximated to the centroid of that area in geographic co–ordinates (l, b)k (Eq. (A.7)). Using the Haversine formula (Rios et al., 1797), the (l, b)k and 
(l, b)j (cell centroids of H) distances may be calculated, thus identifying the closest cell (Eq. (A.8)). 

pc4k ∼ (l, b)k, (A.7)  

dk = min
Ncells

j=1
|(l, b)k − (l, b)j|, ∀k ∈ [1,Npc4]. (A.8)  

This approach makes two assumptions. Firstly, the assignment to the nearest grid cell is correct. Secondly, weather behaves according to the resolution 
size of a grid cell H. The first will not always hold since pc4 areas can range from ∼ 1 to 8 km2 in size (Kaal and Vanderveen, 2007), because these are 
effectively a proxy for population density. Since the grid cells of H are 3x6 km2 in size, it is conceivable that locations in larger pc4 areas are not always 
linked correctly. The second assumption will not always hold because weather can be more local than the resolution of a grid cell H. This is illustrated 
by Fig. 12, where at the first location (left panels) Y closely follows H. At the second location (right panels) this is also broadly the case, but it is also 
obvious that more local effects can be seen in Y, which are not captured by H. 
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