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Mathematical selves in the shaping of mathematical modernism: The circulation and 
disputation of Chasles' formula (1864-1893) 
 
 
Abstract 
 
For more than three decades, fierce debates raged both in private letters and across public 
spaces over a formula expressed in 1864 by French geometer Michel Chasles. Proofs and 
refutations thereof abounded, to no avail: the formula was too useful to be abandoned by its 
defenders, too elusive to be made rigorous for its detractors. The disputes over Chasles' formula 
would not be solved by a definitive proof or rebuttal; rather, the core epistemic issues at stake 
shifted from truth to geometrical significance. This paper tracks the main lines of circulation of 
Chasles' formula, and shows how the disputes to which it gave rise embody conflicting 
mathematical selves – that is to say, different normative accounts of what being a mathematician 
entails. This perspective allows for a renewed understanding of what historians have described 
as the conflicted rise of modernism in mathematics, and a firmer rooting of it within broader 
late 19th-century cultural trends. 
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Introduction: A formula in flux 
 
 It was June 1890, and German mathematician Felix Klein was growing ever more 
dissatisfied with the state of enumerative geometry, a newly-emerged branch of mathematics. 
Klein was an influential professor and powerful organizer of mathematical research based at 
the University of Göttingen.1 For some time already, he had been puzzled by the undecidedness 
surrounding a geometrical formula first expressed and justified on inductive grounds some 26 
years prior by French geometer Michel Chasles.2 A centerpiece of Chasles' much-celebrated 
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theory of characteristics, this formula purportedly solved a difficult mathematical problem 
whose general solution had escaped geometers for a long time, namely the enumeration of 
curves satisfying given conditions (such as passing through a given point, or touching a given 
line). This problem had  stumped renowned geometers such as Jakob Steiner, who had 
previously conjectured that there were 7776 conics touching five other given conics, only for 
Chasles to show that the correct number was in fact 3264.3 The theory of characteristics itself 
had quickly garnered praise across Europe, with translations and summaries being published 
in Italian, Danish, English, and French, and the London Royal Society's awarding Chasles with 
the Copley medal in 1865 – a coveted honor then rarely bestowed upon a mathematician.4 
 
 In 1873, some seven years after Chasles' initial publication, independent and quasi-
simultaneous proofs of this formula were given by two mathematicians: the Göttingen-based 
Alfred Clebsch, in a posthumous paper; and Georges-Henri Halphen, a French artillery officer 
freshly graduated from the Ecole Polytechnique.5 Three years later, yet another proof was given 
by a student of Clebsch's while editing the latter's Vorlesungen über Geometrie under Klein's 
supervision. 6  Shortly thereafter, however, these efforts would  be deemed profoundly 
misguided by Halphen himself. Near the end of the year 1876, he changed his mind regarding 
his own proof, presented a counter-example to Chasles' formula to the Académie des Sciences 
in Paris, and announced the forthcoming publication of an alternative theory.7 For Halphen, 
undue reliance on intuition and vague notions had led geometers astray, and thorough analysis 
of the problem revealed that Chasles' methods counted objects which were no satisfactory 
solutions to the problem at hand, but mere computational artefacts. 
 
 Halphen's refutation, however, was not accepted by all. Among the dissenters was 
German mathematician Hermann Schubert. From 1874 onwards, Schubert had been devising a 
fruitful symbolical calculus, building on formal regularities he had observed in the results of his 
colleagues, and, crucially, on Chasles' formula. Schubert's calculus, and in particular his 1879 
book Kalkül der abzählenden Geometrie impressed many, if only by the sheer number of new 
and difficult results Schubert had been able to obtain with his idiosyncratic methods.8 To accept 
Halphen's sharp arguments against what he perceived to be the lack of rigor and analytical 
precision of his predecessors, for geometers at large, meant to agree that the numerous proofs 
of Chasles' formula produced by esteemed mathematicians were flawed, and to renounce the 
embarrassment of riches provided by Schubert's methods. 
 
 Klein, who by the late 1870s was actively corresponding with Schubert, could not fail to 
notice the problematic state of Chasles' theory of characteristics. 9  In 1884, while still a 
professor in Leipzig, he assigned the problem of assessing the validity of Chasles' formula to 
Eduard Study, a promising young student. Despite his initial reluctance to work on this problem, 
by 1885 Study had obtained a new proof for Chasles' formula, and attempted to fully respond 
to Halphen's criticism. 10  To that end, Study put forth a new kind of argument: Halphen's 
counter-example did not refute Chasles' formula per se, but only one interpretation thereof – 
and not necessarily the most appropriate one. Halphen's untimely death in 1889 came before 
his potential responses to Study's work could be published – and the few interactions the two 
mathematicians had had were largely unproductive. 
 

Shortly after the publication of Study's dissertation, Klein received a rather bitter letter 
by Danish geometer Hieronymous Zeuthen, who lamented Study's reluctance to discuss the 
matter with him, and rejected the claim that the problem had been solved once and for all. 
Having studied under Chasles in Paris in 1865, written a dissertation in Copenhagen on the 
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theory of characteristics, and corresponded with both Halphen and Schubert throughout the 
1870s on these matters, Zeuthen was a renowned expert of enumerative geometry; and firmly 
on Halphen's side in his disagreement with Schubert and Study. Despite Klein's insistence, 
however, Study refused to engage in the discussions Zeuthen had called for.11 

 
In 1890, therefore, with no end to these disputes in sight, Klein asked Zeuthen to write 

a public and official response to Study, to be published in the pages of the Mathematische 
Annalen which Klein then edited. Zeuthen obliged, and in so doing reiterated his opinion that 
Study's work was based on a misunderstanding of the very problem Halphen had set out to 
solve, and that the latter's results still held. Study replied in the same journal in 1892, and so 
did Zeuthen in 1893, but at no point did their respective positions evolve: despite Klein's 
intervention, the indeterminacy over the validity of Chasles' formula subsisted after all these 
years.12 
 
 There was a profound mathematical reason for the persistence of these disputes; and 
geometers nowadays all acknowledge that the validity of Chasles' formula crucially hinges upon 
the formalism adopted to translate the terms at the heart of the theory of characteristics. By the 
1930s already, mathematicians had largely eschewed these debates, with many viewing them 
as nothing more than a matter of "honor."13 And yet, the story of Chasles' formula cannot be 
read as that of the vain disputes of mathematicians insufficiently equipped to realize the 
ambiguity of their problem. Indeed, the final words on this topic would not come in the way of 
a definitive proof or refutation; but only at the close of a reinvention of the cultural and 
scientific identity of mathematics itself. 
 
Modernism, truth, and language in fin de siècle mathematics 
 
 In his landmark 1990 study Moderne Sprache Mathematik, Herbert Mehrtens described 
the transformation of mathematics at the turn of the 20th-century as "a shockwave blasting 
through the concepts of truth, meaning, object, and existence."14 Throughout this transformation, 
he argued, criteria for truth and validity, modes of objectivity, and textual practices had to be 
reinvented and renegotiated amongst mathematicians. This was no peaceful transformation, as 
bespeaks Mehrtens' distinction between the "moderns" (such as Georg Cantor and David 
Hilbert) and the "counter-moderns" (such as Henri Poincaré or Klein himself) as two 
contrasting forms of self-understanding and style in mathematics, which clashed with zeal and 
fervor. In a thorough assessment of Mehrtens' thesis, Jeremy Gray has characterized 
mathematics under the modernist conception as "as an autonomous body of ideas, having little 
or no outward reference, [...] maintaining a complicated—indeed, anxious—rather than a naïve 
relationship with the day-to-day world."15 The modernist mathematician, in Mehrtens' view, is 
a "free creator" whose proofs and propositions derive meaning from no external system of 
references, be they physical objects, a model of some phenomenal field, or even abstract objects 
conceived prior to the utterance of mathematical speech. The counter-moderns, in turn, pushed 
back against the perceived dangers of leaving the creation of mathematical concepts up to a 
matter of arbitrary will, and sought to quell related epistemic anxieties by grounding 
mathematical truths into either appeals to intuition or some transcendent order.16 
 
 Mehrtens' categories have been criticized as insufficient for informing a precise 
understanding of the multi-national, cross-cultural, decade-spanning modernist 
transformation of mathematics. Gray himself noted that they suffered from too exclusive a focus 
on Germany over the whole of Europe, and on programmatic or philosophical texts over actual 
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samples of mathematical practice.17 Debates over Chasles' formula span the decades and the 
countries most crucial to the conflicted emergence of modern mathematics, and were never 
understood by their protagonists as discussions of foundational or philosophical issue, but 
rather of technical, albeit important results.18 Thus, this historical episode is an ideal candidate 
to test Mehrtens' sweeping narrative and categories, and to confront them to actual 
mathematical practice, on a multi-national scale. Another line of critique of this narrative, 
forcefully argued by Leo Corry, lies in the notion that the worth of the concept of modernism in 
the historiography of mathematics hinges upon its ability to incorporate contemporary, 
broader cultural changes. 19  The very term "modernism" suggests comparisons to 
transformations in the arts, many of which have been tentatively put forth.20 Drawing from the 
history of scientific objectivity, as proposed by Lorraine Daston and Peter Galison in their 
much-discussed book Objectivity, this paper sets out to show another way to tie the modernist 
transformation of mathematics to several late 19th-century cultural trends and ruptures, by 
framing it as the confrontation of successive mathematical selves. 
 
 The history of objectivity, as envisioned by Daston and Galison, is not that of the 
conceptualizations and philosophical accounts of objectivity, but rather of the various 
epistemic virtues that regulated and enabled said objectivity. Such virtues were not only 
preached, but also practiced and embodied by various practices such as note-taking, self-
erasing, attentive observation etc. Together, these virtues and practices constituted scientific 
personas, such as that of the sage or the expert, which projected different kinds of ontologies 
onto the same phenomenon, from the shape of snowflakes to the anatomy of insects. In so doing, 
Daston and Galison's ambition was to put forth a mesoscopic, longue-durée history of scientific 
objectivity across disciplinary borders, framed as the history of "the manifestations and 
mutations of the scientific self."21  
 

This paper makes uses of this analytical framework, albeit on a resolutely micro-
historical and local scale. In what follows, we will contrast the epistemic ideals which can be 
found in the highly-normative descriptions of proper mathematical practice produced by four 
of the key actors of the historical episode previously sketched; namely Chasles, Halphen, 
Schubert, and Study. To each of these accounts are associated different epistemic virtues, and 
which in turn give rise to different textual practices, ontologies and regimes of truth. Our main 
contention is that these virtues and practices were constitutive of different mathematical selves, 
whose incompatibility accounts for the inconclusiveness of the disputes over Chasles' formula. 
These selves are then all situated differently on the quadrants drawn by the two axes along 
which the modernist transformation of mathematics has been described, namely the absence 
of outward reference for mathematical discourse, and the growing anxiety amongst 
practitioners after the emergence of new standards of rigor. Furthermore, they will be shown 
to have been shaped against the decisive backdrop of various cultural trends and intellectual 
debates beyond mathematics. 22  Thus, the emergence of mathematical modernism is here 
depicted as a composite phenomenon, inseparable from cultural history at large. 
 
Chasles: Geometry as exploration of natural order 
 
 On February 15th 1864, when French geometer Michel Chasles took the podium during 
one of the weekly public meetings of the Paris Académie des Sciences, he was a familiar sight. 
There, the aging mathematician was a well-respected figure, famous for his tireless promotion 
of geometry, as well as his historical erudition regarding all things mathematical and historical. 
For almost twenty years, he had been holding the chair of Higher Geometry at the Faculté de 
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Paris, where he taught and developed his own geometrical methods in front of advanced 
students.23 His lectures were informed by his contemporary research, the content of which he 
thus polished and prepared for communication to his fellow académiciens. The theory of 
characteristics, which Chasles began presenting in February 1864, far exceeded his previous 
results both in impact on fellow European mathematicians and in sheer volume. Between 1864 
and 1867, Chasles took the podium over twenty times to address the Académie on this topic, 
either to add new results or to share those his colleagues outside the Académie had sent him. 
The center of this attention was Chasles' uniform method for the determination of the number 
of conic sections satisfying any five conditions, requiring no computation other than 
elementary sums and products of a few integers.24  
 
 This theory constituted for Chasles the culmination of a life-long endeavour to renew 
the language and methods of pure geometry. Chasles defined pure geometry as geometrical 
theories and methods resting on "pure reasoning alone", in contrast with analytical geometry, 
which relied on the use of coordinate systems and algebraic computations.25 His first book, a 
historical survey on the development of geometrical methods, drew conclusions from historical 
studies on how to elevate pure geometry to the same level of generality as its analytical 
counterpart.26 In so doing, Chasles saw himself as part of a tradition which started at the Ecole 
Polytechnique through the influential teaching of one its founders, Gaspard Monge.27 He viewed 
his task as one of synthesis and systematisation of the disorganised yet powerful new methods 
and concepts that Monge and his spiritual students and followers, such as Lazare Carnot, 
Charles Dupin, and Jean-Victor Poncelet, had brought forth in the early 19th century.28 
 
 These authors all had slightly different understandings of why analytical methods had 
risen to such lofty standards of generality and efficiency throughout the 18th century, and 
consequently they held different views on how to remediate to the inferiority of pure methods. 
However, few of them doubted the epistemic certainty or rigor of the mathematical knowledge 
obtained through analytical means. Rather, they were unhappy with the epistemic quality of 
said truths, which they reckoned insufficiently illuminated the mind. Chasles' conception of 
mathematical knowledge rested on one central creed, namely that "all mathematical truths can 
become simple and intuitive, once the narrow path [to said truths] that is natural and 
characteristic has been found."29 This postulate led Chasles to draw a stark contrast between 
the knowledge provided by ingenious, human-made analytical machineries, and that of natural, 
effortless geometrical studies: "Analysis", claimed Chasles, suffers from the same weaknesses 
as "all human conceptions: its swift and penetrating march does not always sufficiently enlighten 
the mind."30 This assessment stood in complete opposition to Chasles' description of the ideal, 
pure geometer, once they are equipped with the modern methods and theories first discovered 
by Monge. This modern geometer, Chasles claimed, simply had to "pick any arbitrary known 
truth, and submit it to the various general principles of transformation ; they [would] derive from 
it other truths, different or more general." What's more, added Chasles, anyone could now 
become a geometer: "genius is no longer required."31 At the end of Chasles' historical narrative 
stood the figure of the geometer as a student of (spatial) extension, able to effortlessly and 
systematically combine truths within naturally-grounded theories. Just like the technical 
drawing devised and promoted by Monge and Dupin years before, Chasles' teaching was meant 
to unfetter its users by "bringing their practices in lines with the dictate of nature and reason."32 
 
 This description of the ideal mathematician was also something Chasles transmitted 
through his teaching and promotion of his own geometrical practice. The naval officer Ernest 
de Fauque de Jonquières was a student and friend of Chasles' until a bitter priority dispute tore 
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them apart, and worked for some time on Chasles' theory of characteristics. In a review of 
Chasles' 1860 book on Euclid's lost Porisms, he warned prospective geometers against the 
alluring promises of the "lively gait" of analytical geometry, which he thought of as appealing to 

 
this frenzy, this frantic need to reach any arbitrary goal, which is one of the dominant 
characters of our times. But it is good, for the sake of science itself, to temper this 
character. For, even if we left the laurels of celerity in research to analytical methods, 
science could not be exclusively served in this way. To use a vulgar comparison, one may 
get the lay of a land fairly quickly by travelling along the major railways that criss-cross 
it; but to know in-depth the details, the productions, the resources of this land, one must 
step off the locomotive, and set out to explore by foot its ancient roads and unbeaten 
paths. In so doing, one acquires habits of patience, observation, and criticism, which 
might well disappear, if we couldn't bear to go back to this primitive mode of travel.33 
 

At a time of fast industrialisation 34 , and as calculating machines ceased to be mere 
abstractions35, Chasles and his students promoted a counter-figure of the ideal mathematician, 
one that would go against the analytical trends, and aim for a slow-moving, but steady and 
methodical knowledge.36 They embodied a mathematical self that bore crucially on the choices 
in conceptual tools and textual practices that these actors elected to use when solving 
geometrical problems.  

 
 In his courses, Chasles would craft new notations and linguistic devices in order to 
structure the whole of Geometry around a few central concepts, and to systematize the writing 
of geometrical proofs and propositions. One such line of enquiry pursued by Chasles from the 
early 1850s would be of particular importance for the theory of characteristics: the shaping of 
a new mode of description of curves through what he sometimes called "geometrical equations." 
In particular, Chasles studied procedures to construct certain curves determined by some of 
their points that were perfectly general, that is to say that the instructions involved in it would 
be applicable to any possible configuration of given points. Such procedures, Chasles claimed, 
had to rest on properties of these curves that are so absolutely fundamental as to completely 
characterize them. In turn, such properties would act as the "true equations"37 of these curves. 
Unlike traditional Cartesian equations, however, they involved no algebraic symbols or 
variables. In his 1865 Traité des Sections Coniques (the content of which had been written and 
taught much earlier), Chasles built on this framework to form two central propositions, namely 
Pascal's and Brianchon's theorems, wherefrom the entire theory of these curves he thought to 
derive. Of these theorems Chasles would then say that they were the "punctual and tangential 
equations of conics."38 In both instances, Chasles would emphasize the search for a fundamental 
and characteristic property of a class of curves as the geometer's main task. Such properties 
then act as geometrical equations, which involve no extrinsic elements (unlike Cartesian 
equations, with their artificial coordinate systems), while displaying the same level of 
generality as analytical equations. From these geometrical equations, the pure geometer could 
effortlessly, and with no use of shrewd computations, derive an infinity of higher-level truths.39 
 
 Chasles' presentation of the theory of characteristics made explicit the connection with 
his past research on geometrical equations.40 He first explained why analytical methods cannot 
solve the general problem of enumerating conics: the computations required by the procedure 
of elimination that this would entail are simply intractable. They require the combination of 
five algebraic equations (of potentially high degrees) in six unknowns, which is, in general, 
more than the human mind can handle. His own theory had no such problem. Chasles 
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considered what he called systems of conics, that is to say infinite collections of conics satisfying 
four conditions (see fig. 1 below). In a given system, for any condition Z, there is a finite number 
of conics satisfying Z. He then defined, for each of these systems, two numbers μ and ν, which 
he named the "characteristics" of these systems41. This terminology was not arbitrary: Chasles' 
central observation was that all properties of systems of conics can be expressed through a 
number obtained by adding these two numbers a certain number of times, that is to say through 
a number of the form αμ + βν (where α and β depend solely on Z). In other words, Chasles had 
found a systematic method which, to every geometrical condition, was able to associate two 
coefficients α and β, so that in any system of conics of characteristics (μ,ν), the number of conics 
satisfying this condition Z was αμ + βν; this latter expression being called the 'module' of the 
condition. To showcase this remarkable regularity, Chasles then drew up long, monotonous 
lists of geometrical properties, each of which matched a geometrical condition. To enumerate 
conics satisfying five conditions, one only had to refer to these lists, find the properties 
corresponding to these five conditions, and carry out a series of simple additions and 
multiplications of these α's and β's. For instance, knowing that in a system of characteristics (μ, 
ν), there are 2μ + 2ν conics touching one given conic (that is to say that, for this condition, α and 
β are equal to 2), a series of elementary arithmetical operations given by the general procedure 
allowed Chasles to enumerate the 3264 conics in a plane which touch five given conics, a result 
for which he is still remembered. 42  Thus, for Chasles, characteristics allow for a natural 
representation of the properties of systems of curves, which in turn necessarily lead to 
effortless enumerations where algebraic representations, based upon artificial coordinate 
systems and variables yielded but inextricable computations. 
 
Figure 1 inserted here (see captions at the end of manuscript) 
 
 The claim that all properties of systems of conics can be expressed in such a compact 
form, is what would be identified as Chasles' theorem. However, for his method to function and 
for it to rest on solid epistemic ground, Chasles did not need to prove this general formula: all 
he needed was to establish these lists of propositions covering any conceivable condition, and 
to do so in a systematic manner. And this is exactly what he did: in the archives preserved at 
the Paris Académie des Sciences can be found thousands of leaflets upon which Chasles 
sketched proofs of such propositions in a highly systematic and condensed form (see fig. 2 
below), undated but most likely produced between 1864 and 1876. That a mathematician 
might consider this a worthwhile use of their time shows how active a role Chasles' normative 
ideal of the mathematician played in his scientific practice, up to the very identification of what 
should constitute valuable output, and what proves the value of a theory. 
 
Insert figure 2 here. 
 
 The αμ + βν formula for Chasles was less of a theorem than the sign that, through the 
notion of characteristics, he had captured an essential, natural and fundamental property of 
conic sections. For this very reason, he would liken the writing of characteristics (μ,ν) to that of 
the geometrical equation of a system of conics. It is not surprising, therefore, that Chasles later 
showed skepticism or even disinterest when he was confronted with the new generation's 
attempts at proving this formula.43  This endeavour, in Chasles' view, amounted to proving 
something as fundamental as the adequacy of the concept of a degree of an equation, and was 
not part of what he as a mathematician and a geometer identified as a valuable or meaningful 
epistemic task. The theory of characteristics, in Chasles' understanding, was the crowning 
achievement that displayed in full the worth of his way of acting qua geometer: a geometer who 



8 

refuses the help of artificial and computational machineries, in favor of slower, pedestrian, but 
deeper and richer surveys of the fundamental properties of a theory, and was thus rewarded 
with a method that would solve any problem related to conics. Of this, the facility and 
systematicity of his thousands of leaflets was a surer sign to Chasles than the complicated 
proofs later published would ever be. 
 
Halphen: The Fall from geometrical Grace 
 
 As Chasles' theory circulated across national, mathematical, and cultural boundaries, 
much was lost in translation; even at the Paris-based Société Mathématique de France (SMF). 
Chasles himself was the first president of the SMF, which had been formed in November 1872 
partly after his lament, expressed in his 1870 Rapport, that French mathematics was doomed 
to lag behind their German, English, or Italian counterparts lest such a society be created 
immediately. 44  A mathematical journal, the Bulletin de la SMF (BSMF), was immediately 
associated to this Society. A mere glance at the papers published therein between 1873 and 
1876 shows the dominating influence of Chasles, as the theory of characteristics and related 
geometrical problems form a much larger proportion of the publications than in any other 
major mathematical journal in Europe, aside from the Comptes-Rendus de l'Académie des 
Sciences (CRAS), where Chasles' influence was equally strong.  
 
 And yet, many of the papers published there which seem to tackle the problems opened 
by Chasles preserved little of his notations, mathematical style, or of the central tasks he 
identified as motivating his work. Throughout the 1870s, Halphen was, by far, the most prolific 
author on enumerative questions both in the CRAS and the BSMF. His very first paper, published 
in 1869, consisted in a successful attempt to replicate Chasles' theory of characteristics for a 
different geometrical object, namely straight lines in space.45 The first paragraph of the paper, 
however, spelled a crucial difference in their approaches. Halphen's strategy was to express 
and prove a general formula for the number of straight lines in space satisfying four conditions, 
which, in his notations, is written αM + βN. While the form of the main result is similar to 
Chasles' formula, the theorem-oriented structure of Halphen's papers thus contrasts starkly 
with that of Chasles'. In lieu of lists of particular propositions exemplifying his αM + βN formula, 
Halphen's paper begins with the introduction of definitions and notations, moves on to a 
complete, algebraic proof of said formula, and concludes with an exploration of the theoretical 
consequences thereof – an inferential move seemingly of no interest to Chasles. Having 
identified different key epistemic goals for their work, Chasles and Halphen crafted different 
textual and literary resources to achieve them. 
 
 Unlike Chasles, Halphen maintained a constant engagement with German mathematics: 
not only did he read and communicate with German mathematicians, he also sent some of his 
work to German institutions and journals.46 In 1882, Halphen shared an award given by the 
Berlin Academy with Max Noether for work on skew curves; and some of his work on the theory 
of characteristics would be republished in the Mathematische Annalen at Klein's express 
demand. By the time the SMF was created, Halphen was in possession of what he thought to be 
the first and definitive proof of Chasles' formula for conics. In 1873, he published it in the form 
of three short memoirs in the very first installment of the BSMF, only to discover he had been 
beaten to it by an earlier paper of Clebsch. 
 
 Clebsch, just like Halphen, had identified Chasles' formula as an important theorem that 
remained to be proven. Clebsch's intent, as outlined in the programmatic statement which 
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opened his lectures which Lindemann edited in 1876, was the ''use of simple auxiliary means for 
the clothing by algebraic forms of geometrical problems." 47  His 1872 posthumous paper, 
consequently, consists to a large extent in an attempt at extracting the algebraic content of 
Chasles' notions, so that the αμ + βν formula be tractable and provable by the new theory of 
invariants. The two first sections aim to produce algebraic equations for systems of curves in 
less crude a way than mere Cartesian coordinates would allow for, while the third section is a 
discussion of the geometrical concept of the satisfaction of a condition, which Clebsch aims to 
show is equivalent to the vanishing of an invariant, a key concept in the new approaches to 
algebraic geometry.48 
 
 Halphen read Clebsch's memoir closely, and made his own the project of an investigation 
into the algebraic content of geometrical notions. However, he soon came to reckon this project 
had been insufficiently pursued by Clebsch, and that a more rigorous twist ought to be brought 
to it. In later recollections, written as part of an application for the Académie des Sciences, 
Halphen wrote: 
 

I immediately noticed that I still had to make precise a notion which had until then 
remained vague, namely that of the independence of, on the one hand, the system of 
conics, and on the other hand, the extra condition that is imposed on the conics of this 
system. Often M. Chasles had neglected to mention it, but everyone restored it 
effortlessly. In each example, indeed, nothing is simpler. In the general theory, however, 
it is not clear at first how to make this independence precise.49 

 
Paradoxically, his reading of a paper that supposedly agreed with his own work stirred up 
doubt in Halphen's mind. According to his later retelling of the story, in investigating further 
into the analytical expression of this independence, Halphen discovered that there were not 
two, as Chasles, Clebsch, and many others previously thought, but three kinds of degenerate 
conics, and this discovery became the foundation upon which he constructed his counter-
examples to Chasles' formula.50  
 
 Looking back at this turn of events, the French artillery officer immediately framed the 
irruption of this refutation via a military vocabulary: 
 

This theory, which led to so many controversies, seems today to be fixed. But, one must 
admit, what a strange fate it's had! Where to find the source of these vicissitudes? Too 
much imagination, perhaps, prematurely led geometers into an ill-prepared campaign. 
How much uncertainty, fumbling, how many mistakes even, soon to be corrected, were 
seen in this century's attempts at a general Geometry, which mingles with the theory of 
algebraic functions!51 

 
This juxtaposition of mathematical rigor and strategical preparation is not entirely unique, 
especially amongst a generation of Polytechniciens who graduated right before, or during, the 
bitter defeat against Prussia in 1870.52 In a notice written after Halphen's early death in 1889, 
Henri Poincaré quoted the following assessment by Charles Hermite: 
 

Halphen, Faidherbe, after so many others, have been faithful to the double mission of 
the Ecole Polytechnique, and have continued its glorious traditions. Isn't there indeed, 
in the habits of intelligence, in this particular nature which the teaching of our great 
School creates, a normal link, a concordance with the soldier's qualities? A rigorous 
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discipline of the mind prepares one for military duties, and doubtlessly mathematical 
studies contribute to form this faculty of abstraction which proves indispensable to the 
chief who needs to form an interior representation, an image of the action by which he 
leads himself, forgetting danger, into the tumult and obscurity of combat.53 

 
Poincaré, himself another Polytechnique alumnus, concurred. Amongst the other notices 
written after Halphen's death, most of which were written by leading mathematicians from the 
same generation, there emerges a rather precise description of the kind of mathematician that 
Halphen supposedly was. Émile Picard, for instance, in his own obituary of Halphen, 
distinguished between two "tendencies of mind" one can find amongst mathematicians: there 
were those who "busy themselves mainly with widening the perimeter of known notions", and 
those who "prefer to remain in the purview of more developed notions, to deal with them in 
depth."54 Halphen would then be characterized as an extreme example of this second tendency. 
His modus operandi, Picard tells us, was to leave no question incompletely solved, to never stop 
investigating a matter until absolute precision and rigor had been attained. Halphen's counter-
examples, in this narrative, became emblematic of a certain mathematical frame of mind, of a 
certain way of acting qua mathematician. The very focus on counter-examples as a threat to 
generality shows well how this self translates into a specific mathematical practice. Of course, 
at a superficial level, no mathematician views their theorems as true in some cases only. 
However, betwixt the strict logical interpretation of this statement and actual mathematical 
practice, some leeway exists: unlike Halphen, some other contemporary algebraic geometers of 
a different milieu practiced a form of generic reasoning, wherein expressions which explicitly 
include every possible counter-example are not needed, nor perhaps even wanted.55 
 
 While the epistemic virtue of rigor has long been present in mathematicians' 
representations of their craft56, its presence in the discourse of Halphen and his colleagues had 
a peculiar flavor. In a context of growing anxiety, after a military defeat which had been largely 
attributed to an imbalance in scientific advancements between France and Germany57, as well 
as rising internal tensions within the body of mathematical knowledge itself58, Halphen's work 
was viewed as the salvation brought by a new kind of mathematician: an analyst whose 
scientific ethos, mathematical methods, and epistemic ends were foreign to Chasles' pure 
geometer. Whereas the latter strived for the naturalization of theoretical settings, and set their 
mind to searching the simplest and most fundamental properties of geometrical figures, the 
analyst investigated with utmost precision the domain of validity of each theorem, discussed 
every possible counter-example, and used analytical means to expurge all possible vagueness 
from mathematical language. To the authority of the genial académicien that was Chasles, 
Halphen opposed that of the ‘specialized disciplinary expertise’ of those with a hard-earned 
mastery of the modern techniques of algebraic analysis.59 Between these two figures, a fall from 
geometrical grace happened: Halphen would not think of mathematics as a domain of 
knowledge in which Nature provides simple and general formulas to the acute observer, but 
rather as a set of hidden truths to be coldly besieged and eventually attacked. His alternative 
theory of characteristics leads to no neat and concise formula for the enumeration of conics; it 
even rejects the possibility for any finite number of terms to express a general solution to 
Chasles' problem. For someone who evaluates a theory on the ground of the ease and 
systematicity of its use, this would be a major setback. To Halphen, for whom such lofty hopes 
of simplicity were unfounded, this was nothing more than another sign of the deceiving 
character of naïve intuition. 
 
Schubert: Human, all too human mathematics  
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 Halphen's refutation built on intricate algebraic computations, which several of his 
colleagues admittedly struggled to understand. Even after the delayed publication of Halphen's 
memoirs in three of Europe's most famous mathematical journals, the explanations and 
arguments for his alternative formulae met a mixed reaction. While no one contested the 
mathematical skill displayed in these texts, several geometers elected to keep on using a 
formula which had been so fruitful and seemingly correct for years, sometimes merely adding 
a footnote or a passing remark mentioning Halphen's criticism to memoirs or papers which 
fully depended on Chasles' formula. This was the case of Hermann Schubert, a Gymnasium 
teacher in Hamburg, who had begun working on the theory of characteristics at around the 
same time as Halphen. In 1870, Schubert had written for a doctoral thesis a faithful and 
competent adaptation of Chasles' theory to second-order surfaces, with little in the way of 
notational or conceptual innovation.60 Things would change drastically toward the end of the 
year 1873. In a seemingly anodyne paper, Halphen had made an observation to which he would 
never come back or attribute any particular importance. To Schubert, however, this 
observation would mark the birth of an entirely new way of writing, proving, and 
understanding enumerative properties of figures.  
 
 In 1864, Chasles had already obtained a complex expression for the number of conics 
satisfying five given conditions with associated coefficients (α1, β1), (α2, β2), .. , (α5, β5), by 
applying to them the αμ + βν formula five times in a row. This expression was too unwieldy for 
theoretical use, but allowed for moderately faster computations when given five concrete 
geometrical conditions. Halphen, in 1873, at a time when he still believed in the validity of the 
αμ + βν theorem, noticed that the final expression could be expressed through the much simpler 
formula 
(α1 p + β1 d) (α2 p + β2 d) ... (α5 p + β5 d) 
where the letters p and d are to be understood as variables, like the x's and y's of a polynomial 
equation.61 Halphen showed that the expression above yielded the desired number of conics, 
provided that it be developed, and that each symbol pid5-i be respectively replaced by the 
numbers of conics passing through i points and touching 5-i lines. For Halphen, this was no 
more than a symbolic manipulation, helpful to make the general formula easier to handle. In 
particular, the above compact expression had no intrinsic meaning, and the letters p and d 
denoted empty variables, only to be instantiated at the end of a symbolic computation via 
concrete numbers. 
 
 Schubert, however, read something far more general and powerful in Halphen's paper, 
and immediately started publishing a series of articles making a very creative and fruitful use 
of this observation. In the first of these papers, he immediately reinstored the symbols for 
characteristics μ and ν in Halphen's general formula instead of the empty variables p and d.62 
He read this formula as expressing the fact that the product of five (α1μ + β1ν) modules of five 
given conditions does in fact represent the number of conics satisfying these five conditions, 
for the symbols μi ν5-i represent a composed condition of dimension 5, that is to say a condition 
which can only be satisfied by a finite number of conics. In Schubert's view, one could simply 
combine symbols for conditions, as if they were algebraic entities, and factors of maximal 
dimension would simply represent finite numbers of solutions.63 For instance, if the symbols P 
and G denoted respectively the conditions ‘passing through a given point’ and ‘touching a given 
line’, then the symbol PG would denote the composed condition ‘passing through a given point 
and touching a given line’. When turning to the enumerative geometry of a certain figure, 
Schubert would enumerate basic conditions which can be imposed to such curves, represent 
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them with symbols, and proceed to give elementary algebraic formulas ruling the use of these 
symbols. The juxtaposition of two such symbols would stand for the conjunction of the two 
initial conditions, while additions of symbols would denote the disjunction of the 
corresponding conditions; and the symbolism of algebra would provide a way to compute with 
geometrical conditions.  
 

The wildly alogical nature of Schubert's mathematical act is striking. The validity of 
symbolic manipulations in Halphen's memoir rested on the truth of the αμ + βν formula, and 
constituted little more than a rewriting of this formula, with algebra being used to prove, 
delineate and explore geometrical truths. Schubert, however, had turned this elementary 
observation into a full-fledged, autonomous symbolic apparatus, the formal justification of 
which would remain lacking in the eyes of the majority of his colleagues.64 From a fruitful re-
reading of a consequence of Chasles' formula for conics, Schubert developed a symbolism 
whose stated goal was to combine geometrical conditions of all kinds, and to deal with all sorts 
of geometrical figures, with algebra serving now as a model for a new geometrical language, 
rather than as a conceptual tool for stating and proving theorems. 
 
 The radical novelty of Schubert's approach cannot be understated. Not only did Schubert 
obtain a plethora of new results – some of which were deemed extremely impressive, such as 
the enumeration of 666,841,088 quadrics tangent to 9 others; but his was also an entirely new 
way of researching, writing and presenting the results of geometrical investigations. Unlike 
Halphen's theorem-oriented memoirs, and more like Chasles' texts, Schubert found value in the 
production of long lists of formulae. These lists, however, differed significantly from Chasles'. 
They were not the systematic and voluntarily monotone enumeration of properties of 
geometrical conditions, but rather tables of symbolic expressions to be used in the course of 
enumerative computations (see fig. 3 below). 
 
Insert figure 3 here. 
 
 Schubert's shaping of the Kalkül was contemporary to, and partly shaped by an 
epistolary exchange with Halphen and Zeuthen which began in 1876, shortly after Schubert 
published his first complete presentation of enumerative geometry65, and Halphen his first 
counter-examples to Chasles' formula. The tone of the discussion was at first cordial, as 
Halphen helped Schubert become a member of the SMF, and as the Royal Danish Academy, of 
which Zeuthen was a leading member, had just awarded him a gold medal for his work on 
cubics.66 As Halphen published his counter-examples, however, the exchange turned polemical. 
Schubert continued to write papers deploying his Kalkül on various geometrical figures, 
systematically searching for analogs of Chasles' formula (of which he himself co-authored a 
proof with Adolf Hurwitz in the immediate wake of Halphen's refutation).67 Halphen viewed 
this enterprise as doomed, since he had just shown that such a problem could not be solved 
even in the simple case of conics; but failed to convince Schubert to either renounce his project, 
or to take the necessary precautions to account for these new counter-examples. Schubert's 
letters, to which the answers are not extant, show the German mathematician maintaining a 
friendly and even disciple-like tone, even at some point acknowledging Halphen's merits 
(whose proofs he half-admitted he could not fully understand), while making no changes 
whatsoever in his own published work. In turn, contemporary letters from Zeuthen to Halphen 
(to which the replies are not extant either, save for a few which were transcribed in Halphen's 
Oeuvres complètes) reveal that Halphen was becoming progressively annoyed with his 
interlocutor's reluctance to take note of the newly-established falsity of Chasles' formula. 
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Toward the end of the year 1879, Halphen grew restless and demanded that he and Schubert 
make their disagreement public and discussed during one of the bi-weekly meetings of the SMF 
(which Schubert could not attend). Having revisited his previous work on conics, Halphen was 
now able to produce counter-examples for each general formula of Schubert's whatever the 
geometrical figure at hand, almost on command. Schubert would at first attempt to save his 
formulas, by arguing that they are simply meaningless in the problematic cases that Halphen 
was pointing to. 68  In other documents, he would propose reinterpretations of Halphen's 
counter-examples to turn them into "interesting verifications" of his own formulas, without ever 
engaging with the Frenchman's intricate analytical discussion of what it means to satisfy a 
geometrical condition.69 Such defenses would be printed in December 1879, until eventually, 
in January 1880, Schubert gave up on defending his formulas.70 While a retraction was soon 
published in the BSMF, Schubert continued with his mathematical practice unaltered 
whatsoever in articles published at the same time in German journals.71 This concession made 
on French soil was largely borne out of a desire to maintain peaceful scientific communications 
with a notorious society, which was of paramount importance to a Gymnasiumlehrer in 
Hamburg, isolated from the main German mathematical communities, rather than a sincere 
renunciation.72 
 
 In letters he wrote to Zeuthen at the same time, Halphen explained his gripes with 
Schubert's persistence to look for formulas such as Chasles' αμ + βν:  
 

Of all the reasons one can enlist against the allegedly general theorems, the best is the 
following: the arguments with which they can be covered disappear when the two 
beings (C), (Σ) [(C), (Σ) here refer respectively to a figure which solves a problem, and a 
system of such figures] are each defined by more than one equation. In these 
circumstances, we must abandon intuition and come back to Analysis. By this term I 
mean true reasoning ; I demand no equation, of course. M.Schubert absolutely wants to 
alter nature to accommodate it to his formulas. We deal with a problem that admits one 
solution: One! Are you joking? The formula yields two: therefore there are two! Do you 
know how I replied? I took the question to be a particular case of another, wherein the 
formula yields 5, and then of another, wherein the same formula gives one.73 

 
Halphen's criticism focused on Schubert's supposed belief that formulas can give rise to their 
own meaning. Schubert, according to Halphen, had inverted the proper epistemological order: 
he accepted the results produced by his symbols, and left no room for critical appraisal of these 
results. And yet, Halphen thought he had uncovered and revealed the insufficiently precise 
determination of what this unchecked symbolism represents: to one formula of Schubert's, 
Halphen had associated two possible, yet contradictory, analytical representations. For this 
reason, he disparaged Schubert's Kalkül as mere "intuition", despite there being little that one 
would spontaneously describe as intuitive in this highly formal and symbolic geometrical 
practice: intuition, for Halphen, served as a generic term to pejoratively refer to any 
mathematical practice not based on the careful analysis of the equations or definitions of its 
concepts. A few days prior to this letter, Halphen had asserted to Zeuthen that he "knew the 
meaning of these formulas much better than Schubert, without a doubt." 74  There again, he 
pitched his ability to gain insight into the correspondence between complex formulae and 
geometrical configurations through his mastery of analysis, against whatever loose, potentially 
fruitful, combination of symbols Schubert had devised. This line of defense could not have 
contrasted more strongly with Schubert's own depiction and understanding of mathematical 
practice. 
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 Indeed, Schubert's enumerative geometry can be advantageously read against the 
backdrop of his own philological and philosophical interests, thus casting new light on his 
mathematical work and his refusal to really engage with Halphen's criticism. In the wake of his 
1879 book and after a decade of intense work on enumerative geometry, Schubert began 
authoring articles and books on a wider range of subjects, and in a wider range of journals. 
Among these stand out works on the philology and ethnography of numbers, recreational 
mathematics, elementary textbooks on algebra, and popular essays on the nature of 
mathematical knowledge. 
 
 In a booklet published in 1885, Schubert expounded what he described as a "cultural-
historical study" of the formation of numbers. 75  This text consisted in a sketch of the 
developmental stages through which the formations of number-words ("Zahlwortbildung") and 
number-signs ("Zahlzeichenbildung") allegedly ought to pass. For Schubert, "the system of 
numbers that we take for self-explanatory in our childhood is not something that can be taken for 
self-explanatory, but rather the highest offshoot of a cultural-historical process that began when 
man became man, when he began to speak and write."76 Schubert went on to show how various 
peoples devised various ways to write numbers and to represent them on account of both their 
cultural and ecological landscape. Religions and mythologies, as well as surrounding seas or 
mountains, are possible factors in the development of said number-words and number-signs. 
In a particularly striking passage, Schubert wrote: 
 

There is [in the oldest literature of the Brahmans] talk of a king who advanced his wealth 
to a hundred thousand trillion jewels, of a Monkey Prince who could confront his 
enemies with 10,000 sextillion monkeys in battle. And in Buddhist times one read of 
24,000 trillion deities and of the 600,000 million sons of Buddha. [..] The Greeks were 
too friendly to the natural and the true, to love such exaggerations. Homer lets a 
wounded Ares scream like 9- or 10,000 men in the fifth book of the Iliad. In India, a god 
of war who could only scream like 10,000 men, would be considered asthmatic.77 
 

 Schubert goes on to explain why certain peoples ("Volk") have a need and desire for 
large numbers, which in turn led them to devise ways of conveniently writing words for large 
numbers. To craft a word for the number ten thousand, the Greeks created the new word μύριοι 
(myriad), because they couldn't reasonably foresee a real need for many more such words. The 
Indians, on the contrary, yearned for ever larger numbers, and so devised a way to express 
them using number-words which already existed, not unlike contemporary English does with 
the juxtaposition of the words 'ten' and 'thousand'. Such systems of number-words are 
ultimately classified by Schubert on a scale which goes from "Natürliche Zahlreichen" (numbers 
being represented by collections of points or other tokens) to the "Prinzip des Stellenwerthes", 
which corresponds to our modern way of writing the so-called Arabic numerals.78  
 
 In this book and further publications, Schubert displayed an exhaustive knowledge of 
the contemporary philological and ethnographical ("Forschungssreisende") literature. He was 
in close contact with both explorers and philologists, publishing a summary of his views in the 
second edition of German explorer Georg von Neumayer's Guides to scientific observations on 
travels79 , and participating to the Kongress deutscher Philologen und Schulmänner in 1905. 
Schubert's kulturgeschichtliche project also bears the mark of a larger German tradition of 
cultural history of mathematics, to which was most famously associated Moritz Cantor, but 
which actually goes back to Arthur Arneth. A professor of mathematics at the Heidelberg 
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Lyceum, Arneth "viewed the abstraction process leading to mathematical content as being 
conditioned by cultural factors."80  In tying these locally- and culturally-rooted mathematics 
together into an ultimately universal science, which surmounts national and regional 
characteristics, Schubert shifted this tradition closer to the cosmopolitan and Humboldtian 
historiography of Hermann Hankel, another German mathematician at the crossroads of 
philology, mathematics, and history of mathematics.81  
 
 Schubert's interest in philology and ethnography is crucial for understanding his 
epistemology of mathematics and the regulative ideal of mathematical activity which underlay 
his geometry.82 Indeed, in a series of articles for the newly-created journal The Monist83, as well 
as in the very first chapter of Klein's and Wilhelm Meyer's Encyklopädie der mathematischen 
Wissenschaften, Schubert built on this aforementioned study of the (cultural) history of 
numbers.84 From his study of "primitive" systems of numerations, and his understanding of the 
developmental stages of the path to ideal number systems, he attempted to derive a 
philosophical account of what numbers are, as well as what strings of symbols of numbers and 
operations represent.85 "Counting a group of things", Schubert proposed, "is to regard the things 
as the same in kind and to associate ordinally, accurately, and singly with them other things. In 
writing, we associate with the things to be counted simple signs, like points, strokes, or circles."86 
Philological and ethnographical studies paint before our eyes the original mathematician as a 
crafter of signs, words, and symbols, who progressively emancipates their science from the 
local cultural and ecological landscape it originated from. Once such emancipation has been 
achieved, the mathematician's numbers are pure cultural creations: 
 

Observation of the world of actual facts, as revealed to us by our senses, can naturally 
lead us only to positive whole numbers, such only, and no others, being results of actual 
counting. All other kinds of numbers are nothing but artificial inventions of 
mathematicians.87 
 

How, then, are we to know how to operate on these unnatural numbers? Schubert's solution to 
this question, while not completely unoriginal, borrows extensively from Hankel's work on 
systems of numbers, and in particular on his principle of permanence. Schubert renamed it the 
"principle of no exception", and summarized it as follows: 

 
In the construction of arithmetic every combination of two previously defined numbers 
by a sign for a previously defined operation (plus, minus, times, etc.) shall be invested 
with meaning, even where the original definition of the operation used excludes such a 
combination ; and the meaning imparted is to be such that the combination considered 
shall obey the same formula of definition as a combination having from the outset a 
signification, so that the old laws of reckoning shall still hold good and may still be 
applied to.88 
 

Crucial for both Schubert's and Hankel's understandings of what systems of numbers are, is the 
latter's proof of the theorem that there can't possibly be any extension of the system of complex 
numbers which preserves basic algebraic laws, such as commutativity (ab = ba). Hamilton's 
quaternions, for instance, are an extension of complex numbers in which the order of 
multiplication matters.89 For Schubert, this shows that "the building up of arithmetic is thus 
completed", and that this science has reached absolute perfection because it derives from a 
single, 'monistic principle'.90 
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 The connection between these views and geometry would appear most clearly in 
Schubert's rebuttal of the spiritualist theses of German astrophysicist Johann Zöllner.91 Toward 
the end of his life, Zöllner had argued that the mathematics of four-dimensional spaces and its 
physical interpretation form a rational and scientific basis for spiritualism, that is to say the 
study of the spirits of the dead. Rejecting any attempt to use pure mathematics to naturalize 
such phenomena, Schubert insisted on the purely artificial character of the numbers the 
mathematician freely constructs in the course of their work. Dimensions are but one example 
of such artificial numbers: 

 
Is it permissible to extend the notion of space by the introduction of point-aggregates of 
more than three dimensions? [..] In mathematics, in fact, the extension of any notion is 
admissible, provided such extension does not lead to contradictions with itself or with 
results which are well established. Whether such extensions are necessary, justifiable, 
or important for the advancement of science is a different question. It must be admitted, 
therefore, that the mathematician is justified in the extension of the notion of space as a 
point-aggregate of three dimensions, and in the introduction of space or point-
aggregates of more than three dimensions, and in the employment of them as means of 
research.92 

 
Schubert's views echoed once more those of Hankel's, who had famously claimed that "number 
is no longer an object, a substance which exists outside the thinking subject and the objects giving 
rise to it, an independent principle, as it was for instance for the Pythagoreans. [..] Only that counts 
as impossible for the mathematician which is logically impossible, i.e. that which contradicts 
itself." 93  For Schubert, the mathematician wields symbols and concepts with no intrinsic 
relation to natural objects whatsoever. The sole rules of such an activity are that it should 
preserve past discoveries, and introduce no new contradiction. This is not to say that anything 
goes: mathematics, for Schubert, is always located on a path of progression, of which the end 
goal is the "[unification] under a high point of view of theories heretofore regarded as different."94 
 
 To view Schubert as a philosopher of mathematics is bound to lead to disappointments: 
his writings do not have the finesse and argumentative solidity to withstand assaults from the 
likes of Frege, who harshly dismantled his views on numbers in an ironic review.95 There is, 
however, much to gain from reading Schubert's texts as depicting a regulative ideal of 
mathematical activity, one that already ruled his geometrical research. Indeed, Schubert's 
enumerative geometry, as the name suggests, is a science of the numbers of geometry. In some 
instances, he even uses expressions such as "geometrical numbers" to refer to the symbols of 
his Kalkül.96 Thus, the conclusions of his later philosophical papers are strongly tied to the way 
he envisioned and ruled his geometrical practice. We can now understand why Halphen's 
criticism failed to elicit a strong reaction from Schubert. Halphen accused Schubert of "altering 
Nature", but this accusation could not sway the German geometer, for whom mathematicians 
were free to craft symbols and numbers as they saw fit, as long as no contradictions were thus 
introduced, in the hope of finding a path to a unitary formulation of the solution to a geometrical 
problem. The rhetorical recourse to Nature, whether in the form of Chasles' account of 
geometrical practice as the search for fundamental properties from which theories can be 
effortlessly derived, or of Halphen's description of the Analyst using his expert training and 
tools to track the traps and counter-examples which lay in our imprecise intuition of Geometry, 
was ultimately meaningless for Schubert. Here again, a clash of geometers who shared little 
understanding of what mathematical activity consists in and what its goals are, made 
constructive dialogue nigh impossible. 
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Study: A matter of point of view? 
 
 A subtle way out of Schubert's and Halphen's impossible dialogue had been previously 
proposed by Hieronymus Zeuthen. In a long letter, written as a response to Halphen's 
announcement that he 'had no more doubts regarding the falsity of the αμ + βν theorem',97 
Zeuthen suggested that it might be possible to "preserve Chasles' theorem by adopting another 
point of view."98 Zeuthen then distinguished between three points of view on what conics are. 
The first one, which he attributed to de De Jonquières (Chasles' aforementioned student), 
consisted in "defining conics exclusively by their punctual properties"; the second one, which 
assumedly was Chasles', consisted in "regarding in an equal manner punctual and tangential 
properties." Halphen's point of view, which had lead him to reject the αμ + βν formula, was not 
characterized by Zeuthen in a similar manner, but only said to be "entirely clear and well-
defined." These points of view were not equal: while the first one is "simple and very clear", it 
suffers from being altered by the principle of duality, and leads to infinite numbers of solutions 
or other such meaningless results in some enumerative problems. As for the second one, claims 
Zeuthen, "Chasles' theorem is such an intimate consequence [thereof], that its proof would present 
itself, were we only able to define it precisely." Halphen's viewpoint was the only one deemed 
sufficiently clear and precise, while not presenting decisive geometrical flaws.  
 
 Halphen adopted this presentation in early publications about his counter-examples, 
but never fully committed to it.99 His last letters to Schubert, such as the one quoted previously, 
completely breaks from it: in lieu of contrasting viewpoints, Halphen rooted the authority of his 
theory in the nature of geometrical objects and its examination through analysis. Zeuthen's 
solution, however, was not lost on everyone: Henri Poincaré, who acted as editor of Halphen's 
collected works after his death, had initially offered Zeuthen to publish their correspondence. 
While only a small fraction of Halphen's letters were eventually published, Poincaré was able 
to survey the exchanges with Schubert and Zeuthen while editing Halphen's complete works. 
As he wrote his obituary for Halphen, Poincaré would reformulate Zeuthen's presentation of 
said exchanges, with a twist of his own: "points de vue" had become "conventions", and Halphen 
was now credited with being the first to make explicit and perfectly precise the possible 
conventions one can adopt regarding the question of generality in enumerative geometry.100 

The notion that the validity of a theorem may depend on conventions or viewpoints, however, 
would be put to more critical use by Eduard Study, to whom Klein had advised in 1884 to write 
his Habilitationsschrift on the disputes plaguing enumerative geometry. Indeed, Study's 
dissertation would display yet another understanding of the meaning of Chasles' formula, as 
well as another way to understand the nature of the epistemic task at hand for the enumerative 
geometer.  
 

Not unlike Halphen, Study initially pit the intuition of the geometers of the past against 
logical deductions and concepts, which alone could end the turmoil surrounding Chasles' 
formula: 
 

If, however, one wants to settle with complete generality a problem which in special 
cases is treated in an intuitive manner, then one must move from intuition (Anschauung) 
to concepts (Begriffe), and put logical deductions in place of appeals to appearances. 
Often, in individual cases, the latter are merely one's silent confession of the insufficient 
awareness of the true reasons behind a result.101 
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Study viewed Clebsch as having taken a decisive step forward in that direction, and, like 
Halphen, he aimed to clarify the content of the vague geometrical concepts that had led Chasles 
to his formula. However, Study was not ready to give up on Chasles' formula. To defend it, he 
expounded a new way of conceptualising generality in geometry: 
 

One has [..] to distinguish between the properties of the figures whose presence is 
regarded as the necessary and sufficient condition for the existence of those other 
properties which represent the geometric proposition, and the others which are 
regarded as consequences of said proposition, or only conditioned by the arbitrary 
manifestation of the general proposition. The former must be elevated to the rank of 
definitions and made the basis of proof. This operation is performed by anyone who 
makes a generalization, intentionally or not. Since it consists mainly in clarifying one's 
conception of what is essential for a proposition, it can be carried out without appearing 
to one's consciousness as a progress of thought.102 

 
Study put the emphasis on the clear delineation of these fundamental properties of a figure, 
which characterize the permanence of the other properties of said figure. His strategy, going 
forward, would be to search for the property which, in Chasles' theory, had implicitly 
characterized conics in enumerative context. Study claimed that this was also Clebsch's strategy, 
but that the latter was misled in his search. Halphen's counter-examples, thus, only showed that 
Clebsch's algebraic characterization of conics (for enumerative purposes) was not adequate. 
However, Study added, the "definition of solutions is arbitrary"; and there was another 
interpretation of Chasles' formula which makes it absolutely precise and valid.103 To expound 
it was the purpose of Study's dissertation. 
 
 Later on, as Study travelled to Paris with Hilbert, he met Halphen in person, but neither 
of them was capable of changing the other's mind.104 From the few letters they also exchanged 
around this period, it appears that their divergences were more than simply mathematical. 
Throughout this exchange, Study insisted that "Chasles did not have a sufficiently clear idea of 
the nature of the solutions which were to be counted; so that [Halphen's] conception of the 
theorem and [Study's] both should be regarded as interpretations, and indeed as equally 
valuable interpretations of the original formulation to be determined." 105  Study wanted to 
frame the relation between their memoirs as that of two equally possible interpretations of 
Chasles' theory of characteristics, which lead to two different truth-values for the αμ + βν 
formula, thereby concluding that the validity of this formula is indeed a matter of convention. 
Study then attempted to convince Halphen that the latter's interpretation is insufficiently 
faithful to what Chasles had in mind. But Halphen cared little for this new framing of his own 
work. In a brief reply, he "[persisted] in finding nothing new or useful in [Study's] interpretation 
of Chasles' theory."106 The discussion between Study and Halphen was not just one between two 
mathematicians who disagree on a technical issue: it was, yet again, the confrontation of two 
different figures of the mathematician. 
 
 Despite his defense of Chasles' formula and his emphasis on the arbitrariness of 
mathematical definitions, Study was no ally of Schubert's, but rather one of his staunchest 
critics. In a later paper, he attacked one of the principles at the heart of Schubert's Kalkül, which 
he viewed as a symptom of another overarching problem plaguing contemporary geometry: 
 

In countless cases, the objects of geometrical investigations are so unclearly explained, 
that one has to guess the meaning (Sinn) of individual concepts (Begriffe) from the 
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assertions made about them, whereby differences in opinion can naturally arise. [..] First 
of all, the concept of geometric figure, as defined by M.Schubert and explained by his 
examples, has such an unusual scope (Umfang), that it is most unlikely that anything 
universally valid could be said about it at this point. One is immediately forced to resort 
to an interpretation.107 

 
Like Halphen, Study accused Schubert of inverting the proper epistemic order between 
definition and investigation, as the latter lets his symbols freely operate, and never searches for 
the concept behind them. A staunch realist, even in the face of Einstein's introduction of non-
Euclidean geometries in physics, Study railed against axiomatizers who never inquired about 
what objects fell under their definitions, and those who, like Hilbert, equated the coherence of 
an axiomatics to the existence of its objects. Arbitrariness ran amok, Study thought, could just 
as well lead to a state of generalized incomprehension amongst a mathematicians, and the 
creation of mathematical concepts, while free, must always be "motivated", lest "we let the 
creature (das Geschöpf) become the Creator (zum Herren werden)." 108  Against Schubert's 
concept-free symbolism, or Chasles' intuitive geometry, but also against Halphen's restrictive 
reliance on a natural, yet possibly irregular, theory of conics, Study reconciled arbitrary 
definitions with an intransigeant emphasis on the importance of the mathematician's duty to 
precisely measure and delineate the extension of the concepts they freely produce. 
 
Conclusion: From Truth to Significance 
 
 As the disciplinary and cultural identity of the wielders of the formula differed, so did 
the definition of its terms and its status qua mathematical proposition.109 Such were the shifts 
in epistemic ideals and norms to which the groups of mathematicians involved in this 
circulation were beholden, that even the truth-value of this formula fluctuated. By the time 
Chasles' formula finally reached the Dutch geometer Van der Waerden, who produced in 1938 
the first widely-accepted proof thereof, mathematics had largely gone through the so-called 
modernist transformation, which had been merely nascent in the writings of Schubert, Halphen, 
and Study. For Van der Waerden, mathematics was solely about the derivation of "flawless 
proofs" from rigorously defined frameworks: in the case of Chasles' formula, this included 
redefining every single term of its statement, even including that of a "number" of solutions.110 
Not subject to Study's strict realist regimen, Van der Waerden did not expect concepts to 
capture a pre-theoretical (and, indeed, pre-axiomatic) meaning, and thus did not feel obliged to 
measure the extension of said concepts: squabbles over which framework best captures 
Chasles' original intuition were of no interest to him. With Van der Waerden's proof, Chasles' 
formula had not only gained entry into the commonly accepted body of mathematical 
knowledge: it had finally been absorbed into modern mathematical practice. 
 
 As Daston and Galison have pointed out in Objectivity, however, epistemic ideals never 
disappear; and the succession of portraits presented here is not a series of replacements, but of 
confrontations.111 The tensions constitutive of the modernist transformation of mathematics 
can and indeed still do reappear, albeit with a decidedly novel ring to them. If concepts are 
freely postulated, how can one ensure that they indeed capture the original geometrical 
intuition, and that the results they encapsulate are indeed those that were being sought after? 
This classical philosophical critique to naïve mathematical formalism (or, in Lakatos' term, 
Euclideanism) largely motivated a somewhat recent attempt to reinvigorate Halphen's criticism 
of Chasles' formula. Indeed, while the formalism most commonly used in contemporary 
algebraic geometry is one in which Chasles' formula is true, some argue that frameworks in 
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which the formula is false have a more profound "enumerative significance."112 Beyond Chasles' 
formula, the interconnected values of naturalness and simplicity in mathematics feature 
prominently in the autobiography of French mathematician Alexandre Grothendieck113, while 
a re-emerging anxiety of the uncertainty of a growing part of the body of mathematical 
knowledge has led many to call for new standards of proof and communication amongst 
practitionners.114 To account for the return of these epistemic virtues, a new cultural history of 
the figure of the mathematician is needed. 
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