
1.  Introduction
Transpiration mediates the transfer of water and energy between the land surface and the atmosphere (Fan 
et al., 2017; Good et al., 2015), impacting the regulation of climate and distribution of vegetation over land 
(Beerling & Berner, 2005). Trees play a particularly relevant role in water and energy transfer because they 
exhibit a wide range of maximum rooting depths (RDMAX). This suggests that trees may be able to access 
groundwater that is not immediately available for evaporation. Root water uptake (RWU) of local soil mois-
ture and groundwater by trees thereby influences the partitioning of precipitation between surface runoff 
(immediate streamflow), water infiltrating into forest soils (i.e., catchment stored water) and transpiration. 
Establishing a possible environmental and physiological basis for RDMAX and RWU patterns is specifically 
important because current ecohydrological models at catchment and continental scales tend to oversim-
plify RWU strategies (Warren et al., 2015). These simplifications in turn limit model veracity and utility 
for predicting future global change (Fan et al., 2019; Ferguson et al., 2016; Kennedy et al., 2019; Kleidon & 
Heimann, 1998).

While the evolution of deep roots and their access to groundwater have been associated with major chang-
es in global hydrological and biogeochemical cycles (Beerling & Berner, 2005; Beerling et al., 1998; Ibarra 
et al., 2019), we cannot yet adequately explain all variations in observed rooting strategies and their ecosys-
tem function (Pierret et al., 2016). Specifically, the degree to which vegetation connects the water table to 
the atmosphere via RWU of groundwater, as opposed to uptake and transpiration of moisture held under 
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tension in smaller soil pores (Fan, 2015) remains unclear. On the one hand, some trees may gain an energy 
advantage either by relying on recently infiltrated precipitation in shallow soils or via hydraulic redistribu-
tion (Hafner et al., 2017; Sun et al., 2018) of deeper water from neighboring species. On the other hand, trees 
that invest in the growth and maintenance of deeper rooting systems to access more stable water sources 
may gain a competitive advantage during periods of drought. A conceptual model of rooting strategies and 
empirical observations is presented in Figure S1.

A proliferation of studies over the last three decades have used isotopic observations of subsurface waters 
and tree xylem to provide evidence that some trees are facultative consumers of groundwater (Balugani 
et al., 2017; Knighton, Conneely, & Walter, 2019; Miller et al., 2010) and others obligate consumers of soil 
moisture held under tension (Bowling et al., 2017; Evaristo & McDonnell, 2017; Gaines et al., 2016). While 
local isotopic and sap flux studies have revealed complex RWU strategies in various forest ecosystems (Brum 
et al., 2019; De Deurwaerder et al., 2018; Gaines et al., 2016; Knighton, Souter-Kline, et al., 2019; Miller 
et al., 2010; Volkmann et al., 2016), it remains unclear if these empirical observations are climate- and eco-
system-transferable. Given that water is often a limiting resource for plant growth, we would anticipate that 
RDMAX and the ratio between RDMAX and mean annual water table depth (WT), RDMAX/WT, are traits that 
relate to RWU strategy and are therefore similar in closely related species.

The environmental and physiological controls on RDMAX and RWU in higher plants are poorly known for 
several related reasons. One body of knowledge suggests that the realized niche for RWU that trees oc-
cupy is determined mainly by local environmental conditions (hereafter locality hypothesis), such as soil 
moisture and topographic positions, regardless of species and life history (Canadell et al., 1996; Evaristo 
& McDonnell, 2017; Fan et al., 2017, 2019; Hodge, 2004; Schenk & Jackson, 2005). Under this conceptual 
model, plants are simplified to one monolithic hydrologic functional strategy for RWU that responds to 
environmental conditions to optimize the water uptake of individual trees. Another body of knowledge 
suggests that the realized niches for RWU are determined by hydrological niche partitioning in response 
to neighboring tree species (hereafter niche segregation hypothesis). Niche segregation is the partitioning 
of subsurface water as a resource through different RWU strategies at sufficiently small spatial scales (Sil-
vertown et al., 2015). The deployment of these RWU strategies is determined mainly by species-level com-
petition for the same amount of available water (Brum et al., 2019; Cabal et al., 2020; Gaines et al., 2016; 
Magh et al., 2020; Volkmann et al., 2016) or complementary hydraulic redistribution that increases total 
stand productivity (Grossiord et al., 2014; Hafner et al., 2017; Sun et al., 2018). Niche segregation may be 
the outcome of local soil moisture and topography as well as neighboring species and is a refinement of 
the locality hypothesis. Under this conceptual model, the RWU strategies of individual species cannot be 
separated from that of the stand (Grossiord, 2020; Grossiord et al., 2014; Knighton, Singh, & Evaristo, 2020).

A third body of knowledge suggests that RWU strategies depend on species identity, with closely related 
trees exhibiting similar strategies (hereafter phylogenetics hypothesis). For example, studies have shown con-
sistent evidence for changes in the sources of RWU used by gymnosperms throughout the growing season 
(Andrews et al., 2012; Berkelhammer et al., 2020; Mackay et al., 2020) and gymnosperms using different wa-
ter sources from those of neighboring angiosperms (Knighton, Souter-Kline, et al., 2019; Link et al., 2014; 
Mackay et al., 2020; Tetzlaff et al., 2021). These studies hint at a fundamental, evolutionary basis for com-
monalities in RDMAX and RWU strategies. Phylogenetic signals, which describe greater degrees of similarity 
in more closely related species, could provide a broader context for interpretation of these empirical studies 
and explain the degree to which taxonomy drives rooting patterns in the presence of external variables such 
as climate (W. Chen et al., 2013; Kitajima et al., 2010). Root traits have shown consistency among taxonom-
ic classes (Comas & Eissenstat, 2009), as well as significant phylogenetic signals (McCormack et al., 2020; 
Valverde-Barrantes et al., 2017), though it is unclear if the similarity in traits translates into similar RWU 
strategy.

We examine tree RWU strategies in the context of a phylogenetic model to address the following hypotheses. 
H1: there is a significant phylogenetic signal in observed maximum rooting depths, H2: there is a significant 
phylogenetic signal in the ratio of the maximum rooting depth to the mean annual water table, and H3: 
there is a significant phylogenetic signal in xylem isotopic evidence of groundwater uptake. We achieve this 
objective by analyzing two independent global data sets: (a) observed maximum rooting depths (RDMAX) 
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and mean annual water table depths (WT) (Fan et al., 2017; Iversen et al., 2017), and (b) groundwater, soil, 
and xylem water isotopic evidence of groundwater use (Evaristo & McDonnell, 2017).

2.  Materials, Methods, and Data
2.1.  Plant Trait and Hydrologic Data Sets and Data Availability

We analyzed two global data sets that aggregate individual measurements of maximum plant rooting depth 
(RDMAX) and local mean water table depth from a variety of studies (Fan et al., 2017; Iversen et al., 2017). 
Duplicate records between the databases were removed. We filtered the composite database to retain only 
records where (a) the study was conducted in a monoculture stand (i.e., only one species was listed in a 
given study plot), (b) “form/stature” contained the string “tree,” (c) records identified trees to species level. 
This filtering produced a composite database of 1,170 measurements of tree rooting depths covering 641 
species. The database contained 304 records covering 268 species with information on both rooting and 
water table depths.

We examined a second data set based on a meta-analysis that aggregates measurements of soil, groundwa-
ter, and tree xylem water isotopic compositions (2H, 18O) collected across ecohydrological studies (Evaristo 
& McDonnell, 2017) containing 531 observations and 414 unique species. We appended to this database 42 
new records published after the original database (see Table S1), increasing the sample size to 573 records 
and 454 species. The data set includes analysis estimating the proportion of xylem samples for species with-
in each study that presents evidence of groundwater uptake. That is, the number of xylem samples out of 
a universe of plant samples reported to have groundwater contribution to xylem water. We note that each 
observation represents a unique study that consists of multiple water isotopic samples of each species.

Each data set (Evaristo & McDonnell, 2017; Fan et al., 2017; Iversen et al., 2017) was validated against The 
Plant List (TPL), a comprehensive database of accepted plant names (Kalwij, 2012). Records with Latin 
names that failed to match standardized names in TPL were discarded from analysis (nRDMAX = 139 spe-
cies; nRD/WT = 108 species; nisotope = 2 species). The databases used for analysis contained 502, 160, and 412 
species for analysis of maximum rooting depth (RDMAX), and RDMAX/WT, and isotopic evidence for ground-
water uptake, respectively. The databases contain only 53 species with information on rooting depth, water 
table depth, and isotopic evidence for groundwater uptake, limiting opportunities for comparisons across 
the data sets. The geographic distribution of database records is presented in Figure S2.

2.2.  Establishment of Phylogenetic Relationships for Trees

To define the evolutionary relationships among organisms, we developed phylogenetic dendrograms of 
both tree databases with V.Phylomaker (Jin & Qian, 2019) using TPL standardized family, genus, and spe-
cies names within the R scripting environment. Dendrogram structure was established with algorithm Sce-
nario 3, which determines where a new genus tip is bound with consideration for branch length (Jin & 
Qian, 2019). All subsequent phylogenetic analyses were based on these established dendrograms. R scripts 
used in phylogenetic analysis are available (https://github.com/jknigh0813/Phylo_GW).

2.3.  Regression Analysis of Tree Rooting and Water Table Depths

We compared the spatial distributions of RDMAX, local water table depth (WT), and RDMAX/WT for both 
angiosperms and gymnosperms. We tested for significant differences in the median latitudes of trees exhib-
iting isotopic evidence of soil water and groundwater uptake separately for angiosperms and gymnosperms 
with two-sample Kolmogorov-Smirnov tests. With this and all subsequent hypothesis tests, we evaluated 
and discuss sensitivity at thresholds for Type 1 errors, α, of 0.1, 0.05, and 0.01.

We examined the relationship between log-transformed RDMAX and WT with both standard major axis 
(SMA) and phylogenetic least squares (PLS) regression. SMA assumes each database observation is in-
dependent whereas PLS accounts for the expected covariance structure of regression residuals based on 
phylogenetic distance and therefore eliminates the assumption that all records are independent. PLS re-
gressions based on phylogenetic dendrograms require single trait values per species. For each species, we 

https://github.com/jknigh0813/Phylo%5FGW
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computed the median of RDMAX and WT where the database contained multiple records for one species. 
For each regression, we present the best fit linear regression,     0ln RD ln WTE     , 95% confidence 
intervals on β, and the adjusted R2. For PLS, we also present Pagel's λP, a measure of the phylogenetic signal 
strength of regression residuals (Pagel, 1999) (i.e., the degree to which closely related trees show similar 
deviations from the proposed linear model). We subsequently fitted SMA and PLS to all trees and then sep-
arately for angiosperms and gymnosperms. We tested for significant differences in the regression slopes of 
angiosperms and gymnosperms for both SMA and PLS (Warton et al., 2006).

2.4.  Phylogenetic Analysis of Isotopic and Root Trait Evidence of Groundwater Uptake

We evaluated the hypotheses that RDMAX (n = 502 species) and RDMAX/WT (n = 160 species) (Fan et al., 2017; 
Iversen et al., 2017) show significant phylogenetic signals (i.e., traits among closely related tree species are 
significantly more similar than for distantly related species). For each test, where multiple values of RDMAX 
or RDMAX/WT were available for a single species we used the median value. The significance of the phyloge-
netic signals of these plant traits were estimated with both Blomberg's K (Blomberg et al., 2003) and Pagel's 
λP (Pagel, 1999). Each test involves a test statistic that can be interpreted as a scaled measure of the strength 
of a phylogenetic signal. Blomberg's K values span (0, ∞) where 0 indicates no structure and 1 indicates that 
the covariance of a trait is proportional to the shared history between species. Pagel's λP spans the range of 
0–1, where larger values similarly indicate stronger phylogenetic signals. If disagreement occurred between 
the two tests, we accepted the results of Pagel's λP as prior studies have demonstrated that λP may be a more 
robust test than K and provides more stable results under the assumption of a Brownian model of evolution 
(i.e., trait values vary along phylogenies according to a random walk with mean of 0) (Molina-Venegas & 
Rodríguez, 2017; Münkemüller et al., 2012).

We evaluated the hypothesis that groundwater uptake emerged from a Brownian model of evolution with 
n = 412 species (Evaristo & McDonnell, 2017). Each species was assigned a binary variable (0—no ground-
water; 1—groundwater) where the operational definition of “groundwater” followed that used by the source 
research. Where both presence and absence of evidence for groundwater uptake existed (i.e., variations in 
water sources through time or between individuals), we assigned a value of 1 given that groundwater uptake 
may be both a consequence of trait variations and environmental conditions. Given that cryogenic vacuum 
extraction (CVE) may bias stem water 2H measurements (Y. Chen et al., 2020), the analysis was repeated 
excluding all records based on CVE (a) using only 2H in source water identification and (b) analysis based 
on 2H and 18O (see Supporting Information S1). The significance of binary traits was estimated with the D 
statistic (Fritz & Purvis, 2010). D values span (−∞, ∞), where D of 0 indicates Brownian evolution, 1 indi-
cates random trait dispersal, and values above 1 indicate an over dispersed trait.

3.  Results
3.1.  Geographic Distribution of Rooting Strategies

We observed latitudinal gradients in rooting depth that appear to follow trends in water table depth (WT; 
Figures 1a and 1b). Gymnosperms generally have shallower RDMAX than angiosperms (Figure 1a) and occur 
at higher latitudes in regions with shallower WT (Figure 1b). Across all latitudes, trees exist with RDMAX 
both shallower and deeper than the local WT (Figure 1c). The latitudinal distributions of soil water and 
groundwater use as determined by isotopic studies (Figure 1d) were not significantly different in either 
angiosperms (p-value = 0.197) or gymnosperms (p-value = 0.237) as determined by two-sample KS tests.

3.2.  Regression Analysis of Rooting and Water Table Depths

SMA regression of log-transformed RDMAX against WT suggested that RDMAX is strongly correlated with 
WT across all trees (βSMA = 0.919, 95% confidence interval [0.862, 0.980]; Figure 2a). PLS regression, which 
accounts for the expected covariance structure of residuals stemming from phylogeny, suggested the re-
lationship between RDMAX and WT is somewhat weaker than implied by SMA (βPLS = 0.658, 95% confi-
dence interval [0.567, 0.748]; Figure 2b). These differences are likely attributable to the uneven representa-
tion of certain clades in the underlying data set where the structure of residuals exhibited a significant 
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phylogenetic signal (λP = 0.443, p-value = 0.000; Figure 2b). Out of 294 individual trees (where both RDMAX 
and WT measurements were available), 105 (35.7%) exhibited RD WT

MAX
/ . 0 98 . Analysis that clustered 

vegetation by taxonomic groupings (family) demonstrated that local groundwater depth is not a substantial 
predictor of RDMAX for all tree families, where only 23.4% (11 of 47) exhibited a median RD WT

MAX
/ . 0 98 

(Figure S3). SMA regression suggested no significant differences between gymnosperms and angiosperms 
(Figure 2a; p-value = 0.875). In contrast, PLS analysis identified significant differences (Figure 2b; p-val-
ue = 0.002) that suggest gymnosperm rooting depths more closely align with local WT (βPLS = 0.832, 95% 
confidence interval [0.657, 1.003]) than the case is with angiosperms (βPLS = 0.639, 95% confidence interval 
[0.539, 0.746]).

Figure 1.  Relationships between latitude and RDMAX (a), WT (b), RDMAX/WT (c). Latitudinal distribution of isotopic 
studies showing soil water and groundwater use in angiosperms and gymnosperms (d).

Figure 2.  Standard major axis regression (a) and phylogenetic least squares regression (b) for ln(WT) and ln(RDMAX) fit 
to all data (black), gymnosperms (green), and angiosperms (gray).
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3.3.  Phylogenetic Signal of Rooting Depth and Groundwater Uptake

The data sets describing RDMAX, RDMAX/WT (Fan et al.,  2017; Iversen et al.,  2017), isotopic evidence of 
groundwater uptake (Evaristo & McDonnell, 2017), and the absolute value of latitude (i.e., distance from 
the equator) are arranged on a phylogenetic dendrogram (Figure 3). Not all tree species are represented in 
these data sets, though we demonstrate that these data sets capture broad variations in rooting depth and 
that isotopic evidence for groundwater uptake occurs across a range of evolutionary history and latitudes 
(Figure 3).

RDMAX exhibited a significant phylogenetic signal at the α ≤ 0.05 threshold across 502 tree species as esti-
mated by Pagel's λP (λP = 0.272, p-value = 0.014), and at the α ≤ 0.1 threshold Blomberg's K (KB = 0.046, 
p-value = 0.092; Figure 3). Maximum root depth relative to the local mean water table, RDMAX/WT, within 
160 tree species was significantly related to phylogenetic structure at the α ≤ 0.01 threshold with Pagel's λP 
(λP = 0.156, p-value = 0.001), but not with Blomberg's K (KB = 0.020, p-value = 0.175; (Figure 3). As previ-
ously discussed, we accept the interpretation provided by λP based on the result of critical reviews of both 
statistics for the identification of phylogenetic signals (Molina-Venegas & Rodríguez, 2017; Münkemüller 
et al., 2012). The λP values for RDMAX (0.272) and RDMAX/WT (0.156) indicated that both phylogenetic sig-
nals are weaker than would be expected under a model of perfect Brownian evolution (λP = 1), but signifi-
cantly greater than 0 (no signal).

Figure 3.  Global database of angiosperm (gray) and gymnosperm (green) trees showing the absolute value of latitude of the original study (red and blue ring), 
stable isotopic evidence for groundwater uptake (dark blue), and soil water uptake (light blue), the ratio of rooting depth to water table depth (RDMAX/WT), and 
RDMAX. Colored dots on the inner ring indicate tree family.
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Isotopic groundwater and soil water signatures within the xylem water of 412 tree species (Evaristo & 
McDonnell,  2017) yielded similar results. The D statistic of 0.804 indicates that isotopic evidence of 
groundwater use was significantly different from both 0 (p-value = 0.000) and 1 (i.e., random occurrence, 
p-value = 0.000). Similar to the interpretation of λP for RDMAX and RDMAX/WT, the D statistic indicates a 
significant phylogenetic signal, but not as strong as would be expected under a purely Brownian model.

We repeated this phylogenetic analysis excluding all records where water extractions were performed with 
CVE and analysis using only 2H. This subset produced similar results (n = 266 species, D = 0.624, p-val-
ue = 0.000). No significant signal was identified when both 2H and dual isotope analysis records were dis-
carded (n = 117 species, D = 0.904, p-value = 0.203) (see Supporting Information S1).

4.  Discussion and Conclusions
4.1.  Locality, Niche, and Phylogenetic Hypotheses for RWU

Prior analyses of observations from diverse climates have provided evidence for a correlation between plant 
rooting depths and environmental conditions (Barbeta & Peñuelas, 2017; Canadell et al., 1996; Evaristo & 
McDonnell, 2017; Fan et al., 2017; McCormack et al., 2020, 2020; Schenk & Jackson, 2005). Our SMA re-
gression analysis of the RDMAX database suggested that RWU strategies were explained well by the locality 
hypothesis where RDMAX was significantly linearly correlated with WT (Figure 2a). We argue that the SMA 
regression result (paralleling the methodologies of prior studies) is flawed and occurs only because the un-
derlying statistical test incorrectly assumes independence among database records. A substantial fraction 
of this database is comprised of several vegetation families that cluster near RD WT

MAX
/  1 (Myrtaceae 

[n = 16], Tamaricaceae [n = 8], and Pinaceae [n = 72]; Figure S4). PLS regression analysis indicated that 
the residuals of the linear regression exhibited a significant phylogenetic signal (λP = 0.443; Figure 2b), and 
therefore violate the assumptions of SMA regression. In contrast, the PLS regression suggested that rooting 
depths were only approximately equal to water table depths in gymnosperms (Figure 2b).

Prior studies provide corroborating evidence for variations in RWU between gymnosperms and angio-
sperms. Meta-analysis of long-term research catchments across five northern/cold regions demonstrat-
ed that angiosperms exhibited greater evidence of isotopic overlap with enriched shallow soil moisture 
whereas gymnosperm xylem water deviated from measured end members (Tetzlaff et  al.,  2021). Global 
data indicates that angiosperms invest more in fine roots than gymnosperms (C. Wang et al., 2019), possibly 
driving variations in RWU. The rooting depth (Fan et al., 2017; Iversen et al., 2017) and isotopic (Evaristo & 
McDonnell, 2017) data sets exhibited some disagreement on the relative groundwater use by angiosperms 
and gymnosperms. Gymnosperms, specifically Pinaceae, exhibited more consistent evidence of root growth 
into the saturated zone than angiosperms (Figures 2b and S3) potentially indicating more groundwater use. 
The global isotopic data set demonstrated less difference between these clades where 36.3% of gymnosperm 
species exhibited evidence of groundwater uptake versus 36.1% of angiosperms. Notwithstanding, a me-
ta-analysis has shown that the proportion of groundwater contribution to xylem water mixture is greater in 
angiosperms than in gymnosperms (Evaristo & McDonnell, 2017). These results suggest that more complex 
models based on phylogenetic dendrograms (Figure 3) are needed to explain variations in tree water use 
that occur within the broad clades of angiosperms and gymnosperms (Figure 2).

Isotopic data and RDMAX/WT showed high variance among angiosperms (Figures 2 and 3), indicating the 
evolution of diverse water use strategies, including some species that grow deep roots but do not extend to 
groundwater (Figure 2). Root access to soil water is necessary to avoid xylem embolism and death. Deep 
roots not reaching groundwater may reflect the depth at which water uptake requires the least energy for 
the majority of the year (Brantley et al., 2017). Alternately, trees may grow different rooting systems because 
they vary in the need for energetically available water volumes related to variations in above-ground height 
(Trugman et  al.,  2021), stomatal regulation strategies (Klein,  2014), stem resistance to cavitation (Urli 
et al., 2013), or soil water potential thresholds for root uptake of moisture (Brantley et al., 2017). High vari-
ance in RDMAX/WT may also reflect ecosystem pressures. Investment in dense shallow rooting systems may 
allow trees to outcompete neighbors for recent precipitation, whereas deeper roots can potentially sustain 
growth during periods of drought (Silvertown et al., 2015). Trees with shallow rooting systems may have 
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evolved to rely on the redistribution of deeper water sources by neighboring species (Hafner et al., 2017; 
Sun et al., 2018).

The phylogenetic signals of RDMAX/WT and isotopic evidence for groundwater uptake were significant, but 
likely shaped by both species identity and environmental conditions (Figure 3). Xylem isotopic measure-
ments collected across mixed-species temperate forests suggest that the seasonal origin of water stored in 
trees was consistent within each tree species sampled, but differed across species (Allen et al., 2019), pos-
sibly indicating the role of species identity in shaping water uptake. Similarly, ecohydrological model cali-
bration to continuous streamflow records demonstrated consistency in derived rooting parameters among 
monoculture catchments of the same species (Knighton, Singh, & Evaristo, 2020). This result is supported 
by prior evidence for phylogenetic signals in root traits that may carry implications for RWU (Comas & 
Eissenstat, 2009; McCormack et al., 2020; Valverde-Barrantes et al., 2017). Some ecosystems show evidence 
of seasonal oscillations between niche segregation and direct competition driven by seasonal soil water lim-
itation (Andrews et al., 2012; De Deurwaerder et al., 2018; Kulmatiski et al., 2020; McCormack et al., 2020; 
Rodríguez-Robles et al., 2020), suggesting higher-order interactions between the phylogenetic, niche, and 
locality hypotheses. In a mixed species forests, co-occurring trees may rely on similar water sources during 
dry days, but exhibit divergent RWU depths in response to recent precipitation (Grossiord et al., 2017; Liu 
et al., 2019; Volkmann et al., 2016). In a temperate beech-hemlock catchment, beech trees consistently used 
older soil water (and therefore more likely tightly bound shallow soil water) than hemlock trees (Knighton, 
Souter-Kline, et al., 2019). The age of water used by both species varied by season and topographic position 
within the forest, though the relative differences in xylem water age remained, demonstrating effects of 
both environmental conditions and species identity on RWU.

4.2.  Implications for Improving RWU Representation in Terrestrial Biosphere Models

Climate change is expected to alter the composition of forest ecosystems. Thus, without an adequate rep-
resentation of the nuanced patterns that exist in RWU across phylogenetic clades, current generation models 
will fail to capture the dynamics of climate-driven perturbations to ecosystem composition and downstream 
hydrological impacts. Terrestrial Biosphere Models (TBMs) and hydrological models frequently character-
ize vegetation with presumed functional groups (e.g., coniferous vs. deciduous or broadleaf vs. needleleaf 
forest). Our research demonstrates that strategies for water uptake vary considerably within angiosperms 
(Figures 2 and 3) and therefore heterogeneity in functional groups often described in models. Phylogenetic 
dendrograms could potentially support a refinement of functional group definitions that would more accu-
rately represent variations in soil water and plant interactions.

Parameterization of RWU for individual species has largely depended on resource intensive measurements 
of internal tree hydraulics (Yang et  al.,  2013), xylem water isotopic measurements (Knighton, Kuppel, 
et al., 2020), soil moisture profiles (Hupet et al., 2003), or spatially integrated measures of latent heat fluxes 
(Sulis et al., 2019; P. Wang et al., 2018) and stream discharge (Knighton, Singh, & Evaristo, 2020). Recent 
calls for ecosystem model progress suggest that future research explores parameterizing RWU by assuming 
a locality hypothesis where critical zone moisture content drives subsurface root growth and subsequent 
uptake (Fan et al., 2019). However, our re-analysis of global plant rooting depths yielded a contrasting in-
terpretation (Figure 2b).

Our hypothesis of a phylogenetic framing of community RWU patterns could add nuance to conceptual and 
numerical models of RWU and possibly improve the representation of plant hydraulic strategies in TBMs. 
Traits of unstudied species can be estimated with rich trait databases and phylogenetic dendrograms, pro-
vided the traits are significant phylogenetic signals (Debastiani et al., 2021; Guénard et al., 2013; Penone 
et al., 2014). The phylogenetic dendrograms established in this research may support accurate estimation 
of RDMAX, RDMAX/WT, and groundwater uptake for unstudied species and therefore aid model parameter-
ization of vegetation where empirical studies are lacking. Further research is needed to test the viability of 
phylogenetic parameter estimation for TBMs and hydrological models.
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