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Lifting Chern classes by means of Ekedahl–Oort strata

Gerard van der Geer and Eduard Looijenga

The moduli space Ag of principally polarized abelian varieties of genus g is
defined over Z and admits a minimal compactification A∗g , also defined over Z.
The Hodge bundle over Ag has its Chern classes in the Chow ring of Ag with
Q-coefficients. We show that over Fp, these Chern classes naturally lift to A∗g
and do so in the best possible way: despite the highly singular nature of A∗g they
are represented by algebraic cycles on A∗g ⊗ Fp which define elements in the
bivariant Chow ring. This is in contrast to the situation in the analytic topology,
where these Chern classes have canonical lifts to the complex cohomology of the
minimal compactification as Goresky–Pardon classes, which are known to define
nontrivial Tate extensions inside the mixed Hodge structure on this cohomology.

1. Introduction and statement of the main result

Few objects in algebraic geometry have such a rich structure as the moduli space
Ag of principally polarized abelian varieties of dimension g. Its modular interpre-
tation makes it a stack over Z and it comes as such with a rank g vector bundle,
the Hodge bundle Eg (which we may regard as the basic automorphic bundle over
Ag in the sense that all other such over Ag are manufactured from it). Its determi-
nant bundle det(Eg) is ample and when g ≥ 2, the graded algebra of automorphic
forms

⊕
∞

N=0 H 0(Ag, det(Eg)⊗N ) is finitely generated so that its Proj defines a
natural projective completion A∗g of Ag. The complex-analytic space Aan

g under-
lying Ag ⊗C has the familiar description as the quotient of the Siegel upper half
space Dg of genus g by the integral symplectic group Sp2g(Z) and A∗gan is then the
Satake–Baily–Borel compactification. Since Ag is a Deligne–Mumford stack, the
(operational) Chow ring of Ag with Q-coefficients, A•

Q
(Ag), is well-defined. The

Chern classes of Eg generate a subalgebra Rg herein (we recall its presentation
below). Since every automorphic bundle over Ag is universally expressed via a
Schur functor in terms of its Hodge bundle, Rg contains the Chern classes of all
such bundles. This is why we refer to Rg as the tautological ring of Ag.
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The cycle map embeds this ring in H •(Aan
g ;Q) and its image can be charac-

terized in several ways. One is that after tensoring with R, it is the subalgebra
representable by differential forms whose pull-backs to Dg are Sp2g(R)-invariant
(such forms are automatically closed). Charney and Lee [1983] have shown that in
the stable range (that is, for cohomological degree < g) these classes are liftable to
H •(A∗gan

;Q), but Goresky and Pardon [2002] proved that they admit in fact a natu-
ral lift, provided we use the complex cohomology of A∗gan. They raised the question
whether their lifts lie in the rational cohomology. The answer to that question, given
by one of us [Looijenga 2017], is in general no. To see why, it is better to use the
Chern characters rather than the Chern classes, for then the even indexed Chern
characters are zero, so that the issue regarding liftability only concerns the odd
indexed ones. The answer is then that for k = 2r + 1 odd, the Goresky–Pardon lift
chgp

k (E
g) of chk(E

g) lies in the Hodge space Fk H 2k(A∗gan)⊂ H 2k(A∗gan
;C). If we

are also in the stable range 0< k < g/2, then, as we recall below, it lies in the com-
plexification of a mixed Tate substructure of H 2k(A∗gan): an extension of Q(−k) by
Q(0). This extension is nontrivial in the sense that it is proportional to a standard
nontrivial one whose invariant is given by (2π

√
−1)−kπ−kζ(k). Since k is odd,

this implies that in this range, chgp
k (E

g) will not even be a real cohomology class.
We noted already back in 2015 that the situation is entirely different for Ag⊗Fp.

For this, let us recall that Ekedahl and van der Geer [2009] had proved that Rg

is then generated by the Ekedahl–Oort strata. Our observation at the time was
that these strata intersect the boundary of A∗g ⊗ Fp transversally with respect to its
natural stratification (with “minimal perversity”), which means that these classes
naturally lift to `-adic cohomology classes on A∗g⊗ Fp. We then realized that the
notion of an F-zip, introduced by Moonen and Wedhorn [2004] and the classifying
space of such as introduced by Pink, Wedhorn and Ziegler [Pink et al. 2011] make
it fit into an even neater picture. This classifying space of zips is an Artin stack, de-
noted [EZ\Sp2g ⊗Fp] (we give more details below), which can be regarded as the
characteristic p counterpart of the compact dual Ďg of the Siegel upper space Dg.
The Chow ring Řg := A•

Q
([EZ\Sp2g ⊗Fp]) is isomorphic to the one of Ďg. We

have a natural morphism of Artin stacks Ag→[EZ\Sp2g ⊗Fp]. It has the property
that it maps Řg onto Rg. Our main observation now becomes:

Theorem 1.1. The morphism Ag ⊗ Fp → [EZ\Sp2g ⊗Fp] naturally extends to
the minimal compactification: A∗g ⊗ Fp → [EZ\Sp2g ⊗Fp] and the induced ring
homomorphism Řg→ A•

Q
(A∗g ⊗ Fp) is an embedding.

Here the ring A•
Q
(A∗g ⊗ Fp) is Fulton’s bivariant Chow ring [Fulton 1984]. One

may be tempted to call this image the tautological ring of A∗g, although (as was
shown in [Charney and Lee 1983]), the stable cohomology of the Baily–Borel
compactification is larger than the algebra generated by the λi .
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Remark 1.2. A natural analogue of this theorem can be stated for Shimura va-
rieties X of Hodge type, where the role of Rg is taken by the subalgebra RG ⊂

A•
Q
(X⊗k), with k a finite field, generated by Chern classes of automorphic bundles.

Here the subscript G refers to the algebraic group that is part of the data that give
X the structure of a Shimura variety. It is here implicit that we employ an integral
model for X which has good reduction over the prime with residue field k. Such
models have been constructed by Vasiu [1999] and Kisin [2010].

The work of Pink, Wedhorn and Ziegler [Pink et al. 2011; 2015] applies to
this setting: we still have a moduli stack of zips [EZ\G] and a classifying mor-
phism ζ : X → [EZ\G], the fibres of which are the Ekedahl–Oort strata. The
Chow Q-algebra of [EZ\G] (here denoted ŘG) is according to [Brokemper 2018,
Theorem 2.4.4] isomorphic to that of the compact dual Ď. If ζ is faithfully flat
and surjective and can be extended to a morphism ζ̃ of a toroidal compactification
of Faltings–Chai type, then essentially the same proof shows that ŘG embeds in
the Chow algebra of the toroidal compactification (see [Viehmann and Wedhorn
2013; Zhang 2018; Nie 2015] for results in this direction). The strata extend to
the boundary and enjoy good intersection properties with the boundary, see [Boxer
2015, Theorem 6.1.6; Lan and Stroh 2018]. The morphism ζ̃ factors through a
morphism η of the minimal compactification to the stack [EZ\G] and we thus find
in a way similar to the case of Ag a copy of ŘG in the Chow algebra of the minimal
compactification A•

Q
(D∗0). We will confine ourselves however to the case Ag.

Let us note that Esnault and Harris [2019] recently proved a lifting property in
the case of mixed characteristic, but on the level of `-adic cohomology. It would
be interesting to see whether their result can be lifted to the level of Chow algebras.

Recent work of Wedhorn and Ziegler [2018] and Goldring and Koskivirta [2019a;
2019b] points towards a possible generalization to Shimura varieties of Hodge type.

2. The Case Ag

2A. Review of the situation in characteristic zero. We let Ãg be a toroidal com-
pactification of Ag of Faltings–Chai type and denote by q : Ãg→A∗g the natural
projection. The Hodge bundle Eg on Ag extends to Ãg and this extension is again
denoted by Eg.

The analytic space of the complex fibre Aan
g can be described in terms of the

Chevalley group over Z, G = Sp2g, the automorphism group of the standard sym-
plectic lattice Z2g, as G(Z)\Dg, where Dg = G(R)/K is a bounded symmetric
domain with K a maximal compact subgroup.

Let us briefly review what is known about the Chow ring of the compact dual of
Dg in the more general case where G is a reductive algebraic R-group whose sym-
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metric space D has the structure of a bounded symmetric domain. Then the com-
pact dual Ď of D is of the form (G/P)(C) with P a maximal parabolic subgroup
of G. We have a decomposition G/P into Schubert cells: G/P =

⊔
BwP/P ,

where w runs over the elements of the Weyl group W of G, or rather (in order
to keep the union disjoint), over a complete set W P of coset representatives for
W/WP , where WP is the subgroup of W associated to P . It is known that the Chow
ring A•(Ď) has as an additive basis the classes of the closures of Schubert cells
(Schubert varieties) in Ď. The ring structure on the Chow ring with Q-coefficients,
A•

Q
(Ď), is described by Borel (see [Tamvakis 2016, p. 142, (28)]):

A•Q(Ď)∼= SWP/〈SW
+
〉.

Here S is the symmetric Q-algebra on the character group of a Borel subgroup,
SWP is the invariant part under WP and 〈SW

+
〉 is the ideal generated by W -invariant

elements of positive degree. In case the group is “special,” e.g., for GLn and Sp2n ,
this isomorphism also holds for Z-coefficients.

In our case, where G = Sp2g, this graded Q-algebra is isomorphic to

Řg =Q[u1, . . . , . . . , ug]/I,

where ui has degree i and I is the ideal generated by the graded pieces of

(1+ u1+ · · ·+ ug)
(
1− u1+ u2− · · ·+ (−1)gug

)
− 1.

So this gives a relation in every positive even degree ≤ 2g. Note that dimQ Řg = 2g.
For a field k, the Chern classes λi := ci (E

g) in Ai
Q
(Ãg ⊗ k) satisfy the same

relation as the ui in the Chow ring of Ãg as the ui :

(1+ λ1+ · · ·+ λg)
(
1− λ1+ · · ·+ (−1)gλg

)
= 1

(see [van der Geer 1999; Esnault and Viehweg 2002]). They generate a subring of
the Chow ring A•

Q
(Ãg ⊗ k) isomorphic to the rational Chow ring of Ďg, thereby

extending the Hirzebruch–Mumford Proportionality to the Chow rings. This ring is
called the tautological subring of A•

Q
(Ãg⊗ k)) and denoted again by Řg. Its image

in A•
Q
(Ag) under restriction via j :Ag ⊗ k ↪→ Ãg ⊗ k is Rg = Řg/(λg)∼= Řg−1.

2B. The Artin stack of zips. We now restrict to characteristic p and consider
Ag ⊗ Fp and Ãg ⊗ Fp. The compact dual of Siegel space (or of any symmetric
domain) has no obvious counterpart in positive characteristic. But it turns out that
there is a good substitute, viz. the Artin stack of zips, that can take on that role
for our purposes. Its origin is the so-called Ekedahl–Oort stratification, introduced
in [Oort 2001]. As we will recall below, it has 2g strata, and as was shown in
[van der Geer 1999; Ekedahl and van der Geer 2009], each of these has the virtue
that the cycle class of its closure lies in the tautological subring. For example,
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we have the (closed) p-rank loci V f (p-rank ≤ f with 0 ≤ f ≤ g) with cycle
classes [V f ] = (p− 1)(p2

− 1) · · · (pg− f
− 1)λg− f . Thus the generators of Řg are

represented by these effective cycles.

The basic definition. For a principally polarized abelian variety X of dimension g
over a perfect field of characteristic p > 0 the de Rham cohomology space H 1

dR(X)
comes equipped with a nondegenerate alternating form. The Frobenius operator
induces a p-linear endomorphism of H = H 1

dR(X) whose kernel is its Hodge
subspace H 0(X, �1

X ). Both the kernel and the image of this endomorphism are
Lagrangian subspaces F, F ′ of dimension g. As we will see below, this structure
(consisting of a symplectic vector space H and a Frobenius-linear endomorphism
ϕ of H whose kernel and image is a Lagrangian subspace) has only finitely many
isomorphism types. Such a structure is called a zip and was studied in [Moonen
and Wedhorn 2004].

Remark 2.1. To make the isomorphism type explicit one usually endows kernel
and image with filtrations by taking preimages and images of iterates of ϕ and then
extends these to self-dual filtrations on H by adding their symplectic perps. This
results in a descending filtration (a refinement of the Hodge filtration) C •, and an
ascending filtration (a refinement of the conjugate filtration) D•, connected by the
Cartier operator giving Frobenius-linear identifications (C i/C i+1)(p) ∼= Di/Di−1.
The dimensions of the intersections of these filtrations determine the isomorphism
type.

Moduli space and Schubert varieties. In an evident manner we have defined a
moduli space Z(H) of all zip structures on H ; it is the moduli space of triples
(L1, L2, ϕ) with L1, L2 Lagrangian subspaces of H and ϕ : (H/L1)

(p)
−→∼ L2 an

isomorphism. If F(H) is the Grassmannian of Lagrangian subspaces of H and
FF(H)→ F(H) denotes its universal bundle, then Z(H) is an open subset in the
total space of the exterior tensor product bundle

Fr∗p
(
H ⊗OF(H)/FF(H)

)
�FF(H) = Fr∗p(F

∨

F(H))�FF(H)

over F(H)× F(H), where Frp is the absolute Frobenius on F(H). The group
G = Sp(H) acts in an evident manner on Z(H). We shall call the closure of a
G-orbit in Z(H) a Schubert variety.

There are 2g such Schubert varieties. This is based on the observation that the
relative position of a pair (F, F ′) of Lagrangian subspaces (in other words, the
G-orbit of such a pair) is given by a double coset of G: if P (resp. P ′) is the
G-stabilizer of F (resp. F ′), then the g ∈ G for which F = gF ′ make up the
double coset Pg P ′, so that we get an element of P\G/P ′. We can identify this
set of double cosets in terms of Weyl groups: if we choose a Borel subgroup B
contained in P with maximal torus T and NG(T ) (resp. NP(T )) is the normalizer
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of T in G (resp. in P), then W = NG(T )/T (resp. is WP := NP(T )/T ) is the Weyl
group of the pair (G, T ) (resp. (P, T )) and it is a standard fact of the theory of
algebraic groups that the natural map

WP\W ∼= NT (P)\NT (G)→ P\G/P ′

is a bijection. One finds that in our case WP\W has 2g elements, and hence there
are as many Schubert varieties.

The Artin stack of zip data. Let us make here the connection with the way this
notion appears in the literature. The groups P and P ′ are maximal parabolic sub-
groups of G whose Levi quotients L P and L P ′ can be identified with the general
linear groups of F (or of its dual H/F for that matter) and F ′, respectively. So an
isomorphism L P ∼= L ′P ′ can be understood as giving an isomorphism H/F ∼= F ′

up to a scalar. Similarly, a Frobenius-linear map of H/F onto F ′ determines a
Frobenius isogeny L P → L P ′ . We can formulate this in terms of G only: in our
setting a zip datum is given by a 4-tuple Z = (G, P, P ′, ϕ), where G = Sp2g/Fp,
P and P ′ are maximal parabolic subgroups of G and ϕ : L P → L P ′ is an isogeny
between their Levi quotients given by Frobenius. We form the fibre product of P
and P ′ over L P ′ (the former via the group homomorphism P→ L P

ϕ
→ L P ′) in the

category of algebraic groups:

EZ := P ×L P ′
P ′.

This group acts on G by (p, q) ∈ EZ : g 7→ pgq−1 and we can form the Artin
stack [EZ\G]. Brokemper determined the Chow ring of the stack [EZ\G] (which
is essentially by definition the G-equivariant Chow ring of Z(H)). He considers in
[Brokemper 2018] more generally the case of a connected group G and an algebraic
zip datum. Choose g ∈ G such that T ′ := gT g−1

⊂ P ′. If we identify T and T ′

with their images in L P and L P ′ , respectively, then we can even arrange that ϕ
takes T to T ′, so that we have defined an isogeny

ϕ̃ : T → T, t 7→ g−1ϕ(t)g.

Then ϕ̃ acts on S, the symmetric algebra of the character group of T . The Chow
ring of the stack is [Brokemper 2018, Theorem 2.4.4, p. 27]

A•([EZ\G])= SWP/
(

f − ϕ̃( f ) : f ∈ SW
+

)
.

In our case, this group is additively generated by the Schubert varieties as defined
above.

This Chow ring can be regarded as the ring of characteristic classes for symplec-
tic vector bundles over Fp endowed with a zip structure for the following reason.
If we have a symplectic vector bundle H over a base scheme S (or stack, for that
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matter) over Fp of rank 2g, then the above construction yields the zip bundle Z(H)

over S, so that to endow H with a zip structure amounts to giving a section of
Z(H)/S. This comes with relative Schubert varieties and these define an embed-
ding of A•([EZ\G]) in Fulton’s bivariant Chow ring A•(Z(H)) as a subalgebra,
having these relative Schubert varieties as additive generators. If a zip structure on
H has associated section σ , then we may define its ring of characteristic classes as
the image of this subalgebra under

σ ∗ : A•(Z(H))→ A•(S).

Note that when σ has proper intersection with a given relative Schubert variety
Z in Z(H), then the associated class σ ∗[Z ] is represented by a specific algebraic
cycle ≥ 0 on S defined over Fp; we shall refer to these as the Ekedahl–Oort cycles.

2C. Degenerations of zips. Let us for a moment return to our fixed symplectic
vector space H over Fp and suppose we are given an isotropic subspace I ⊂ H
over Fp. Then H ′ := I⊥/I is a symplectic vector space over Fp and we if assign
to a Lagrangian subspace F ⊂ H which contains I the subspace F/I ⊂ H ′, we
get a bijection between the Lagrangian subspaces of H containing I and the La-
grangian subspaces of H ′. Denote by Z(H, I ) ⊂ Z(H) the subscheme defined
by the Frobenius-linear endomorphisms ϕ of H that are zero on I , preserve I⊥,
and induce the Frobenius on H/I⊥. The kernel of ϕ is sandwiched between I
and I⊥ and the induced endomorphism ϕ′ of H ′ defines an element of Z(H ′),
as both its kernel and image are Lagrangian subspaces. The resulting morphism
Z(H, I )→ Z(H ′) is equivariant over the evident group homomorphism from the
Sp(H)-stabilizer of I to Sp(H ′) and this makes Z(H, I ) a torsor over a vector
bundle on Z(H ′). The preimage of a Schubert subvariety of Z(H ′) is contained
in a Schubert subvariety of Z(H) of the same codimension. To be precise, every
Sp(H)-orbit in Z(H) orbit meets Z(H, I ) transversally, and when this intersection
is nonempty, then it is the preimage of a Sp(H ′)-orbit in Z(H ′). Recall that the
Schubert cells correspond bijectively to the elements of WP\W with P the stabi-
lizer of a Lagrangian F ⊂ H and similarly the Schubert cells of Z(H ′) correspond
to WP ′\W ′ with P ′ the stabilizer of F/I and W ′ the Weyl group of Sp(H ′). The
map Z(H, I )→ Z(H ′) is a stratified map corresponding to an embedding

ιI :WP ′\W ′ ↪→WP\W.

We use these observations to understand a class of degenerations of zips over
a discrete valuation ring. Let R be a discrete valuation ring of finite type over Fp

with residue field κ and field of fractions K .
Let H denote a symplectic space of rank 2g over R and I ⊂ H an isotropic

subspace over R (so that H′ := I⊥/I is a symplectic space over R). If H :=
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κ ⊗R H with isotropic subspace I (resp. H ′ := κ ⊗R H′) denotes the fibre over
the closed point, then we have evident specialization maps Z(H)→ Z(H) (resp.
Z(H′)→ Z(H ′)).

Suppose given ϕ ∈ Z(H, I) and assume that ϕK belongs to the Schubert cell
with index w. We let ϕ′ be the image in Z(H′) with specialization ϕ′o ∈ Z(H ′).
The discussion above implies the following result.

Lemma 2.2. If the element ϕK belongs to the Schubert cell with index w and ϕ′o
to the Schubert cell w′, then the specialization ϕo belongs to the Schubert cell with
index ιI (w′)= w.

2D. Extension of the stratification across the Satake compactification. By as-
signing to a principally polarized abelian variety of dimension g the isomorphism
type of its zip on its first de Rham cohomology space, we obtain a stratification
of the moduli space Ag ⊗ Fp, the Ekedahl–Oort stratification. It is induced by a
morphism of stacks

ζ :Ag→ [EZ\G] .

This morphism is smooth (see [Zhang 2018, Theorem 4.1.2]) and the fibres are the
strata.

This stratification can be extended to a toroidal compactification (of Chai–Faltings
type) Ãg ⊗ Fp. The space Ãg admits a stratification by torus rank: if q : Ãg→A∗g
is the canonical map to the Baily–Borel compactification and A∗g =

⊔g
i=0 Ag−i is

the standard decomposition, then the restriction of the Hodge bundle to A〈g−i〉
g :=

q−1(Ag−i ), contains a rank g − i subbundle E(g−i) which is the pullback of the
Hodge bundle on Ag−i .

The canonical extension of the de Rham complex is the logarithmic de Rham
complex where logarithmic singularities are allowed along the divisor added to
compactify the semiabelian variety, see [Faltings and Chai 1990, VI, Theorem 1.1,
p. 195]. The logarithmic de Rham sheaf

H1
:= R1π∗

(
�•X̃g/Ãg

(log)
)

extends the de Rham sheaf H1
dR(X/Ag). On Ãg ⊗ Fp it comes again with two

filtrations forming a zip. In fact, the morphism ζ can be extended to a morphism
ζ̃ : Ãg ⊗ Fp→ [EZ\G] which is again smooth as can be seen by using [Ekedahl
and van der Geer 2009, Lemma 5.1] or [Boxer 2015], see also below. The closed
strata on Ãg ⊗ Fp are the closures of the strata on Ag ⊗ Fp.

The Ekedahl–Oort stratification on Ãg⊗Fp intersects the boundary strata transver-
sally as we will now explain. The reason is that the Ekedahl–Oort stratification
is defined by the action of Frobenius and Verschiebung acting on the logarithmic
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de Rham cohomology H 1
dR of a semiabelian variety and on the toric part this action

is essentially trivial.
We consider a semiabelian variety G0 over S = Spec(R) with R a discrete valua-

tion ring of finite type over Fp. We assume that the generic fibre is abelian and the
special fibre is the Néron model of a semiabelian variety of torus rank r . We let
G/S be a toroidal compactification of G0 of Faltings–Chai type. It can be obtained
via the action on a semiabelian variety G̃ over S by a group of periods ι : Y → G̃(S)
with Y free abelian of rank r . Here the semiabelian variety G̃ is an extension
0→ T → G̃→ A→ 0 of an abelian scheme A/S by a split torus T/S of rank r . In
this case the logarithmic de Rham cohomology can be described with the help of
universal vector extensions, that is, extensions of group schemes by vector group
schemes. We refer to [Faltings and Chai 1990, pages 81–86] for a description. The
universal vector extension EG̃ of G̃ is a vector group extension

0→ L G̃→ EG̃→ G̃→ 0

that is canonically isomorphic to the pullback under G̃→ A of the universal vector
extension 0→ L A→ E A→ A→ 0 of A, where L A = Lie(A∨/S)∨ is the sheaf
of invariant relative 1-forms on the dual abelian variety A∨ of A. For the quotient
construction we need an equivariant form of this, that is, we need in addition a
lifting of the homomorphism Y→ G̃(S) to Y→ EG̃(S). Then Y acts via translation.

The dual of the logarithmic de Rham cohomology H1 is the Y -equivariant Lie-
algebra of the universal vector extension of G̃. By the toroidal construction as in
[Faltings and Chai 1990, Chapter VI] this Lie-algebra has a weight filtration with
subquotients the Lie algebra LT of T , the homology of the abelian variety A and Y .
The ranks are r , 2g− 2r and r . The subspace of rank 2g− r of H1 will be denoted
by I⊥ and its orthogonal complement by I . We can identify I with the invariant
differentials of the torus T . Then I is isotropic and contained in the kernel of
Frobenius. We are thus in the situation described above in Section 2C. Since I is
contained in the kernel of Frobenius the isomorphism type of the zip on the special
fibre of H1 depends only on the zip of the de Rham cohomology of the abelian part.
We can apply Lemma 2.2 to conclude that the closures of the strata on Ag ⊗ Fp

are the strata on Ãg ⊗ Fp and by induction that the intersection with the boundary
strata is proper. Indeed, with the notation used there, if ϕK ∈ Z(HK , IK ) and ϕ′K
belongs to the Schubert cycle with index w′ ∈WP ′\W ′ then ϕK extends uniquely
to ϕ with Schubert index ιI (w′).

Remark 2.3. The valuation of the torus part of the periods defines a Z-valued
bilinear form on Y which we can see as the analogue of the monodromy operator
of Hodge theory. Its invariant part defines a subspace I⊥ of dimension 2g− r in
the special fibre of the logarithmic de Rham cohomology over S. (One might view
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it as associated to the Dieudonné module of the kernel of multiplication by p on
the semiabelian special fibre of G.)

We thus see that the map ζ̃ : Ãg ⊗ Fp→ [EZ\G] factors through a map

Ãg ⊗ Fp
ζ̃

//

q

%%

[EZ\G]

A∗g ⊗ Fp

η
99

The morphism ζ̃ : Ãg⊗ Fp→ [EZ\G] induces a homomorphism of Chow rings

A•Q([EZ\G])→ A•Q(Ãg ⊗ Fp)

and it induces an isomorphism A•
Q
([EZ\G]) ∼= Řg. Indeed, the closed Ekedahl–

Oort strata on Ãg ⊗ Fp are effective cycles with nonzero classes.

Proof of Theorem 1.1. The image under push forward via q : Ãg → A∗g of λi ∈

Ai
Q
(Ãg) in the Chow cohomology group Ai

Q
(A∗g) is independent of the chosen

toroidal compactification, see [Ekedahl and van der Geer 2005, Definition-Propo-
sition 3.1]. Thus these define classes λ′i in Ai

Q
(A∗g). On the other hand we have

the generators λi of the Chow ring of the stack [EZ\G] and via the map

η :A∗g ⊗ Fp→ [EZ\G]

these act as bivariant classes by cap product ∩λi : Ak(A∗g⊗Fp)→ Ak−i (A∗g⊗Fp) on
the Chow groups of A∗g⊗ Fp. These satisfy ζ̃ ∗(λi )= λi . By [Fulton 1984, §17.1]
and the projection formula [Fulton 1984, p. 323] we have

∩λi (q∗(c))= q∗(λi · c)= λ′i q∗(c)

for all c ∈ Ak(Ãg). This enables us identify the bivariant classes λi with the λ′i . It
thus gives rise to a diagram

A•
Q
([EZ\G])

((

ζ̃ ∗
// Řg
� � //

∼=

��

A•
Q
(Ãg ⊗ Fp)

q∗

��

Ř′g
� � // A•

Q
(A∗g ⊗ Fp) �

Remark 2.4. In the end the argument is based on the observation that all the tau-
tological classes λi have an effective representative on Ãg ⊗ Fp that intersects the
boundary properly. This fails to be so in characteristic zero, although it is then
true for the ample λ1, and hence for any power on λ1, like λ2 =

1
2λ

2
1. But this is

not so for λ3. This seems related to the question of whether for a given field k the
space Ag ⊗ k contains complete subvarieties of codimension g. For g = 3 every
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complete subvariety of A3⊗k has as class a multiple of λ3. Conversely, an effective
representative for λg transversal to the boundary of Ãg⊗ k does not intersect the
boundary because λ2

g = 0, hence yields a complete subvariety of codimension g.
See also [Keel and Sadun 2003].
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