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Debris-covered glaciers, especially in high-mountain Asia, have received increased
attention in recent years. So far, few field-based observations of distributed mass loss
exist and both the properties of the debris layer as well as the atmospheric drivers of melt
below debris remain poorly understood. Using multi-year observations of on-glacier
atmospheric data, debris properties and spatial surface elevation changes from repeat
flights with an unmanned aerial vehicle (UAV), we quantify the necessary variables to
compute melt for the Lirung Glacier in the Himalaya. By applying an energy balance model
we reproduce observed mass loss during one monsoon season in 2013. We show that
melt is especially sensitive to thermal conductivity and thickness of debris. Our
observations show that previously used values in literature for the thermal conductivity
through debris are valid but variability in space on a single glacier remains high. We also
present a simple melt model, which is calibrated based on the results of energy balance
model, that is only dependent on air temperature and debris thickness and is therefore
applicable for larger scale studies. This simple melt model reproduces melt under thin
debris (<0.5 m) well at an hourly resolution, but fails to represent melt under thicker debris
accurately at this high temporal resolution. On the glacier scale and using only off-glacier
forcing data we however are able to reproduce the total melt volume of a debris-covered
tongue. This is a promising result for catchment scale studies, where quantifying melt from
debris covered glaciers remains a challenge.
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INTRODUCTION

Debris-covered glaciers are common in a number of glaciated mountain ranges, including high-
mountain Asia [HMA, (Scherler et al., 2011)], the European Alps (Brock et al., 2010), the Caucasus
(Lambrecht et al., 2011), the Andes of Chile (Janke et al., 2015) and Peru (Wigmore and Mark 2017),
and the Russian (Barr et al., 2018), North American (Herreid and Pellicciotti 2018) and Scandinavian
Arctic (Midgley et al., 2018). In HMA, they represent a considerable portion of the entire glacierized
area (11%) and of the ice mass below the equilibrium line altitude (30%, Bolch et al., 2012;
Kraaijenbrink et al., 2017), which is largely due steep hillslopes and high erosion rates.

Debris cover controls melt, with debris beyond a couple of centimeters in thickness inhibiting
melt (Östrem, 1959; Nicholson and Benn 2006) and thinner cover increasing melt due to a decrease
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in albedo. A number of recent studies found debris-covered and
clean ice glacier tongues to have comparable surface lowering
rates on the glacier scale (Gardelle et al., 2012; Kääb et al., 2012;
Nuimura et al., 2012; Basnett et al., 2013), while point scale
observational studies have documented reduced melt below a
critical thickness of few centimeters of debris (Loomis 1970; Khan
1989; Kayastha et al., 2000; Nicholson and Benn 2006; Lambrecht
et al., 2011; Chand et al., 2015).

A number of studies have since investigated melt of debris-
covered tongues in detail. Studies in the Alps and HMA have
shown that energy balance models perform well to estimate melt
at the point scale. However these models are very sensitive to
thickness, thermal conductivity and surface roughness of the
debris layer, all of which are difficult to measure (Nicholson and
Benn 2006; Reid and Brock 2010; Rounce et al., 2015). A number
of studies have also observed and modeled melt of supraglacial
ice cliffs (Sakai et al., 2002; Steiner et al., 2015; Brun et al., 2016;
Buri et al., 2016a) and ponds (Sakai et al., 2000; Miles and
Arnold, 2016; Watson et al., 2016), which are common surface
features on debris-covered tongues, especially in the Himalaya.
Around these features melt intensifies considerably, but they
cover only a relatively small area of the total tongue (Steiner
et al., 2019).

A distributed energy balance model, based on the point scale
model developed on Miage Glacier by Reid and Brock (2010), has
since been deployed on the same glacier in the European Alps
(Fyffe et al., 2014; Shaw et al., 2016) and on a nearby partially
debris-covered glacier (Reid et al., 2012). Fyffe et al. (2014) found
that sub-debris melt is only sensitive to changes in temperature in
the upper parts of the tongue where debris is thin, but not
particularly sensitive to lapse rates of temperature or wind
used to distributed these climatic variables over the complete
surface. Shaw et al. (2016) also found the sub-debris melt at
locations where the debris thickness is small to be sensitive to
lapse rates, which corresponds to the local sensitivity to a
temperature change. Both studies used an uncertain coarse
debris thickness estimate derived from thermal imagery
(following Foster et al., 2012) and 30 m DEMs. As a result,
such studies fail to account for local variabilities of climatic
variables as well as topographic controls. For example, within
a 30 m DEM cell elevation differences of up to 10 m frequently
occur due to the hummocky terrain characteristics of most
debris-covered tongues.

Carenzo et al. (2016) proposed a simpler index model, which
enables the calculation of melt below debris simply by combining
temperature, solar radiation and debris thickness data. Ragettli
et al. (2015) applied the same approach on Lirung Glacier for a
hydrological model. Both studies lacked high resolution debris-
thickness data, and accuracy of the results has not been validated
with datasets of mass loss. Such index models are, however,
extremely useful for application in hydrological models as they
are less data intensive than energy balance approaches and
computationally inexpensive.

Local investigations of surface elevation changes with satellite
(Ragettli et al., 2016) and UAV imagery (Immerzeel et al., 2014a;
Kraaijenbrink et al., 2016a; Wigmore and Mark 2017) show melt
rates to be highly heterogeneous on debris-covered tongues, most

plausibly explained by the occurrence of ice cliffs and supraglacial
ponds as well as by heterogeneous debris thickness.

Here we aim to combine these two approaches, namely
modeling of melt with an energy balance approach and
validating the results with high resolution elevation data. We
use climate data collected on the glacier in 2013 as well as data on
the variability of air and surface temperatures (Steiner and
Pellicciotti 2016; Kraaijenbrink et al., 2018), surface roughness
(Miles et al., 2017a), debris thickness (McCarthy et al., 2017;
Nicholson et al., 2018) and wind and debris properties. This
allows us to run an energy balance model at high spatial (10 m)
and temporal (1 h) resolution. We compare these results to
downwasting rates derived from bi-annually obtained DEMs at
the glacier (Kraaijenbrink and Immerzeel 2020). We specifically
attempt to 1) assess the suitability of an energy balance model to
represent sub-debris melt in time and space for a Himalayan
glacier, 2) determine the sensitivity of such models to important,
but often difficult to observe variables, including climatic
variables, debris thickness and conductivity, and 3) to compare
a simple temperature index model for debris-covered glaciers that
is suitable for inclusion in catchment scale hydrological models
with the detailed energy balance model results.

STUDY AREA AND DATA

Our study area is the Langtang catchment in the Nepalese Himalaya
(28.2°N, 85.6°E), which extends over an area of 560 km2 (upstreamof
the confluence with the Trisuli river), approximately 30% of which is
glacierized (Figure 1B). Debris cover accounts for approximately
25% of the total glacierized area (Ragettli et al., 2016). This study
focuses on Lirung Glacier, where most data in recent years has been
collected (6.5 km2, ∼16% debris-covered, 4,044–7,130m above sea
level (a.s.l.)). The tongue is covered in continuous debris below the
ELA, with a number of ice cliffs and ponds on the surface (Steiner
et al., 2019). The local climate is dominated by monsoon circulation,
with 68–89% of the annual precipitation falling between June and
September (Immerzeel, et al., 2014b), with a very rapid decrease in
temperature, humidity and precipitation from the end of August
until the end of October. The up-valley winds typically transport
moisture to higher altitudes resulting in condensation and overcast
conditions in the afternoon. Due to the thick and dark debris cover,
surface temperatures increase well beyond air temperatures during
the day (Steiner and Pellicciotti 2016).

Climate Data
Meteorological measurements are available from an automatic
weather station (AWS) installed on the glacier for multiple years
(LIR1, 28.2349°N, 85.5613°E, 4,195 m; LIR2, 28.2326°N,
85.5621°E, 4,075 m; LIR3, 28.2396°N, 85.5571°E, 4,200 m) as
well as from an off-glacier location (Kyanjing, 28.2108°N,
85.5695°E, 3,862 m, Figure 1B). All sensor specifications are
shown in Table 1 and measurement periods in the
Supplementary Table S1. The locations of measurements are
marked in Figure 1A. The surface temperature of the debris at the
AWS location was derived from outgoing longwave radiation,
assuming a debris emissivity of 1.
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Debris Data
Debris thickness measurements of Lirung Glacier are available
from ground-penetrating radar (GPR) measurements in 2015
(McCarthy et al., 2017), as well as from 27 pit measurements
between 2016 and 2017 (Figure 1A). These measurements are

aggregated to the model resolution (10 m) and used to validate
the debris thickness estimate.

Measurements of debris temperatures are available from all
three locations on Lirung Glacier, covering varying depths. Debris
densities, porosity and volumetric soil moisture were measured

FIGURE 1 | (A) Overview map of the study site, showing the ablation tongue with the locations of atmospheric measurements (LIR1, LIR2, LIR3) as well as debris
thickness measurements by GPR (d GPR) and excavation (d Pits). The red shaded area shows the model domain in 2013, where mass loss measurements are available.
The image shows the part of the tongue where continuous debris is observed. The white dashed lines show the flux gates (used for the calculation of emergence velocity
(see Supplementary Material). (B) Langtang catchment, with all debris-covered glaciers shaded grey, and the location of the Kyanjing AWS (AWS KYA) south of
Lirung Glacier. (C) Location of Langtang catchment in the Central Himalaya.

TABLE 1 |Sensor specifications for the AWS off-glacier (Kyanjing) and on-glacier locations. Climate data at LIR3, used to validate the usability of off-glacier climate data, were
collected with a WS500-UMB.

Height [m] Sensor Manufacturer Range Accuracy

SW ↑↓ 2 CNR4 Kipp&Zonen 305–2, 800 nm ±10% (day)
LW ↑↓ 2 CNR4 Kipp&Zonen 5–50 µm ±10% (day)
RHair 1.90 MP-103A Rotronic 0–100% ±0.8%
Tair 1.90 MP-103A Rotronic −50° to +100°C ±0.1°C
u 2 WM05103 CS ±0.3 m/s
Tdeb Multiple PT100/3 + HOBO U23 CS + Onset −200–600°C/-40–70°C ±0.1°C/± 0.21°C
Surface height 1.38 m SR-50 (UDG) CS −45–50°C ±1 cm/± 0.4% of distance to target

CS stands for Campbell Scientific; UDG stands for ultrasonic depth gauge.

Frontiers in Earth Science | www.frontiersin.org July 2021 | Volume 9 | Article 6783753

Steiner et al. Distributed Melt on a Debris-Covered Glacier

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


by taking 55 samples at varying depths in the 27 pits in October
2016 and April 2017. Samples were taken with a 100 ml soil corer
for the fine textured layers and were dried for 24 h and weighed
and sieved in the lab.

Unmanned Aerial Vehicle Data
Elevation data of both glacier tongues are obtained from co-
registered orthomosaics (0.1 m resolution) and DEMs (0.2 m)
derived from multiple UAV flights with an optical camera
(Supplementary Table S1). The DEMs were resampled to
10 m resolution and corrected for flow. From the same flights,
velocities were derived which, in combination with modeled ice
thickness, were used to compute emergence velocities over the
glacier tongue (see Section 2 in Supplementary Material). We
refer to previous studies on the generation of DEMs and velocity
products (Immerzeel, et al., 2014a; Kraaijenbrink, et al., 2016b).

METHODS

Mass Loss Data
We derived mass loss by comparing the DEMs of two consecutive
timesteps that were corrected for horizonal flow and the
emergence velocity. To correct for emergence velocity, we
placed fluxgates perpendicular to the flowline at approximately
500 m distance (Figure 1) and used modeled ice thickness data
(Farinotti et al., 2019) and UAV-derived flow velocities,
determined similarly as in Kraaijenbrink et al. (2016a). We
then calculate emergence velocities for the resulting segments
and correct the mass loss product accordingly. Average
emergence over the model time period in 2013 is estimated to
be small (approximately 0.07 m averaged over the model domain
over the 157 days, see Supplementary Table S2). Using the
individual DEM uncertainties (0.25 m, Immerzeel et al., 2014a;
Kraaijenbrink and Immerzeel, 2020) we estimate the uncertainty
of the mass loss product to be 0.35 m.

Debris Thickness
Deriving debris thickness in space is challenging and several
studies have attempted this at the glacier scale. Foster et al. (2012)
initially proposed to derive thickness from thermal imagery,
following the logic that the energy absorption by the glacier
ice underneath would be reflected more in the surface
temperature of a thin than of a thick debris layer. Some
studies build on this approach (Rounce and McKinney 2014;
Schauwecker et al., 2015; Kraaijenbrink et al., 2017) but little
validation data exists and uncertainties remain large, because the
signal saturates at thicknesses over ∼30 cm and other factors drive
the surface temperature variation, e.g., shading, moisture and
spatial variation in surface energy balance components. Secondly,
Rounce et al. (2018) used the inversion of an energy balance
model to derive debris thickness. Finally, it is also possible to use
observed mass loss data and invert the Østrem curve (Rounce
et al., 2018). While both latter approaches show promising
results, inverting the Østrem curve is considerably less
computationally intensive and is used in this study (Eq. 1). As
we perform this analysis using mass loss data from 2016, while we

apply the energy balance model in 2013, we are able to produce an
independent debris thickness map. To create an average Østrem
curve we use data from all currently published studies that
include both debris thickness as well as melt rates. The
following equation is solved at each individual pixel:

d � (( _m/mc)
a

)
1/b

, (1)

where d is the debris thickness [m], _m is the UAV-derived melt
rate [m yr−1], mc is the melt rate [m yr−1] at critical thickness
(2 cm) over the same period as the mass balance was derived and
a [m−1] and b [−] are parameters. While both the critical
thickness and mc can in reality be expected to vary over the
glacier, we chose to calculate mc with the measured fluxes at the
AWS for the fixed critical thickness, in order to avoid introducing
unquantifiable errors into our procedure. Running 100
simulations only varying parameters within their uncertainty
(see Section Debris Properties and Conductivity) results in
mc � 0.04 m d−1 (σ � 0.01 m d−1).

Using velocity and emergence-corrected mass balance data for
the monsoon season 2016, in conjunction with the mean Østrem
curve, we then derive a distributed map of debris thickness. While
strictly speaking this debris thickness map only applies for a
specific time step, we argue that due to the low surface velocities
of Lirung Glacier (withmaxima of ∼2 m a−1) and the resolution of
the model (10 m) it is reasonable to apply it ± 3 years from the
date of acquisition.

Energy Balance Model
The sub-debris melt model is based on earlier work by Reid and
Brock (2010), which numerically estimates the surface
temperature of the debris by considering the balance of the
heat fluxes at the air-debris interface and melt is calculated by
heat conduction through the debris. One advantage of this
approach is that it does not require surface temperature as an
input, a variable that is notoriously difficult to obtain accurately
in space (Steiner and Pellicciotti 2016; Kraaijenbrink et al., 2018).
The energy balance F(TS) at the air-debris interface can be
written as

SW↓ − SW↑ + LW↓ − LW↑(TS) +H(TS) + LE(TS) + G(TS)
� 0

(2)

or F(TS) � 0

where Ts is the surface temperature, SW↓↑ is the incoming and
outgoing shortwave radiation, LW↓↑ is the incoming and
outgoing longwave radiation, H and LE are sensible and latent
heat flux respectively and G is the ground heat flux through
the debris. We ignore fluxes from precipitation in this work, as
on-glacier measurements do not exist and the fluxes are often
considered negligible.

We then solve Ts using a Newton-Raphson scheme

TS(n + 1) � TS(n) − F(TS)
F′(TS) (3)
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where F’(TS), the derivative of the total surface flux, is calculated
by the central difference method. The initial estimate for
TS(n � 0), is always chosen as the air temperature Tair , and
Eq. 2 is subsequently iterated until TS(n + 1) − TS(n)< 0.01.
Iterations are stopped when n reaches 100 or if the
temperature gradient in the topmost debris layer exceeds
5°C cm−1. This is rarely the case but ensures that the surface
does not heat up to unrealistic values, which would drive sensible
heat and outgoing longwave radiation fluxes to unrealistic levels.

Incoming solar radiation SW↓ is taken from measurements
and corrected for local topographic shading using the initial
DEM. Shading is calculated following the approach in Buri
et al. (2016b) in which the view factor is calculated, i.e. the
fraction of the sky blocked by surrounding topography is
calculated. Considering the actual view factor at the AWS
where radiation is measured, the SW↓ is corrected using the
cell-specific view factor. Outgoing shortwave radiation SW↑ is
computed using a constant albedo αd determined from on-glacier
measurements. Incoming longwave radiation LW↓ is taken from
measurements wherever available and otherwise computed using
a model developed for the Himalaya (Kok et al., 2019). Contrary
to the original model, which used stability corrections based on
the Richardson number, we calculate sensible and latent heat flux
only using a bulk transfer coefficient (Nicholson and Benn 2006;
Cuffey and Paterson 2010), which was found to be more
appropriate compared to direct measurements of turbulent
fluxes (Steiner et al., 2018). Since the specific humidity of the
debris surface is not known, and will remain difficult to derive in
space and time, it is derived based on a relation with surface
temperature (Steiner et al., 2018).

Debris Properties and Conductivity
The conduction from the air-debris to the debris-ice interface can
be calculated from a heat-conservation equation based on
Fourier’s law with the partial derivatives of temperature Ti,s

ρdcd
δTi,s

δt
� δ

δz
(kdδTi,s

δz
) (4)

where i denotes time t, and s denotes depth z, and ρd , cd , and kd
are density, specific heat capacity and thermal conductivity of the
debris, respectively, all assumed to be constant with depth and
over time. The equation is solved numerically by dividing the
debris layer in N layers of 1 cm each and taking the surface
temperature Ts and the ice temperature Ti as boundary
conditions. For cases where the debris layer is thinner than
5 cm, the number of layers is fixed to 5. For a full description
of the numerical solution see (Reid and Brock 2010).

The effective thermal conductivity of debris is calculated using
the density of the debris pack

kd � κ(ρrcr(1 − ϕd) + (ρwcw θ

θsat
+ ρaca(1 − θ

θsat
))ϕd) (5)

where κ [m2 s−1], is the apparent thermal diffusivity determined
from profiles of debris temperature collected at multiple sites and
times, following the same approach as described in (Conway and
Rasmussen 2000). We only use measurements during the night

(20:00 to 07:00) to avoid inversions. ρr is the density of the actual
rock making up the debris [2,650 kg m−3, considering the region
mainly consists of metamorphic gneiss (Macfarlane et al., 1992)],
cr is the specific heat capacity of rock (890 J kg

−1K−1) and ϕd is the
debris porosity, which we determine from field measurements
[−]. ρw/a are density, and cw/a the specific heat capacity of water
and air, respectively. θ is the soil moisture [m3 m−3]. The second
term of the equation describes the conductivity through the space
between the debris, and can be set to fully saturated (θ� θsat � 0.2)
or completely dry (θ � 0). As moisture changes in space, depth
and time, it likely is the biggest driver of uncertainty for calculated
conductivity.

To characterize the debris properties in depth we also
determined the grain size distribution for 30 samples from
different depths at the 27 pit sites around LIR3. These samples
exclude rocks larger than 5 cm.

Uncertainty due to spatial and temporal variability in all of the
parameters associated to the debris, most importantly the thermal
conductivity, are accounted for by a Monte Carlo simulation in
which multiple realizations of the model with random
combinations of the input parameters are performed. The
parameter space and distribution type are based on field data.
All parameters and their ranges used in this study are detailed in
Table 2. To assess the ability of the model to reproduce mass loss
accurately we run a number of simulations. First, the model is run
at the location of the AWS where climate data and debris
thickness are well constrained and we only vary debris
thermal conductivity (which is dependent on porosity, soil
moisture and diffusivity), debris density and surface roughness
using 1,000 random parameter sets. Secondly, for 64 locations
where debris thickness has been measured 1,000 simulations are
run where, in addition, debris albedo, air temperature, relative
humidity of the air, wind speed and incoming longwave radiation
are varied within the expected range of uncertainty. This allows us
to discuss the sensitivity of the energy balance model to these
variables and constrains the number of model runs required for
all pixels to just 50 realizations by only varying debris thermal
conductivity. Although the model is coded to run in parallel,
performing 1,000 realisations on each individual pixel for Lirung
Glacier for one melt season would take >2 weeks to execute on
eight cores, so increasing the computational efficiency by
reducing the parameter space is a helpful way forward for
multi-annual and regional applications.

Index Models
A variety of index models are used in literature to calculate melt
on clean ice glaciers, most commonly relying on air
temperature only (Hock 1999), i.e., a temperature index
model, and occasionally also considering incoming solar
radiation (Pellicciotti et al., 2005), i.e., an enhanced
temperature index model. The latter approach was adapted
for a debris-covered glacier (Carenzo et al., 2016) and this
approach has also been applied on Lirung Glacier in a
catchment scale study (Ragettli et al., 2015). As energy
balance studies are generally computationally more
expensive and rely on more input data, we compare both
approaches and test the model performance when only using
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data from an off-glacier station. In the simpler temperature
index model, melt m [mm w.e. h−1] is calculated as

m � TF Tair(t − lagT p d) (6)

where Tair [°C] is the air temperature at time t−lagT*d, where d
[m] is debris thickness and lagT [h m−1] is the time per unit
distance it takes for the energy flux to travel through the debris
pack. TF is the temperature factor calculated as

TF � TF1 d
TF2 , (7)

with TF1 and TF2 being two free parameters to be calibrated.
To test the suitability of the model proposed in Carenzo et al.

(2016), we also use

m � TF Tair(t − lagT p d) + SRF (1 − α) SW↓(t − lagSW p d)
(8)

where SRF is the radiation factor computed as SRF1 eSRF2d , with
SRF1 and SRF2 being two additional free parameters. SW↓
[Wm−2] is incoming solar radiation, α [−] albedo of debris
and lagSW the time lag as described above. We refer to the
two equations as dTI (for the temperature index model) and
dETI (for the enhanced model) respectively.

RESULTS AND DISCUSSION

Debris Properties
Debris composition is very variable across the glacier and with depth.
Surface cover ranges from loose boulders to sandy patches and the
surface properties do not necessarily indicate a vertical consistency in

debris texture (Figure 2). There is a tendency for debris to become
finer towards the ice (Figure 2F, Naylor, 1980). In some pits (Figures
2C,E) a water table of∼5 cm above the ice, with a veryweak current of
melt water with suspended sediments, was observed. Reworking by ice
flow, slumping of debris due to collapsing cliffs and channels (Benn
et al., 2012; Buri et al., 2016a; Miles et al., 2017b) and deposition of
material eroded from the surrounding moraines (Woerkom et al.,
2019) continuously alters the composition. We use point scale
observations over limited periods of time to derive a reasonable
range of debris thickness and debris conductivity used in the model.

Debris thickness measurements derived from GPR (McCarthy
et al., 2017) and debris pits, although measured at different
locations, exhibit similar mean values (0.84 and 0.82m
respectively) with minimum depths at 0.11 and 0.4 m and
maximum depths at 2.3 and 1.6 m, respectively. Both
distributions show a log-normal distribution, corresponding to
observations of thickness on other glaciers (see Nicholson et al.,
2018). Hence, for the Monte Carlo runs, we use a set of debris
thicknesses that are sampled from a log-normal distribution, with a
mean of 0.84 m and minimum and maximum values of 0 m and
2.7 m respectively, based on the GPR measurements.

To produce a distributed debris thickness map, we produced
standardized Østrem curves from all available studies that show
field measurements of ablation and debris thickness (Figure 3A).
Assuming a critical thickness, wheremelt below debris is equal to bare
ice melt, these curves derived in different climates can be compared.
This still leaves a considerable spread, especially as the debris thickens.

The calibrated parameters for Eq. 1 are a � 0.13 (σ � 0.002),
and b � -0.52 (σ � 0.006), which is very similar to the curve used
in Kraaijenbrink et al. (2017) that used a similar approach and
data (including thermal Landsat bands, a � 0.11 and b � −0.51),

TABLE 2 | Constants used in the study and the range used for the uncertainty analysis.

Constant Symbol Unit Value Range References

Atmospheric

von Kármán constant K [−] 0.41 —

Stefan-Boltzmann constant Σ [W m−2 K−4] 5.67 10−8 —

Debris emissivity εd [−] 1 — Steiner et al. (2018)
Roughness length of momentum* z0 [m] 0.03 0.005–0.5 (lognormal) Miles et al. (2017a)
Roughness length of temperature z0t [m] 0.05*z0 — —

Specific heat capacity dry air cad [J kg−1 K−1] 1,005 — —

Debris albedo* αd [−] 0.13 ±0.03 (normal) this study

Debris

Debris porosity* ϕd [−] 0.44 ±0.07 (normal) this study
Specific heat capacity rock cr [J kg−1 K−1] 890 — Nicholson and Benn (2006)
Density of rock ρr [kg m−3] 2,650 —

Density of water ρw [kg m−3] 999.7 —

Density of air ρa [kg m−3] 0.819 —

Specific heat capacity water cw [J kg−1 K−1] 4,181.3 —

Thermal conductivity debris* kd [J kg−1 K−1] 2.03 (wet) 0.95–3.00 this study
0.85 (dry) 0.40–1.26
1.29 (all) 0.66–2.01 (normal)

Thermal diffusivity debris k [m2 s−1] 6.41 10−7 (σ � 2.21 10−7) — this study
Debris moisture θ [m3 m−3] 0.09 ±0.05 this study
Ice temperature Ti [K] 273.15 —

Ranges of variables marked * are directly used in the Monte-Carlo analysis of the energy balance model.
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but considerably different from two other studies that used a
similar inversion but were based on local data (Ragettli et al.,
2015; Rounce et al., 2018). The distributed map was produced
using the difference between the DEMs in May and October 2016,
corrected for emergence and aggregated to a 10m product. All melt
features not covered by debris (cliffs and ponds) as well as outliers
(beyond the 5th and 95th percentile) were removed, so were pixels
where mass loss was below the accuracy of the product (0.35 m) as
well as individual pixels before aggregation that were thicker than
2 m.While thicknesses beyond 2 mmay occur, just 0.5% of ∼6,000
GPR data points and none of the pits are this deep. When
aggregated to a 10m resolution thicknesses over 2 m are hence
even less likely. We then derived the thickness for the remaining
pixels and interpolated over the complete domain by inverse
distance weighted interpolation. Comparing the resulting map
(Figure 3C) to point measurements (Figure 3B), shows an
overall agreement, with no bias and an acceptable mean
absolute error (MAE) of 22 cm. Debris thickness is generally
thicker closer to the moraines due to a constant resupply from
the moraines (Woerkom et al., 2019). It is especially thin at the
terminus where bare ice appears as the tongue retreats rapidly,
thickens in the lower part but thins again towards the accumulation
are where it then gradually transcends into the bare ice area
(Figure 3C). Most challenging however is that variability over
relatively short length scales is high and can happen gradually or
abruptly, with thickness differences in the range of 1 m over
horizontal distances of 100 m on both Lirung Glacier and other
field sites (see Table 2 inNicholson et al., 2018). The uncertainty for
individual pixels from the model logically remains considerable
and is a result of the spread in the Østrem curves, the critical debris
thickness and the uncertainty of the DEMs.

Measurements of debris temperatures at different locations
and different depths provide largely similar results (Figure 4),

suggesting that diffusivity through the debris is relatively constant
in space even with differences in debris texture. Generally,
temperatures are higher in the wet season, with the exception
of 2013, where surface temperatures were in general higher but
also sensors malfunctioned towards the end of the wet season. As
a result, most data from the dry season in this year is from pre-
monsoon, which is generally warmer. Measurements in the
uppermost part of the debris pack also suggest that most of
the diurnal variability is attenuated after 10 cm of debris. The
mean peak temperature pattern at the top and bottom profiles of
all years reveals that the transit time of the temperature peak is
roughly similar in all profiles, ranging from 15.6 h m−1 in the wet
season at LIR2 to 18.5 h m−1 in the wet season at LIR3.

From the temperature profiles we can calculate diffusivity in the
wet (7.4 × 10−7 m2 s−1) and dry season (6.8 × 10−7 m2 s−1). This is
similar to the values from Conway and Rasmussen (2000) (6 and
9 × 10−7 m2 s−1) andNicholson and Benn (2013) (9.5× 10−7 m2 s−1

in the wet summer and 7 × 10−7 m2 s−1 in winter) but much higher
than values measured on likely drier surroundings in the range of
3–3.9 × 10−7 m2 s−1 (Nicholson and Benn 2006; Juen et al., 2013).
Recent investigations in the Everest region show similar gradients
of temperature through the debris, suggesting that these profiles
remain relatively stable throughout the season (Rowan et al., 2020).
This space and time invariance provides some confidence in
applying constant diffusivity values in distributed analysis.

Since the debris is never completely dry, its moisture content
needs to be accounted for in the determination of thermal
conductivity. Soil moisture measurements in a number of pits
indicate a moisture content of 0.01–0.2 m3 m−3 (μ � 0.09, σ �
0.05), where the maximum value corresponds to saturation of
sandy soils. Highest variability can be found near the surface, due
to its very variable composition (Figures 2, 5A). The general
distribution corresponds to typical soil moisture curves (e.g.

FIGURE 2 | (A) A typically coarse surface with little change between years and likely thick cover underneath, (B) example of short-length-scale transition between
cobbles and sand. White ruler shows a 1 by 1 m area. (C) Surface with thin debris cover (∼0.15 m) consisting of fine material, where melt water is surfacing (solid blue
line). (D)Glacier ice (dashed blue line) appearing in a region of otherwise thick cover, with multiple pits in a 10 m radius of >1 m depth. (E)Melt water ponding in a deep pit
(∼0.65 m). (F)Grain size distribution of the debris pack, with samples from the debris surface, inside the debris pack (upper and lower half) and from just above the
ice plotted separately.
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Genuchten, 1980), with the peculiar case here that soil moisture at
the bottom of the debris layer is higher due to melting ice, while
close to the surface it is due to precipitation and condensation.
Measured porosity on the glacier ranged from 0.30 to 0.59 (μ �
0.44, σ � 0.07), which corresponds to the only other two
measurements from literature, namely a mean of 0.43 in
Popovnin and Rozova, (2002) and a range between 0.19 and
0.6 in Collier et al. (2014). The actual debris density was between
1,300 and 1,950 kg m−3 (μ � 1,588 kg m−3, σ � 175 kg m−3), which
corresponds well to the mean of 1,496 kg m−3 used in Reid and
Brock (2010). Considering the large variability in space and
depth, we use all diffusivity estimates and moisture data from
literature and from this study to aggregate a reasonable range of

conductivity for the model, shown as boxplots in Figure 5B. Note
how assuming full saturation or complete dryness results in a very
large range of conductivity values. The median conductivity of
1.29 J m−1 K−1 matches well with the few available direct
measurements from our field site. Reported conductivity
values are rare for specific seasons (Nicholson and Benn 2006;
Nicholson and Benn 2013), but do exist for unspecified
conditions (Conway and Rasmussen 2000; Reid and Brock
2010; Juen et al., 2013; Rounce et al., 2015). These reported
values correspond well with the range in conductivity values that
we have derived (Figure 5B).

Two main observations can be made from the grain size
distribution (Figure 2F). First, the variability with depth is

FIGURE 3 | (A) Standardized Østrem curves for all studies with field data (*) and three modeling studies. Only data from field studies was used to generate the
average curve. The vertical dashed line shows the critical thickness, where melt is equal to a clean ice glacier in the same climate (2 cm). In red are studies from Lirung
Glacier, yellow are from HMA, blue are studies from other regions. (B)Modeled compared to measured debris thickness at 10 m resolution, red are from pits and black
from GPR measurements as noted by the squares in (C). (C)Modeled debris thickness map. Points shown in the black frame are from GPR measurements, red
frame denotes excavated pits.
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quite large, with finer sediments being more abundant in the
lower part of the debris pack. Approximately 40% of the debris is
sand, which results in a relatively high water retention capacity
compared to gravel or small boulders. This results in an increase
in conductivity compared to a drier coarse-texture debris pack by
a factor of 2 (Figure 4B). Such considerations are essential to
further drive development of more complex models that are able
to incorporate moisture (Collier et al., 2014; Giese et al., 2020),
but also for routing times of melt water from the glacier as melt
water does not immediately become available to discharge.
Second, due to this available water in the pores and relatively
dense debris texture, the debris pack is largely frozen below a
depth of 20 cm in winter. On Lirung Glacier this occurs

specifically in winter (Figure 4). As temperatures become
positive in spring at the surface, it takes up to a week to
defrost the entire debris pack at depths of ∼1 m. Although we
can calculate the available energy for (re-)freezing our model
cannot account for lateral or vertical transport of water within the
debris and hence an appropriate quantification is impossible.
However, melt estimates for the cold season are likely to
overestimate actual rates, especially in spring, when this
process is unaccounted for.

Climate Data and Resulting Uncertainties
Due to the heterogeneity of the debris surface, climate variables
vary over the surface and errors are introduced due to the lapsing

FIGURE 4 | Temperature profiles in debris measured at the AWS in 2012 [(A–C), LIR1], 2013 [(D–F), LIR2] and from 2017 [(G–I), LIR3]. Blue is the winter season
(1st January to 28th February), red the wet season (06/15 to 09/19) and black the dry seasons.
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of variables from the location of weather stations to other parts of
the glacier. By comparing climate data from three locations on the
glacier, we assess the extent of this variability (Figure 6).

Variability in air temperature over debris cover was
investigated for Lirung Glacier in earlier studies (Fujita and
Sakai 2000; Steiner and Pellicciotti 2016). To evaluate the use
of off-glacier measurements, we used a seasonally varying lapse
rate (Heynen et al., 2016) up to the glacier snout combined with
lapse rates for the glacier surface for the specific seasons (−0.005,
−0.0066, and −0.0078°C m−1 for pre-monsoon, monsoon and
post-monsoon respectively, Steiner and Pellicciotti, 2016).
Lapsing temperature from an off-glacier station introduces an
additional error on top of the spatial variability (Figure 6),
resulting in a mean bias error (MBE) between 1 and 2°C. This
is especially visible during the day and larger during the
monsoon. We therefore use a conservative uncertainty range
of 2°C for all air temperature values. This is especially relevant
when using simpler index models that only rely on air
temperature as a proxy for melt. The fact that we are able to
reproduce air temperature reasonably well using this lapsing
approach provides confidence in the use of a single AWS for
deriving melt rates for multiple glaciers in a catchment.

While relative humidity also changes with elevation, the trend
is less clear and variability is more impacted by local debris
properties (Bonekamp et al., 2020). However, no measurements
at different locations are available over the same period.
Measurements at the off-glacier station are similar to on-
glacier measurements with the exception of the monsoon
season, in which the air is much more humid off-glacier at the
Kyanjing station in the main valley. The root mean square error
(RMSE) ranges between 10 and 20%. We use a conservative
uncertainty estimate of 20% for the modeling.

Wind speed is also variable over the debris surface due to the
hummocky terrain, but is approximately a factor 2 lower than at
the off-glacier AWS, which is located in the exposed main valley
(Figures 1B, 6). While in 2012 and 2017 the AWSs were located

on relatively exposed parts of the glacier, the station was situated
in a depression from 2013 to 2014, resulting in a decrease of
average wind speed by a factor of 3, which significantly affects the
turbulent fluxes (Steiner et al., 2018). When using the on-glacier
data from 2013 to drive the model, we allow wind speeds to vary
by up to a factor of 2.5 to account for this variability.

Finally, incoming radiation is affected by the hummocky
terrain as well. It causes parts of the surface to be shaded
longer than more exposed sections and hence receive less
direct incoming shortwave and longwave radiation. These sites
also receive added longwave radiation from the surrounding
debris. We apply the sky view factor relative to the location of
the measurement of radiation for all pixels when running the
energy balance. For the sensitivity analysis, we furthermore
assume that the longwave radiation flux may vary by ±
50Wm−2 due to additional radiation emitted by the
surrounding debris.

Albedo is relatively consistent between the 3 different
locations on the glacier, with daily mean values between 0.12
and 0.16 during the dry seasons and values down to 0.06 on rainy
days in the monsoon season, when debris is wet. The mean albedo
ranges between 0.11 in 2012 and 0.13 in all other years. We
therefore use a normal distribution with μ � 0.13 and the
measured σ � 0.03 for the uncertainty analysis.

Energy Balance Model on the Point Scale
At the location of the AWS the energy balance can be validated
accurately in 2013 as the climate data is available at that specific
site and the surface elevation changes are continuously monitored
during the first month. It also allows us to validate the
performance of the model against measured surface
temperature. Figure 7A shows modeled and measured mass
loss at the location of the AWS. The modeled debris thickness
for this location is 0.37 m, which corresponds to the 0.29 m
measured at the location of the AWS and 0.45 m measured in
another pit just 3 m away. This variability within a relatively small

FIGURE 5 | (A) Soil moisture measurements from pits around LIR3. (B) Thermal conductivity calculated using temperature profiles and the moisture content. The
box plots indicate the range of thermal conductivities as calculated using the range of diffusivities from literature and using the observed moisture range (mix), full
saturation (wet) and completely dry debris assumptions (dry). Solid dots are values from literature, transparent crossed dots are calculated with diffusivity and debris
moisture only from the observed field data (red—dry, blue—wet).
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area is indicative of the spatial heterogeneity of debris thickness
(Anderson and Anderson 2018; Nicholson et al., 2018).

In Figure 7 we focus on the 25 model runs of 1,000
simulations that match observed mass loss (blue) or observed
surface temperature (red) most closely. For surface temperature
this was assessed by finding the time series that had the lowest
combined MBE and RMSE and highest NSE. It is encouraging
however, that the model also matches well with the independent
measurement of surface height at the beginning of the season
(Figure 7C). Unfortunately, the sensor also tends to tilt as debris
moves which eventually caused it to fall over after June.
Figure 7B shows the spread of the model parameters for the
best performing runs. The range for conductivity values is large

and the values are quite high, with an average of 1.6 Wm−1 K−1.
The mean surface roughness value corresponds well with the
observations from the very same location in 2014 (0.03 m)
(Miles et al., 2017a). The model is relatively insensitive to
debris density (Figure 7B).

Alternatively, model performance can also be assessed by
comparing the modeled and measured surface temperature,
which allows for an assessment of the model performance
over time (Reid and Brock 2010). This works well for the
AWS location, indicated by a mean Nash-Sutcliffe Efficiency
(NSE) of 0.79 and a RMSE/MBE of 3.6°C/−0.4°C for the 25
best performing runs. While this approach is useful to evaluate
the ability of the model to reproduce fluxes accurately, it depends

FIGURE 6 |Mean diurnal cycles for climate variables used in the energy balance, including air temperature (A–C), relative humidity of the air (D–F), wind speed (G–I)
and incoming shortwave (solid lines) and longwave radiation (dashed lines, (J–L)). For air temperature the lapsed data from Kyanjing (Kya) to the respective on-glacier
location is shown. Wind speed at Kyanjing is shown with a factor of 0.5. The three columns represent three seasons, pre-monsoon, monsoon and post-monsoon from
left to right. Lir12-17 refers to the AWS on Lirung Glacier. Lir17 was operational from September 2016 to October 2018, while all other setups only measured during
the monsoon in the respective year (see Supplementary Table S1 for exact periods).
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on the accuracy of the surface temperature measurements
(Steiner and Pellicciotti 2016; Kraaijenbrink et al., 2018). The
results presented here suggest that using either surface
temperature or a single mass loss measurement as validation
provides similar results. However, the model runs that
correspond most closely to the surface temperature
measurements overestimate the final mass loss (Figure 7A),
the measurement from the local sensor (Figure 7C) and also
tends to be on the upper end of resulting conductivity values
(Figure 7B).

Irrespective of whether mass loss or surface temperatures are
used for validation, the modeled surface temperatures agree well
with the observed temperatures (NSE � 0.76/0.77, MBE � −0.2/
1.1°C, Figure 8). However, the model fails to capture the very high
peaks of surface temperature (>35°C) and overestimates
temperatures on days when the observed values suddenly drop
due to overcast conditions.

The net shortwave, longwave, latent and sensible heat fluxes
are shown in Figure 8. Net shortwave radiation is the dominant
flux. Net longwave radiation is consistently negative on clear
days but becomes positive on overcast days. The sensible heat
flux is consistently negative, while the latent heat flux is
generally low and can be negative or positive. Modeled melt
lags the energy peak by a couple of hours due to the delay of
energy transfer through the debris. As a result, sub-debris ice
also melts, when the surface energy balance is negative. This is in
contrast to clean ice glaciers, where melt stops as soon as the net
energy is below zero.

Energy Balance on the Distributed Scale
As a first step we applied the energy balance on all pixels where
debris thickness observations were available (Figure 9). We
selected the 25 simulations from the total of 1,000 that
reproduced observed mass loss best. It is clear that the highest
mass loss is observed for thin debris as expected. However, below
half a meter of thickness there is a lot of variability in mass loss, as
other drivers, such as moisture and debris texture become more
important. Nevertheless, the model is able to reproduce the
observed mass loss in nearly all cases, which indicates that all
essential processes are incorporated.

The model is sensitive to all the parameters that were varied
during the Monte Carlo runs, indicated by a relatively narrow
range around the respective median (Figure 9). However, for
debris density, surface albedo and surface roughness the optimal
values are independent of debris thickness and therefore a
constant value for all pixels can be assumed for these variables.

Of the climate variables the model is most sensitive to the
potential variability in space and time of longwave radiation and
slightly less sensitive to air temperature. Both these variables
increase with increasing debris thickness. Relative humidity and
wind speed on the other hand show no such trend and the
observed value from a single location provides satisfactory results
on the glacier scale.

Incoming longwave radiation from surrounding terrain plays
a role since it directly adds energy to the surface. However,
quantifying spatial patterns of longwave radiation on a
hummocky surface is challenging. The uncertainty in observed

FIGURE 7 | (A) Modeled melt at the location of the AWS in 2013. The blue and red line and shaded area show the mean and standard deviation of the 25 best
performing model runs (97.5th percentile) compared to the observed mass loss from the UAV and the observed surface temperature respectively. The error bar of the
UAV measurement corresponds to the uncertainty of the DEM accuracy. The solid black line are hourly measurements from an ultrasonic depth gauge (UDG, Table 1),
which only monitored for a limited time, shown in detail in (C). (B) Conductivity, surface roughness and debris density for the 25 best performing model runs, once
for optimization with UAV (blue) and once with surface temperature (red).

Frontiers in Earth Science | www.frontiersin.org July 2021 | Volume 9 | Article 67837512

Steiner et al. Distributed Melt on a Debris-Covered Glacier

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


surface temperatures (Kraaijenbrink et al., 2018) makes it even
more difficult to quantify additional incoming longwave
radiation in space.

For the fully distributed model, we only run 50 simulations per
pixel in which we allow kd to vary, the variable to which the model
is particularly sensitive (Figure 9). Using constant parameters but
a variable kd, we model mass loss in space. We include pixels
where melt was observed and where no cliffs or ponds were
present at the beginning of the season.

Figure 10A shows the difference between observed and
modeled melt, applying varying kd values that fit most closely
to the observed data. The blue and green boxplots in Figure 10C
show the results aggregated for 100 m bins in distance from the
terminus. The mean observed melt over the whole domain is
0.89 m (±0.76 m). Modeled melt using spatially variable
conductivity is 0.77 m (±0.37 m) and using fixed conductivity
is 0.88 m (±0.42 m). Observed high values cannot be reproduced
by the model, which can be explained by mechanical processes of
mass loss, i.e. slumping around cliffs and ponds as well as
disintegration of subglacial structures. The high retreat rates at
the terminus, where debris cover is present but thin and ice
repeatedly collapses, are equally poorly represented. However,
overall it is possible to reproduce observed melt rates well, with a
RMSE and MBE of 0.29 and 0.04 cm d−1 respectively. The

resulting kd map (Figure 10A, inset) naturally follows melt
patterns. Where melt is high but debris thick and surface
features like cliffs and ponds are rare, kd is high. Where melt
is low, in this case the middle section of the tongue, very low kd
counter balances the energy input at the surface. Rather than
reflecting actual kd, the value here acts as a free parameter.
However, these values do not only lie within the range of
previously reported values for conductivity, they also have
some physical merit. Thick and continuous debris can hold
more moisture leading in turn to higher bulk kd values. In the
center part and the upper part of the modeled domain, debris is
discontinuous and relatively thin, making the debris pack more
susceptible to evaporative drying and drainage and hence
decreasing the conductivity.

Distributed data of conductivity is however virtually
impossible to retrieve, let alone accounting for its change in
time. For practical applications, we need to assume a constant
conductivity value in space and time. Figure 10B shows the
results for the median kd of 1.41Wm−1 K−1. Results become less
variable and as a result modeled rates in the central part are
considerably higher than observed. This is notably also where
observed mass loss was especially low even though a number of
cliffs and ponds were present and emergence velocities are
possibly higher than what we estimated. The RMSE increases

FIGURE 8 | Measured and modeled surface temperature of the debris at the AWS, with ‘mod UAV’ denoting the results that fit best with the UAV mass loss
measurement and ‘mod T’ those fitting best with observed surface temperature (A). Resulting (net) fluxes andmelt rates based on themodel (B). The shaded area shows
the range of results based on the 25 best performing model runs after comparison of the modeled mass loss with the measured mass loss (Figure 7).
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FIGURE 9 | (A) Modeled mass loss at locations where debris thickness observations are available. The boxplots cover the 25 model runs that most closely
reproduce observed mass loss. (B–I) Range of variables (from left to right: debris conductivity, debris density, surface roughness, surface albedo, as well as uncertainty/
spatial variability ranges for air temperature, relative humidity of air, wind speed and incoming longwave radiation from surrounding terrain). Grey solid horizontal lines
show cases where the observed melt could not be reproduced with any parameter combination.

FIGURE 10 | (A) Difference between observed and modeled melt with variable (shown as an inset) and (B) constant conductivity kd. (C)Melt over all pixels for the
observed (obs), variable kd (var) and fixed kd (fix) case, binned in distance to the terminus.
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subsequently to 0.47 cm d−1 but MBE remains low
(−0.03 cm d−1).

With the model we compute melt for all ∼4,500 pixels of the
debris-covered area of the glacier with a timestep of 1 h. In
Figure 11 the average melt rate below 0.5 m, between 0.5 and
1 m and above 1 m debris thickness is shown. Melt rates clearly
follow the air temperature and solar radiation, albeit with a
considerable lag (Figure 11B). Even for locations with debris
thinner than 0.5 m, the melt peaks a few hours after the
temperature peak. Three specific processes illustrate the effect
of climatic drivers on temporal melt patterns below debris.
Firstly, when there are a number of subsequent cloudy days
with limited shortwave radiation (e.g. during the first half of
July, Figure 11A), melt rates overall remain unaffected, however
melt rates during the night under thinner debris surprisingly
increase. This can be explained by the absence of radiative
cooling during the night and the higher longwave radiation
input from clouds. This results in a less negative or even positive
net longwave radiation without a clear diurnal cycle (see May
30th in Figure 8). While the increase of longwave radiation
seems small, it consistently increases the entire day, while the
decrease of solar radiation only occurs during daytime. In
addition, turbulent fluxes become less negative as radiative
heating decreases (Steiner et al., 2018). Secondly, when air
temperature and shortwave radiation decrease (Figure 11B)
melt rates decrease everywhere, resulting in an overall decrease
of meltwater output on the glacier scale. Thirdly, in the
beginning of September the solar radiation remains
consistently high and the daytime temperatures are similar to
the monsoon. However due to the strong radiative cooling at
night, temperatures drop considerably causing a decrease in
melt. Nighttime temperatures therefore have an important
effect on melt below debris.

We conclude that air temperature is a good indicator of both
variability and magnitude of sub-debris melt rates in a monsoon
climate, due to the interplay between shortwave radiation,
longwave radiation and turbulent fluxes in the energy budget.

Sources of Uncertainty and Model Limitations
There remain several uncertainties and limitations that we can
not address in further detail either because they play a less
significant role in our field site or we lack the data to assess
them reasonably. We address the issues of emergence velocity,
melt at critical thickness as well as sub-debris melt under thin
debris below.

The accuracy of observed melt from repeat DEMs depends on
our ability to accurately estimate emergence velocity. Emergence
velocity decreases towards the terminus and hence is relatively
low for debris-covered tongues (Anderson and Anderson 2018;
Brun et al., 2018). This is especially true for Lirung Glacier, where
we only investigate the lower part of the tongue and where flow
velocities are overall low and hence our confidence in melt
estimates is large. Emergence velocity increases towards the
ELA and hence our dependence on accurate ice thickness
increases up glacier from the terminus. So far no reliable
understanding of emergence velocity exists for the region that
would help to judge its importance. The fact that debris-covered
glaciers tend to stagnate with progressive mass loss (Dehecq et al.,
2019) may however work to our advantage, as this would suggest
that the relative uncertainty from emergence velocity becomes
less important for accurate sub-debris melt observations in future.
Our estimate of debris thickness includes a number of
uncertainties, which we quantify in the Supplementary
Section S3. We calculated melt at critical thickness mc only
for the location of the AWS where atmospheric variables are
most accurately known, while technically this value varies in
space and should be calculated at each individual pixel. However
doing this would further cumulate uncertainties with no apparent
gain in knowledge. Considering that there is no apparent bias in
our modeled thickness compared to the available measurements,
we believe that the simpler approach chosen here is appropriate.

On Lirung Glacier thin debris is only present at the transition
to clean ice, outside of the model domain and where ice cliffs
appear from under the debris. Around cliffs our model does
reproduce high melt rates accurately and due to our approach to

FIGURE 11 | (A)Mean hourly melt rates during the model period melt below average debris thickness (50–100 cm, thick dark blue line) as well as thick (>1 m) and
thin (<0.5 m, thin light blue lines below and above). Additionally shown measured air temperature (red), incoming shortwave radiation (light grey) and incoming longwave
radiation (dark grey). The black rectangle in panel a shows the boundaries of the inset of panel (B).
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determine debris thickness we can not capture thin debris below
the critical thickness (2 cm). In thin debris thermal conductivity
and turbulent exchange likely also play a different role than what
we are able to account for here based on measurements in debris
of at least a few tens of centimeters. Previous studies have noted
the complex processes at play in thin marginal debris (Fyffe et al.,
2020) as well as around ice cliffs (Buri et al., 2016b), however
more research and data will be necessary to include these aspects
into distributed melt modeling.

Application of Index Models
While the energy balance model over the whole melt season
(157 days) is efficient for a single pixel for a single melt season
(<1 min, running on a single core, R code), it quickly becomes
unmanageable when simulating melt over thousands of pixels
with multiple scenarios for long periods for multiple glaciers. For
inclusion in a catchment wide analysis, we rely on climate data
from off-glacier stations possibly combined with remote sensing
or reanalysis products. To this end the simpler and
computationally lightweight index models are a more feasible
approach, which we discuss below.

The lag parameter necessary for index models to account for
the delay due to the debris on energy transport, was earlier
derived using two additional free parameters (Carenzo et al.,

2016). We derive it from field observations and the energy
balance calculations described above as follows.

As the melt cycle follows the diurnal pattern of air temperature
and solar radiation (Figure 11B), we calculated the cross
correlation between these two variables and the melt rate at
each pixel. This leaves us with correlograms for each pixel,
indicating the shift between the cycle of climatic drivers and
melt by calculating the time lag between 0 (when both curves
would be synchronous as expected on a clean ice glacier) and the
hour with the highest correlation (Figure 12). 20% of all pixels
had lag times exceeding 36 h, all with very low correlations and
high debris thickness (>1 m). For these pixels the melt is not
related anymore to the daily climate cycle and we excluded them
from the analysis. We then compared lag times at all remaining
pixels against debris thickness (Figure 12C). Based on this
analysis, we find lag times of 17.7 and 19.1 h m−1 for lagT and
lagSW respectively. These values are confirmed by our direct
measurement of the temperature peak delay through debris of
15.6–18.5 h m−1. Carenzo et al. (2016) found higher values on
Miage (lagT � 20 and lagSW � 22 h m−1 respectively), which could
be explained by a higher conductivity in the generally wetter
debris in the Himalaya. Following Carenzo et al. (2016), and to
reduce the number of parameters, we only use one lag value (lag �
17.7 h m−1), since this matches the direct measurements best and
differentiating between the two types (SW and T) did not further
improve the results. Through optimization Ragettli et al. (2015)
found a considerably lower value of 14 h m−1 for Lirung Glacier,
but this is below the observed value.

To derive the remaining parameters, we minimized RMSE and
MBE and maximized the NSE (Byrd et al., 1995) against the
hourly values computed with the best performing energy balance
model, using the median debris conductivity of 1.41 Wm−1 K−1.
Resulting parameters for the dTI are TF1 � 0.029 and TF2 � -0.919
and TF1 � 0.034, TF2 � 0.845, SRF1 � -0.0002 and SRF2 � −0.31
for the dETI. Additionally, we also tested the same approach for
specific thickness classes, yielding different parameters for each
subset, which allows for individual application on glaciers
depending on their average thickness (Supplementary Table S3).

The dETImodel does have a higher NSE (0.68 over 0.58 for the
dTI) and reproduces the melt rate better for thinner debris in
particular. However the optimized SRF1 is negative, i.e. additional
solar radiation would result in reduced energy for melt. While
theoretically possible, it is unlikely to represent a correct
reproduction of a physical process. Carenzo et al. (2016) also
found that SRF1 approaches zero towards a debris thickness of
0.5 m. It is likely that in their case it would also turn negative for
even thicker debris layers. The TF factors for the dETI model
correspond very closely to the values found in Ragettli et al.
(2015), while their SRF factors are positive but very small. As both
RMSE and MBE are not different for either approach, the only
improvement from the solar radiation comes in small shifts in the
diurnal cycle.

While the index models are able to accurately simulate the
melt peak over different thicknesses, they over- and
underestimate the low melt for thin and thick debris,
respectively (Figures 13A,B). This can be explained by the
fact that both air temperature and incoming solar radiation

FIGURE 12 | (A) Correlogram showing the cross-correlation function
(CCF) between air temperature and melt at a pixel with 51 cm debris
thickness. (B) CCF between solar radiation and melt at the same pixel.
Horizontal blue lines show the 95% confidence interval. (C) Lag derived
from the CCF at all pixels against debris thickness. Grey values have no
positive correlation and are not considered for the regression.
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are not a proxy for the cooling and drying process of debris. This
does not have significant effects on cumulative melt neither for
thick nor thin debris, however, as that is well simulated with the
index models (Figure 13C). Index models poorly reproduce
hourly melt for debris thicknesses beyond half a meter as
shown here and in previous studies (Ragettli et al., 2015;
Carenzo et al., 2016). Unless the interplay between
atmospheric forcing and drying and wetting debris is better
understood, it is unlikely that parametrizations based on
temperature (and other atmospheric variables) will be further
improved. On a daily or seasonal scale, the application of a
temperature index model with only two free parameters
provides satisfying results.

Validation in Space and Time
The mean mass loss rate based on the dTI model in 2013 over the
whole domain (0.82 m ± 0.48 m) reproduced the average
observed melt (0.89 m ± 0.76 m) well and the MBE is
relatively small (0.07 m). However, the model performance for
individual pixels is poor (NSE � −0.2, RMSE � 0.83 m), which is
explained by the inaccuracy of the debris thickness as well as our
lack of knowledge regarding the variability of conductivity
in space.

The dTI model was calibrated with on-glacier data. In
catchment scale studies over a longer period of time such
datasets are often not available. Therefore we also evaluate the
model using off-glacier station data. We already showed that
lapsing off-glacier temperature data works reasonably well, with

the caveat that warm temperatures over debris during the
monsoon are underestimated (Figure 6). We have 4 DEM
pairs from Lirung Glacier that are matched by temperature
data, namely the monsoon seasons of 2013 and 2016, as well
as the winter season 2015 to 2016 and 2017 to 2018
(Supplementary Table S1). With the exception of the last
winter season, the median mass loss over the debris-covered
surface is matched well by the simple dTI model using off-glacier
forcing, with three important caveats; very low, very high melt
rates and inter-annual trends (Figure 14). While the median melt
rate is well reproduced for both the high (MBE of −0.03 and
−0.15 m for 2013 and 2015 respectively) and the low melt season
(0.06 and 0.22 for 2015 and 2017), the model has a much smaller
spread, especially in the winter season. Very low observed melt
rates can be explained by an underestimation of the emergence
flux or when ice melt was counterbalanced by redistributed
debris, which is obviously not captured separately, as well as
by refreezing processes described earlier. The lowest modeled
melt rate in winter is 0.5 mm day−1. The very high melt rates
(>8 m yr−1, which correspond to a melt rate of >2 cm d−1) are
associated to regions around rapidly melting ice cliffs, ice below
ponds and the terminus. Accounting for the mass loss on the
margins of ice cliffs and along the cliff-pond interface remains
challenging (Buri et al., 2016a; Miles et al., 2016) and has so far
not been attempted in distributed energy balance models. Any
processes related to cliffs or ponds are not captured by a simple
index model, but could be incorporated in future by different
surface classifications and separate parameters for these
surface types.

Finally, it is obvious, that temperature alone does not seem
useful to individually explain the differences in mass loss
between years. While the observed mass loss decreased
between the two monsoon seasons and increased between the
winter seasons, the model results do not reproduce this
(Figure 14). While temperature alone allows us to get the
order of magnitude right and hence provides a valuable
input for the catchment scale water balance, more knowledge
of the glacier surface, including the debris properties and

FIGURE 13 | Melt curves for two pixels with a debris thickness of 36
(solid) and 181 cm (dashed lines) respectively during nine days in June
2013 (A), the diurnal cycle over the whole season (B) and cumulatively over
the whole season (C), calculated with the full energy balance model as
well as the two index models.

FIGURE 14 | Ice melt below debris for two monsoon (m) and two winter
seasons (w, see Supplementary Table S1 for exact time periods), measured
by DEM differencing (UAV) and modeled with the dTI model.
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occurrence of features like cliffs and ponds is necessary to
describe the temporal evolution of melt of debris-covered
glaciers.

CONCLUSION

In this study we combine modeling with a unique number of
observed datasets from the debris-covered Lirung Glacier, to
quantify mass loss in time and space using an energy balance
model as well as two index models. The two overarching goals
were to evaluate the performance of an energy balance model to
reproduce melt at an hourly resolution over a debris-covered
tongue, and test the applicability of a computationally fast, but
simpler index model to be applied at larger scale.

As a first step we derived a debris thickness map, by inverting
the Østrem curve. Comparison to in-situ thickness measurements
show this to be a viable approach for the glacier scale, with aMAE
of 0.22 m and a MBE of −0.005 m. The results reveal large spatial
variability, which ultimately leads to heterogeneous sub-debris
melt rates and is likely one of the factors explaining the
characteristic hummocky surface morphology of the glacier.

Direct measurements of debris properties show strong
variation in texture and associated moisture content with
depth. We show that the debris moisture content increases
from <0.05 m3 m−3 in the upper 10% of the debris to
>0.15 m3 m−3 above the debris-ice interface (μ �
0.09 m3 m−3), even during the drier seasons. As temperature
profiles are relatively constant between different locations, we
conclude that variability in thermal conductivity of the debris is
mainly driven by the varying moisture content. The median
thermal conductivity measured in the field (1.29 J m−1 K−1)
agrees well with the calibrated conductivity range of our full
energy balance model at the location of the AWS
(1.1–1.9 J m−1 K−1 for the best matching simulations) as well
as for the entire glacier tongue (1.41 J m−1 K−1). We conclude,
however, that variability in thermal conductivity remains the
single most sensitive variable in our estimates of sub-debris
melt. Approaching a debris-covered glacier with lessons from
unsaturated zone hydrology as well as permafrost studies could
therefore advance our understanding of its mass loss processes.
Future investigations should focus on incorporating the spatial
(in extent as well as in depth) and temporal heterogeneity of
thermal conductivity by considering convective processes and
refreezing within the debris pack. For eventual melt water
output the retention time of debris as a function of its
variable packing density will equally be crucial before
including its melt water in catchment wide streamflow.

Using direct hourly surface height change measurements at an
AWS on the glacier, we are able to show that the energy balance
model reproduces melt rates well over multiple days. Using UAV-
derived DEMs, we also conclude that the model reproduces the
overall mass loss after an entire melt season for a large part of the
glacier tongue well. We also show that using only a single UAV-
derived map of seasonal mass balance differences as calibration for
the energy balance model produces very similar results as using
continuous point-based surface temperature measurements.

Moreover, this approach is less prone to temperature
measurement uncertainties.

When the conductivity is calibrated in the model, we
reproduce the observed mass loss over the complete glacier
surface accurately (RMSE of 0.29 cm d−1 and MBE of
0.04 cm d−1) including its spatial patterns. Only very high melt
rates that occur at the terminus and in the vicinity of supraglacial
cliffs and ponds are not captured. When a constant conductivity
for the whole glacier is used, the total mass loss can still be
reproduced accurately, but spatial patterns are logically
represented less well.

Finally, we test a temperature index model that includes the
time lag required for energy to travel through the debris layer, and
compare its results against the energy balance model. We show
that an index model relying on air temperature (dTI) only
performs similar to a model that also includes a solar
radiation parameterization (dETI). While these simple models
do not accurately capture diurnal melt patterns, they perform
satisfactorily in quantifying total melt and we conclude that for
catchment scale studies and transient simulations the dTI
approach that includes the time lag is most suitable and
technically feasible.
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