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Abstract
It has recently been shown that large-scale propagation of blood-oxygen-level-dependent (BOLD) activity is constrained by
anatomical connections and reflects transitions between behavioral states. It remains to be seen, however, if the
propagation of BOLD activity can also relate to the brain’s anatomical structure at a more local scale. Here, we hypothesized
that BOLD propagation reflects structured neuronal activity across early visual field maps. To explore this hypothesis, we
characterize the propagation of BOLD activity across V1, V2, and V3 using a modeling approach that aims to disentangle the
contributions of local activity and directed interactions in shaping BOLD propagation. It does so by estimating the effective
connectivity (EC) and the excitability of a noise-diffusion network to reproduce the spatiotemporal covariance structure of
the data. We apply our approach to 7T fMRI recordings acquired during resting state (RS) and visual field mapping (VFM).
Our results reveal different EC interactions and changes in cortical excitability in RS and VFM, and point to a reconfiguration
of feedforward and feedback interactions across the visual system. We conclude that the propagation of BOLD activity has
functional relevance, as it reveals directed interactions and changes in cortical excitability in a task-dependent manner.

Key words: BOLD activity propagation, functional neuroanatomy, network connectivity modeling, resting state, visual
cortical maps

Introduction
Neuronal connections among cortical areas can be observed at
a variety of scales in the brain, from laminar circuits to cortico-
thalamic and cortico-cortical connections. Together they form

a complex and intricate set of connections that serve as path-
ways for signal transmission and processing. The anatomy and
function of such connections has been a focus of much research
during the last decades (Biswal et al. 1995; Le Bihan et al. 2001;
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Vincent et al. 2007). Thanks to noninvasive forms of neuronal
recordings, like functional magnetic resonance imaging fMRI
(Raichle 2000, for a detailed review), the link between structural
and functional connectivity in the human brain has begun to
be unraveled in vivo. However, due to the multiple physiological
mechanisms contributing to the blood-oxygen-level-dependent
(BOLD) signal (i.e., metabolic, vascular, neuronal, etc.), its limited
temporal resolution, and high noise level in its measurements
(Buzsáki et al. 2007; Tong et al. 2014), it is still difficult to quantify
and interpret this relationship link using fMRI. Several strategies
have been proposed to address these issues and infer the effi-
cacy with which anatomical connections modulate interactions
between brain regions—referred to as effective connectivity (EC)
(Friston et al. 2003; Goebel et al. 2003; Penny et al. 2004; Cardin
et al. 2011; Seth et al. 2015; Gilson et al. 2016). However, most
such strategies rely on the assumption of temporal precedence:
the temporal resolution of the BOLD signal and its measurement
must be sufficient to capture the time scale of modulatory influ-
ences. Crucially, the observed responses should reflect temporal
dependencies within the system under scrutiny, which may not
be the case if hemodynamic response delays differ between
regions (Aguirre et al. 1998; Harrison et al. 2002; Handwerker
et al. 2004; Aquino et al. 2012).

The analysis of BOLD activity propagation is one of such
approaches. It uses the spatiotemporal covariance structure (the
zero-lag covariance and time-lag covariance) to infer propa-
gated signal flows across different brain regions (Mitra et al.
2015). Interestingly, for whole-brain fMRI recordings, it has been
recently shown that the temporal structure of BOLD signals is
modulated across different behavioral states (Mitra et al. 2016).
This suggests a meaningful relationship between BOLD activity
propagation and the modulation of communication between
distant brain regions. Therefore, we ask if the propagation of
BOLD activity can also reveal modulation across different behav-
ioral states at a more local scale, such as that of early cor-
tical visual field maps, which are richly interconnected and
where regional variation in the hemodynamic response is less
pronounced (Handwerker et al. 2004; Lin et al. 2017).

In the present study, we hypothesize that the propagation
of BOLD activity across early cortical visual field maps V1, V2,
and V3 reflects structured neuronal activity (i.e., modulation of
EC weights) within and between these maps. To examine this
hypothesis, we implement a data-driven network model that
captures the propagating nature of the BOLD signals (Gilson
et al. 2016, 2018). This model aims to reproduce the BOLD spa-
tio temporal covariance structure. It comprises three sets of
parameters that interplay in generating the BOLD structure
spatiotemporal structure: the EC, the nodal temporal decay,
and the local (nodal) variability. Disentangling different possible
origins of the observed lags is crucial for the interpretation of
the BOLD data. This makes our approach better at capturing the
cortical dynamics underlying BOLD signal flows than simpler
lagged analyses that do not take into account the network
constraints on the observed activity. Our model thus accounts
for the spatiotemporal statistics of BOLD activity and thereby
the propagation of BOLD activity across different brain locations
(Gilson et al. 2016, 2018). We apply this approach to resting state
(RS) and visual field mapping (VFM) fMRI recordings of the early
cortical visual field maps V1, V2, and V3 in healthy human
participants. To preview our results, in both RS and VFM data, we
find a common structure underlying the EC of all participants,
regardless of inter-participant variation in EC estimates. The
common structure in EC links regions with similar visual field

position selectivity both within and between early visual cor-
tices (i.e., across both their topography and hierarchy). Further-
more, the estimated ECs capture different interaction regimes
in RS and VFM. Within-area interactions, particularly in V1 and
V3, are greatly increased in RS, whereas in VFM between area
interactions are increased, particularly feedback interactions
from V2 and V3 to V1. Moreover, local cortical excitability in V1
is increased during RS but, during VFM, decreases to levels that
are comparable with that of other visual areas. These differences
point to a change of input to V1 and appear to reflect a different
configuration of feedforward, lateral and feedback interactions
in rest (RS, eyes closed) and task (VFM). Finally, we interpret our
results under the framework of predictive coding, emphasizing
the role of recurrent cortical feedback during visual processing.
Taken together, our results demonstrate that the propagation
of BOLD activity through early visual cortices has functional
relevance.

Materials and Methods
Data

The data comprise VFM and RS 7T fMRI data from eight healthy
human participants (age 26–40) with normal visual acuity. Exper-
imental procedures were approved by the medical ethics com-
mittee of the University Medical Center Utrecht.

VFM
Visual stimuli were presented by back-projection onto a
15.0 × 7.9-cm gamma-corrected screen inside the MRI bore.
Participants viewed the display through prisms and mirrors, and
the total distance from the participants eyes (in the scanner)
to the display screen was 36 cm. Visible display resolution
was 1024 × 538 pixels. The stimuli were generated in Matlab
(Mathworks, Natick, MA, USA) using the PsychToolbox (Brainard
1997; Pelli 1997). The VFM paradigm consisted of drifting
bar apertures at various orientations, which exposed a 100%
contrast checkerboard moving parallel to the bar orientation.
After each horizontal or vertical bar orientation pass, 30 s of
mean-luminance stimulus was displayed. Throughout the VFM,
participants fixated a dot in the center of the visual stimulus.
The dot changed color between red and brown at random
intervals. To ensure attention was maintained, participants
pressed a button on a response box every time the color changed.
Detailed procedures can be found in Dumoulin and Wandell
(2008) and Harvey and Dumoulin (2011). The radius of the
stimulation area covered 6.25◦ of eccentricity (visual angle from
the fixation point).

RS
During the RS scans, the stimulus was replaced with a black
screen and participants closed their eyes. The lights in the scan-
ning room were off and blackout blinds removed light from out-
side the room. The room was in complete darkness. Thus, visual
stimulation was minimized. The participants were instructed to
think of nothing in particular without falling asleep.

fMRI Acquisition

Functional T2∗-weighted 2D echo planar images were acquired
on a 7-Tesla scanner (Philips, Best, Netherlands) using a 32-
channel head coil at a voxel resolution of 1.98 × 1.98 × 2.00, with
a field of view of 190 × 190 × 50 mm. TR was 1500 ms, TE was
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25 ms, and flip angle was set to 80◦. The volume orientation
was approximately perpendicular to the calcarine sulcus. In
total, eight 240 volumes of functional scans were acquired,
comprising 5 RS scans interleaved with 3 VFM scans (first was
an RS scan). Five dummy volumes were scanned before data
acquisition began, and a further eight volumes were discarded
from the beginning of each scan to ensure the signal had reached
a steady state. High-resolution T1-weighted structural images
were acquired at a resolution of 0.49 × 0.49 × 0.80 mm (1 mm
isotropic resolution for the second dataset), with a field of view
of 252 × 252 × 190 mm. TR was 7 ms, TE was 2.84 ms, and flip
angle was 8◦. We compensated for intensity gradients across
the image using an MP2RAGE sequence, dividing the T1 by a
co-acquired proton density scan of the same resolution, with a
TR of 5.8 ms, TE of 2.84 ms, and a flip angle of 1◦. Physiological
recordings were not collected.

Preprocessing
First, the T1-weighted structural volumes were resampled to 1-
mm isotropic voxel resolution. Gray and white matter were auto-
matically labeled using Freesurfer, and labels were manually
edited in ITKGray to minimize segmentation errors (Teo et al.
1997). The cortical surface was reconstructed at the white/gray
matter boundary and rendered as a smoothed 3D mesh (Wan-
dell et al. 2000). Head motion within and between scans was
corrected using robust multiresolution alignment of MRI brain
volumes (Nestares and Heeger 2000). Subsequently, data were
aligned to the anatomical scans and interpolated to the anatom-
ical segmentation space (Nestares and Heeger 2000). Instru-
mental drift was removed by detrending with a discrete cosine
transform filter with a cutoff frequency of 0.01 Hz.

Selection of Regions of Interest

Since the focus of our study was modeling the propagation of
BOLD activity within and between early visual field maps, we
did not consider all recorded locations in the scanning volume.
Instead, we applied a region of interest (ROI) selection and a
data-reduction step. First, we identified the visual field maps of
the visual cortical areas V1, V2, and V3 (see Population Receptive
Field Modeling). Second, we grouped the BOLD signals over the
foveal and parafoveal quarter fields of these maps. This resulted
in a network of 24 nodes (ROIs) per participant (see Grouping of
Data into Foveal and Parafoveal Quarter-fields).

Population Receptive Field Modeling
The visual field maps of V1, V2, and V3 were obtained using the
population receptive field (pRF) method (Dumoulin and Wandell
2008) applied to our VFM data. This method provides models
that summarize the visual field position to which each record-
ing site responds as a circular Gaussian in visual space. The
Gaussian pRF model for each recording site was characterized
by three parameters: x and y (position) and size (sigma). These
parameters were determined by taking a large set of candidate
pRF parameters, with each set defining a different Gaussian. By
quantifying the overlap between each candidate pRF Gaussian
and the stimulus aperture at each time point, we generate
predictions of the neuronal response time course each candi-
date pRF would produce. This predicted neuronal response time
course is convolved with the hemodynamic response function
(HRF) to give a set of candidate predicted fMRI response time
courses for each candidate set of pRF parameters. In order to
reduce the influence of high-frequency variation during pRF

modeling, the detrended signals were filtered with a low-pass
fourth-order Butterworth filter with a cutoff frequency of 0.1 Hz.
The best fitting predicted fMRI time course and its associated
pRF parameters are then taken to summarize the visual field
selectivity of each recording site (Dumoulin and Wandell 2008).
Recording sites were excluded from subsequent analyses if their
best-fitting pRF models explained less than 30% of response
variance, or had visual field eccentricities beyond 6◦.

Grouping of Data into Foveal and Parafoveal Quarter-fields
We grouped the RS and the VFM time series over the foveal and
parafoveal quarter fields of V1, V2, and V3 using the eccentricity
and polar angle pRF preferences of each recording site. The
foveal ROIs grouped recording sites with pRF positions below 2.2
degrees of eccentricity, while parafoveal ROIs grouped record-
ing sites with pRF positions above 2.2 degrees of eccentricity.
Quarter fields were divided at the vertical and horizontal visual
field meridians using the pRF coordinates for the vertical and
horizontal phase inversion in pRF polar angle (overlapping vox-
els between visual areas were excluded). The grouping process
resulted in a matrix of 24 nodes/ROIs, 8 for each complete visual
field map (V1, V2, and V3). Signals for each of the 24 ROIs were
obtained by averaging the BOLD time series within the ROIs. No
low-pass filtering was applied prior to this averaging step. How-
ever, voxels with BOLD amplitude variability greater than the
third quartile were considered outliers and removed (Meehan
et al. 2017). This allowed EC estimates to capture high frequen-
cies in the BOLD signals (close to the Nyquist frequency for the
BOLD data, 0.33 Hz), while excluding high-variance fluctuations,
likely from vascular origin (Winawer et al. 2010).

EC Model for BOLD Propagation

In this section, we examine the propagation of BOLD activity
across the foveal and parafoveal quarter fields of V1, V2, and
V3 (each of the 24 ROIs previously defined) using a recently
proposed method (Gilson et al. 2016). This approach uses a
noise-diffusion network model of EC and intrinsic variability
to account for local BOLD variability and signal propagation
lags between all possible pairs of ROIs. Importantly, the model
captures the empirical data covariance and its spatio-temporal
structure (the time-shifted covariances), effectively accounting
for the propagation of BOLD activity. This has the advantage of
relying on minimal assumptions: 1) the time constant of the
generative model has to match the autocovariance time con-
stant derived empirically from the data, 2) the regional variation
in the hemodynamic response shape across early visual cortex
should be minimal (Handwerker et al. 2004; Lin et al. 2017), and
3) for each behavioral condition, a dominant pattern of neuronal
interactions should influence and reflect in the average propa-
gation structure of the BOLD signals. To examine our hypothesis
(BOLD activity propagation reflects the consequences of struc-
tured neuronal activity), we model the EC under two conditions:
1) RS and 2) the presentation of VFM stimulus, and compare the
two. We iteratively tune the model parameters (directed connec-
tivity with notation C and intrinsic variability with notation Σ

and) to reproduce the empirical spatiotemporal covariance and
then use the C and Σ associated with the best-fitting model as
an estimate of the EC and the local cortical excitability of the
actual data. We conclude comparing the resulting differences in
EC and cortical excitability between RS and VFM.
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Empirical Spatiotemporal Covariances
To identify the spatiotemporal covariance structure of the data
(the BOLD signals from each of the 24 ROIs; see Methods), we
estimated the covariance with and without time shifts. For each
participant and condition, the BOLD signals were first demeaned
and then, following Gilson et al. (2016), the empirical covariance
was calculated for zero lag:

Q̂0
ij = 1

T − 2

∑
1≤t≤T−1

(
st

i − si
) (

st
j − sj

)
, (1)

and a lag of 1 TR:

Q̂1
ij = 1

T − 2

∑
1≤t≤T−1

(
st

i − si
) (

st+1
j − sj

)
. (2)

Here, si is the mean BOLD level over the session for ROI i.
Afterwards, for each participant and session, we estimated the
empirical time constant associated with the exponential decay
of the autocovariance (averaged over all regions):

τ = N∑
1≤i≤N log

(
Q̂0

ii

)
− log

(
Q̂1

ii

) (3)

The time constant τ was used to calibrate the noise-diffusion
network model.

Noise-diffusion Network Model of EC and Parameter Estimation
We choose a dynamic network model that captures the spa-
tiotemporal dynamics of the data. Here, we summarize the
essential ingredients of the model and its optimization (for
further details see Gilson et al. (2016, 2018)). The model con-
sists of 24 interconnected nodes (as defined in Selection of
Regions of Interest) that experience fluctuating activity and
excite each other (Gilson et al. 2016). The local variability is
described for each node by a variance corresponding to the
diagonal term of the matrix Σ . The implicated fluctuations
are shaped by the network EC (denoted by the matrix C in
the following equations) to generate the model FC, which is
quantified the zero-lag covariance matrix Q0 (FC0) and the time-
lag covariance matrix Q1 (FC1) (the counterparts of the empirical
Q̂0 and Q̂1). Subsequently, the model covariance matrices Q0 and
Q1 that better reproduce the empirical spatiotemporal covari-
ances Q̂0 and Q̂1 are approximated by iteratively adjusting the
directional weights (C) and node excitabilities (Σ) of the model
using Lyapunov optimization (LO) to reduce the model error E
(specified later in Eq. (8)). The parameters C and Σ associated
with the best-fitting model correspond to maximum-likelihood
estimates (Gilson et al. 2016). Importantly, because asymmetry in
the Cij generates asymmetry in the time-shifted covariances Q1,
the model captures the average propagation structure between
ROIs.

We choose LO because it has several advantages to other
methods (Gilson et al. 2016): 1) pairwise unconditional Granger
causality does not take the whole network into account, 2)
multivariate autoregressive models that take the whole net-
work into account may suffer from the down sampling due to
the time resolution (TR = 1.5 s), and 3) physical interpretabil-
ity might be hindered by over-parameterized dynamic causal
models (Goebel et al. 2003; Harrison et al. 2003; Smith et al.
2011). These advantages allowed us to estimate Cij (and the

corresponding asymmetry in Q1) and Σ as accurately as possible.
Our approach was also justified because the decay time constant
τ in Eq. (3) was consistently measured across participants, sug-
gesting a diffusion process in the empirical data; the goal of our
model inversion was then to examine whether propagation was
present in the data. Now, we detail the equations relating these
parameters, observables and measures. Formally, the network
model is a multivariate Ornstein–Uhlenbeck process where the
activity xi of node i decays exponentially with the time constant
τ estimated from the data in Eq. (3). The evolution of each
xi depends on the activity of other populations and the local
variability:

dxt
i =

(
− xt

i
τ

+
∑

j�=1
Cijx

t
j

)
dt + dBi, (4)

where dBi is — both spatially and temporally — independent
Gaussian noise with variance Σii (the Σ matrix is diagonal);
formally Bi a Wiener process. The model Q0 can be calculated
for known C and Σ by solving the Lyapunov equation (using the
Bartels–Stewart algorithm):

JQ0 + Q0J† + Σ = 0 (5)

and Q1 is then given by

Q1 = Q0expm
(
J†

)
, (6)

where expm denotes the matrix exponential, the superscript †
indicates the matrix transpose, and δij is the Kronecker delta. In
those equations, the Jacobian J of the dynamic system is defined
as

Jij = − δij

τ
+ Cij. (7)

Equations (5) and (6) enable the quick calculation of Q0 and
Q1, without simulating the network activity. The LO starts with
zero connectivity (C = 0) and uniform local variances (Σii = 1).
Each iteration of LO aims to reduce the model error defined as

E (C, Σ) =
∥∥ΔQ0

∥∥2

∥∥∥Q̂0
∥∥∥2

+
∥∥ΔQ1

∥∥2

∥∥∥Q̂1
∥∥∥2

, (8)

with the difference matrices ΔQ0 = Q̂0 − Q0 and ΔQ1 = Q̂1 − Q1;

the vertical bars
∥∥∥·

∥∥∥ indicate the Frobenius norm. To do so, we

calculate the model Q0 and Q1 for the current values of the
parameters C and Σ by solving Eqs (5) and (6). Similar to a
gradient descent, the Jacobian update is given by:

ΔJ† =
(
Q0

)−1 [
ΔQ0 + ΔQ1expm

(
J†

)]
, (9)

which gives the connectivity update:

ΔCij = ηCΔJij. (10)

where ηC is the optimization rate of C (here we ηC = 0.0001). To
take properly the network effects in the Σ update, we adjust the
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Σ update from the heuristic update in Gilson et al. (2016) as was
done in Gilson et al. (2018):

ΔΣ = −ηΣ

(
JΔQ0 + ΔQ0J†

)
. (11)

where ηΣ is the optimization rate of Σ (here ηΣ = 1). We
impose non-negativity both for C and Σ . In addition, off-diagonal
elements of Σ are kept equal to 0 at all times. The optimization
steps are repeated until reaching a minimum for the model error
E, giving the best fit and the model estimates. The C and Σ

associated with the best predicting model are then taken as a
proxy for the EC between the 24 ROIs and their local cortical
excitability (Σ).

To facilitate comparison between RS and VFM, the resulting
Σ values were further grouped across foveal and parafoveal ROIs
in each hemisphere (giving a total of 6 new ROIs). A similar
approach was applied to the resulting Cij values (see the next
section).

Determination of Common Underlying Structure in EC and Its
Relation to Topographic and Anatomical Connectivity
Due to the nature of the model parameter estimation, the esti-
mated EC weights can incidentally vary in magnitude across par-
ticipants (reflecting session-to-session variability, subject het-
erogeneity, etc.). However, the ranking of the EC weights may be
more invariant and reveal a structure in the EC that is common
to all participants. To identify this common structure, in RS and
in VFM, we proceed as follows. First, the raw EC estimates are
normalized by dividing the EC weights by their L1-norm (the
sum of the EC weights in the considered matrix). This process
renders individual EC estimates comparable across participants
(magnitudes are normalized but rank is preserved). Second, we
quantify the stability of the EC estimates using a test–retest
procedure: 1) we randomly split the normalized EC in to two
halves, 2) average each half, and then 3) compute the Pearson
correlation between all the possible EC averages (8!/4!/4! = 70).
We use the correlation coefficients thus obtained to summarize
the stability of the EC estimation for each condition. Subse-
quently, we use principal component analysis (PCA) to detect the
common structures. Intra- and interhemispheric EC values were
z-scored and PCA applied separately and the highest 10% of the
first principal component was taken as a proxy for the common
inter- and intrahemispheric EC structures. We justify this step
because applying PCA to a mix of strong intrahemispheric EC
links and weak long-range callosal interhemispheric EC links
may hinder the detection of each class separately (Stephan
2005). Separating these classes manually enabled the detection
of the underlying structure in the ranking of the component,
regardless of the difference in the EC magnitudes between the
two types of connection. We then went on to examine differ-
ences in EC between RS and VFM. To summarize EC interactions
and facilitate comparison between conditions, we applied a
data reduction step: for each condition and participant, the
normalized EC values that matched the common structure were
grouped into foveal and parafoveal regions of V1, V2, and V3
and averaged across these visual field maps. This allowed us to
focus on foveal/parafoveal differences. The reduced individual
EC matrices were z-scored, and significant differences between
the VFM- and RS- derived EC were evaluated using permutations
corrected for multiple comparisons (Nichols and Holmes 2001).

Results
Propagation of BOLD Activity Across Early Visual Cortex
Measured with a Noise-diffusion Network Model of EC

Figure 1 illustrates the propagation of an apparent wave of BOLD
activity from the anterior calcarine sulcus (periphery of V1) to
the occipital pole (foveal confluence of V1, V2, and V3) during
rest (RS). To estimate the propagation of BOLD activity across
early visual cortex, we first obtained visual field maps of V1,
V2, and V3 using the pRF method (Fig. 2A). We then further
subdivided these maps into foveal and parafoveal (below and
above 2.2 degrees of eccentricity) quarter fields (see Selection
of Regions of Interest). This provided us with a functional map
of the cortex based on similarities in both retinotopy and hier-
archy. Second, we characterized BOLD activity propagation pat-
terns during RS and VFM through V1, V2, and V3 using a data-
driven modeling approach (see EC Model for BOLD Propagation).
Here, we used the temporal autocovariance constant derived
empirically from the data to calibrate a topologically agnostic
(unconstrained by anatomical connections) noise-diffusion net-
work model of EC and cortical excitability. Figure 2B presents
the results from the analysis of the temporal autocovariance.
Although the time constant (τ , in seconds) was slightly lower in
RS than in VFM (mean (standard deviation, SD) = 5.49 (2.96) for
RS and 6.32 (1.30) for VFM), this difference was not significant,
suggesting similar propagation time scales. Note that the prop-
agation pattern illustrated in Figure 1 unfolds within the range
measured by the autocovariance decay constant.

We then modeled the spatiotemporal covariance structure of
the data by optimizing the noise-diffusion network parameters,
namely the EC and the nodes excitabilities (Σ), to reproduce
the empirical spatiotemporal covariances FC0 and FC1. Figure 2C
illustrates one iteration step in the LO procedure used to solve
the model. The goodness of fit between the modeled and empir-
ical spatiotemporal covariances was computed using the linear
regression coefficient R2 between the modeled and the empirical
FC0 and FC1 (see Table 1).

Common Underlying Structures in EC

We then asked if there was a common structure underlying the
resulting EC distribution. Regardless of individual variations in
EC values obtained from RS and VFM data (Fig. 3A), our analysis
revealed a common underlying structure for both RS and VFM
(Fig. 3B). Figure 3A compares the similarity between EC links in
a test–retest validation with split-halves (see Determination of
Common Underlying Structure in EC and Its Relation to Topo-
graphic and Anatomical Connectivity for details). The similarity
is measured by the Pearson correlation coefficient between
average ECs from all possible combinations: mean (SD): 0.9439
(0.0026) for VFM and 0.839 (0.0676) for RS). These results indicate
a similar EC structure, or hierarchy defined by the relative pair-
wise differences, that generalize across subjects for each condi-
tion (RS or VFM). Figure 3B illustrates the common structure in
EC as green crosses overlaid onto the grand average EC for RS and
VFM. The common structures in EC closely matched the homo-
topy and hierarchy of the underlying anatomical connections.
This agrees with recent reports indicating that resting-state fMRI
activity closely reflects the anatomical organization of the visual
cortex both with respect to retinotopy and hierarchy (Heinzle
et al. 2011; Gravel et al. 2014; Gençet al. 2016). Our results further
indicate that the homotopic organization is even more precisely
captured in VFM than in RS. This goes together with an increased
stability of ECs across subjects in VFM.
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Figure 1. Apparent propagation of BOLD activity during RS depicted in the flattened cortical surface reconstruction of the occipital pole of one participant’s cerebral
hemisphere. Early visual field maps V1, V2, and V3 in one hemisphere are outlined in black (d and v denote dorsal and ventral). In the absence of visual stimulation (i.e.,

eyes closed, total darkness), spontaneous fluctuations in BOLD activity (indicated by the hot and cold colors) during RS can exhibit extensive spatiotemporal structure.
This structure includes spatiotemporal fluctuation patterns that resemble stimulus-evoked waves as well as congruent and transient co-activations that occur across
the visual field maps. Note that the analytical model used to describe this structure directly reproduces the empirical spatiotemporal covariance of the data and does
not simulate the BOLD time series. In other words, the model aims to capture the mean propagation of the BOLD waves shown here, averaged over each fMRI session.

The narrow time window was used to illustrate a single propagation event.

Differences in EC and Σ between RS and VFM

We then went on to examine the topology of the resulting com-
mon structures in EC and their differences between conditions.
Figure 4 illustrates the common structures in EC (lateral and cal-
losal, feedforward and feedback interactions) across the foveal
and parafoveal quarter fields of the visual field maps for RS and
VFM. In both conditions, intra- and interhemispheric connec-
tions linked regions with similar visual field selectivity. How-
ever, in VFM, interhemispheric connections linked foveal regions
only, whereas in RS, interhemispheric connections linked also
parafoveal regions, mostly in V1. Both in RS and VFM, feedback
connections outnumbered feedforward connections (Fig. 4).

Subsequently, to interpret changes in the EC and cortical
excitability between RS and VFM, we grouped the corresponding
EC and Σ values across the four quadrants in each visual field
map to give foveal and parafoveal regions of each visual field
map (the six ROIs defined in Noise-diffusion Network Model of
EC and Parameter Estimation). We then evaluated differences
in EC between the two conditions across participants using
permutations corrected for multiple comparisons (with a sig-
nificance threshold of P < 0.05). Figure 5A illustrates the result-
ing ECs and the differences between conditions (VFM-derived
EC − RS-derived EC). These results show that strong interactions
within V1 and V3 in RS are absent in VFM. Conversely, feed-
forward interactions between V1 and V2 were present only in
VFM, whereas feedforward interactions between V2 and V3 were
present both in RS and VFM, although foveal interactions were
increased for VFM.

Furthermore, feedback interactions between V2 and V1 and
V3 and V2 were present both in RS and VFM, although feed-
back interactions between V3 fovea and V2 fovea were greatly
increased in VFM. Notably, homotopic feedback interactions
between V3 and V1 were only detected in VFM. Figure 5B illus-
trates the cortical excitability parameter Σ in RS and VFM.
Changes were most pronounced in V1, with higher values of Σ in
foveal regions for RS and parafoveal regions for VFM. Differences
were not significant.

Discussion
We assessed the propagation of BOLD activity through early
visual cortical areas V1, V2, and V3 during RS and VFM using a
data-driven modeling approach based on a noise-diffusion net-
work model. Informed by the empirical spatiotemporal covari-
ance structure of BOLD co-fluctuations within and between
visual cortical areas, this model estimates a topologically
agnostic (unconstrained by anatomical connections) EC. Our
model decomposes the spatiotemporal structure of BOLD fluc-
tuations into an EC parameter and a local cortical excitability
parameter Σ . Importantly, the combination of the estimated
parameters explain the temporal lags between BOLD signals
from all pairs of ROIs, effectively accounting for observed prop-
agation in the data. This discussion comprises four sections.
In the first section, we examine the neuroanatomical substrate
and the possible mechanisms implicated by the different EC
interactions estimated for RS and VFM. Our focus here is to
emphasize the role of recurrent feedback connectivity and
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Figure 2. Modeling the propagation of BOLD activity across visual field maps V1, V2, and V3. (A) Visual field maps in striate (V1) and extrastriate cortex (V2 and V3) were
mapped using the pRF modeling method (Dumoulin and Wandell 2008). Based on the visual field position, selectivity estimates that the pRF method provides and is

further subdivided into foveal (below 2.2 degrees of eccentricity) and parafoveal (between 2.2 and 6 degrees of eccentricity) quarter fields in both hemispheres, giving
a total of 24 ROIs (see Selection of Regions of Interest). A threshold of 10% variance explained was applied to pRF maps. The gray region in the foveal confluence of the
left hemisphere’s occipital pole is gray because of the colormap limited coloring of the ipsilateral visual field (gray area in the color wheel). We used a noise-diffusion
network model of EC to estimate the propagation of BOLD activity and the cortical excitability across these foveal and parafoveal quarter fields of V1, V2, and V3. (B)

Logarithm of the autocovariance of the BOLD activity, averaged across participants and ROIs, as a function of the time shift (x-axis). The red lines link the mean of each
box plot. The time constant τ was calculated for each participant and condition (see Empirical Spatiotemporal Covariances). The mean (SD) of τ over all participants
is indicated above the box plots. The empirical time constants were used to calibrate the noise-diffusion network model. (C) Schematic diagram illustrating one step

in the LO procedure. By iteratively adjusting the connectivity C and node excitability Σ of the noise-diffusion network, the model spatiotemporal covariance (Q0, Q1)
approximates the empirical spatiotemporal covariance (Q̂0, Q̂1). For each participant and condition, the C and Σ corresponding to the best predicting model were taken
as estimates of the underlying EC and the local cortical excitability.

non-stimulus-driven inputs, as well as examine the functional
implications of our findings from a theoretical perspective,
touching upon the notion of predictive coding (Rao and Ballard
1999; Lee and Mumford 2003). In the second section, we discuss
the possible mechanisms that underlie the changes in cortical
excitability (Σ) observed between RS and VFM and relate those
to changes in EC. In the third section, we relate the BOLD
autocovariance decay constant to different behavioral states.
In the last section, we discuss the methodological and theo-
retical limitations of our study and raise questions for future
research.

Recurrent Connectivity and Its Role in Visual Processing

We demonstrate that the propagation of BOLD activity across
the topography and hierarchy of (i.e., within and between) visual
field maps V1, V2, and V3 reveals different directed interaction
regimes for RS and VFM (Fig. 3). We relate these differences in EC
to a task-dependent reconfiguration of lateral, feedforward and
feedback interactions (Fig. 4). Across visual field maps, feedfor-
ward EC interactions from V1 to V2 were found in VFM but not

in RS. However, later in the hierarchy, feedforward interactions
from V2 to V3 were observed both in RS and VFM, though
foveal interactions were increased in VFM (Fig. 5A). We attribute
these increased feedforward interactions during VFM, both from
V1 to V2, and from V2 to V3, to stimulus-induced changes
in neuronal pathways that increase the bottom-up processing
of the stimulus across the visual hierarchy while participants
are fixating on the screen. Furthermore, homotopic feedback
interactions from V2 to V1 and from V3 to V2 were observed
both in RS and VFM, although foveal interactions from V3 to V1
were greatly increased in VFM, again pointing to changes driven
by the fixation task. This is consistent with previous findings
showing a dissociation in functional coupling patterns between
stimulus-driven versus surround regions of primary visual cor-
tex (Haynes et al. 2005) during decreased stimulus visibility and
top–down flow of visual spatial attention signals from parietal
and temporal regions (Lauritzen et al. 2009; Al-Aidroos et al.
2012). Remarkably, homotopic feedback interactions from V3 to
V1 were only observed for VFM (Fig. 5A), evidencing the role of
extra-striate feedback in visual cortical processing (Gilbert and
Li 2013).
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Table 1 The goodness of fit between modeled and empirical spatiotemporal covariances

RS VFM

Participant FC0 FC1 FC0 FC1

1 0.646 0.625 0.694 0.655
2 0.471 0.330 0.704 0.690
3 0.884 0.824 0.710 0.670
4 0.880 0.878 0.756 0.733
5 0.888 0.858 0.674 0.611
6 0.871 0.837 0.705 0.654
7 0.972 0.956 0.731 0.707
8 0.842 0.820 0.755 0.709
Mean (SD): 0.81 (0.16) 0.76 (0.19) 0.72 (0.03) 0.67 (0.04)

Note: For each participant and condition, we evaluated the goodness of fit by computing the linear regression (R2, P < 10–50 for all cases) between the modeled and
the empirical spatiotemporal covariances (FC0 and FC1).

Figure 3. Stable patterns of EC in RS and VFM. (A) EC stability in RS and VFM. For each condition, EC stability across subjects was quantified using split-halves cross

validation. Correlation coefficients are represented as relative frequency histograms (mean (SD) = 0.9439 (0.0026) for VFM and 0.839 (0.0676)). The similarity between
individual ECs, as measured by the Pearson’s correlation coefficient, was less stable in RS (two-sample t-test: P < 10–10). (B) Grand average EC for RS and VFM. The
green crosses indicate the common structures detected with PCA. Diagonal and off-diagonal quadrants in each matrix represent within- and between- hemisphere
EC across visual cortical areas (grouped by the colors), respectively. Inside each colored box, quarter fields are grouped in the following order (from left to right): upper

fovea, upper parafovea, lower fovea, and lower parafovea. For each diagonal and off-diagonal quadrant, the upper triangle represents feedback connections and the
lower triangle feedforward connections (rows correspond to inputs and columns correspond to outputs). Dark pixels represent stronger EC weights and white pixels
weaker EC weights, as indicated by the colorbar.

At the level of individual visual field maps, we found directed
EC interactions from the parafoveal to the foveal representations
of V1 and V3 in RS but not in VFM. In principle, these interactions
may reflect a bias in the spontaneous propagation of correlated
neuronal activity along networks of functionally coupled
regions and gradients of anatomically connected pathways or
“connectopies,” such as the eccentricity map in the calcarine
sulcus (Yeo et al. 2011; Gençet al. 2016; Haak et al. 2017).
This spontaneous propagation of correlated neuronal activity
may presumably reflect intrinsic fluctuations in the ratio
between excitation and inhibition and the modulation of
lateral inhibitory coupling, known to give rise to spontaneous
wave propagation patterns (Ermentrout and Cowan 1979;
Heitmann and Ermentrout 2015). One interesting possibility is
that these parafovea-to-fovea interactions reflect large-scale
cortical waves traveling in the frontal-to-occipital direction.
Slow-waves <1-Hz waves propagating in an antero-posterior
direction during sleep and calmness (Massimini et al. 2004;
Matsui et al. 2016) have been reported and may have a functional
relevance (Jadhav et al. 2012; Logothetis et al. 2012; Kaplan

et al. 2016). Our results echo and extend on a recent report
showing an association between the integration of task-
positive and task-negative networks and waves propagating
towards the fovea during RS (Hindriks et al. 2019). During RS,
intrinsic variation in input changes, such as the restructuring of
corticothalamic network activity during wakeful detachment
from the environment, might adjust the balance between
excitation and inhibition in cortical neuronal populations
in a state-dependent way (Steriade 2000). In the absence of
stimulation, the increased parafovea-to-fovea EC interactions
may well reflect visual cortical operations related to memory
consolidation and learning (Mitra et al. 2016).

On the other hand, the absence of parafovea-to-fovea
interactions during VFM can be explained by the stimulus set.
Since the VFM stimuli consisted of a bar drifting at various
orientations, the direction of neuronal response propagation
may be balanced out and not reflected in EC estimates, which
capture average propagation patterns only. Another line of
evidence points to feedback modulation by top–down processes
associated with attention and the predictability of a given
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Figure 4. Common structure in EC for RS and VFM illustrated in visual cortical space. To facilitate the visualization of the lateral, feedforward, and feedback elements

of the 24 ROIs EC network, we depict the common structures in EC between the 24 ROIs onto the banded 2D model of visual cortical areas V1, V2, and V3 as proposed
Schira et al. (2010). Lateral (within ROIs), feedforward and feedback interactions are depicted as colored arrows. Colors depict the strengths of the grand average ECs.
Colormaps for polar angle and eccentricity are illustrated by the miniature models in the bottom right corner (eccentricity range is 0–6◦). The EC networks thus depicted

reveal different interaction regimes in EC for RS and VFM.

stimulus (Kastner et al. 1999). Previous studies have suggested
that predictable stimuli (e.g., drifting bars) induce less neuronal
activity in early visual cortical areas than unpredictable stimuli
(e.g., randomly changing dots) (Braddick et al. 2001; Harrison
et al. 2007). Concomitantly, this reduced neuronal activity
induced by predictable stimuli has been shown to result in
suppressed BOLD responses in early visual cortex (Schellekens
et al. 2016; Schindler and Bartels 2017). We note, however, that
the attentional task used to ensure extended fixation during
VFM may contribute with an unpredictable component to the
VFM stimuli. The task consisted on fixating on a dot that
changed colors randomly while, at the same time, pressing a
button at the onset of every color change (Gilbert and Wiesel
1992; Vinje and Gallant 2000; Peter et al. 2019).

These results can also be interpreted within a predictive
inference framework (Von Helmholtz 1867; Mumford 1994;
Dayan et al. 1995; Lee and Mumford 2003). In this framework,
recurrent feedforward/feedback loops serve to integrate top–
down contextual priors (predictions) and bottom–up visual
input by implementing a convergent probabilistic inference
along the visual hierarchy. A relevant metaphor to understand
this is the Helmholtz machine of Dayan et al. (1995) during
perception, a top–down internal generative model learns to
better reconstruct the input, whereas during rest, a bottom–
up recognition model learns to refine internal representations

that the generative model “dreams” (Dayan et al. 1995). From
this perspective, the increased feedback to V1 and V2 observed
for VFM might be interpreted as the dampening of feedforward
visual responses according to prediction errors originated by the
mismatch between incoming signals and internally generated
top–down priors (Dayan et al. 1995; Rao and Ballard 1999; Lee
and Mumford 2003; Friston 2005; Friston et al. 2006; Petro and
Muckli 2016; Revina et al. 2017).

Cortical Excitability: Possible Mechanisms

Cortical excitability in RS, as quantified by Σ , was more variable
than during VFM and was increased in V1, particularly in
foveal representations (Fig. 5B). These differences in cortical
excitability between foveal and parafoveal regions, although
not consistently reaching statistical significance, may still have
functional implications. Interestingly, this increase in cortical
excitability was accompanied by strong directed interactions
in EC from the parafovea to the fovea of V1 that were absent in
VFM (Fig. 5A). One possibility is that these differences are related
to changes in the power of occipital alpha oscillations, known
to increase during wakeful detachment from the environment
(i.e., RS) (Williamson et al. 1997; Harvey et al. 2013). If changes in
the power of occipital alpha oscillations are partly captured by
Σ , reduced cortical excitability in foveal regions of V1 could be
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Figure 5. Differences in EC and Σ between RS and VFM suggest a reconfiguration of feedforward and feedback interactions. (A) Average EC matrices for RS (left panel)

and VFM (middle panel) obtained by grouping significant EC links into foveal and parafoveal regions V1, V2, and V3 (F and P stand for fovea and parafovea. Columns
represent output and rows inputs. See Determination of Common Underlying Structure in EC and Its Relation to Topographic and Anatomical Connectivity for details).
The right panel illustrates the differences in EC between conditions (VFM-derived EC − RS-derived EC). Negative differences in EC (RS > VFM) are distinguished by a
minus symbol mark in the upper left corner of the cell. Cells corresponding to regions that showed significant changes in EC (significant differences were evaluated

using permutations corrected for multiple comparisons (P < 0.05)) have annotated the negative logarithm of their P-value (−log10(P), note that −log10(0.05) = 1.3).
Feedback connections outweighed feedforward connections both in RS and VFM. (B) Cortical excitability as estimated by Σ . For each condition, individual Σ estimates
were grouped into foveal (F) and parafoveal (P) regions (as in A) and represented as black dots overlaid on box plots (the central mark is the median and the edges the
25th and 75th percentiles). A comparison between RS and VFM reveals a slight decrease in this value, particularly for foveal regions, albeit not significant. In VFM, Σ

is slightly increased in the parafovea, although not significantly.

interpreted as reflecting surround suppression and facilitation
in the fovea, while participants are fixating on the screen
(Haegens et al. 2011; Harvey et al. 2013). Indeed, during a
visual task, alpha oscillations in V1 have been associated
with increased negative BOLD responses and shown to vary
as a function of stimulus position and local receptive field
surround (Harvey et al. 2013). The highly localized nature of
these oscillations points to a role of intracortical axons in
surround suppression (Schwabe et al., 2006, 2010; Harvey et al.
2013; Hindriks et al. 2014). In line with these studies, changes
in Σ were identified in the foveal representation of V1 but not
in extrastriate areas V2 and V3, likely reflecting the localized
nature of occipital alpha oscillations. As discussed in Recurrent
Connectivity and its Role in Visual Processing, extrastriate
feedback to V1 may play a role modulating the balance between
inhibition and excitation, known to change between task and
rest, thereby reflecting differently in the BOLD signal during RS
and VFM (Lamme et al. 1998; Petro et al. 2014). In the absence of
visual input (RS), changes in cortico-cortical connectivity may
leave V1 in a ‘baseline’ state of potential excitation, whereas
during VFM, both external visual input and top–down feedback

influences may modulate the balance between inhibition and
excitation resulting in suppressed BOLD responses in V1 —thus
attenuating cortical excitability (Angelucci and Bressloff 2006;
Schellekens et al. 2016; Schindler and Bartels 2017). The fact that
we found lower values of Σ in the fovea of V1 for VFM supports
this view (Gilbert and Li 2013).

Relation of the BOLD Autocovariance Decay Constant
to Behavioral Condition

The temporal decay constants of the autocovariance (τ ), derived
empirically from the RS and VFM data, determined the rate at
which the fluctuations diffused through the noise-diffusion net-
work model. Higher values of τ imply longer temporal memory
(i.e., the system’s past dynamics have a stronger influence on its
future dynamics). Importantly, the determination of consistent
decay constants for RS and VFM demonstrated that propagation
was present in both cases, at similar temporal scales. However,
estimates of τ obtained from VFM data were slightly greater
(albeit not significantly higher) than those derived from RS data
(Fig. 2B), suggesting longer temporal memory during VFM. This
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is in contrast to previous studies showing that temporal memory
decreases during task compared to RS (He et al. 2010; He 2011). By
estimating task-induced decreases in the power-law exponent
of BOLD fluctuations across widespread brain regions, these
studies suggest that the temporal memory is longest during
RS. They relate the larger power-law exponent found in RS to
higher time-lagged autocovariances and interpret this as longer
temporal memory. One possible reason for this differing results
is that He and colleagues examined widespread whole-brain
interactions, whereas here we examined BOLD signal dynamics
at a more local scale (the cortical surface of individual visual
field maps) and with higher resolution (7T). Furthermore, our
results are specific to early visual cortex and therefore may not
generalize to the whole brain. Another possible explanation is
that these studies were based on eyes-open RS (fixation on a
white cross-hair in the center of black screen) whereas we used
eyes-closed RS. These different measurement scales and task
protocols may well explain the observed differences.

In our study, the slight increase in temporal memory found
in VFM may likely reflect stimulus induced interactions. By
giving rise to slow frequency fluctuations in the BOLD signal
that are spatially correlated with the stimulus position, these
interactions may lead to higher temporal redundancy and there-
fore longer memory depth (higher τ ). On the other hand, the
absence of stimulus induced interactions during RS may lead
to a decrease in spatiotemporally correlated slow fluctuations,
locked to the stimuli during VFM, leaving intrinsic fluctuations
and fast transitions to dominate the temporal autocovariance
structure (thus reducing τ during RS). Finally, the aforemen-
tioned studies (He et al. 2010; He 2011), computed the power-
law exponent of the fMRI time series by using the low frequency
range (<0.1 Hz) of the power spectrum, whereas we computed
τ from minimally preprocessed BOLD time series to which only
detrending and demeaning was applied. By avoiding such low-
pass filtering, we allowed faster fluctuations to influence our
estimates of τ . All these lines of evidence suggest that, in early
visual cortex, the temporal scale of BOLD activity propagation
differs between RS and VFM. Compared to the slow and spatially
widespread (long) propagation patterns evoked by the VFM stim-
ulus, intrinsic fluctuations during RS tend to unfold locally in
space and time. These shorter and more localized propagation
events may dominate the spatiotemporal covariance structure
and explain the increased EC within-area interactions observed
during RS.

Limitations and Interpretability of the Model

An important limitation in the present study was the fact that
we only acquired data from a limited field of view, which forced
us to consider a subset of all existing connections. This might
have neglected the contribution of indirect influences to esti-
mated changes in the EC, as dependencies may arise from
indirect interactions in the underlying anatomy. In addition to
direct corticocortical connections (e.g., from V2 to V1), feedback
can cascade over a succession of cortical areas and subcortical
pathways (Sherman and Guillery 2011; Saalmann et al. 2012;
Gilbert and Li 2013). Similarly, the increased Σ values identified
during RS in the foveal representation of V1 may reflect changes
in input from other brain regions as well.

Other possible limitations derived from the fact that our
approach was different from the original implementation of
the noise-diffusion network model (Gilson et al. 2016, 2018) in
two aspects: 1) Diffusion tensor imaging (DTI) cannot estimate

structural connectivity at the spatial scales involved here. There-
fore, our implementation was topologically agnostic compared
to these previous studies: no structural connectivity matrix (i.e.,
DTI-derived) was used to constrain the EC; 2) we apply the
approach to the scale of individual visual field maps whereas it
was originally devised for whole-brain analyses (ROI ∼ 500–1000
voxels instead of ∼50 here) (Gilson et al. 2016, 2018). However,
we think the approach is still valid since there are known strong
anatomical connections between V1, V2, and V3. Also, regional
variation in the hemodynamic response is less pronounced at
this scale (Lin et al. 2017), which further justifies the implemen-
tation of the model.

Another limitation is that we only allowed positive weights
to be adjusted in the EC, which lead us to interpret the intrinsic
variability of the model (Σ) to the aggregate changes in corti-
cal excitability across both inhibitory and excitatory neuronal
populations. We justify this decision based on the metabolic
underpinnings of the BOLD signal: inhibitory functions, which
are supported more by oxidative mechanisms than by excitatory
signaling, may contribute less than excitatory functions to the
measured BOLD activity (Buzsáki et al. 2007). Therefore, excita-
tory glutamatergic input to principal neurons might influence
EC more than modulatory functions, which are exerted by a
mostly inhibitory interneuronal network (Buzsáki et al. 2007;
Sherman and Guillery 2011). Furthermore, allowing negative
correlations between one voxel and another allows connections
between a voxel where the stimulus is in the center of the pRF
and a voxel where the stimulus is in the suppressive surround.
Suppressive surrounds are large, so this is likely to lead to
widespread spurious EC. Based on these reasons, we believe that
positive weights in the EC are enough to capture the underlying
neuronal interactions that shape BOLD responses.

We note that our aim was not to infer the detailed causal
mechanism that gives rise to the propagation of BOLD activ-
ity. Rather, our aim has been to assess the utility of a spe-
cific EC framework (a topologically agnostic noise-diffusion net-
work) to quantify BOLD activity propagation at the level of
individual cortical areas. In this regard, we note that local varia-
tion in neurovascular coupling profiles may hinder our analysis
(Schölvinck et al. 2010; Aquino et al. 2012; Pang et al. 2017), as
they would affect the EC values (but less likely their modulations
across conditions). Nevertheless, we do not model the hemody-
namic response function (HRF) for a number of reasons. First,
we assume the HRF to be relatively constant across V1, V2, and
V3, even though the underlying vascular network may introduce
certain non-uniformity (Harrison et al. 2002; Handwerker et al.
2004; Tong et al. 2016; Lin et al. 2017). Second, our model repro-
duces the empirical spatiotemporal covariance analytically, and
therefore does not rely on generative models of neuronal activity
and neurovascular coupling to simulate the BOLD time series
(this is why only actual BOLD data are shown in Fig. 1). While
such an approach would be valuable to address questions of
mechanistic causality, we think that the current temporal and
spatial resolution of fMRI leaves such questions out of reach.
In future studies, extending this or similar approaches with
high spatial resolution fMRI might help disclose brain interac-
tions specific to separate cortical layers, allowing to dissociate
lateral, feedforward, and feedback interactions at a more fine-
grained scale than previously possible in human sensory cortex
(Lawrence et al. 2017; Fracasso et al. 2018; Mitra et al. 2018;
Petridou and Siero 2019).

The time- and task-dependent nature of BOLD activity
propagation patterns poses the question of how closely directed

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/30/11/5899/5861609 by U

trecht U
niversity user on 16 D

ecem
ber 2021



5910 Cerebral Cortex, 2020, Vol. 30, No. 11

interactions map onto structural connections (Adachi et al.
2012). An emerging view suggests that structural connection
patterns are indeed major constraints for the dynamics of
brain activity (Deco et al. 2017), which are partly captured
by functional and EC. However, whether BOLD propagation
is generated only through temporally ordered processes of
neuronal origin unfolding through underlying neuroanatomical
networks or also through additional changes in physiological,
metabolic, or vascular variables remains an issue of debate
(Matsui et al. 2016). Indeed, the precise neuronal mechanisms
that determine the spatial and temporal distribution of BOLD
signal co-fluctuations and propagation are not yet fully under-
stood. If BOLD fluctuations reflect the consequences of spiking
activity, aggregate subthreshold fluctuations (Logothetis et al.
2001), or metabolic relationships among neurons, astrocytes
and the supporting capillary network (i.e., neuro-vascular
coupling) (OHerron et al. 2016; Pang et al. 2017), is an area of
ongoing research. On the one hand, BOLD activity propagation
patterns within areas during VFM, together with transient,
retinotopically selective, coactivation between different visual
areas, appear to reflect retinotopically organized switching
of the spiking input activity between voxels sharing similar
visual field position selectivity and tuning characteristics
(Kenet et al. 2003; Blumenfeld et al. 2006; Lewis et al. 2016;
Vinck and Bosman 2016). On the other hand, during RS,
BOLD propagation patterns may reflect the footprint of slow
subthreshold fluctuations in local field potentials, which can be
retinotopically organized and are known to be good predictors of
the BOLD signal spatiotemporal covariance structure (Logothetis
and Wandell 2004; Carandini et al. 2015). Indeed, a recent
study by Matsui and colleagues (2016) using neuronal calcium
signals and simultaneous hemodynamic recordings brings
together these lines of evidence by demonstrating that both
global fluctuations, in the form of waves propagating across
cortex, and transient local coactivations in calcium signals are
necessary for setting the spatiotemporal covariance structure
of hemodynamic signals (Matsui et al. 2016). Another line of
evidence points to neuronal mechanisms of interareal coupling
and modulation reflected in the estimated changes in EC. A
recent study analyzed simultaneous recordings from V1 and
V4 in monkeys and showed that feedforward interactions from
V1 to V4 were based on frequencies around the gamma band
(van Kerkoerle et al. 2014; Michalareas et al. 2016), whereas
feedback interactions from V4 to V1 were supported by alpha
activity (Buffalo et al. 2011; Xing et al. 2012). These studies
highlight the important fact that different temporal processes
may be used as channels over which “information” flows
between visual cortical areas. Therefore, care should be taken
when interpreting the nature of the estimated interactions
in EC.

Furthermore, non-neuronal mechanisms such as the wave-
like propagation of hemodynamic activity originating in pial
arterioles has been described (Rayshubskiy et al. 2014) and
related to oscillations in systemic blood pressure (the so called
“Mayer waves”) (Julien 2006). Similarly, large veins draining to
the dural sinuses near the occipital pole, which are known to
modulate the phase of nearby hemodynamic fluctuations with
little effect on signal amplitude (Menon et al. 1995; Winawer
et al. 2010), may also play a role in shaping, for instance, the
parafovea-to-fovea interactions observed during RS. Moreover,
acting as a temporal low-pass filter, neurovascular coupling
mechanisms involving the activity of astrocytes (Pang et al.
2017) and the diffusion of vasodilatory signaling molecules

(i.e., nitric oxide) may play an important role in setting the
pace of BOLD activity propagation patterns. Together, all these
lines of evidence point to the importance of considering
the multiple physiological factors implicated in shaping the
BOLD signal when interpreting patterns of BOLD activity
propagation.

The different propagation patterns of BOLD activity during RS
and VFM, as assessed with the present EC analysis, demonstrate
distinct cortical dynamics during visual stimulation and in its
absence (Kenet et al. 2003; Lewis et al. 2016). Nevertheless, in a
previous analysis of the present dataset, we found that BOLD
activity across cortical locations of V1, V2, and V3 sharing similar
visual field selectivity (functionally homotopic) can co-fluctuate
during RS, enabling the estimation of connective field models
from RS data (see Fig. 3 in Gravel et al. 2014) that resemble those
obtained from VFM data. The fact that retinotopically congruent
co-fluctuations in BOLD activity across visual cortical areas can
also occur during RS (Heinzle et al. 2011; Gravel et al. 2014; Butt
et al. 2015) suggests that non-retinal and “top–down” influences,
such as feedback modulation of V1 responses, may also play a
role generating structured patterns of BOLD propagation during
rest (Muckli and Petro 2013). During RS, a variety of behav-
ioral processes, such as memory consolidation and learning,
may recruit V1 into a processing stream—even without external
visual stimulation (Kosslyn et al. 1995; Slotnick et al. 2005; Petro
et al. 2014). Together, these studies suggest that, during RS,
periods of highly organized neuronal activity in the visual cortex
give rise to transitory periods of retinotopically organized BOLD
activity propagation. Co-fluctuations within and between early
cortical visual field maps may follow, likely reflecting different
states of cortical processing (Gilbert and Sigman 2007; Gilbert
and Li 2013; Schölvinck et al. 2015).

Finally, the current study assesses BOLD propagation in eight
healthy participants. Although our results are consistent across
participants, further studies involving more participants or
datasets such as the 7T HCP retinotopy dataset are warranted.
Moreover, the EC models were estimated based on grouped
RS and VFM scans. As such, they estimate average BOLD
propagation patterns and do not capture specific intervals
of variation in these. To establish the neuronal mechanisms
underlying the observed changes in EC, further research
using high spatial resolution fMRI and different tasks inviting
behaviorally relevant responses are advised.

Concluding Remarks
We have shown that the propagation of BOLD activity through
early visual cortex reveals different directed interaction regimes
across the topography and hierarchy of visual cortical areas V1,
V2, and V3 during both RS and VFM. We relate these differences
in the estimated EC to a task-dependent reconfiguration of feed-
forward and feedback interactions throughout the visual system
and changes in Σ to a task-dependent neuronal modulation
of local cortical excitability. Our results add to a growing body
of evidence suggesting that recurrent connectivity and cortico-
cortical feedback plays a central role in visual processing. They
are consistent with the hypothesis that directed influences (i.e.,
feedback to V1), as well as intrinsic connectivity (i.e., cortical
excitability), interact differently during visual stimulation and
rest as a consequence of the visual system using an active
inference strategy to process incoming stimuli. We conclude by
answering our original question of how the propagation of BOLD
activity can also reveal relevant aspects of brain activity at a
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more local scale. By acknowledging the existence of propagated
disturbances in BOLD activity, our approach provides a simple
method to infer the local excitability of visual cortical areas and
the directed influences unfolding among them during distinct
behavioral states.
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