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a b s t r a c t

In this study, an equation-free method is used to perform bifurcation analyses of various artificial
neural network (ANN) based car-following models. The ANN models were trained on Multiple Car
Following (MCF) model output data (ANN-m) and field data (ANN-r). The ANN-m model could capture
the behaviour of the MCF model in quite detail. A bifurcation analysis, using the circuit length L as
parameter, for the ANN-m model leads to good results if the training data set from the MCF model
is sufficiently diverse, namely that it incorporates data from a wide range of vehicle densities that
encompass the stable free-flow and the stable jam-flow regimes. The ANN-r model is in general able
to capture the feature of traffic jams when a car takes headway and velocity of itself and of the two cars
ahead as input. However, the traffic flow of the ANN-r model is more regular in comparison to the field
data. It is possible to construct a partial bifurcation diagram in L for the ANN-r using the equation-free
method and it is found that the flow changes stability due to a subcritical Hopf bifurcation.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Many-particle systems of simple microscopic components can
e found in numerous research areas. Their dynamics can have
stonishing and unexpected features on a macroscopic scale. For
nstance, thousands of male fireflies in south-east Asia synchro-
ize their flashing to create an impressive natural spectacle [1],
edestrians tend to walk in lines although nobody tells them to
o so [2] or grains can organize in imposing patterns when they
re placed on a vibrating plate [3]. A less spectacular and rather
npopular phenomenon is the appearance of congestions in traf-
ic flow. One can characterize traffic flow broadly into two states.
n a free-flow state, vehicles keep their desired velocity and
erturbations to their dynamic state (position, velocity, accelera-
ion) die out over time. In the jam-flow state those disturbances
an grow in time and eventually the macroscopic feature of a
ongestion wave arises that can travel through the flow. A state
hen crashes occur in the traffic flow is sometimes considered
s a third state.
A huge variety of models has been proposed to study the

hysics of traffic flow. On the one hand, macroscopic models
imulate traffic flow based on macroscopic variables that have
low level of detail, such as vehicle density and mean velocity.
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A famous example from the beginnings of traffic modelling is
for instance the ‘‘Lighthill–Whitham model’’ [4]. On the other
hand, microscopic models, also called follow-the-leader or car-
following models, directly simulate the dynamics of single cars
and thus have a high level of detail. In addition to these, gas-
kinetic traffic models can be considered as mesoscopic models
that apply probability density functions of car density to simulate
traffic flow. Other approaches use cellular automata where the
road is divided into discrete cells. A comprehensive overview of
the different classes of traffic models is given in [2] and in [5].

A popular microscopic model is the optimal velocity model
(OVM) and its extension, the so-called multiple-car following
(MCF) model. In the OVM the following car adjusts its velocity
based on the distance to the car in front of it, called the head-
way [6]. An astonishing feature of the OVM is the emergence
of phantom congestions much akin to what is observed in real-
ity [7]. Phantom congestions appear without the existence of a
permanent obstacles such as roadworks. Although the OVM can
reproduce the feature of phantom jams, it turns out that the OVM
model, if calibrated to experimental data, leads to unrealistic high
accelerations and declarations [8]. As a response to this, Helbing
and Tilch [8] introduced the generalized force model (GFM) which
takes the velocity difference between the following car and its
leading car into account when the velocity difference is positive.
However, in Jiang et al. [9] it is shown that a car-following
model actually is more realistic when also a negative velocity
difference is considered. Therefore, Jiang et al. [9] call their model
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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he full velocity difference model (FVDM). Moreover, they show
hat relaxing the velocity of the following car to the velocity of
he leading car stabilizes the free flow. As another extension of
he OVM, Lenz et al. [10] introduced the multi-anticipative car-
ollowing model. Instead of considering just the headway to one
ar ahead, the headways to multiple cars ahead are considered.
hey show that the reaction to multiple cars ahead leads to a
ore stable free flow. Peng and Sun [11] finally combined the

deas of multi-anticipative driving and the reaction to velocity
ifferences for their multiple-car-following (MCF) model. Again,
hey find that the consideration of multiple cars ahead and the
elocity differences stabilizes the free flow.
The true dynamics of traffic flow are still far more complex

han any existing traffic model could describe. A huge variety of
actors such as psychological characteristics of drivers, individual
roperties of the vehicles or the influence of road conditions
ake the task of finding the correct underlying rules of traffic

low a daunting task. However, the recent developments of ma-
hine learning (e.g. using artificial neural networks (ANNs)) have
timulated new approaches to extract the ‘underlying’ laws of
raffic flow from observational data [12–14]. Chong et al. [15]
ropose an ANN that predicts longitudinal (parallel to the lane) as
ell as lateral (perpendicular to the lane) movements of cars. The
NN-model was trained on observational data from the Natural-
stic Truck Driving Study (NTDS) and the Naturalistic Car Driving
tudy (NCDS) collected by the Virginia Tech Transportation In-
titute. Colombaroni and Fusco [16] propose an ANN with one
idden layer that takes the headway and velocity difference to the
eading car as input to predict the acceleration. Furthermore, they
ropose an extended version that incorporates memory by also
aking headway and velocity difference from previous time steps
s input. They trained their models on data that was collected
uring experimental rides with two or four cars in line, each
quipped with a GPS device for tracking. They find that their
NN models can approximate the driving behaviour of cars in an
dequate way.
Tanaka [17] examines the performance of different ANNs. All

odels have two hidden layers each with 5 neurons and their
ask is to predict the acceleration of the following car at time t+T
from input data at time t . Here, T can be understood as a reaction
time. The simplest model takes just the headway and the velocity
difference to the leading car as input. The most complex model
takes, in addition to the velocity and the current acceleration
of the following car, also the acceleration of the leading car as
input to predict the acceleration of the following car. Interest-
ingly, Tanaka [17] finds that velocity difference and acceleration
of the following car as well acceleration of the leading car at time
t are the most important inputs to predict the acceleration of the
following car at a later point in time t + T . This is a surprising
result considering that most car-following models are built based
on headway and velocity.

In the OVM, traffic jams occur by a loss of stability of the
free-flow through a Hopf bifurcation that can be sub- or supercrit-
ical [18]. Already before the free-flow becomes unstable, stable
solutions of the congested flow can exist and hence bi-stable
regimes can be present. However, full bifurcation analyses of the
OVM are often limited to a small number of cars [i.e. N < 2
in18–20] because the integration of a microscopic car-following
model is computational expensive. Equation-free analysis devel-
oped by Kevrekidis et al. [21] offers a tool to compute macro-
scopic behaviour in many-particle systems, i.e. a bifurcation
analysis. Equation-free methods extrapolate the macroscopic evo-
lution of a system into the future by using small bursts of the
microscopic model. Marschler et al. [22] refined the equation-free
method by formulating it in an implicit manner. They perform a

bifurcation analysis using the equation-free method for an OVM

2

with N = 60. For this, they use a pseudo-arclength continuation
scheme that makes it possible to also find the unstable solutions
of the dynamical system.

Up until now, the bifurcation behaviour of ANN-based car-
following models is unknown and we focus on this problem here.
In Section 2.2, an ANN model is constructed with an architecture
similar to those in [17] and [16]. A first ANN model is trained
on output from an MCF model that is reformulated by means
of mesoscopic variables, namely weighted vehicle density and
weighted group velocity of the platoon in front of the following
car. Next, another ANN model is trained on observational data
from [7]. Bifurcation analyses are performed using the equation-
free method for both ANNmodels using the implicit equation-free
method from [22]. The methodology of this study is described in
Section 2 and the results are presented in Section 3. We provide
a summary and discussion of the results in Section 4.

2. Methods

To test the performance of the ANN model, we train it on data
from a mesoscopic multiple car-following model which is shorty
described in Section 2.1. The general construction of the ANN is
discussed in Section 2.2 and the equation-free bifurcation analysis
in Section 2.3.

2.1. The mesoscopic multiple-car (MCF) following model

The original OVM was modified, refined and advanced by
several studies to incorporate velocity differences and multi-
anticipative driving [i.e. 8,10,11,23]. The formulation of the MCF
in [11], their equation (5), is

ẍn = a(V (∆xn, ∆xn+1, . . . , ∆xn+m−1) − ẋn)
+λG(∆ẋn, ∆ẋn+1, . . . , ∆ẋn+m−1)

(1)

for n = 1, 2, . . . ,N , with N the number of cars in the model
and m ≪ N the number of the cars in the leading platoon a
car considers to adjust its acceleration. Furthermore, the velocity
of the nth car is indicated by ẋn, its acceleration by ẍn and
the headway to the leading car by ∆xn. The variables a and λ
are sensitivity parameters. V (·) is the linear weighted optimal
velocity function (OVF) and G(·) is a monotonically increasing
function whose value can be understood as a weighted velocity
difference to the considered leading cars.

In this paper, we use a version of the MCF model [11] which
is reformulated using mesoscopic variables. These mesoscopic
variables are the weighted vehicle density, ρn, and the weighted
group velocity, Jn, ahead of the following car. The dynamics of the
mesoscopic MCF are governed by the equations

ẍn = a(V(ρn) − ẋn) + λ(Jn − ẋn) (2)

with V(ρ) = V (ρ−1). Here we use

V (ρ−1) = v0(tanh(ρ−1
− h) + tanh h) (3)

as OVF with the velocity magnitude v0 and the safety distance h.
We calculate the mesoscopic variables by

ρn =
m

m
∑m

i=1 pi∆xn+i−1
=

1∑m
i=1 pi∆xn+i−1

(4)

Jn =

m∑
i=1

piẋn+i (5)

where exponential weighting is applied, i.e.

pi =
ew(m − i)∑m
i=1 ew(m − i)

. (6)

and w is a weight parameter.



P. Petersik, D. Panja and H.A. Dijkstra Physica D 427 (2021) 133016

F
λ

2

a
n
n
s
t
n
n
n
t
s
i

a
a
i
a
r

o

H
o
e
T
f
n
i
s
o

f

T
i
f
T
t

t
n
t
T
o
a
s
o
f

i
m
d

t
w
c
t

2

l
s
e
t
e
a
i
m

m
t
e
n
t
f
o
T
s
t
e
m
d
s
n

R

If not stated differently, m = 10 in this study. If w > 0,
the effect is included that drivers perceive the traffic as more
dense when headways of cars in their vicinity are small. By using
a weighting function, it is possible to describe different kinds
weighting by one parameter, namely w.

We can rescale the time such that the parameter a drops out of
the model. Let t∗ denote the old time coordinate and t the new
one and it holds t∗ = τ t . Then, the mesoscopic MCF using the
new time coordinate, with the choice τ = a−1, can be written
as:

ẍn = V(ρn) − ẋn + λ′(Jn − ẋn) (7)

with in total five parameters, namely, λ′
=

λ
a , v0, m, w and h.

rom here on, the dash sign for the rescaled sensitivity parameter
′ is dropped.

.2. ANN based car-following models

ANNs consist out of an input layer, one or more hidden layer(s)
nd an output layer. Each layer consists of a certain number of
eurons, also called nodes, that are connected by synapses to
eurons in the previous layer and the subsequent layer [24]. Each
ynapse has a weight assigned to it. If each neuron is connected
o all neurons in the previous and the subsequent layer, the
eural network is called fully connected. In this study, all neural
etworks are fully connected. In the input layer there are as many
eurons as there are input variables. The amount of neurons in
he output layer is equal to the number of the variables that
hould be predicted. The number of neurons in the hidden layers
s a matter of choice and must be at least one.

The output of a neuron from the input layer is the value of the
ssociated input vector element. For all other layers the output of
single neuron is computed by calculating the weighted sum of

ts inputs using the synapse weights, adding a bias and applying
n activation function to this value. In mathematical terms this
eads as follows:

j = f

(
n∑

i=0

wijoi

)
(8)

ere, oj denotes the output of the considered neuron and oi the
utputs of the neurons from the preceding layer. Note, that for
ach layer one neuron is added such that the output is o0 = 1.
his neuron accounts for the added bias for the neurons in the
ollowing layer. The quantity wij is the weight of the synapse from
euron i in the preceding layer to the considered neuron j and f
s the activation function. There exist several activation functions
uch as the identity, the sigmoid function, the hyperbolic tangents
r the rectified linear units (ReLU) that reads as follows:

(x) = max(0, x) (9)

he resulting output value of a neuron is used as one of the inputs
n each neuron in the subsequent layer. The output values are fed
rom layer to layer until the output layer is eventually reached.
he output of the neurons in the output layer is the prediction of
he ANN.

ANNs are trained by a method called back-propagation [25,26]
o perform a regression or classification task [24]. For this, one
eeds at first to define a loss function. This could be for instance
he mean squared error (MSE) or the mean absolute error (MAE).
hen, the ANN can be trained on a training data set that consists
f features and labels. One vector of input variables is called
feature. Labels are the desired target value(s) that the ANN

hould predict. After the input is fed forward through the ANN,
ne can calculate its prediction error by using the chosen loss
unction. The errors can be back-propagated through the network
3

Fig. 1. Sketch to visualize a macroscopic time stepper that uses the equation-
free method [from 21]. The microscopic model is initialized at t0 with the
macroscopic state C0 . A small integration of the microscopic model starting at t0
s used to extrapolate the macroscopic development till t1 . At t1 the microscopic
odel is again initialized now with the macroscopic state C1 to repeat the
escribed extrapolation to estimate the macroscopic state at t2 .

o adjust the weights of the neural network. For each synapse
eight one can calculate the gradient of loss by applying the
hain rule of derivations. Setting a learning rate one can calculate
he adjustments of the weights with this gradient.

.3. Equation-free bifurcation analysis

Many-particle systems that are described by microscopic evo-
ution equations often exhibit coherent behaviour on the macro-
copic scale. Sometimes it is even possible to derive macroscopic
volution equations for this system i.e. the Navier–Stokes equa-
ion in fluid dynamics can be derived from kinetic theory. How-
ver, for many other systems no macroscopic evolution equations
re known. The equation-free method offers a tool to approx-
mate the macroscopic behaviour by using small bursts of the
icroscopic model (cf. Fig. 1).
To apply the equation-free method, it is necessary that the

icroscopic system is a so-called slow-fast system. On a long
ime scale, the evolution of this system is determined by the
volution of the slow system which can be described by a limited
umber of state variables. Moreover, any perturbation away from
he slow flow quickly converges back to the slow flow due to the
ast dynamics of the system. A lifting operator, L, and a restriction
perator, R, have to be defined for the equation-free method.
he lifting operator maps a macroscopic state to a microscopic
tate. The restriction operator does the opposite. Note that all
hese operators depend on parameters, which we will later make
xplicit in the bifurcation analyses. For the microscopic traffic
odel, we choose as macroscopic state variable the standard
eviation of the headways, indicated by σ ∈ R. The microscopic
tate is described by u = (x, ẋ) ∈ R2N . The restriction operator is
ow defined as

(∆x) = σ =

√ N∑
n=1

(∆xn − ⟨∆x⟩)2 (10)

where ⟨·⟩ denotes the mean value. The lifting operator is defined
as:

Lũ(σ ) = (xnew, ẋnew) ∈ RN
× RN , where (11a)

∆xnew,n =
σ

σ̃

(
∆x̃n − ⟨∆x̃⟩

)
+ ⟨∆x̃⟩, for n = 1, . . . ,N
(11b)
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new,1 = 0, xnew,n =

n−1∑
i=1

∆xnew,i for n = 2, . . . ,N (11c)

ẋnew,n = V (∆xnew,n) for n = 1, . . . ,N (11d)

Here, tildes relate to the reference state, ũ, that is computed
beforehand using the microscopic model. The reference state will
be further discussed in the next subsection.

When the microscopic evolution is denoted as M(t, u), the
macroscopic evolution, indicated by Φ(t, σ ), is defined by the
three steps: Lift, evolve and restrict. In mathematical terms this
reads as follows:

Φ(t, σ ) = R(M(t,L(σ ))) (12)

This equation can be solved explicitly. For this, it is important that
δ is larger than the healing time, tskip, after which one can assume
that the dynamics of microscopic model converged towards the
slow flow.

However, as explained in section 1.1. of Marschler et al. [22],
the explicit equation-free method can lead to incorrect results.
They therefore introduced an implicit method of the equation-
free analysis. The macroscopic time stepper is implicitly defined
by solving

R(M(tskip + δ,L(σ ))) = R(M(tskip,L(y))) (13)

for y. Now, the macroscopic time stepper for an integration over
the time interval δ is given by Φ(δ, σ ) := y. Hence, the explicit
time stepper is defined in the image ofR(M(t,L(x))), whereas the
implicit method finds its solution in the domain of R(M(t,L(x))).

To perform a bifurcation analysis for a general mapping H , one
has to follow solutions of the equations

H(σ , q) = 0, (14)

where q indicates the parameter in which the bifurcation analysis
is done. In this study, we will apply the method of pseudo-
arclength continuation using a predictor–corrector scheme. In the
predictor step, a first guess of a new fixed point is made by using
the secant between two known fixed points:

ŵ = (ŵ(σ ), ŵ(q)) = (σ 1
− σ 0, q1 − q0). (15)

The prediction of the next fixed point is then

(σ̂ , q̂) = (σ 1, q1) + s
ŵ

|ŵ|
, (16)

here |·| is the euclidean norm. In the corrector step, one finds
he fixed point of the system that is located on a line that
oes through (σ̂ , q̂) and is perpendicular to the secant from the
redictor step:

H(σ , q) = 0 (17)

ŵ · (σ − σ̂ , q − q̂) = 0 (18)

o solve this equation system one can apply Newtons method:

σ k+1, qk+1)T = (σ k, qk)T + J−1(H(σ , q), 0)T (19)

where J is the Jacobian:

J =

(
Hσ Hq

w(σ ) w(q)

)
(20)

The derivatives Hσ and Hq can be approximated by

Hσ =
H(σ + ∆σ , q) − H(σ , q)

∆σ
(21)

Hq =
H(σ , q + ∆q) − H(σ , q)

∆q
. (22)
4

Here, we use the implicit method from Marschler et al. [22],
with H = F δ given by the time derivative of the macroscopic flow
that can be approximated by finite differences as:

F δ(σ ) =
Φ(δ, σ ) − σ

δ
(23)

The first term in the numerator is found by the implicit equation-
free method. This means that, for each corrector step, three
microscopic model runs have to be performed, namely for (σ , q),
(σ + ∆σ , q) and (σ , q + ∆q). We choose ∆σ = ∆q = 10−3 since
his leads approximately to the fastest convergence in Newtons
ethod (estimated by comparing different values of ∆σ and ∆q).

n this study, we assume that the Newton method converged
owards a fixed point when |σ k+1

− σ k
| < 0.01.

For the bifurcation analyses in one parameter, for which we
ake either the velocity magnitude q = v0 or the circuit length
= L, the pseudo-arclength continuation scheme in association
ith the equation-free method is used. The bifurcation analysis

s always done for the single jam solution. First, two initial fixed
oints are computed using long simulations of the microscopic
odel. For this, the model is initialized with perturbations to the
ositions of the cars that lead to a single-jam solution:

n,init = xn + µ sin
(
2πn
N

)
(24)

where µ is a constant. Furthermore, from the second initial fixed
point the corresponding microscopic state is taken as reference
state, ũ, for the lifting operator. By applying the pseudo-arclength
continuation scheme as described further up, new fixed points
can be found.

The stability of the fixed point is inferred from the last itera-
tion in the corrector step by the sign of the derivative F δ

σ at the
fixed point, with F δ

σ (σ , q) < 0 indicating a stable fixed point and
F δ
σ (σ , q) > 0 an unstable one, After five fixed points are found,
new reference state is computed, because the initial reference
tate might have a car distribution (shape of the traffic jam) that
s far from the true macroscopic state. If the reference state is
ot updated, it could lead to the development of multiple-jam
olutions.

. Results

Below, we first present the bifurcation diagrams for the MCF
Section 3.1) which serves as a test case for the (MCF model
ased) ANN-m model bifurcation study in Section 3.2. Finally, the
esults for the ANN-r model are presented in section 3.3.

.1. Bifurcations in the MCF model

The mesoscopic MCF model is integrated using the Runge–
utta-4 (RK4) and an Euler forward method. With the RK4, the
alues of the velocities of the cars, ẋn, at the new time step are
ound. Then, an Euler forward step using the new velocities is
pplied to calculate the new positions of the cars. The analysis
s restricted to N = 60 and L = 60. For this set-up it is known
rom Marschler et al. [22] for the OVM (m = 1, λ = 0) that bi-
table regimes solely exist if h ≳ 1.1. Since we want to keep this
eature and see how it is altered by the mesoscopic MCF model,
e fix h = 1.4.
For the bifurcation analyses of the mesoscopic MCF model, the

umerical set-up in Table 1 is used. The bifurcation diagram of
he mesoscopic MCF model versus v0 with λ = 0.04 and w = 1
is depicted in Fig. 2. The free flow changes stability at a subcritical
pitchfork bifurcation at (v0, σ ) ≈ (1.36, 0) from stable to unstable
for increasing values of v0. This indicates that higher velocities
destabilize the free flow. Note that the negative branch of the
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able 1
tandard values of the parameters in the pseudo-arclength continuation scheme
or the bifurcation analysis of the different models.
Model: MCF ANN-m ANN-r

parameter values parameter values parameter values
s = 0.01 s = 0.01 s = 0.02 − 2
tskip = 300 tskip = 10 tskip = 2
δ = 2000 δ = 100 δ = 200
dt = 0.05 dt = 0.05 dt = 0.1
µ = 5 µ = 0.5 µ = 5

Fig. 2. Bifurcation diagram in parameter v0 for λ = 0.04 and w = 1. Blue circles
re stable fixed points, red circles unstable fixed points. (For interpretation of
he references to colour in this figure legend, the reader is referred to the web
ersion of this article.)

itchfork is not present because by definition σ ≥ 0. Since in
he microscopic model this change of stability occurs due to a
ubcritical Hopf bifurcation that gives rise to a limit cycle in the
eadway-velocity space this bifurcation point is called a Hopf
oint. Furthermore, note that a fixed point in the macroscopic
odel corresponds to a limit cycle in the headway-velocity space
f the microscopic model. Furthermore, the jam flow changes
tability at a fold point at (v0, σ ) ≈ (1.29, 0.25), which is a cyclic
old in the microscopic model, but referred to below as a fold
oint. Hence, a bi-stable regime is present in the microscopic sys-
em between the Hopf and the fold. In this bi-stable regime, the
avoured flow, jam or free flow, depends on the initial condition.

For increasing values of λ the bifurcation diagram (Fig. 3a) is
hifted to higher values of v0. This means, stronger relaxation
of the cars velocity towards the group velocity of the platoon
in front of the car stabilizes the free-flow. Fig. 3b summarizes
this in a regime diagram. It shows that increasing values of λ

linearly shift the bifurcation diagram towards higher values of v0.
n addition, the bi-stable region does not significantly change its
ize. When w is increased the regimes are shifted towards lower
alues of v0 and would eventually converge towards the solution
or m = 1. Interestingly, the slope of the Hopf and the fold point
urve becomes flatter with decreasing w. This means that the
tabilization effect of λ on the free flow becomes stronger when
ore cars ahead are considered.
In Fig. 4a the bifurcation diagram in parameter v0 for various

alues of w is depicted. Higher values of w imply that the weight-
ng in the MCF model is in favour of cars that are close to the
ollowing car. Hence, for a very high value of w the following car
asically just considers the car in front of it. One can see that de-
reasing values of w shift the bifurcation diagrams towards higher
alues of v . Therefore, considering more cars ahead stabilizes the
0

5

ree-flow. The corresponding regime diagram in Fig. 4b shows
hat decreasing values of w shift the regimes towards higher
alues of v0. Interestingly, the subcritical Hopf point turns into a
upercritical Hopf point at w ≈ 0.3 for decreasing w. Hence, the
old disappears and no unstable limit cycle is found. This hints
t the existence of a (co-dimension 2) Bautin bifurcation (see
.g. section 8.3 of [27]) at small values of w, which are estimated
or the different cases by the crosses in Fig. 4b. For very high
alues of w an asymptote appears. Here, the regimes approach
he solution if just one car ahead would have been considered.
herefore, for λ = 0.0 the regimes converge towards the solution
or a normal OVM (m = 1, λ = 0) as indicated by the vertical
black lines.

3.2. Bifurcation analysis of the ANN-m model

To investigate how an ANN captures the dynamics of the MCF
model, an ANN with one hidden layer is trained on data from the
MCF model with N = 10, λ = 0.1, m = 3 and w = 2.0 is con-
sidered. Because the ANN model is trained on model data output,
it will be referred to as the ANN-m model. The task of the ANN
is to predict the acceleration of the following car from headway
and velocity data from all cars. Hence, the ANN has 20 neurons in
the input layer and one neuron in the output layer. Headway and
velocity are chosen as input because they are the variables used in
the MCF. The input data is normalized by subtracting the mean
and dividing this value by the standard deviation. Furthermore,
the hidden layer is constructed with 20 neurons. As activation
function the model uses a ReLU in the hidden layer and the
identity in the output layer. The advantage of using a ReLU over
a sigmoid or tangent hyperbolic as activation function is that
the ReLU does not have the problem of vanishing gradients that
can lead to a very slow convergence during training. Using the
identity in the output layer is a necessary constrained to perform
a regression since the ANN should be able to predict any real
value of acceleration.

For the training data set, the MCF model is run multiple
times for L ∈{9, 10, 10.5, 11, 12, 14, 16, 17, 17.5, 18, 19} with
tmax = 104 and dt = 0.1. This gives 11 · 105 time steps in
total. Furthermore, noise is applied to the velocity when it is
used as input in the MCF. To do so, a random number from a
uniform distribution between −0.2 and 0.2 is added at each time
step to the velocity. Introducing noise makes the training data
set more diverse and the ANN-model more robust. As optimizer
in the back-propagation process, the Adam algorithm is used to
update the weights [28] based on the MSE. Before the training
can start, 20% of the training data set is removed from it to use
it as validation data set. On the validation data set, the ANN
is not trained but its performance is measured using the MSE.
Furthermore, the ANN is trained on so-called batches of data that
are subsets of the training data set. All features from a batch are
propagated through the ANN without updating the weights. How-
ever, the corresponding loss gradients are saved. After a batch
is fed through the network, the weights get updated based on
the average gradients. When all batches are propagated through
the network, a so-called epoch has passed. For the training, an
adaptive learning rate is chosen [24]. This means, if after two
subsequent epochs the MSE of the performance of the ANN on the
validation data set did not decrease, the learning rate is divided
by 5. If it does not decrease for another two epochs the training
is stopped. After each epoch the training data set is shuffled. This
method helps to avoid local minima in the trainings process.

Two ANN-mmodels are compared. One model (ANN-m-1) was
trained on the full range of the trainings data set and another
(ANN-m-2) was only trained on data coming from simulations
with L ∈{11, 12, 14, 16, 17}. Due to this choice, data around the bi-
furcation points are intentionally excluded from the training data
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Fig. 3. (a) Bifurcation diagram in parameter v0 for λ ∈ {0, 0.04, 0.08, 0.12} with w = 1. Stable fixed points are indicated by circles and unstable fixed points by
rosses. (b) Regime diagram in the parameter space (v0, λ) for w ∈ {0.8, 1, 2, 3}. The positions of the Hopf points are indicated by dashed and the fold points by
olid lines. In addition, the positions of the fold and Hopf points for a MCF that just considers one car ahead (m = 1) are depicted in black.
Fig. 4. (a) Bifurcation diagram in parameter v0 for various values of w ∈ {0.8, 1, 1.2, 1.4} with λ = 0.04. Stable fixed points are indicated by circles and unstable
ixed points by crosses. (b) Regime diagram in the parameter space (v0, w) for λ ∈ {0, 0.08, 0.16}. The positions of the Hopf points are indicated by dashed and the
old points by solid lines. In addition, the positions of the fold and Hopf points for a simple OVM (λ = 0.0,m = 1) are depicted in black as straight vertical lines.
rosses indicate the estimated positions of the possible Bautin bifurcation points.
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et. The ANN models were built and trained using the scikit-learn
ython package (https://scikit-learn.org/stable/). The weights of
ynapses between the input and hidden layer for the ANN-m-1
odel (after convergence was reached) are depicted in Fig. 5a.
ne can clearly see that the absolute values of weights from
ynapses connecting neurons number 0 and 10 of the input layer
ith neurons of the hidden layer are enhanced. These neurons
orrespond to the headway of the following car and its velocity.
n addition, one can see a slight enhancement of the weights for
nput neurons 1, 2, 8 and 9, corresponding to the two leading cars
nd the two cars behind the following car. In Fig. 5b the mean
alue of normalized absolute weights are depicted. The mean
as taken over 10 ANN-m-1 models that where trained with a
ifferent random initialization of the weights at the beginning of
he learning process. Again, a clear picture arises that input values
rom nodes 0, 1, 2, 8, 9 and 10 are enhanced. This underlines the
obustness of the described feature.

The enhanced weights of nodes 0, 1, 2 and 10 show the re-
ationship of acceleration with headways and velocities that was
6

rescribed to the MCF that generated the training data set. Here, a
ox of three cars ahead (m = 3) influenced the acceleration of the
ollowing car with a rather weak influence of group velocity (λ =

.1) and a strong weighting of nearby leading cars (w = 2.0).
owever, also a weak feature of the ANN-m-1 arises, namely the
nhanced weights of nodes 8 and 9 that are the headways of the
wo cars behind the following car. This is most likely due to the
nfluence of the following car on the car behind it. Hence, the ANN
inds correlations in the data, but this is a case of ‘‘correlation
oes not imply causation’’, because from the formulation of the
CF it is known that cars in the back do not influence the
cceleration of following car. These findings motivated a more
estricted choice for the input data in case the ANN-r model.

Although these shortcomings arise, the ANN-m-1 model is
till able to reproduce the dynamics of the MCF model in an
ppropriate manner. In Fig. 6 the development of limit cycles
or car number 0 is depicted for different circuit length, L, using
he MCF and the ANN-m-1 model (N = 10). The models are
nitialized with a sinusoidal disturbance in the position (with
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Fig. 5. (a) Weights of synapses from the input layer to the hidden layer for the first random state. (b) Mean over 10 ANN-m-1 models of the normalized weights
from the synapses from the input layer to the hidden layer.
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µ = 1 in Eq. (24)). Differences between the ANN-m-1 and the
CF model are very small. In general, the amplitudes of the limit
ycles of the ANN-m-1 model are slightly smaller.
In contrast to the MCF model that had various parameters for

hich one can perform a bifurcation analysis, there are just two
arameters in the constructed ANN models, namely the circuit
ength L and the number of cars N . However, note that both
ariables relate to the mean density ρ = N/L. We choose to
ake the bifurcation analysis in L because it is a continuous
arameter in contrast to N that is discrete. The equation-free
ethod from [22] again offers a suitable tool to perform the
ifurcation analysis. In comparison to the bifurcation analysis in
ection 2, the microscopic evolution, M, in Eq. (13) is done by
he ANN model instead of the MCF model.

For a bifurcation analysis in the parameter L for the MCF and
he ANN-m models, a new lifting operator has to be defined, such
hat the length of the circuit can change. We therefore replace
(11b)) by

xnew,n =
σ

σ̃

(
∆x̃n − ⟨∆x̃⟩

)
+

L

L̃
⟨∆x̃⟩ for n = 1, . . . ,N (25)

urthermore, a new computational setting (see Table 1) of the
ifurcation analysis is used to account for the different dynamics
f MCF and the trained ANN models. The main difference to the
etting in Section 2 is that tskip and δ are smaller than in the
revious case. This is because the model converges on a faster
ime scale towards a stable solution and large tskip and δ would
ead to small gradients.

The free-flow state of the MCF model (green in Fig. 7) loses
tability at a supercritical Hopf point at L ≈ 10 when L is
increased and at L ≈ 18 for decreasing L. The ANN-m-1 model
(blue) can fairly well reproduce the bifurcation diagram of the
MCF model with the Hopf points close to those of the MCF model.
The standard deviations σ of the fixed points are slightly smaller
for the ANN-m-1 model than for the MCF model. This corresponds
to the smaller limit cycle seen before (Fig. 6). Furthermore, two
stable free-flow fixed points are found around L = 14. We
suspect that this occurs because very little training data came
from this region in parameter space (L around 14 and relatively
low σ ) because the MCF model that generated the training data
set converged fast towards the jam flow (relatively high σ ) for L
round 14. The ANN-m-2 (red) that was trained with less data still
dequately captures the bifurcation diagram of the MCF model for
7

11 < L < 17. However, it exhibits abnormal behaviour close to
the Hopf point of the MCF model at L ≈ 10. It actually predicts the
left Hopf point to be situated at L ≈ 6.4. Next to this malfunction,
an unstable jam-flow fixed point is found at L ≈ 17.5 and as for
the ANN-m-1 the algorithm finds a stable free-flow fixed points
close to L = 14. The identified failures of the ANN-m models
highlight the need of training data sets that adequately cover
important regions in the phase space to estimate the bifurcation
diagram of an ANN car-following model.

3.3. Bifurcation analysis for the ANN-r model

Next, field data from the case 1 experiment from [7] is used to
train an ANN model. The trained model will be referred to as the
ANN-r model. In the experiment from [7] a phantom jam occurred
when 22 cars drove on a circuit of a circumference of 230m. Cars
were supposed to drive with a velocity of about 30 kmh−1

≈

.33ms−1 and position data of the cars was recorded with a
requency of 3Hz. In total 751 data points were collected per car.
rom this position data, velocities and acceleration are calculated
y centred differences in time.
The task of the ANN-r model is to predict the acceleration of

he following car. Therefore, the output layer has one neuron. In
ontrast to the ANN-m model that was trained on MCF model
utput data, we choose as input values just the normalized head-
ays and normalized velocities of two cars ahead of the following
ar (and not all cars). Hence, the input layer has 6 neurons (2
ariables from 3 cars). We make this choice to prevent the ANN
o find any non-physical correlations. Note, that the model is
onstructed with velocity as input and not velocity difference as
roposed by Chong et al. [15] and Colombaroni and Fusco [16].
s proposed by Tanaka [17], the ANN-r was constructed with
wo hidden layers that have each 5 neurons. The ReLU is chosen
s activation function for neurons in the hidden layers and the
dentity for the output neuron. Again, the weights are updated
sing the Adam algorithm with the MSE as loss function. The
onstruction and training of the ANN-r model is performed using
he Keras library (https://keras.io/).

When an ANN-r model is used as a traffic model (L = 230m,
N = 22) to predict the acceleration of the following car, the
prediction accuracy on the validation data set is better when the
target acceleration comes from one time step later in time (1/3 s
shift). This can be understood due to the presence of a reaction
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Fig. 6. Phase diagrams in the headway and velocity space, for car number 0 for the MCF model (left column) and the ANN-m-1 model (middle column) for
L ∈ {10, 11, 14, 17, 19}. The limit cycles that develop are shown for both models in the right column.

8
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Fig. 7. Bifurcation diagram in L for the MCF model (green) and two ANN-m (blue, red) models. Dots indicate stable fixed points and crosses unstable fixed points.
The ANN-m models were trained with a data set from the MCF simulations. For the ANN-m-1 model (blue) the training data set comes from MCF simulations
with L ∈ {9, 10, 10.5, 11, 12, 14, 16, 17, 17.5, 18, 19} (indicated with the grey dashed lines). For the ANN-m-2 model (red) the training data set comes from MCF
imulations with L ∈ {11, 12, 14, 16, 17}. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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ime. Moreover, the problem arose that ANN-r models with a
ifferent initialization of the weights showed differing dynamics.
ome models produced crashes, some did produce traffic-flow
ithout crashes but were not able to generate congestions and
thers eventually generated a crash-free flow with traffic jams.
he chosen ANN architecture (2 hidden layers with each 5 neu-
ons and ReLU as activation) and the limitation of the training
ata set to just one car was found to work best after a qualitative
omparison with other model architectures and choices of the
raining data set. Eventually, a trained ANN-r with the described
rchitecture that could produce traffic jams without generating
rashes was chosen for the subsequent investigations. A thorough
tatistical analysis would be needed to better justify the choice of
he ANN architecture, the restriction to the training data set and
he choice of the crash-free ANN that produced congestions out of
he trained ANN models. However, this is unfortunately beyond
he scope of this paper and therefore the following results should
nly be considered as ‘‘proof of concept’’ for a bifurcation analysis
f ANN car-following models.
The trajectories and velocities of the ANN-r model with L =

30m and N = 22 are shown in Fig. 8 in comparison to the
data from [7] that was used to train the ANN. In contrast to
the observations, the ANN-model trajectories are smooth. This
can be attributed to the fact that the ANN-r was actually just
trained on data for car number 0. Therefore, driving behaviour
of the other cars is missing in the ANN-model. Furthermore and
probably more important, the ANN can be considered as a ‘‘best
fit’’ to the trainings data and is not able to capture every specific
driving behaviour. Despite these shortcomings, it is remarkable
that the ANN-r model still captures the feature of backwards-
moving congestion waves. In the ANN-r model the congestion
wave moved backwards with about 4ms−1, whereas it moved
ackwards with about 5.5ms−1 in the real experiment.
In Fig. 9 the macroscopic variables, i.e., the standard devi-

ation of the headways (a, b) and that of the velocities (c, d),
are compared with observational data. Again, the model data
appear smooth in comparison to the observations. Whereas both
standard deviations could capture the developing traffic jam for
the ANN-r model, the standard deviation of the headway cannot
be used as macroscopic measure for traffic jams in case of the real
data. This is because in the real case each driver has a different
 f

9

headway that she/he considers as save. This implies in turn,
although no traffic jam appears and hence all cars are driving
with the same speed (no standard deviation of ẋ), there could still
be a standard deviation of the headway different to 0. For the
bifurcation analysis of the ANN-r below, the standard deviation
of the headways will still be used as macroscopic measure for
the traffic jam, because in case of the ANN-r it still indicates the
existence of a traffic jam.

For the ANN-r model, some more changes need to be made for
the bifurcation analysis. First, one cannot use the OVM function
V (·) anymore to initialize the model. Therefore, in case of the
real data experiment the last line of the lifting operator reads as
follows:

ẋnew,n =
std(ẋold)

std( ˜̇x)

(
˜̇xn − ⟨˜̇x⟩

)
+ ⟨˜̇x⟩ for n = 1, . . . ,N (26)

where std(ẋold) indicates the standard deviation of the velocities
from the previous fixed point. The velocities come from the last
time step of the microscopic simulation in the last corrector
step of the previous fixed point. Second, due to computational
limitations, the explicit equation-free method is used instead of
the implicit one. Third, the settings are adjusted to the dynamics
of the real traffic (see Table 1). Here, the parameter s is not fixed
any more but a function of the secant ŵ in the predictor step:

s = 0.02 sin(α) + 2 cos(α)α = arctan
(
100

ŵ(σ )

ŵ(L)

)
(27)

his is done to account for the different scales of σ (O(1)) and L
O(100)).

When L is varied for the ANN-r, bifurcation characteristics can
e observed. Fig. 10 shows the time evolution in a phase diagram
or car 0 in phase space (∆x, ẋ) for different L. One can see that
or a value of L equal to 215m, 230m and 245m a limit cycle
evelops whereas for L of 200m and 260m the dynamic state of
he model collapses towards a point. Hence, a congestion wave
s present for 215m, 230m and 245m and the free flow is stable
or 200m and 260m. This bifurcation characteristics are similar to
he one observed for the MCF model (see Fig. 7): First, an increase
f L (decreasing density) leads to the development of a stable
am flow solution. A further increase eventually stabilizes the free
low again.
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Fig. 8. Trajectories of cars in the ANN-r model with L = 230m and N = 22 (a) and in the real case experiment (b). The corresponding velocities are shown in plot
(c) for the ANN-r model and plot (d) for the observations.
In Fig. 11 the bifurcation diagram for the ANN-r model is
shown. Following the free-flow branch (σ = 0) towards higher
values of L, the free flow loses stability at around L = 215m at a
subcritical Hopf point. This corresponds to a vehicle density of

ρ =
N
L

=
22 cars
215m

≈ 10 cars per 100 m. (28)

he free flow becomes stable again at another subcritical Hopf
oint for L ≈ 235m (ρ ≈ 9 cars/100m). For the jam flow,
old points are found for L ≈ 196m (ρ ≈ 11 cars/100m) and
≈ 256m (ρ ≈ 8.5 cars/100m). Hence, the ANN-r model has

wo bi-stable regions where both, free flow and jam flow, can be
table. The unstable branches connecting the fold points and the
opf points are difficult to find. A reason for this could be that
he ANN-r produces indistinct derivatives at the fold points that
ake it impossible for the pseudo-arclength continuation to pass

he fold. One could maybe find unstable fixed points by apply-
ng backwards integration using the backwards extrapolation of
he equation-free method as described in Marschler et al. [22].
owever, this is beyond the scope of this paper.
The bifurcation diagram in Fig. 11 certainly does not fully

orrespond to the bifurcation diagram of a real traffic situation.
or this, the training data set is too small and not diverse enough.
owever, it is remarkable that it was even possible to construct
bifurcation diagram based on an ANN model that was trained
n real data. A more diverse data set that captures a wider
ange of vehicle densities would probably lead to a more realistic
ifurcation diagram.
10
4. Summary and discussion

In this study, the equation-free bifurcation analysis technique
was applied to a MCF model and two different ANN models. Due
to the equation-free method it was possible to compute partial
bifurcation diagrams of the MCF with a rather large number of
cars (N = 60). Furthermore, regime analyses were done by
finding the (cyclic) fold and Hopf point of the bifurcation diagram.
It was found that the (cyclic) fold and the Hopf point shift towards
higher values of the velocity scale, v0, if w is decreased and
λ increased. This means, that considering more cars ahead and
relaxing the velocity of the following car to the group velocity
of the leading cars makes a stable free-flow possible for higher
velocities. In more practical terms this means, one could avoid
traffic jams if car drivers would be able to react to multiple
cars ahead. This is an interesting feature that was known from
previous studies [i.e. 11]. However, our study better quantifies
this effect by introducing a weighting function with parameter
w and by performing bifurcation and regime analyses for w and
λ where the existence of a bi-stable regime was found that was
not mentioned by Peng and Sun [11].

Interesting future work would be to study the bifurcation dia-
gram in more detail in the two-parameter plane (v0, h). As already
mentioned in Section 3.1, the bifurcation behaviour found hints to
the existence of a (co-dimension 2) Bautin bifurcation (cf. section
8.3 of Kuznetsov [27]). In particular, the existence of two limit
cycles and of a cyclic fold, and the change from a supercritical

to subcritical Hopf bifurcation are characteristic properties of a
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Fig. 9. Time series of different macroscopic variables from the ANN-r model and from observational data. In the upper plots the standard deviation of the headways
is depicted for the ANN-r model (a) and the observations (b). In the lower plots the standard deviation of the velocity is shown for the ANN-r model (c) and the
observations (d).
Bautin bifurcation. In this case, one has to demonstrate that the
first Lyapunov coefficient of the microscopic model is zero and
that the second Lyapunov is non-zero.

ANN models were trained on MCF model data output (ANN-
m-1/2) and real data (ANN-r). The ANN-m-1 model was trained
on MCF model data with a wide variety of vehicle densities that
incorporated the free-flow regime and the jam-flow regime. The
weights of the synapses connecting the first layer neurons with
the hidden layer neurons clearly showed the relationship that
was prescribed to the MCF model between the following car and
the leading cars. However, a malfunction of the ANN-m-1 model
became clear since it rated information from cars behind the
following car as relatively important. The trained ANN-m-1 model
could fairly well reproduce the bifurcation characteristics in vari-
able L. The ANN-m-2 model that was trained only on data from
the jam-flow regime failed to correctly reproduce the bifurcation
diagram of the MCF model for densities lower or higher than
the ones in the training data set. These findings highlight that
the training data set has to come from a wide variety of vehicle
densities to find the correct bifurcation characteristics.

Another ANN model (ANN-r) was trained on real data coming

from the case 1 experiment of Sugiyama and Yamada [29]. The

11
input data of the following car was limited just to cars ahead
to avoid over-fitting, avoid correlations with the car behind the
following car and to keep the computation fast. It was shown that
an ANN-r model is in general able to produce a crash-free traffic-
flow with congestions. However, the traffic flow was considerably
more regular than in the real experiment. This occurred most
likely because the ANN-r was able to predict only the main
characteristics and not every driving behaviour based on the
limited input. It was possible to construct the bifurcation dia-
gram of the ANN-r model using again the equation-free method.
Unfortunately, unstable jam-flow branches were not detected
by the algorithm. However, the results show that it is possible
to construct a bifurcation diagram from an ANN model that is
trained on real data. This indicates that it is possible to construct
bifurcation diagrams of real traffic situations if the architecture of
the ANN model is improved and the training data sets are more
diverse.

Such knowledge of the bifurcation characteristics of real traffic
could for instance help traffic control to better avoid the traffic-
jam regime. Furthermore, if bi-stable regimes are found in real
traffic, the opportunity arises to change the traffic regime from

stable jam flow to stable free flow by artificially introduced
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Fig. 10. Phase diagrams for car number 0 in the velocity–headway phase space for the ANN-r model simulations using different circuit length, L.
perturbations. In addition, the characteristics of the bifurcation
diagram of the ANN-r correspond well with the characteristics
that are found for car-following traffic models, supporting the
notion that car-following models such as the MCF model capture
essential physics of traffic flow.
12
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opacity are most likely occurring due to a malfunction of the ANN-r model. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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