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Abstract
A number of compactifications familiar in complex-analytic

geometry, in particular the Baily–Borel compactification and its
toroidal variants, as well as the Deligne–Mumford compactifica-
tions, can be covered by open subsets whose nonempty intersec-
tions are classified by their fundamental groups. We exploit this fact
to define a ‘stacky homotopy type’ for these spaces as the homo-
topy type of a small category. We thus generalize an old result of
Charney–Lee on the Baily–Borel compactification ofAg and recover
(and rephrase) a more recent one of Ebert–Giansiracusa on the
Deligne–Mumford compactifications. We also describe an extension
of the period map for Riemann surfaces (going from the Deligne–
Mumford compactification to the Baily–Borel compactification of
the moduli space of principally polarized varieties) in these terms.

1. Introduction

In a remarkable, but seemingly little noticed paper [3], Charney and Lee described
a rational homology equivalence between the Satake–Baily–Borel compactification of
the moduli space of principally polarized abelian varieties Ag, denoted here by Abb

g ,
and the classifying space of a certain category which has its origin in Hermitian K-
theory. They exploited this to show that if we let g → ∞, the homotopy type of this
classifying space, after applying the ‘plus construction’, stabilizes and they computed
its stable rational cohomology. In a similar vein, they determined the homotopy type
of the Deligne–Mumford stack of the moduli spaces Mg of stable curves [4], a result
which was later extended by Ebert and Giansiracusa [6] to the moduli spaces Mg,n

of stable pointed curves.
In this paper we put results of that type in a transparent, conceptually natural

framework. One of the advantages of our approach is that it allows us to easily gen-
eralize and/or reprove all of them. For example, it is flexible and powerful enough
to treat the Baily–Borel compactifications of all locally symmetric varieties in a uni-
form manner. Admittedly, this requires good grasp of the Satake extension and its
topology (which we briefly review in Section 4), but the pay-off is that this enables
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us to take the most straightforward approach by working directly with that exten-
sion. From our point of view it is somewhat unnatural to invoke (as did Charney
and Lee) the Borel–Serre compactification as an auxiliary tool; indeed, avoiding it
simplifies matters even in the case they treated (Ag). Our technique also applies to
torus embeddings and the toroidal compactifications of locally symmetric varieties,
as well as to the semi-toric embeddings developed in [8] which interpolate between
the latter and the Baily–Borel compactifications. And although our focus is here on
locally symmetric varieties, our set-up also accommodates the natural compactifica-
tions that are defined for a locally symmetric space (not necessarily a variety), such as
its various Satake compactifications and its reductive Borel–Serre compactification.

An important feature is its functoriality, which enables us to identify the homotopy
type of natural morphisms between such compactifications. For example, if V is a
finite dimensional Q-vector space, then the symmetric space of SL(VR) is realized as
the space of inner products on VR given up to scalar. A rational boundary component
(for one of its Satake extensions) is the space of inner products up to scalar on the
realification of a nonzero proper Q-subspace of V . If we take V = Qn, n = 1, 2, . . . ,
and denote by Sn the SLn(Z)-orbit space of this symmetric space, then we find that
the compactification of Sn thus obtained is a stratified compact Hausdorff space S∗

n

whose strata are S0, . . . , Sn. We thus obtain a closed embedding S∗
n ↪→ S∗

n+1 and our
results give a precise description of the homotopy type of the mapping telescope of
this system. (We will discuss the very similar case for the varieties Ag in detail.)

All these compactifications have the property that they can be obtained as orbit
spaces of stratified spaces with respect to an action of a discrete group. Usually,
though, the stratification is not locally finite, the space is not locally compact and
the action of the group is not proper. Yet, somewhat miraculously, these drawbacks
cancel each other out when we pass to the orbit space, which turns out to be a locally
compact Hausdorff space after all (for the simplest nontrivial example see 2.8).

The good feature that is common to these cases is that the strata are contractible.
This leads to an open covering of the orbit space that is closed under finite intersec-
tions and whose members are ‘virtual’ Eilenberg–MacLane spaces. In particular, the
orbit space comes as a stratified space whose strata have naturally the structure of
an orbifold. This makes that its homotopy type has features that go beyond that of
an ordinary homotopy type and in fact, make it look like that it is dominated by the
homotopy type of a stack. One of the main results of the paper (Theorem 2.7) formal-
izes the type of input on which such a structure is present and then yields as output
what we call the stacky homotopy type of the orbit space, defined to be the homotopy
type of the classifying space of the category. But we do not know whether there is
here naturally defined a stack of which it is the homotopy type (see Remark 2.4 for
a discussion of this issue). Our set-up is reminiscent of—and indeed inspired by—the
construction of an étale homotopy type. On a superficial level there is also some sim-
ilarity with the classical Borel construction, but the construction we present here is
quite different in nature.

We regard the application to Satake compactifications as the central result of this
article and expect its main applications to be situated in this area. For this reason,
we state the theorem in this context now and then return to the introduction proper
by giving a brief overview of the paper’s contents.

For this we need some notions (such as the stacky homotopy type) that we explain
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in detail elsewhere in this article. Let G be a connected reductive linear algebraic
group defined over Q whose center is anisotropic over R (which means that the Lie
group G underlying G(R) has compact center) and is such that G modulo its center is
Q-simple. Assume that the symmetric space X of G (‘the space of maximal compact
subgroups of G’) comes with a G-invariant complex structure so that X is a bounded
symmetric domain and let Γ ⊆ G(Q) be an arithmetic subgroup. The orbit space
Γ\X is a priori an analytic orbifold, but the Satake–Baily–Borel theory asserts that
it admits a natural compactification as a normal projective variety. As we shall recall
below, this compactification is obtained as an orbit space Γ\Xbb, where Xbb ⊇ X is
the Satake extension.

Let P∗
max(G) denote the collection of Q-subgroups of G consisting of the maximal

proper Q-parabolic subgroups of G and of G itself. It is a fact that a member P ∈
Pmax(G) is completely determined by the center of its unipotent radical UP (this is a
vector group which is trivial only when P = G) and this leads us to define a partial
ordering on P∗

max(G) letting P ⩽ P ′ to mean that UP ⊇ UP′ (so that G ⩽ P for all
P). For every P ∈ P∗

max(G) we define in Section 4 its link subgroup Pℓ ⊆ P; it suffices
to say here that this group acts trivially on the rational boundary component defined
by P. We make P∗

max(G) the set of objects of two categories:

Definition 1.1. The orbit category SΓ of the pair (G,Γ) is the small category whose
object set is P∗

max(G) and for which a morphism P → P ′ is given by a γ ∈ Γ with the
property that γPγ−1 ⩽ P ′. The Satake category WΓ of SΓ has the same object set,
but a WΓ-morphism P → P ′ is given by a right coset (Γ ∩ P ′ℓ)γ ∈ (Γ ∩ P ′ℓ)\Γ with
the property that γPγ−1 ⩽ P ′. We have an obvious functor F : SΓ → WΓ.

Theorem 1.2. The classifying space functor applied to the embedding of Γ in SΓ (as
the automorphism group of the object defined by G) is a homotopy equivalence and
so |BSΓ| represents the homotopy type of the analytic orbifold Γ\X. The Baily–Borel
compactification Γ\Xbb of Γ\X comes with a natural structure of a stacky homotopy
type that is represented by |BWΓ| such that the classifying space construction applied
to the functor F : SΓ → WΓ reproduces the stacky homotopy type of the inclusion
Γ\X ⊆ Γ\Xbb. In particular, the map on rational cohomology of this inclusion can be
identified with the one of |F | : |BSΓ| → |BWΓ|.

We continue this introduction with outlining the organization of this paper while
giving at the same time an idea of its content. In Section 3 we recover with little
additional effort the theorem of Ebert and Giansiracusa mentioned above. Our main
theorem is proved in Section 4.

In Section 5, we recover the result of Charney and Lee by taking for Γ ⊆ G the
inclusion of Sp(2g,Z) in the ordinary (Q-split) symplectic group of genus g. (In that
case they also computed the stable rational cohomology, a result we reproduced in
an algebro-geometric manner in the mixed Hodge category in [5].)

We observe in Section 6 that Theorem 2.7 also applies to the toroidal compactifica-
tions of Ash, Mumford, Rapoport and Tai and we illustrate this with the perfect cone
compactification of Ag. We restate their results in a way that brings it closer to those
in this paper and include a sketch of the proof, exhibiting in passing a ring structure
on these stable cohomology groups. We use the occasion to introduce the notion of a
multiplicative set of toroidal data; these define a toroidal compactification AΣ

g of Ag
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for every g in such a manner that the obvious maps Ag ×Ah → Ag+h extend to the
corresponding toroidal compactifications, and our observations are phrased in these
terms.

In the final Section 7 we combine our results for Mg and the toroidal and the
Satake compactifications ofAg to show how the stacky homotopy type of a period map
extension to these compactifications can be given by the classifying space construction
applied to a functor. This among other things links the two relevant papers of Charney
and Lee [3], [4].

Notational conventions.

If a group Γ acts on a set X and A ⊆ X is a subset, then we denote by ΓA ⊆ Γ the
subgroup of elements of Γ that leave A invariant, by ZΓ(A) ⊆ ΓA the subgroup of
elements that act on A as the identity and by Γ(A) the quotient ΓA/ZΓ(A).

As a rule an algebraic group (defined over a field contained in R, usually Q) is
denoted by a script capital, its Lie group of real points by the corresponding roman
capital and the Lie algebra of the latter by the corresponding Fraktur lower case.

Finally, if R is a ring (usually, Z, R or C), and M is an R-module, then Sym2(M) ⊂
M ⊗R M stands for the invariants (rather than the co-invariants of M ⊗R M) with
respect to the involution which interchanges factors.
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2. Grothendieck–Leray coverings

Recall that every small category C defines a simplicial set BC and hence a semi-
simplicial complex (its geometric realization) |BC|. An n-simplex of BC is repre-
sented by a chain C0 → C1 → · · · → Cn of n morphisms in C, the ith degeneracy
map produces the (n+ 1)-simplex obtained by inserting the identity of Ci at the
obvious place and the ith face map is the (n− 1)-simplex obtained by omitting Ci

(when i = 0, n) or replacing Ci−1 → Ci → Ci+1 by the composite Ci−1 → Ci+1 (when
0 < i < n). Its geometric realization |BC| is obtained as follows. Take for every n-
simplex C0 → C1 → · · · → Cn as above a copy of the standard n-simplex ∆n and use
the face maps to make the obvious identifications among these copies. The resulting
space has almost the structure of a simplicial complex with each edge labeled by a C-
morphism (almost, because a simplex is in general not determined by its vertex set).
We subsequently use the degeneracy maps to make further identifications: simplices
having all their edges labeled by the identity of an object of C are contracted so that
in the end there is no 1-simplex with identity label left.

For example, if we regard a discrete group G as a category with just one object
and G as its set of morphisms, then this construction reproduces a model for the
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classifying space of G. That is why we call |BC| the classifying space of C. The
homotopy type of BC will mean the homotopy type of |BC|. Note that for every
object C of C we have a copy of BAut(C) in BC. A functor F : C → C′ induces a map
BF : BC → BC′ and a natural transformation F0 ⇒ F1 between two such functors
determines a homotopy between the associated maps |BF0| and |BF1|. In particular,
an equivalence of categories induces a homotopy equivalence between their classifying
spaces.

Let Y be a locally contractible paracompact Hausdorff space. Assume Y endowed
with an indexed coveringV = (Vα)α∈A by open nonempty subsets that is locally finite
and closed under finite nonempty intersection: if Vα, Vβ ∈ V, then Vα ∩ Vβ is equal to
Vγ for some γ ∈ A, when nonempty. These indexed open subsets define a category V
with object set A for which we have a (unique) morphism α → β when Vα ⊆ Vβ . Any
partition of unity subordinate to the maximal members of V can be used to define
a continuous map Y → |BV|. As Weil showed, this is a homotopy equivalence when
each Vα is contractible.

Suppose now that every Vα is a K(π, 1) instead. More specifically, assume that
for every Vα we are given a covering map Uα → Vα with Uα contractible. Then we
have a category U with again A as object set, but for which a morphism is simply
a continuous map Uα → Uβ which commutes with projections onto Y (so that then
Vα ⊆ Vβ). We have an obvious functor U → V. Notice that for any α ∈ A, AutU(α)
is the group of covering transformations of Uα → Vα and hence is isomorphic to the
fundamental group of Uα. This means that |BAutU(α)| is homotopy equivalent to
Uα. The following theorem is mentioned by Sullivan as Example 3 on page 125 of
[13] who refers in turn to Theorem 2 on p. 475 of Lubkin’ s paper [10] (we thank
Kirsten Wickelgren for pointing out these references).

Theorem 2.1 (Lubkin, Sullivan). In this situation the continuous map Y → |BV|
defined by a partition of unity lifts to Y → |B(U)| and this lift is a homotopy equiva-
lence.

For the applications that we have in mind we need a generalization of this theorem
of a ‘stacky’ nature. To be precise, we assume that Uα is still contractible, but that
we are now given a group Γα acting properly discontinuously on Uα with a subgroup
of finite index acting freely, such that πα : Uα → Vα is the formation of the Γα-orbit
space. Note that Vα is then paracompact Hausdorff.

In case Vα ⊆ Vβ , let us agree that an admissible lift of this inclusion is a pair
(j : Uα → Uβ , φ : Γα → Γβ) for which

(AL1) φ : Γα → Γβ is a group homomorphism,

(AL2) j lifts the inclusion Vα ⊆ Vβ and is equivariant relative to φ, and

(AL3) φ maps the Γα-stabilizer of every x ∈ Uα onto the Γβ-stabilizer of j(x).

Note that Γβ acts on the admissible lifts of Vα ⊆ Vβ by having γ ∈ Γβ send (j, φ) to
(γj, In(γ)φ), where In(γ) is the inner automorphism of Γβ defined by γ. We observe
that if Γβ acts freely on a connected open-dense subset of the preimage of Vα in Uβ ,
then this action is simply transitive.

Definition 2.2. A Grothendieck–Leray atlas U over Y consists of a collection of pairs
(Γα, πα : Uα → Vα)α∈A as above and assigns to every inclusion Vα ⊆ Vβ a Γβ-orbit of
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admissible lifts (j, φ), such that these are the morphisms of a category U : the identity
of the pair (Uα,Γα) defines an admissible lift and the composite of two admissible
lifts is again admissible.

A principal Grothendieck–Leray atlas U over Y is a Grothendieck–Leray atlas
for which these lifts are indexed in a particular way: it consists of giving for every
inclusion Vα ⊆ Vβ a collection of admissible lifts indexed by a principal Γβ-set Iβα :
Φβ

α = (ji, φi)i∈Iβ
α
together with maps Φγ

β × Φβ
α → Φγ

α defined whenever Vα ⊆ Vβ ⊆ Vγ

such that

(GL1) we have Iαα = Γα with 1 ∈ Γα defining the pair (1Uα
, 1Γα

),

(GL2) for i ∈ Iβα and g ∈ Γβ we have jβg(i) = gji and φβ
g(i) = In(g)φi and

(GL3) the map Φγ
β × Φβ

α → Φγ
α is Γγ-equivariant and defines the composition of

admissible lifts.

We often regard U as a small category with object set A such that Φβ
α is the set of

morphisms α → β.

Remark 2.3. A Grothendieck–Leray atlas is automatically principal if each Γα acts
faithfully on Uα, for then the collection of all the lifts Uα → Uβ of Vα ⊆ Vβ are simply
transitively permuted by Γβ and hence form a principal Γα-set.

Remark 2.4. A Grothendieck–Leray atlas gives rise to a Deligne–Mumford stack if
its admissible lifts have the property that in (AL3) φ maps the Γα-stabilizer of every
x ∈ Uα isomorphically onto the Γβ-stabilizer of j(x). Although the structure that we
get in general is weaker, there is a notion of a local chart : given y ∈ Y , then the Vα’s
containing y are finite in number and their intersection is one of them, say Vαo

. We
then stipulate that for every x ∈ παo

−1(y), the pair (Uαo
→ Y, x) defines a local chart.

If α ∈ A is such that y ∈ Vα, then there exists by definition an admissible lift (j, φ) of
the inclusion Vαo ⊆ Vα and φ maps the Γαo-stabilizer of x onto the Γα-stabilizer of
j(x). If this is in fact an isomorphism, then we declare that the pair (Uα → X, j(x))
is also a local chart. But the property of being a local chart need be not open: there
exist examples for which the set of x′ ∈ Uαo

for which (Uαo
→ Y, x′) is a chart fails to

be a neighborhood of x. All we can say a priori is that (Uαo
→ Y, x′) is a local chart

when παo
(x′) lies in Vαo

∖ ∪y/∈Vβ
Vβ . This is a closed subset of Vαo

which contains
y and so this only shows that we have a locally finite partition of Y into locally
closed subsets along which charts ‘propagate’. This phenomenon we encounter for a
Baily–Borel compactifications, where the locally closed subsets of the partition are
the Baily–Borel strata.

We associate to a Grothendieck–Leray atlas as above a homotopy type that we will
refer to as its stacky homotopy type. Let us begin with recalling Segal’s categorical
construction of the universal bundle of a discrete group Γ [12]. Let Γ̂ be the groupoid
whose object set is Γ and has for any two objects γ, γ′ ∈ Γ just one morphism γ → γ′.
Since this category is equivalent to the subcategory represented by the single element
1 ∈ Γ, the space |BΓ̂| is contractible. This category is acted on by the group Γ with
quotient category the group Γ, but now viewed as a category with a single object:
the quotient forming functor Γ̂ → Γ sends the unique morphism γ → γ′ to γ−1γ′.
The associated map |BΓ̂| → |BΓ| is a universal Γ-bundle. This construction is clearly
functorial on the category of discrete groups.
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We apply this in the present situation as follows. For α ∈ A, Ûα := Uα × |BΓ̂α| is
contractible and the diagonal action of Γα on it is free and proper. So if we denote by
Ûα → V̂α the formation of the corresponding orbit space, then this is also a universal
Γα-bundle. Given an inclusion Vα ⊆ Vβ , then an admissible lift (j : Uα → Uβ , φ : Γα →
Γβ) defines a map ̂ := j × |Bφ̂| : Ûα → Ûβ that is equivariant with respect to φ. Such
lifts make up a single Γβ-orbit and hence we have a map between two universal

coverings: they induce the same map V̂α → V̂β and they yield all the lifts Ûα → Ûβ

of the latter. Our assumptions imply that α 7→ V̂α defines a functor from V to the
category of topological spaces so that we can form Ŷ := lim−→V

{V̂α}α. The collection of

the maps Ûα → V̂α plus the lifts ̂ as above form a category Û of contractible spaces
over Ŷ . The Lubkin–Sullivan theorem does not quite apply as such to this system of
coverings, because the maps V̂α → V̂β need not be injective (they are open, though).

But it will, if we replace Ŷ by the homotopy colimit Ŷ h := hocolimV V̂α of this system
(here we use the construction that regards the system as a simplicial space). It has
the property that the natural map Ŷ h → Ŷ is a homotopy equivalence. We thus find
a homotopy equivalence between Ŷ and |BÛ|.

Consider the obvious projection pα : V̂α → Vα. The fiber over y ∈ Vα is the quotient
of the contractible Γα-space |BΓ̂α| by the Γα-stabilizer of some x ∈ Uα over y. So it
has the rational cohomology of the finite group (Γα)x, and hence that of a point.
This fiber is also a deformation retract of the preimage of a neighborhood of y in
Vα. So the Leray spectral sequence for rational cohomology of the projection Ŷ → Y
degenerates and this projection induces an isomorphism on rational cohomology.

Assuming that we have a principal Grothendieck–Leray atlas U, we can identify
Γα with the U-endomorphisms of α so that BΓα ⊆ BU. The projection V̂α → |BΓα|
is a bundle with fiber the contractible Uα. Since this is functorial, these projections
assemble to a map Ŷ h → |BU|. Its fibers are contractible and so this is a homotopy
equivalence.

We record this discussion in the form of a scholium.

Scholium 2.5. With a Grothendieck–Leray atlas as above we have associated a natu-
ral homotopy class of maps from its stacky homotopy type to Y and this class induces
an isomorphism on rational cohomology. For a principal Grothendieck–Leray atlas U
this stacky homotopy type is represented by |BU|.

Remark 2.6. In our applications we encounter refinements of Grothendieck–Leray
atlases of a very simple type, namely obtained by giving for each α ∈ A an open
V ′
α ⊆ Vα such that this inclusion is a homotopy equivalence and {V ′

α}α still covers
Y . This extends in a natural manner to a Grothendieck–Leray atlas with the same
index set and if one is principal, then so is the other. It is clear that this induces
a homotopy equivalence between the associated homotopy types. From a conceptual
point of view it would be more satisfying to introduce a considerable more general
notion of refinement for Grothendieck–Leray atlases: such a refinement should then
be given by a functor F : U → U ′ that gives rise to a (weak) homotopy equivalence
of their stacky homotopy types so that the resulting structure on Y (which we might
regard as a weak form of a Deligne–Mumford stack) has this (weak) homotopy type
as one its attributes. We refrained from developing these notions, as there is no need
for them in the present paper.
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The applications alluded to in Remark 2.6 above have in common a number of
features that are worth isolating. Let X be a space endowed with a stratification
S, that is, a partition into subspaces (called strata) such that the closure of each
stratum is a union of strata. We then have a partial order on S for which S′ ⩽ S
means that S′ ⊆ S. We assume that the length of chains S• = (S0 > S1 > · · · > Sn)
in S is bounded, but we do not ask that X be locally compact, nor that S be locally
finite.

Theorem 2.7. Let Γ be a discrete group which acts on the stratified space (X,S) and
suppose that for every stratum S we are given a subgroup Γℓ

S ⊆ ZΓ(S), called the link
subgroup, such that Γℓ

S ⊇ Γℓ
S′ when S ⩽ S′, and such that Γℓ

γS = γΓℓ
Sγ

−1 for every

γ ∈ Γ (in particular, Γℓ
S is normal in ΓS).

If we can find for every S ∈ S an open neighborhood US of S in X such that

(i) US ∩ US′ is empty unless S′ ⩾ S or S′ ⩽ S,

(ii) γ(US) = UγS for every γ ∈ Γ,

(iii) for every stratum S, Γℓ
S\US is a paracompact Hausdorff space on which ΓS/Γ

ℓ
S

acts properly with a cofinite subgroup acting freely,

(iv) for every chain S• = (S0 > S1 > · · · > Sn) of strata, Γℓ
S0
\(US0

∩ · · · ∩ USn
) is

contractible,

then the orbit space Γ\X is a paracompact Hausdorff space which comes with the
structure of a stacky homotopy type. It is natural in the sense that it does not depend
on the choice of open subsets US.

This stacky homotopy type is represented by the category S with object set S and for
which a morphism S → S′ is a right coset [γ] ∈ Γℓ

S′\Γ with the property that γS ⩾ S′

(so that we have natural homotopy class of maps |BS| → Γ\X which induces an
isomorphism on rational cohomology). This is functorial with respect to inclusions
X ′ ⊆ X of open Γ-invariant unions of strata.

If furthermore Γ acts faithfully and the action in (iii) is free (so that necessarily
Γℓ
S = ZΓ(S) for every S ∈ S), then in the preceding ‘stacky homotopy’ can be replaced

by ‘homotopy’.

Proof. We note that (i) implies that any finite nonempty intersection of such US is
of the form US• = US0

∩ · · · ∩ USn
for a unique chain S• = (S0 > S1 > · · · > Sn) in

S. From (i) and (ii) we get that every Γ-orbit meets US in a ΓS-orbit or is empty.
Hence ΓS\US maps homeomorphically onto an open subset VS of Γ\X. Any nonempty
intersection of such open subsets of Γ\X is the image VS• of US• := US0

∩ · · · ∩ USn

for some chain S• and hence homeomorphic to ΓS•\US• . If we put US• := Γℓ
S0
\US• ,

then US• is an open subset of US0
= Γℓ

S0
\US0

. By (iii) and (iv) this is a contractible

paracompact Hausdorff space on which ΓS• := ΓS•/Γ
ℓ
S0

acts properly.

We claim that the collection of pairs (US• ,ΓS•) extends in a natural manner to
a principal Grothendieck–Leray atlas: let S• and S′

• be finite chains in S such that
the image of US• in Γ\X is contained in the image of US′

•
. This is equivalent to

the existence of a γ ∈ Γ such that S′
• is a subchain of γS• and the elements of Γ

with this property then make up the right coset ΓS′
•
γ. The smaller coset Γℓ

S′
0
γ defines

an admissible lift: since γΓℓ
S0

= Γℓ
γS0

γ ⊆ Γℓ
S′
0
γ, this indeed induces a continuous map
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j : US• → US′
•
over Γ\X and since γΓS•γ

−1 = ΓγS• ⊆ ΓS′
•
, conjugation by γ defines

a homomorphism φ := ΓS• → ΓS′
•
such that j is φ-equivariant. So we have a collec-

tion of admissible lifts indexed by the Γℓ
γS′

0
-cosets contained in ΓS′

•
γ. This is clearly

a principal set for the group ΓS′
•
= ΓS′

•
/Γℓ

γS′
0
. The other three properties of Defini-

tion 2.2 are now easily checked.
So the associated category S• has as its objects the finite chains in S and a

morphism S• → S′
• is given by right coset [γ] ∈ Γℓ

S′
0
\Γ such S′

• is a subchain of γS•.

Strictly speaking we do not have principal Grothendieck–Leray atlas yet, because of
an ‘overcount’ in our indexing: the image VS• of US• in Γ\Y is of course also the
image of γUS• and in this way we get #(Γ/ΓS•) copies of US• having the same
image. So in this rather trivial sense the cover {VS•} can fail to be locally finite. But
we can of course select for each Γ-orbit of S•-objects a representative and then take
the full subcategory S◦

• ⊆ S• with this collection of objects. We then get a principal
Grothendieck–Leray atlas and since S◦

• ⊆ S• is an equivalence of categories, the
stacky homotopy type of Γ\Y is that of |BS•|.

We have a functor F : S• → S defined by S• = (S0 > S1 > · · · > Sn) 7→S0. Indeed,
a morphism [γ] : S• → S′

• as above has the property that S′
0 = γSi for some i and

so F (S′
•) = S′

0 = γSi ⩽ γS0 = γF (S•). Since γΓℓ
S0

⊆ γΓℓ
Si

= Γℓ
S′
0
γ, γ determines an

element [γ] of Γℓ
S′
0
\Γ and this yields our S-morphism F [γ] : S0 → S′

0.

According to Thm. A of [11], |BF | is a homotopy equivalence if we show that
for every object S ∈ S of S, the category F/S is contractible. Let us recall that an
object of F/S is given by pair (S•, [γ]), where S• = (S0 > S1 > · · · > Sn) is an object
of S• and [γ] ∈ Γℓ

S0
\Γ is such that γS0 ⩾ S. An F/S-morphism (S•, [γ]) → (S′

•, [γ
′])

is a S•-morphism [δ] : S• → S′
• (with [δ] ∈ Γℓ

S′
0
\Γ), so that S′

• is a subchain of γS•

with the property that γ′δ and γ define the same element of Γℓ
S\Γ. This category

has as a final object, namely (S, [1]): for an object (S•, [γ]) of F/S, [γ] defines an
F/S-morphism (S•, [γ]) → (S, [1]). This implies that F/S is contractible.

The last assertion is obtained by applying Theorem 2.1 instead of 2.5.

In many applications, we will take Γℓ
S = ZΓ(S), but this need not be so in the

situation that is our main interest, the Baily–Borel compactification. It is also with
this case in mind that we included a stacky version.

Here is perhaps the simplest nontrivial illustration of Theorem 2.7.

Example 2.8 (The infinite ramified cover of the unit disk). We take for X be the
space that contains the upper half plane H as an open subset and for which the
complement X ∖H is a singleton {∞}. A neighborhood basis of ∞ meets H in the
upwardly shifted copies of H. We take this partition as our stratification S and we
take Γ = Z, with Γ acting by translations on H (and of course trivially on ∞) and
Γℓ
{∞} = ZΓ({∞}) = Z and Γℓ

H = ZΓ(H) = {0}. We choose U{∞} = X and UH = H.

The category S that we get from Theorem 2.7 has the two objects {∞},H with
{∞} being a final object. The only S-morphisms apart from the unique morphism
H → {∞} are the elements of the (translation) group Z viewed as automorphisms of
H. So |BS| can be identified with the cone over the classifying space |BZ|.

The map z 7→ exp(2π
√
−1z) identifies the pair Z\(X,H) with the pair (∆,∆∗)

consisting of the complex unit disk ∆ and the punctured disk ∆∗ := ∆∖ {0}. So if
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we consider ∆∗ as the primary datum, then we are just filling in the puncture and in
the above picture ∆∗ ⊆ ∆ corresponds to the inclusion of |BZ| in the cone over |BZ|.

This example generalizes in a simple manner to the product (∆n, (∆∗)n) (which
we obtain as an orbit space of (H ∪ {∞})n under the action of Zn). Closely related
to this is the example below of a torus embedding. It appears implicitly in some of
our applications.

Example 2.9. Let Γ be a free abelian group of finite rank. Then T = C× ⊗ Γ is an
algebraic torus with underlying affine variety Spec(C[Γ∨]), where Γ∨ = Hom(Γ,Z).
Let also be given a closed strictly convex cone σ ⊆ R⊗ Γ spanned by a finite subset
of Γ. Recall that this defines a normal affine torus embedding T ⊆ Tσ as follows.
Denoting by σ̌ ⊆ Hom(Γ,R) the cone of linear forms that are ⩾ 0 on σ, then Tσ :=
SpecC[Γ∨ ∩ σ̌] and the inclusion C[Γ∨] ⊇ C[Γ∨ ∩ σ̌] defines the embedding T ⊆ Tσ.
We also recall that Tσ is stratified into algebraic tori that are quotients of T and
indexed by the faces of σ: for every face τ of σ denote by Γτ the intersection of
Γ with the vector subspace of R⊗ Γ spanned by τ and put Tτ := C× ⊗ Γτ . Then
T (τ) := T/Tτ is a stratum.

But in this context it is better to think of T (via the exponential map) as the orbit
space of its Lie algebra t = C⊗ Γ by Γ, letting each γ ∈ Γ act as translation over
2π

√
−1γ. There is then a corresponding picture for Tσ: if we write tτ for the C-span

of τ , then Tσ is the orbit space with respect to the obvious Γ-action on the disjoint
union of the complex vector spaces tσ := tτ⩽σt/tτ (endowed with a topology which
is defined in the spirit of Example 2.8). We define a neighborhood Uτ of t/tτ in tσ as
follows: let Φ ⊆ σ̌ ∩ Γ∨ be the set of integral generators of the one-dimensional faces
of σ̌ ∩ Γ∨. Then we define Uτ as the subset of tρ⩽τ (t/tρ) defined by the property
that its intersection with t/tρ is defined by Re(φ) > Re(φ′) for all (φ, φ′) ∈ Φ× Φ
with φ|τ > 0 and φ′|τ = 0 (note that both φ and φ′ define linear forms on t/tρ).
Then we have ΓUτ = Γ and ZΓ(τ) = Γ ∩ tτ . Since (Γ ∩ tτ )\Uτ fibers over t/tτ with
fibers conical open subsets of complex vector space it is contractible. The associated
category S has its objects indexed by faces τ of σ, and a morphism τ → τ ′ only exists
when τ ⊆ τ ′ and is then given by an element of Γ(τ ′) := Γ/Γ ∩ t′τ . This category has
a final object represented by τ = σ and so |BS| is contractible. We may also obtain
|BS| as the geometric realization of the diagram of spaces BΓ(τ) connected by the
maps BΓ(τ) → BΓ(τ ′) (τ ⊆ τ ′).

3. The homotopy type of a Deligne–Mumford compactifica-
tion

Ebert and Giansiracusa determined in [6] the homotopy type of the Deligne–
Mumford moduli space of stable n-punctured genus g curves. We outline how this
fits our setting. A priori our set up applies to the rational homotopy type only, but
in the present case our arguments work without change if we wish to do this for the
homotopy type of that moduli space as an orbifold.

We fix a n-punctured surface S of genus g, which means that S is a connected
oriented differentiable surface that can be obtained as the complement of n distinct
points of a compact surface of genus g. We assume that S is hyperbolic in the sense
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that its Euler characteristic 2− 2g − n is negative. This is indeed equivalent to S
admitting a complete metric of constant curvature −1 and of finite volume. Imposing
such a metric is equivalent to putting on S a complex structure compatible with the
given orientation so that it becomes a nonsingular complex-algebraic curve which
is universally covered by the upper half plane. Denote by Hyp(S) the space of all
such metrics on S. This space is acted on by the group Diff(S) of diffeomorphisms
of S. The identity component Diff0(S) of Diff(S) acts freely and its orbit space, the
Teichmüller domain T(S) of S, is contractible and has naturally the structure of a
complex manifold of complex dimension 3g − 3 + n. Letting Diff+(S) ⊆ Diff(S) stand
for the group of orientation preserving diffeomorphisms of S (which may permute the
punctures), then the mapping class group Γ(S) := Diff+(S)/Diff0(S) acts on T(S)
by complex-analytic transformations and this action is proper. The moduli stack of
smooth n-punctured curves of genus g, Mg,[n], is as an orbifold the Γ(S)-orbit space
of T(S).

A compact 1-dimensional submanifold A ⊆ S is necessarily a disjoint union of
a finite number of embedded circles. Say that A is admissible if every connected
component of S ∖A is of hyperbolic type (so this includes the case A = ∅). We define
the augmented curve complex of S as the partially ordered set C∗(S) of which an
element is an isotopy class σ of admissible compact 1-dimensional submanifolds A ⊆ S
as above, the partial order being given by inclusion. Note that C∗(S) has the empty
set as its minimal element (whence ‘augmented’). For a simplex σ ∈ C∗(S), we denote
by Γ(S)σ ⊆ Γ(S) the subgroup that stabilizes this isotopy class in the strict sense that
the isotopy class of each connected component of representative A of σ is preserved
without reversal of orientation. This implies that an element of Γ(S)σ induces a
mapping class for each connected component of S ∖A. The Teichmüller space T(S ∖
A) and the product of the mapping class groups of the connected components of S ∖A
only depend (up to unique isomorphism) on σ and so we take the liberty of writing
T(S ∖ σ) and Γ(S ∖ σ) instead. The natural homomorphism Γ(S)σ → Γ(S ∖ σ) has
image a cofinite subgroup of Γ(S ∖ σ) and kernel a copy of Zv(σ) in Γ(S)σ, where
v(σ) is the vertex set of σ (a vertex corresponds to the image in Γ(S)σ of a Dehn
twist along the corresponding component of A; beware that v(σ) can be empty in
which case Zv(σ) = {0}). Note that the image of Zv(σ) is a central subgroup of Γ(S)σ.
This will be our Γ(S)ℓσ.

Consider the disjoint union T(S) of the Teichmüller spaces T(S ∖ σ), where σ runs
over all the admissible isotopy classes. The group Γ(S) acts in this union and there
is a natural Γ(S)-invariant topology on T(S) which has the property that the closure
of T(S ∖ σ) meets T(S ∖ σ′) if and only if σ is a face of σ′.

The moduli space of stable punctured curves of genus g and with n (unnumbered)
punctures, Mg,[n] can be regarded as the Γ(S)-orbit space of T(S). In fact, Mg,[n]

is a Deligne–Mumford stack in the complex-analytic category and the stratification
of Mg,[n] inherited from the one of T(S) is associated to a normal crossing divisor.

It can be shown that every stratum T(S ∖ σ) of T(S) admits a regular neighborhood
Uσ in T(S) whose Γ(S)-stabilizer is Γ(S)σ and has the property that the resulting
covering {Uσ}σ∈C∗(S) of T(S) satisfies the hypotheses of Theorem 2.7. The theorem in
question gives us the following reformulation of the theorem of Ebert and Giansiracusa
[6] (which for n = 0 is due to Charney and Lee [4]):
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Theorem 3.1. The homotopy type of the Deligne–Mumford stack Mg,[n] is naturally
realized by the classifying space of the category C∗(S) whose objects are the elements
of the augmented curve complex C∗(S) and for which a morphism σ → σ′ is given by
a [γ] ∈ Zσ′\Γ(S) with the property that [γ]σ ⊆ σ′.

We remind the reader that the Deligne–Mumford stack Mg,[n] is not reduced as
such when (g, n) has the value (0, 3) (a singleton whose stabilizer is the symmetric
group on three elements) or is of hyperelliptic type (1, 1) or (2, 0) (then the mapping
class group has a center of order two acting trivially).

4. The homotopy type of a Baily–Borel compactification

In this section we are going to derive Theorem 1.2 from Theorem 2.7. This will
also give us occasion to illustrate the theorem with an example.

Structure of maximal parabolic subgroups
Let P be a maximal proper parabolic subgroup of G defined over Q and let P be

its group of real points. We associate with P the following groups defined over Q, or
rather their groups of real points.

Ru(P ) : the unipotent radical of P .
UP : the center of Ru(P ). This is a vector group that is never trivial.
VP : the quotient Ru(P )/UP . This is a (possibly trivial) vector group.
LP : the Levi quotient P/Ru(P ) of P . It is a reductive group.
Mh

P : the kernel of the action of LP on uP = Lie(UP ) via the adjoint
representation. The superscript h refers to horizontal or hermitian.

Ph : the preimage of Mh
P in P , in other words, the kernel of the action

of P on uP via the adjoint representation.
AP : the Q-split center of LP . This comes with an isomorphism AP

∼= R×.
M ℓ

P : the commutator subgroup of the centralizer of Mh
P in LP . The

superscript ` stands for link or linear. It has compact center.
Lℓ
P : the almost product M ℓ

PAP = APM
ℓ
P .

P ℓ : the preimage of Lℓ
P in P .

G(P ) : the quotient P/P ℓ = LP /L
ℓ
P . The composite Mh

P ⊆ LP ↠ G(P ) is
an isogeny: it is onto with finite kernel.

Then P acts transitively on X and the P ℓ-orbits define a holomorphic P -equivariant
fibration of X, πG

P : X → X(P ), where X(P ) is defined as an orbit space. This orbit
space is called a rational boundary component of X (or rather, of the pair (X,G)). It
is clear that the P -action on X(P ) is through G(P ). This action is transitive and this
realizes X(P ) as the bounded symmetric domain associated with G(P ). So X(P ) has
its own rational boundary components.

In uP = Lie(UP ) we have a naturally defined convex open cone CP that is a P -
orbit for the adjoint representation. This representation evidently factors through the
Levi quotient LP , but its subgroup Lℓ

P = M ℓ
P .AP is still transitive on CP . This cone

can be understood as the Ph-orbit space of X, the more precise statement being that
the semi-subgroup Ph exp (

√
−1CP ) ⊆ GC (as acting on X̌) preserves X, and makes

it in fact an orbit of this semigroup and that we have a P -equivariant (real-analytic)
bundle IP : X → CP whose fibers are the Ph-orbits. The cone CP is self-dual: there
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is a P -equivariant (but in general nonlinear) isomorphism of CP onto its open dual
C◦

P ⊆ u∨P , (i.e., the set of real linear forms on uP that are positive on CP ∖ {0}).

Comparable pairs of parabolic subgroups
We denote by Pmax(G) the collection of maximal proper Q-parabolic subgroups

of G and identify this set with the corresponding collection of subgroups of G. Since
any P ∈ Pmax(G) can be recovered from UP or uP as its stabilizer, a partial order
on Pmax(G) is defined by letting P ⩾ Q mean that UP ⊇ UQ. This is equivalent to:
P ℓ ⊇ Qℓ and also to Ph ⊆ Qh (but this does not imply that Ru(P ) ⊇ Ru(Q)). From
the second characterization we see that P ⩾ Q implies that the projection πG

P : X →
X(P ) factors through πG

Q : X → X(Q). The resulting factor πQ
P : X(Q) → X(P ) then

defines a rational boundary component of X(Q) of which the associated maximal Q-
parabolic subgroup of G(Q) is the image of P ∩Q in Q/Qℓ = G(Q). We shall denote
that subgroup by P/Q. The map P ∈ Pmax(G)⩾Q 7→ P/Q ∈ P(G(Q)) thus defined is
an isomorphism of partially ordered sets. Note that P ⩾ Q implies X(P ) ⩽ X(Q).

Let P,Q ∈ Pmax(G) be such that P ⩾ Q. We then have inclusions

UQ ⊆ UP ∩Qℓ ⊆ UP ⊆ Q,

where the last inclusion follows from the fact that UP stabilizes uQ. The image
UP /(UP ∩Qℓ) of UP in Q/Qℓ = G(Q) is the center UP/Q

of Ru(P/Q) and the projec-
tion

cPQ : uP → uP /(uP ∩ qℓ) ∼= uP/Q

maps CP onto the cone CP/Q
that is attached to P/Q. This projection fits in a com-

mutative diagram:

X
πG
Q //

IP
��

X(Q)

IP/Q

��
CP

cPQ // CP/Q

(1)

Since IP : X → CQ forms the Ph-orbit space and Ph ⊆ Qh, IP factors through
IQ : X → CP and so there is an induced map IPQ : CP → CQ. This map is nonlinear
in general and is in fact the ‘adjoint’ of the inclusion CQ ⊆ CP via self-duality: CP

∼=
C◦

P ↠ C◦
Q
∼= CQ. Since Qℓ ⊆ P ℓ, the adjoint action of Qℓ on p preserves uP and

CP ⊆ uP . It clearly also preserves the flag of subspaces {0} ⊆ uQ ⊆ uP ∩ qℓ ⊆ uP and
it will act as the identity on the last quotient uP /(uP ∩ qℓ) ∼= uP/Q

. In fact the map

cPQ : CP → CP/Q
is the formation of the Qℓ-orbit space of CP . If we restrict this action

of Qℓ to Ru(Q), then Ru(Q) acts trivially on the successive quotients of this flag and
the map

(IPQ, c
P
Q) : CP → CQ × CP/Q

is the formation of the Ru(Q)-orbit space of CP . The image of Ru(Q) in GL(uP ) is
unipotent and this group acts freely on CP (this is explained in a more general setting
in §5 of [9]: in the notation of that paper the above flag is {0} ⊆ VF ⊆ V F ⊆ V , where
V = uP , C = CP and F = CQ). In particular, the map CP → CQ × CP/Q

is locally
trivial with fiber an affine space.
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Example 4.1 (The symplectic group). Let (V, 〈 , 〉) be a symplectic vector space over
Q of dimension 2g and take for G its automorphism group Sp(V). So G = Sp(V ),
where V = V(R). The embedding Sym2 V ↪→ gl(V ) which assigns to a2 ∈ Sym2 V the
endomorphism x 7→ 〈x, a〉a maps onto the Lie algebra g of Sp(V ) and we shall identify
the two.

The compact dual X̌(V ) is the space of isotropic complex g-planes F ⊆ VC and
the symmetric domain of Sp(V ) is the open subset X(V ) ⊆ X̌(V ) of F on which
the Hermitian form v ∈ VC 7→

√
−1〈v, v̄〉 ∈ C is positive definite. A maximal proper

Q-parabolic subgroup of Sp(V ) is the Sp(V )-stabilizer (denoted PI) of a nonzero
isotropic subspace I ⊆ V defined over Q and vice versa. The associated holomorphic
fibration is the projection πP : X → X(I⊥/I) which sends F to the image of F ∩ I⊥C →
(I⊥/I)C.

The unipotent radical Ru(PI) of PI is the subgroup that acts trivially on I and
I⊥/I (the symplectic form determines an isomorphism V/I⊥ ∼= I∨ and so this group
then automatically acts trivially on V/I⊥). The center UI of Ru(PI) is the sub-
group that acts trivially on I⊥ and its (abelian) Lie algebra uI can be identified
with Sym2 I ⊆ Sym2 V ∼= g. The cone CI ⊆ uI is the cone of positive definite ele-
ments of Sym2 I. The dual cone C◦

I ⊆ Sym2 Hom(I,R) is the space of positive definite
quadratic forms on IR and the duality isomorphism CI

∼= C◦
I comes from the fact that

a positive definite quadratic form on a finite dimensional real vector space determines
one on its dual. We identify Ru(PI)/UI with a group of elements in GL(I⊥) which
act trivially on both I and I⊥/I; this group is abelian and its Lie algebra can be
identified with Hom(I⊥/I, I) ∼= (I⊥/I)⊗ I.

The Levi quotient LI of PI can be identified GL(I)× Sp(I⊥/I). The split radical
AI of LI is the group of scalars in GL(I) (a copy of R×), its horizontal subgroup
Mh

I is {±1I} × Sp(I⊥/I) and its link subgroup M ℓ
I = SL(I). Note that G(PI) =

LI/AI .M
ℓ
I = Sp(I⊥/I) (which is indeed in an obvious way a quotient of Mh

I ) and
that Ph

I resp. P ℓ
I is the group of symplectic transformations of V that preserve I and

act on I as ±1 resp. on I⊥/I as the identity.
The projection II : X → CI is obtained as follows. Let F ⊆ VC represent an element

of X. Recall that v ∈ F 7→ 1
2

√
−1(v, v̄) is a positive definite hermitian form on F .

The map F → (V/I⊥)C ∼= HomR(I,C) is onto with kernel F ∩ I⊥C , so if we identify
HomR(I,C) with the orthogonal complement of F ∩ I⊥C in F we get a Hermitian
form on HomR(I,C). The real part of this form defines a positive definite element of
Sym2 I, i.e., an element of CI .

Finally the partial order relation PJ ⩽ PI means simply J ⊆ I. In that case P ℓ
J

(the subgroup of Sp(V ) which stabilizes J and acts as the identity on J⊥/J) indeed
preserves I and the image of this action is the full subgroup of GL(I) which stabilizes J
and acts as the identity on I/J . The transformations that also act as the identity on I
come from Ru(PJ). The flag defined by PJ in uI = Sym2 I is {0} ⊆ Sym2 J ⊆ I ◦ J ⊆
Sym2 I. If we view a ∈ CI as a positive definite quadratic form on Hom(I,R), then
the subspace Hom(I/J,R) ⊆ Hom(I,R) has an orthogonal complement with respect
to a which maps isomorphically onto Hom(J,R). In other words, there is unique
section s of I → I/J and unique a′ ∈ CJ and a′′ ∈ CI/J such that s = a′ + s∗(a

′′). The
resulting projection CI → CJ × CI/J is then clearly the formation of the Ru(PJ)-orbit
space (via which it is a torsor for the vector space Hom(I/J, I)). The first factor is the
nonlinear map IIJ : CI → CJ and the second factor is the natural map cIJ : CI → CI/J .
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The Satake extension
Without loss of generality we may and will assume that G is almost Q-simple.

Recall that P∗
max(G) = Pmax(G) ∪ {G} and observe that the notions we defined for

a member of Pmax(G) extend in an almost obvious way to P∗
max(G). For instance,

Ru(G) = {1} and so CG = {0}, G(G) = G and (hence) X(G) := X.
The Satake extension of X is a topological space Xbb that contains X as an open-

dense subset and comes with a stratification:

Xbb =
∐

P∈P∗
max(G)

X(P ),

where the topology on each stratum is the usual one. For what follows we need a
good understanding of the topology on Xbb and so let us briefly review this here.
The incidence relation ⩾ for the strata will be opposite to the partial order on
P∗
max: X(P ) ⩽ X(Q) if and only if P ⩾ Q (indeed, the minimal element G of P∗

max

corresponds to the open subset X = X(G)). So for any P ∈ P∗
max(G), the union of

strata containing X(P ) in its closure is Star(X(P )) = ∪Q⩽PX(Q). The projections

πQ
P : X(Q) → X(P ) have the property that πR

Qπ
Q
P = πR

P when P ⩾ Q ⩾ R and hence

the πQ
P combine to form a retraction

πP =: ∪Q⩽P πQ
P : Star(X(P )) → X(P )

with the property that πPπQ = πP |StarX(Q) when Q ⩽ P .
The topology on Xbb can be described in terms of cocores. A cocore of CP (with

respect to the Lℓ
P -action on CP ) is an open subset K ⊆ CP which contains an orbit of

an arithmetic subgroup of Lℓ
P and is such that CP +K ⊆ K. We refer to [2] for the

following basic properties: If K and K ′ are cocores, then so are K ∩K ′, the convex
hull of K ∪K ′ and λK for any λ > 0. Moreover, there exists a 0 < λ1 < λ2 such that
λ1K ⊆ K ′ ⊆ λ2K. When Q ⩽ P , then cPQ maps a cocore K in CP to one in CQ.

For any cocore K, I−1
P K is invariant under the preimage of Mh

PM
ℓ
P in P (this a is

normal subgroup of P of codimension one). It maps under πG
P onto X(P ) and so

(I−1
P K)bb :=

∐
Q⩽P πG

QI
−1
P K ⊆ Star(X(P ))

contains X(P ). The topology of Xbb at X(P ) is then characterized by the fact that for
every z ∈ X(P ) the collection Ubb(K,V ) := (I−1

P K)bb ∩ π−1
P V where K runs over the

cocores in CP and V over the neighborhoods of z in X(P ) is a neighborhood basis of
z in Xbb. With this topology, Star(X(P )) is open subset of Xbb, X(P ) is locally closed
in Xbb and the induced topology on Xbb is the one that it already has a symmetric
domain. It is clear that G(Q) acts on Xbb by homeomorphisms. The space Xbb is
Hausdorff, but rarely locally compact.

Geodesic retraction
The projection πP is a geodesic retraction: for every x ∈ X is there is a canon-

ical geodesic γP,x : [0,∞) → X through that point with limt→∞ γP,x(t) = πP (x). A
geodesic through x is given by a one-parameter subgroup of G that is ‘perpendic-
ular’ to the compact subgroup Gx; in the present case it is the one in P whose
projection in LP is given by the action of AP . The image of this geodesic under the
projection IP : X → CP is then just the ray that lies on the line spanned by IP (x).
These geodesics are defined on all of Star(X(P )) (albeit that they will be constant
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on X(P )) and depend continuously on their point of departure. So this defines a
(Γ ∩ P )-equivariant deformation retraction of Star(X(P )) onto X(P ). (We can now
also be explicit about the map I : X → C◦

P : fix a G-invariant hermitian metric on X.
For every u ∈ uP , denote by ux ∈ TxX the infinitesimal displacement defined by the
action. Then I(x)(u) is the imaginary part of hx(ux, γ̇P,x(0)).)

Since a cocore K of CP is invariant under multiplication by scalars ⩾ 1, the
geodesic deformation retraction preserves (I−1

P K)bb and so restricts to one of (I−1
P K)bb

onto X(P ). For any Q ⩽ P , we have K + CQ ⊆ K and from this one may deduce
that the deformation retraction of Star(X(Q)) onto X(Q) also preserves (I−1

P K)bb ∩
Star(X(Q)). Moreover, the diagram (1) specializes to

I−1
P K

πG
Q //

IP
��

I−1
P/Q

KP/Q

IP/Q
��

K
cPQ // KP/Q

where KP/Q
:= cPQ(K) is a cocore in CP/Q

. Since the top arrow is onto, it follows that

I−1
P/Q

KP/Q
= (I−1

P K)bb ∩ X(Q). In particular, every stratum of (I−1
P K)bb is given by

a cocore.

The Baily–Borel compactification

Suppose Γ ⊆ G(Q) is an arithmetic subgroup. The central result of the Satake–
Baily–Borel theory asserts that the orbit space Γ\Xbb is a compact topological
space, the Baily–Borel compactification of Γ\X, which underlies the structure of
a complex projective variety. Note that ZΓ(X(P )) contains Γ ∩ P ℓ as a subgroup
of finite index. A key step in the proof is the local version which states that
the orbit space (Γ ∩ P ℓ)\ Star(X(P )) is locally compact (and has in fact the
structure of normal complex-analytic variety). The (Γ ∩ P )-equivariant geodesic
deformation retraction πP descends to a Γ(P )-equivariant geodesic deformation
retraction (Γ ∩ P ℓ)\ Star(X(P )) → X(P ).

The image of Γ ∩ P in Lℓ
P is an arithmetic subgroup and so there exist cocores KP

in CP that are invariant under the image of Γ ∩ P in Lℓ
P . For such a cocore, UKP

:=
I−1
P KP is of course invariant under Γ ∩ P and what we just asserted about Star(X(P ))
also holds for Ubb

KP
. In particular, UX(P )(K) := (Γ ∩ P ℓ)\Ubb

KP
can be regarded as a

regular open neighborhood of X(P ) in (Γ ∩ P ℓ)\Xbb. The retraction πP induces a
Γ(P )-equivariant geodesic deformation retraction UX(P )(K) → X(P ). Since X(P ) is
contractible, so is UX(P )(K).

We can take KP so small as to ensure that every (Γ ∩ P )-orbit in Ubb
KP

is the

intersection of Ubb
KP

with a Γ-orbit. This implies that if for some γ ∈ Γ, γUbb
KP

meets

Ubb
KP

, then γ ∈ P and in particular γUbb
KP

= Ubb
KP

. So for a stratum S = Γ(P )\X(P )

of Γ\Xbb, US(K) := (Γ ∩ P )\Ubb
KP

= Γ(P )\UX(P )(K) is a regular open neighborhood

of S in Γ\Xbb and πP will induce a deformation retraction of US(K) onto S.

A WΓ-morphism P → P ′ is almost tantamount to giving a rational boundary
component X(Q) ⩽ X(P ) plus an isomorphism of X(Q) onto X(P ′) that is induced
by an element of Γ.
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We have an obvious functor F : SΓ → WΓ. The fiber of the identity of P ∈ P∗
max(G)

in SΓ, when viewed as an object of WΓ is equal to Γ ∩ P ℓ. It is clear that for any
subgroup Γ1 ⊆ Γ, SΓ1

resp. WΓ1
appears as a subcategory of SΓ resp. WΓ.

Example 4.2 (Example 4.1 continued). An object of SΓ is then given by an isotropic
subspace I ⊆ V and a morphism I → J by a γ ∈ Γ such that γI ⊆ J . Two such
elements γ, γ′ ∈ Γ define the same morphism in the Satake category precisely if γ′γ−1

preserves J and induces the identity in J⊥/J .

Proof of Theorem 1.2. We regard Γ\X as a quotient stack so that its homotopy type
as such is given by BΓ. Next we observe that the forgetful functor R : SΓ → Γ (which
forgets P ) is a retract. The fiber of R over the identity of G is the subcategory of
S• defined by the finite linear chains in S• that have G as a minimal element. This
category has an initial object, namely the identity of S (now viewed as a linear chain
of length zero). This implies that |B(Γ\R)| is contractible so that by Thm. A of [11],
|BR| is a homotopy equivalence.

The remaining assertions will follow if we verify the hypotheses of Theorem 2.7
for Xbb with its natural stratification into X(P ) and take Γℓ

X(P ) := Γ ∩ P ℓ as our

link group. Then ΓX(P )/Γ
ℓ
X(P ) = Γ ∩ P/Γ ∩ P ℓ = Γ(P ) acts properly on X(P ) with a

subgroup of finite index acting freely. Since X(P ) ⩽ X(Q) is equivalent to P ℓ ⊇ Qℓ,
we then have Γℓ

X(P ) ⊇ Γℓ
X(Q), as required.

For every P ∈ P∗
max(G) we choose in a Γ-equivariant fashion an open cocore KP ⊆

CP (meaning that KγPγ−1 = γKP ). We let UKP
:= I−1

P KP and Ubb
KP

be as before.

We know that Ubb
KP

is then open in Xbb and contains X(P ) as a (Γ ∩ P )-equivariant
deformation retract. It is then clear that these neighborhoods satisfy properties (i)
and (ii) of Theorem 2.7.

We noted that the orbit space UX(P )(K) = (Γ ∩ P ℓ)\Ubb
KP

is an analytic vari-
ety with Γ(P )-action which comes with an analytic Γ(P )-equivariant retraction
UX(P )(K) → X(P ). The group Γ(P ) acts on X(P ) as an arithmetic group and hence
this action is proper with a subgroup of finite index acting freely. The same is then
true for its action on UX(P )(K) and so property (iii) is also satisfied.

On order to check property (iv), consider any chain P• = (P0 < P1 < · · · < Pn)
in Pmax(G) and put Ubb

KP•
= ∩n

i=0U
bb
KPi

. We must show that (Γ ∩ P ℓ)\Ubb
KP•

is con-

tractible. For any x ∈ Ubb
KP•

, the geodesic γP0,x stays in Ubb
KP•

and so we have a

(Γ ∩ P ℓ
0 )-equivariant deformation retraction of Ubb

KP•
onto its intersection with X(P0).

In particular, (Γ ∩ P ℓ)\Ubb
KP•

has Ubb
KP•

∩ X(P0) as deformation retract.

Since we are now left to prove that Ubb
KP•

∩ X(P0) is contractible, we focus on

X(P0) with its Γ(P0)-action. This means that we can pretend that P0 = G, so that
we must show that ∩n

i=1UKPi
is a contractible subset of X. The chain P• defines a

flag of faces {0} = C+
P0

⊆ C+
P1

⊆ · · · ⊆ C+
Pn

. But then ∩n
i=1UKPi

is equal to UK , where

K := ∩n
i=1(I

Pn

Pi
)−1KPi

⊆ CPn
. So it remains to prove that K is contractible: for then

so is UK and we then apply Theorem 2.7.
To this end we write P for Pn and Q for P1. Since KPi

is invariant under P ℓ
i ,

it is also invariant under Ru(Q) (for Q ⩽ Pi). Hence K is Ru(Q)-invariant. Since
(IPQ, c

P
Q) : CP → CQ × CP/Q

forms the Ru(Q)-orbit space and has affine fibers, it suf-
fices to prove that the image of K under this map is contractible. This image is open
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and invariant under translations in the convex cone CQ × {0} and projects in CP/Q

onto an open subset invariant under translations in CP/Q
. A double application of

Lemma 4.3 below then finishes the proof.

Lemma 4.3. Let U and U ′ be real finite dimensional vector spaces, C ⊆ U an open
convex cone and K ⊆ C × U ′ an open subset which is invariant under translations in

C × {0}. Then the projection K
πU′−−→ πU ′(K) is a homotopy equivalence.

Proof. With loss of generality we may assume that C is nondegenerate. Put K ′ :=
πU ′(K) and choose φ ∈ C◦. Then the base P(C) is a convex open subset of the affine
subspace of P(U) defined by φ 6= 0 and so P(C) is contractible. For every r ∈ P(C)
and y ∈ K ′ denote by λ(r, y) > 0 the infimum of φ on the intersection of the ray
emanating from (0, y) defined by r with K. Then λ is continuous and if p : C → P(C)
is the obvious projection, then (p, φ) maps K homeomorphically onto the subspace
of P(C)×K ′ × (0,∞) consisting of (r, y, t) with t > λ(r, y). The projection of this
image onto P(C)×K ′ is a clearly a homotopy equivalence. And so is the projection
of P(C)×K ′ onto K ′.

Remark 4.4. We recall that Pmax(G) is the vertex set of the Tits building of the Q-
group G. This is a simplicial complex whose simplices are the linear chains in Pmax(G)
(and so any simplex comes with a total order on its vertex set). To give such a linear
chain P• = (P0 < P1 < · · · < Pk) amounts to giving a proper Q-parabolic subgroup of
G (namely ∩iPi), for if P is a proper Q-parabolic subgroup of G, then the collection
of maximal proper Q-parabolic subgroups containing P is a chain in Pmax(G) and
the intersection of its members gives us back P . In other words, the collection of
nonempty linear chains in Pmax(G) can be identified with the collection of proper
Q-parabolic subgroups of G, even as partially ordered sets, where the relation ‘is a
subchain of’ corresponds to the relation ‘contains’.

5. The Satake compactification of Ag according to Charney
and Lee

Denote by Vg the category whose objects are pairs (L ⊇ I), where L is a unimod-
ular symplectic lattice of rank 2g and I ⊆ L is primitive isotropic sublattice and for
which a morphism (L ⊇ I) → (L′ ⊇ I ′) is given by an isomorphism φ : L ∼= L′ such
that φ(I) ⊆ I ′. Letting Spg(Z) denote the groupoid of unimodular symplectic lattices
L of rank 2g whose morphisms are symplectic isomorphisms, then we have a forgetful
functor Vg → Spg(Z) defined by (L ⊇ I) 7→ L. This is also a homotopy equivalence,
because a fiber over L is the partially ordered set of primitive isotropic sublattices and
this has an initial object (namely 0), so has a contractible geometric realization. Let
us write H for the lattice Z2 equipped with its standard symplectic form. Since every
unimodular symplectic lattice of rank 2g is isomorphic to Hg, the full subcategory
Sp(Hg) ⊆ Spg(Z) is an equivalence and so the inclusion Sp(Hg) ⊆ Vg (defined by
taking I = 0 in Hg) yields a homotopy equivalence after passing to classifying spaces.

The Giffen category of genus g, Wg, is the category whose objects are the uni-
modular symplectic lattices M of rank ⩽ 2g and for which a morphism M → M ′

is given by a primitive isotropic sublattice I ⊆ M and a symplectic isomorphism
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I⊥/I
∼=−→ M ′ (the composition should be clear). A functor Fg : Vg → Wg is defined

by Fg(L ⊇ I) := I⊥/I. Indeed, for a Vg-morphism φ : (L ⊇ I) → (L′ ⊇ I ′), we have
I ⊆ φ−1I ′ and J := φ−1I ′/I is then an isotropic subspace of Fg(L ⊇ I) = I⊥/I such
that φ induces an isomorphism of J⊥/J onto I ′⊥/I ′ = Fg(L

′ ⊇ I ′).

We now consider a special case of Example 4.1. We take as our Q-algebraic group
the group Spg which assigns to a commutative ring R with unit the group Sp(R⊗Hg)
so that Sp(Hg) is an arithmetic subgroup of Spg(Q) = Sp(Hg

Q). The associated real
Lie group Spg(R) = Sp(Hg

R) has as its symmetric space the domain Xg := X(Hg)
and Sp(Hg)\Xg can be identified with the moduli space Ag of principally polarized
abelian varieties. It is clear that SSp(Hg) is the full subcategory of Vg whose objects
are of the form (Hg ⊇ I). The interpretation of WSp(Hg) as in Example 4.2 enables

us to define a functor WSp(Hg) → Wg by I 7→ I⊥/I. We then have a commutative
diagram of functors

SSp(Hg)
//

��

Vg

Fg

��
WSp(Hg)

// Wg

where the vertical arrow on the left is given by Theorem 1.2. Since every unimodular
symplectic lattice of rank 2g is isomorphic to Hg, the horizontal arrows are equiva-
lences of categories and so Theorem 1.2 gives the following rephrasing of a theorem
of Charney–Lee [3]:

Proposition 5.1. The inclusion Sp(Hg) ⊆ Vg is an equivalence of categories and
the stacky homotopy type of the inclusion of jg : Ag ⊆ Abb

g is reproduced by applying
the classifying space construction applied to the functor Fg : Vg → Wg.

Remark 5.2. There is a monoidal structure present that we wish to explicate in view
of its applications to cohomological stability [5]. The map which assigns to two
principally polarized abelian varieties their product defines a morphism Ag ×Ag′ →
Ag+g′ . This morphism is covered by the map Xg × Xg′ → Xg+g′ which assigns to the

pair (F ⊆ Hg
C, F

′ ⊆ Hg′

C ) the direct sum F ⊕ F ′ ⊆ Hg+g′

C . The corresponding func-
tor Vg ×Vg′ → Vg+g′ is given by ((L ⊇ I), (L′ ⊇ I ′)) 7→ (L⊕ L′, I ⊕ I ′). The map
Xg × Xg′ → Xg+g′ extends in an obvious manner to the Satake extensions Xbb

g ×
Xbb

g′ → Xbb
g+g′ and hence drops to a morphism Abb

g ×Abb
g′ → Abb

g+g′ that extends the
map Ag ×Ag′ → Ag+g′ above. Its counterpart Wg ×Wg′ → Wg+g′ for the Giffen
categories is given (M,M ′) 7→ M ⊕M ′. Indeed, the commutative diagram on the
right below has the same rational homology type as the commutative diagram on the
left.

Ag ×Ag′
i //

jg×jg′
��

Ag+g′

jg+g′
��

Vg ×Vg′ //

Fg×Fg′
��

Vg+g′

Fg+g′
��

Abb
g ×Abb

g′
ibb // Abb

g+g′ Wg ×Wg′ // Wg+g′

By taking g′ = 1 and choosing a point of A1 resp. the element (H, I), where I is
the span of the first basis vector of H, the above diagrams become the stabilization
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maps

Ag
//

jg
��

Ag+1

jg+1

��

Vg
//

Fg

��

Vg+1

Fg+1

��
Abb

g
// Abb

g+1 Wg
// Wg+1

The homotopy type of the maps on the right hand side do not depend on the point
we choose, for A1 is isomorphic to the affine line and hence connected.

6. The homotopy type of a toroidal compactification

The parabolic cone
We place ourselves in the setting of the previous section. Let us first recall from

[2] how a toroidal compactification is defined. Let g stand for the Q-Lie algebra of
G and regard CP as a cone in g(R). Then any element of g(Q) in the closure of
CP lies in a unique CQ with Q ⩽ P and if we define the parabolic cone as C(g) :=
∪P∈P∗

max(G)CP ⊂ g(R) and define the face (of C(g)) associated to P as C+
P := ∪Q⩽P

CQ, then

(a) C(g) := tP∈P∗
max(G)CP (the union is disjoint),

(b) C+
P is the relative closure of CP in C(g) and P ⩽ Q if and only if C+

P ⩽ C+
Q ,

(c) two faces intersect in a face.

So the faces of C(g) are in bijective correspondence with the elements of P∗
max(G)

and the flags of faces that are not reduced to {0} are in bijective correspondence with
simplices of the Tits building of G.

For every P ∈ P∗
max(G), the group Γ ∩ P acts via an arithmetic subgroup of Lℓ

P on
uP and preserves C+

P . It is known to have as fundamental domain in C+
P a rational

polyhedral cone (i.e., the convex cone spanned by a finite subset of uP (Q)). For
example, if φ ∈ u∗P is such that φ is positive on CP ∖ {0}, then the set of x ∈ C+

P with
φ(x) ⩽ φ(γx) for all γ ∈ Γ ∩ P is a rational polyhedral cone that is also a fundamental
domain for Γ ∩ P . So if ΣP is a Γ ∩ P -invariant decomposition of C+

P into rational
polyhedral cones, then it induces one on each of its faces C+

Q , Q ⩽ P .

Admissible decompositions of the parabolic cone
Let Σ be a Γ-invariant decomposition of C(g) into a rational polyhedral cones

(such decomposition is said to be Γ-admissible). This determines a toroidal exten-
sion of XΣ of X which is locally like the one we have for the extension described in
the torus case 2.9 and is at the same time very much in the spirit of the Satake–
Baily–Borel extension. The difference with the latter is that the projections πP are
replaced by projections X → X(σ) indexed by the cones σ ∈ Σ for which the topol-
ogy is easier to understand. A fiber of this projection is an orbit of the semigroup

exp(〈σ〉R +
√
−1(〈σ〉R ∩ CP )) acting on X̌. Let π{0}

σ : X → X(σ) denote the formation
of this orbit space. Then X(σ) has the structure of a complex manifold for which

π
{0}
σ is a holomorphic map. The Γ-stabilizer Γσ of σ acts on X(σ) with a kernel that

contains the free abelian group Γ ∩ exp(〈σ〉R) as a subgroup of finite index. We shall
take Γℓ

X(σ) := Γ ∩ exp(〈σ〉R). Our Theorem 1.2 applies and yields:
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Theorem 6.1. Let TΣ
Γ be the category with objects the members of Σ and for which

a morphism τ → σ is given by a right coset Γ ∩ exp(〈σ〉R)γ ∈ (Γ ∩ exp(〈σ〉R))\Γ for
which (Γ ∩ exp(〈σ〉R))γτ ⊆ σ. Then the full subcategory of TΣ

Γ defined by the object
{0} can be identified with Γ and we have a natural functor TΣ

Γ → WΓ defined by Π 7→
P (Π). If we apply the classifying space construction to the functors Γ ⊆ TΣ

Γ → WΓ

we recover the stacky homotopy type of the morphisms Γ\X ⊆ Γ\XΣ → Γ\Xbb.

Toroidal compactifications of Ag

We here take G = Sp(Hg
R) and Γ = Sp(Hg). To give a Sp(Hg)-admissible decom-

position of the parabolic cone of sp(Hg
R) equivalent to giving a GL(Zg)-admissible

decomposition Σ(Zg) of the cone C+
g ⊆ Sym2 Rg of positive semipositive elements in

Sym2 Rg with rational radical.
Some of the standard constructions produce for every g a GL(Zg)-admissible

decomposition Σ(Zg) of C+
g . This of course amounts to an assignment Σ which for

every finitely generated lattice L gives a GL(L)-admissible decomposition Σ(L) of the
corresponding cone C(L)+ in Sym2 LR. The naturality property we are interested in
is best expressed in these terms: let us first observe that for lattices L,L′ we have a
decomposition Sym2(L⊕ L′) ∼= Sym2 L⊕ Sym2 L′ ⊕ (L⊗ L′), where L⊗ L′ embeds
in Sym2(L⊕ L′) via e⊗ e′ 7→ e⊗ e′ + e′ ⊗ e. The inclusion of Sym2(L)⊕ Sym2(L′)
in Sym2(L⊗ L′) defines an inclusion C(L)+ × C(L′)+ ⊂ C(L⊕ L′)+. Let us say that
Σ is multiplicative if this makes Σ(L)× Σ(L′) a subset of Σ(L⊕ L′). Since 0 is
a member of Σ(L′), this implies that Σ(L) ↪→ Σ(L⊕ L′). (There is also a paral-
lel notion of comultiplicative toroidal data involving the projection C(L⊕ L′)+ →
C(L)+ × C(L′)+, but we will not discuss this here.)

Example 6.2. An example is the perfect cone decomposition Σperf : the convex hull
Kperf(L) ⊂ Sym2 L of {v ⊗ v}v∈L∖{0} has the property that every face of its boundary

is a polyhedron and by definition a member of Σperf(L) is the cone spanned by
such a polyhedron. It has the additional property that every 1-dimensional member
(called a ray) is the cone spanned by a nonzero square so that GL(L) permutes
them transitively. A finite subset S ⊂ L∖ {0}, {v ⊗ v}v∈S spans a boundary face of
Kperf(L) if and only if there exists a positive definite quadratic form q on LR (which
is the same thing as a linear form on Sym2 LR) which takes its minimal value on
L∖ {0} in S. This also shows that Σperf is multiplicative, for if q′ defines a boundary
face of Kperf(L′), then q + q′ defines a boundary face of Kperf(L⊕ L′) that is the
product of these two.

Let Σ be multiplicative. This yields for every g a toroidal compactification AΣ
g and

we then ask how the associated toroidal compactifications AΣ
g and AΣ

g+1 are related.
Let σ be a member of Σ(Zr). Then for every g ⩾ r, σ defines a stratum Ag(σ)

of AΣ
g whose codimension equals dim(σ). The stratum Ag(σ) admits a natural cover

Ãg(σ) by the GL(Zr)-stabilizer of σ (a finite group) that has the structure of a torus

fibration over X (r)
g−r. Here Xg−r/Ag−r is the universal ppav of relative dimension g − r

and X (r)
g−r/Ag−r is its r-fold fiber product. For h ⩾ 0, the product morphism i : Ag ×

Ah → Ag+h extends to the compactifications iΣ : AΣ
g ×AΣ

h → AΣ
g+h in a stratified

manner: for 0 ⩽ s ⩽ h and a member τ of Σ(Zs) the product Ãg(σ)× Ãh(τ) lands in
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Ãg+h(σ × τ) as part of a commutative diagram of closed immersions

Ãg(σ)× Ãh(τ)
ı̃Σ //

��

Ãg+h(σ × τ)

��
X (r)

g−r ×X (s)
h−s

ı̄ //

��

X (r+s)
g+h−r−s

��
Ag−r ×Ah−s

i // Ag+h−r−s

We have an induced map of stacky homotopy types, which via Theorem 6.1 is given
by the associated functor

TΣ
Sp(Hg) × TΣ

Sp(Hh) → TΣ
Sp(Hg+h).

Now fix a (general) elliptic curve E. This defines a point of A1, so that the above
construction gives a closed immersion iΣE : AΣ

g → AΣ
g+1 which extends the morphism

iE : Ag → Ag+1 defined by multiplication with E. The induced map of stacky homo-
topy types, TΣ

Sp(Hg) → TΣ
Sp(Hg+1), is derived from the one above by fixing the second

argument be the identity of Sp(H). At this point one may wonder whether this map
stabilizes after the plus construction is applied to their stacky homotopy types, but
it is more natural to proceed as follows.

The (complex) codimension of Ãg(σ)× Ãh(τ) → AΣ
g ×AΣ

h is equal to the codi-

mension of Ãg+h(σ × τ) → AΣ
g+h (namely dim(σ) + dim(τ)) and indeed, this mor-

phism is transversal to the stratification. In particular, it has a normal bundle of rank
gh. This normal bundle can be identified with the exterior tensor product FΣ

g ⊠ FΣ
h ,

where FΣ
g is an extension of the Hodge bundle on Ag to AΣ

g . We have a Gysin map

HdimR(Ag)−k(AΣ
g ;Q)⊗HdimR(Ah)−l(AΣ

h ;Q) ↪→

HdimR(Ag+h)−2gh−k−l(AΣ
g ×AΣ

h ;Q)
iΣ!−→ HdimR(Ag+h)−k−l(AΣ

g+h;Q).

We get for (h, l) = (1, 0) (using the natural generator for H2(AΣ
1 ;Q)) a map

HdimR(Ag)−k(AΣ
g ;Q) → HdimR(Ag+1)−k(AΣ

g+1;Q).

This is also the Gysin map of iΣE : AΣ
g → AΣ

g+1. Grushevsky–Hulek–Tommasi asked
whether this is an isomorphism for k < g. They proved in [7] that for the perfect cone
decomposition this is indeed the case, by only using fact that every one dimensional
member has spanned by a square. This implies that each member of Σ(C+

r ) which
meets the interior of C+

r has dimension at least r.

A quick proof may be sketched as follows: the space X (r)
g−r is a virtual classi-

fying space for its orbifold fundamental group Sp(Hg−r)⋉ (Hg−r ⊗ Zr) (or rather
an extension of the finite group GL(Zr)σ by this group). The Borel–Serre stability

theorems imply that ı̄E : X (r)
g−r → X (r)

g+1−r (given by multiplication with Er) induces
an isomorphism on rational homology in degree < g − r, or more precisely, that

the relative homology of the pair (X (r)
g+1−r, ı̄E(X

(r)
g−r)) vanishes in degree < g − r.

Since iσE : Ag(σ) → Ag+1(σ) is a fibered pull-back along ı̄E , the same is true for
the pair (Ag+1(σ), i

σ
E(Ag(σ))). By Alexander duality, this is equivalent to the pair

(Ug+1(σ), ∂Ug+1(σ)) := (Ag+1(σ), ∂Ag+1(σ))
∣∣Ug+1 having no rational cohomology in
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degree > dimR Ug+1(σ)− (g − r). Since r + dimR Ug+1(σ) ⩽ dimR Ag+1, this implies
that (Ug+1(σ), ∂Ug+1(σ)) has no rational cohomology in degree > dimR Ag+1 − g.
This remains true when Ag(σ) is empty, i.e., when σ meets the interior of C+

g+1,
because in that case dimR Ag+1(σ) ⩽ dimR Ag+1 − g. Since ∂Ug+1(σ) is the union of
the Ug+1(τ) with τ ⊋ σ, a simple induction argument then implies that Ug+1 has no
cohomology in degree > dimR Ag+1 − g.

It is worthwhile to restate this in terms of perverse homology. Cohomology classes
on an irreducible stratified variety with suitable local triviality properties (which are
satisfied here), can be geometrically understood as representable by cycles of comple-
mentary dimension that have proper intersection with the strata modulo boundaries
with the same property: in other words, with homology with zero perversity, written
here as H0

• . As this turns a Gysin map into a direct image, the stability theorem of
Grushevsky–Hulek–Tommasi can be understood as one pertaining to H0

• (AΣ
g ;Q) in

degrees < g. So we have well-defined stable perverse homology H0
• (AΣ

∞;Q). Since the
Gysin maps are compatible with the stabilization maps, H0

• (AΣ
∞;Q) inherits from the

multiplicative property the structure of a graded Q-algebra. We have a natural map
H0

k (AΣ
g ;Q) → Hk(AΣ

g ;Q) isomorphism HdimR(Ag)−k(AΣ
g ;Q) ∼= H0

k (AΣ
∞;Q) is up to

sign given as the cap product with the fundamental class [AΣ
g ] ∈ HdimR(Ag)(AΣ

g ;Q),
but as Grushevsky–Hulek–Tommasi point out this is not always an isomorphism
(although it might be so in a stable range). Hence it is presently not clear whether
there is an underlying stable homotopy type.

If, however, we are given a functorial way of selecting a nonempty subset Σ′(L) ⊂
Σ(L) consisting of simplicial cones whose union in C(L)+ is closed and such that
Σ′(L)× Σ′(L′) lands in Σ′(L⊕ L′) (note that a product of simplicial cones is indeed
a simplicial cone), then we are in a better shape: AΣ′

g will be an open union of strata

of AΣ
g which adds to Ag (virtually) a normal crossing divisor and the natural map

H0
• (AΣ′

g ;Q) → H•(AΣ′

g ;Q) will be an isomorphism. Indeed, following the argument of
Grushevsky–Hulek–Tommasi (who did this for the matroidal locus) it can be shown
that the maps AΣ′

g → AΣ′

g+1 stabilize on rational homology. The given of Σ′ yields

for every g ⩾ 0 a full subcategory TΣ′

Sp(Hg) ⊂ TΣ
Sp(Hg) and we expect the associated

functor TΣ′

Sp(Hg) → TΣ′

Sp(Hg+1) to become virtually (g − 1)-connected, once we apply
the plus construction so that we end up with an H-space. The above ring product
and the usual coproduct turn its rational homology into a connected graded Hopf
algebra.

7. The homotopy type of extensions of the period map

The map which assigns to a compact Riemann surface of genus g > 1 its Jacobian
as a principally polarized abelian variety defines a period map J : Mg → Ag. If Sg is a
closed connected oriented surface, then theQ-homotopy type of J is represented by the
map on classifying spaces of the group homomorphism Γ(S) → Sp(H1(S)). Mumford
observed that the period map J : Mg → Ag extends to a morphism Jbb : Mg → Abb

g ;
it assigns to a stable curve the Jacobian of its normalization and has the property
that the preimage of a stratum of Abb

g is a locally closed union of strata of Mg:
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Proposition 7.1. Let Sg be a closed connected oriented surface of genus g > 1. Let
P : C∗(Sg) → Wg be the functor which assigns to an element σ of the augmented curve
complex C∗(Sg) the quotient H1(Sg ∖ σ) of the quasi-symplectic lattice H1(Sg ∖ σ) by
its radical (or equivalently, the image of H1(Sg ∖ σ) → H1(Sg ∖ σ)). The restriction
of this functor to the initial object ∅ of C∗(Sg) gives the symplectic representation
P∅ : Γ(S) → Sp(H1(S)) and the stacky homotopy type of the square on the left below
is obtained by applying the classifying space functor to the square on the right:

Mg
J //

��

Ag

��

Γ(S)
P∅ //

��

Sp(H1(S))

��
Mg

Jbb

// Abb
g C∗(Sg)

P // WSp(H1(S))

Proof. We confine ourselves to the basic idea of the proof. First note that the period
map lifts to a map T(Sg) → X(H1(Sg)). This extends to a continuous map T(Sg) →
X(H1(Sg))

bb which on the stratum T(Sg ∖ σ) is given by first mapping T(S ∖ σ) to
the Teichmm̈uller space of the (possibly disconnected) surface obtained from S ∖ σ
by filling in all the punctures and then applying the period map on each connected
component. We can arrange that the open cover of T(Sg) that was used to define
C∗(Sg) refines the preimage of the open cover of X(H1(Sg))

bb that was used to define
its Satake category. The proposition then follows.

Toroidal compactifications of Ag to which the period map extends
We assume g ⩾ 2 and fix a symplectic isomorphism H1(Sg) ∼= Hg. Let τ ∈ C∗(Sg)

be an element of the augmented curve complex that is represented by the compact
submanifold A ⊂ Sg. Each v ∈ τ defines after orientation a cohomology class ev ∈
H1(Sg) that is either zero or primitive (indivisible). We use Poincaré duality form to
identifyH1(Sg) with itsH1(Sg) and identify the latter withHg. The sign ambiguity in
ev disappears if we pass to ev ⊗ ev ∈ Sym2 Hg. We shall refer to the nonzero elements
of {ev ⊗ ev}v∈τ ⊂ Sym2 Hg as its Picard–Lefschetz set.

Let Σ be a Sp(Hg)-admissible decomposition of the parabolic cone of sp(Hg
R) =

Sym2 Hg
R. According to Alexeev and Brunyate [1], the period map Jbb : Mg → Abb

g

lifts to a morphism JΣ : Mg → AΣ
g if and only if for every τ ∈ C∗(Sg) its Picard–

Lefschetz set is contained in a member of Σ. This criterion is for instance satisfied
by the perfect cone decomposition [1]. Assume this is the case and denote by στ ∈ Σ
the smallest member containing the associated Picard–Lefschetz set. Every σ ∈ Σ
determines a primitive isotropic sublattice I(σ) (so that the relative interior of σ
defines a family of positive definite quadratic forms on I(σ)∗R). Notice that I(στ ) is
the image of H1(A) → H1(Sg) ∼= Hg.

Proposition 7.2. The Q-homotopy type of the diagram of maps Mg
JΣ

−−→ AΣ
g → Abb

g

is obtained by applying the classifying space construction to the diagram of functors
C∗(S) → TΣ → WSp(Hg), where the first functor is given by τ ∈ C∗(S) 7→ στ and the
second by I 7→ I(σ).

Note that Alexeev–Brunyate [1] have shown that Mg maps to the matroidal locus
in Aperf

g so that it makes sense to investigate the stabilization properties of this map.
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