
Advances in Water Resources 154 (2021) 103976

Contents lists available at ScienceDirect

Advances in Water Resources

journal homepage: www.elsevier.com/locate/advwatres

Distributed memory parallel computing of three-dimensional
variable-density groundwater flow and salt transport

J. Verkaik

a , b , ∗ , J. van Engelen

a , b , S. Huizer b , c , M.F.P. Bierkens a , b , H.X. Lin

d , e , G.H.P. Oude

Essink

a , b

a Unit Subsurface and Groundwater Systems, Deltares, Utrecht, The Netherlands
b Department of Physical Geography, Utrecht University, Utrecht, The Netherlands
c Department Land & Watermanagement, Arcadis, Arnhem, The Netherlands
d Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands
e Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands

a r t i c l e i n f o

Keywords:

Parallel computing
Distributed memory
Variable-density groundwater flow

Salt transport
Numerical modelling
SEAWAT

a b s t r a c t

Fresh groundwater reserves, being of vital importance for more than a billion of people living in the coastal zone,
are being threatened by saltwater intrusion due to anthropogenic activities and climate change. High resolution
three-dimensional (3D), variable-density (VD), groundwater flow and salt transport (FT) numerical models are
increasingly being used to support water managers and decision makers in their strategic planning and measures
for dealing with the problem of fresh water shortages. However, these computer models typically require long
runtimes and large memory usage, making them impractical to use without parallelization. Here, we parallelize
SEAWAT, and show that with our parallelization 3D-VD-FT modeling is now feasible for a wide range of hydro-
geologists, since a) speedups of more than two orders of magnitude can be obtained as illustrated in this paper,
and b) large 3D-VD-FT models are feasible with memory requirements far exceeding single machine memory.

1

c

t

(

a

t

w

b

s

s

s

p

a

s

q

p

w

i

m

v

a

c

c

t

n

S

b

P

t

w

i

l

o

g

t

m

s

2

t

o

(

h
R
A
0

. Introduction

Saltwater intrusion caused by anthropogenic activities and climate
hange threatens fresh groundwater reserves that are of vital impor-
ance for more than a billion of people living in the coastal zone
 Neumann et al., 2015). Coastal, unconsolidated, groundwater systems
re under pressure of salinization due to multiple threats that are related
o climate change, population increase and associated increase of fresh-
ater demand, and economic growth. Examples are land subsidence
y excessive groundwater pumping (Minderhoud et al., 2017), surface
ealing by urbanization (Renaud et al., 2013), climate-induced relative
ea-level rise (Ferguson and Gleeson, 2012 ; Oude Essink et al., 2010),
eawater-overwash by storm surges (Yang et al., 2013), and changing
atterns for groundwater recharge, evaporation and groundwater seep-
ge (Faneca S ̀anchez et al., 2012). To come up with strategies and mea-
ures to address these problems, water managers and policy makers re-
uire accurate, quantitative, future projections at the highest resolution
ossible. As a result, high-resolution, three-dimensional (3D), ground-
ater flow and salt transport models become more and more important

nstruments to support water coastal management and policy develop-
ent (Harbo et al., 2011). Unfortunately, such models are generally

ery computational demanding since they often consist of many cells
∗ Corresponding author.
E-mail address: jarno.verkaik@deltares.nl (J. Verkaik).

ttps://doi.org/10.1016/j.advwatres.2021.103976
eceived 2 March 2021; Received in revised form 31 May 2021; Accepted 3 June 20
vailable online 7 June 2021
309-1708/© 2021 The Authors. Published by Elsevier Ltd. This is an open access ar
nd many timesteps and are generally not capable of using the available
omputer resources efficiently. It is important to note that the number of
ells and timesteps are not only determined by the resolution required
o capture features of interest, but can also be directly imposed by the
ecessity to satisfy various numerical constraints (Oude Essink, 2003).
hort longitudinal dispersion lengths, that are common in sedimentary
asins such as the deltaic area of The Netherlands, might stress the grid
éclet condition, leading to small cell sizes and hence many cells. Fur-
hermore, the occurrence of large model groundwater flow velocities,
hile satisfying the Courant–Friedrichs–Lewy condition, might result

n small transport timesteps and hence many timesteps. Finally, the
arge inertia of variable-density groundwater flow systems makes that
ften large simulation times are needed to accurately estimate future
roundwater salinities, e.g. for paleo-hydrogeological reconstruction of
he fresh-saline groundwater distribution (Delsman et al., 2014). This
akes transient variable-density groundwater flow and salt transport

imulations very computationally challenging.
Distributed memory parallel computing (see e.g. Eijkhout et al.,

015) is a commonly used practice to significantly reduce computing
ime and make large memory usage possible. Common distributed mem-
ry parallel computers use a non-uniform memory access architecture
NUMA). In NUMA, the entire computational grid (memory) is first dis-
21

ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.advwatres.2021.103976
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advwatres
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advwatres.2021.103976&domain=pdf
mailto:jarno.verkaik@deltares.nl
https://doi.org/10.1016/j.advwatres.2021.103976
http://creativecommons.org/licenses/by/4.0/

J. Verkaik, J. van Engelen, S. Huizer et al. Advances in Water Resources 154 (2021) 103976

t

l

c

m

w

i

c

t

g

a

o

e

u

e

d

c

(

s

(

(

d

d

(

S

g

t

2

g

l

2

i

t

s

u

d

s

f

l

o

m

p

)

w

i

A

s

C

P

c

C

w

k

p

L

w

M

A

s

t

o

w

W

t

t

a

a

l

t

t

O

c

i

a

m

f

m

i

p

o

w

m

s

p

m

m

w

p

a

r

w

c

t

i

r

r

m

b

f

2

v

a

A

t

F

v

t

g

s

t

l

p

p

p

2

i

p

m

c

i

o

t
ributed (partitioned) over multiple (computer) nodes, each node having
ocal main memory (RAM), and each node consists of one or more multi-
ore CPUs (processors). Then, the problem is solved simultaneously by
ultiple cores while exchanging data through a fast interconnection net-
ork using the message passing interface (MPI; Forum, 1994). This is

n contrast with shared-memory parallel computing, where each pro-
essor can only access the same memory of a single computer, typically
hrough OpenMP. However, parallel computers nowadays are hetero-
eneous systems with a mixed memory organization where memories
re distributed across the nodes while multi-core processors share mem-
ry within the same node or CPU. Solving the flow and salt transport
quations in parallel typically means that after discretization consec-
tively one or more linear systems of equations need to be solved by
.g. a Krylov subspace linear iterative solver, such as the conjugate gra-
ient method (CG) for symmetric positive definite matrices or the bi-
onjugate gradient stabilized method (Bi-CGSTAB) for general matrices
 Barrett et al., 1995), accelerated by a suitable parallel preconditioner
uch as the additive Schwarz (block Jacobi) preconditioner or multigrid
 Smith et al., 1996).

The focus in this paper is on parallelization of SEAWAT
 Langevin et al., 2008), the most widely used public domain code
eveloped by the U.S. Geological Survey for modeling 3D variable-
ensity groundwater flow and salt transport by coupling MODFLOW
 Harbaugh et al., 2000) and MT3DMS (Zheng and Wang, 1999). Since
EAWAT is based on MODFLOW, the worldwide leading code for
roundwater modeling, it largely benefits from the MODFLOW ecosys-
em of a vast number of pre- and post-processing tools (Bakker et al.,
016) and well documented graphics user interfaces (Waterloo Hydro-
eologic, 2021).

Several proprietary codes claim to be suitable for modeling paral-
el 3D variable-density groundwater flow, such as TOUGH (Jung et al.,
018 ; Pruess et al., 2011) following a distributed-memory approach us-
ng an additive Schwarz preconditioned Bi-CGSTAB Krylov solver from
he Aztec solver library (Elmroth et al., 2001), HydroGeoSphere using
hared-memory OpenMP (Hwang et al., 2014), FEFLOW (Diersch, 2002)
sing the algebraic multi-grid solver from the SAMG solver library, and

3 f (Schneider et al., 2012) using the distributed memory multigrid
olvers from the UG solver solver library (Lang and Wittum, 2005). As
ar as we know, only for the latter d 3 f code parallel results were pub-
ished for a 3D variable-density groundwater model, reporting a speedup
f 282 on 512 computational cores for a saltdome problem having 66
illion of unknowns (Lang and Wittum, 2005).

MODFLOW and MT3DMS as standalone (non-coupled) codes were
arallelized by several researchers. Regarding MODFLOW, (semi-
distributed-memory parallelization was applied by Schreuder (2005) ,
here one (Parent) process was set responsible for reading all model

nput data and scattering this data to the other (Worker) processes.
s a linear parallel solver the additive Schwarz preconditioned CG
olver from the PETSc library (Balay et al., 2014) was applied.
heng et al. (2014) applied the algebraic multi-grid preconditioned
CG solver from the JASMIN library (Mo et al., 2010) to speed up
omputations for a field flow problem located at Yanming Lake in
hina. Naff (2008) applied a (semi-)distributed-memory parallelization,
here he applied an additive Schwarz preconditioned CG solver, while
eeping the matrix assembly and input/output serial. Shared-memory
arallelization of MODFLOW using OpenMP was done by Dong and
i (2009) . Parallelization of MODFLOW using graphics processing units
as done by Hughes and White (2013) , and Ji et al. (2014) . Regarding
T3DMS, shared-memory parallelization using OpenMP was done by
bdelaziz and Le (2014) and Huang et al. (2018) .

To our knowledge, we are the first to parallelize SEAWAT. The rea-
on for parallelizing SEAWAT is that we aim to push 3D groundwa-
er flow and salt transport modeling to a next level for a large group
f geohydrologists by making our code available as open source soft-
are as part of interactive MODeling Water Quality software (iMOD
Q; Deltares, 2020). Also from that point of view, we therefore believe
2
hat our code differs from proprietary codes like d 3 f (Lang and Wit-
um, 2005). Our parallelization approach has a similarity with the par-
llelization of MODFLOW done by Schreuder (2005) and Naff (2008) ,
lthough there are significant differences. First, we have also parallel-
ized salt transport computations, hence MT3DMS. Second, compared
o Schreuder (2005) , our physical overlap supports flexible rows of cells
o account for the Total Variation Diminishing (TVD) advection option.
ur physical overlap also supports communication for evaluating the
ross terms when using the full dispersion tensor option instead of lump-
ng the cross terms to the righthand-side. Second, our parallellization
pproach is fully distributed and does not include any Parent-Worker
echanism for scattering input data. Parallel output is supported and ef-

cient parallel input can be used by grid-wise direct access binary reads,
aking our implementation more suitable in case of many varying stress

nput data and output. Comparing our work to all the above mentioned
arallellelization efforts of MODFLOW and MT3DMS, we believe that
ur fully distributed memory approach is the reason why we, as far as
e know, are the first to report speedups for a very large model (~100
illion of active cells). Third, our parallelization depends on the MPI

oftware library only, which is generally straightforward to use on cross-
latforms and can therefore be used by a wide range of hydrogeological
odelers. We developed a linear parallel unstuctured solver and do not
ake use of PETSc solvers, because at the time of development, PETSc
as very hard to use by modelers using Windows computers. Fourth, our
artioning differs in the way how it deals with irregular model bound-
ries, where we apply the commonly used and more robust orthogonal
ecursive bisection partitioning (Berger and H. Bokhari, 1987).

It should be noted that regarding the salt transport advection scheme
e did not parallelize the Lagarangian method, hence the method of

haracteristics (particle tracking). Supporting this would likely require
he implementation of dynamic load balancing of computational work,
nvolving re-partitioning of moving particles in time and dynamically
e-mapping concentrations to the flow domain partitions. Since Eule-
ian methods suffer from numerical dispersion (Oude Essink and Boekel-
an, 1996 ; Zheng and Wang, 1999), our parallelization might therefore

e less applicable to problems requiring the simulation of sharp inter-
aces between fresh and saline groundwater.

. Methods

SEAWAT (Langevin and Guo, 2006) uses MODFLOW to solve the
ariable-density groundwater flow equation (see Eq. (3) in Appendix A)
nd MT3DMS to solve the salt transport equation (see Eq. (4) in
ppendix A), coupled by the state-equation (see Eq. (6) in Appendix A),

ogether with sufficient boundary and initial conditions. Both MOD-
LOW and MT3DMS apply a control-volume finite-difference (or finite
olume) discretization on a structured grid, and typically require mul-
iple so-called outer iterations (Picard linearization) to reach conver-
ence, where in each outer iteration a linear system of equations is being
olved using so-called inner iterations. Distributed memory paralleliza-
ion of SEAWAT involves setting up the grid partitioning, modifying the
inear solver, setting up the MPI communication, and optimizing the in-
ut and output. After setting the goals of the parallelization and how its
erformance is measured, we will address each of these aspects of the
arallelization method in the next sections.

.1. Parallel performance measurement

Since hydrogeological modelers typically like to speed up their ex-
sting model by using the available (processor) cores, we focus in our
aper on obtaining strong parallel scalability. Measuring strong scaling
eans that the problem size is kept fixed while the number of processor

ores being used increases. This contrasts with weak parallel scalabil-
ty, where the problem size grows linearly with an increasing number
f processor cores. Here, we express the parallel performance in (rela-
ive) speedup S p = T ref / T p , with T ref is the measured execution (wall-

J. Verkaik, J. van Engelen, S. Huizer et al. Advances in Water Resources 154 (2021) 103976

Fig. 1. Example of four partitions using two rows of
overlap obtained by (a) uniform partitioning and (b)
orthogonal recursive bisection assuming equal weights
for the active cells. The red boxes denote the non-
overlapping partitions; the pink boxes denote the over-
lapping partition for process p1. The blue and green
cells denote the communication interface between pro-
cess p1 and p2. Fig. 1 b (k = 2): The first intermediate
partition (load of 100) is determined by the minimum

bounding box (BB) enclosing cells A and B. Since the
longest dimension (15) is along the columns, a verti-
cal cut is being made (black dashed line), resulting in
two new, equally loaded, intermediate partitions (load
50; BB enclosing A and C; BB enclosing D and E). Since
both intermediate partitions have the row direction as
the longest dimension, vertical cuts (dotted black lines)
are made, resulting in the final partitions (load of 25).

c

c

a

r

w

s

s

t

o

P

p

g

f

2

t

s

i

(

f

f

s

o

i

o

i

h

i

s

p

a

c

a

t

t

t

v

c

a

p

c

c

t

u

m

t

t

2

s

o

t

m

P

d

𝑃

F

a

f

2

h

b

t

a

r

s

a

l

s

a

t

e

b

(

O

c

d

t

p

i

lock) time for a reference configuration with p ref cores (or MPI pro-
esses/subdomains), and T p is the measured execution runtime for an
lternative configuration with p cores. In case the reference time cor-
esponds to a serial run, then T ref = T 1 . In this definition of speedup,
e assume that all measurements are obtained by applying the same

olvers and solver settings, meaning that we do not seek for the fastest
erial method and implementation. For ideal strong parallel scalability,
he speedup equals S p ,ideal = p / p ref . However, in practice this is hard to
btain due to (work)load imbalance, defined as I = P max p (L p / L), where
 is the total number of cores being used, L p is the work load for core
 , and L the total work load. Partitioning primarily aims for obtaining a
ood load balance, and secondary for minimizing the subdomain inter-
ace length (edge-cuts).

.2. Subdomain partitioning

Partitioning (or decomposing) here refers to dividing the compu-
ational grid consisting of active cells into smaller grids (partitions or
ubdomains), see Fig. 1 for an example of partitioning a grid consist-
ng of 16 columns (n c = 16) and 14 rows (n r = 14) into four partitions
 P = 4). Two methods are considered in this study: a relatively straight-
orward method to obtain equally sized rectangular partitions, here re-
erred to as so-called uniform partitioning, and orthogonal recursive bi-
ection (ORB) partitioning. Partitioning is done in the horizontal plane
nly, since for groundwater models the number of cells (rows, columns)
n the horizontal plane is usually significantly larger than the number
f cells in the vertical dimension (layers). However, this is simply an
mplementation choice and not a limitation of the method presented
ere. This also holds for the implementation choice that each partition
s uniquely assigned to one processor core (MPI process), hence we as-
ume that the total number of subdomains equals the total number of
rocessor cores. Moreover, the partitioning is static and done only once
s a pre-processing step. This neglects the spatio-temporal variation in
omputing time that might occur during simulation causing load imbal-
nce, and hence a decrease in parallel performance. Since it turns out
hat for groundwater simulations most computing time is being spent in
he linear solvers, and in our model active cells remain active, this seems
o be a valid assumption for us. However, for models that have a highly
arying stress input data or a highly changing spatial non-linearity in-
luding cell rewetting, dynamic partitioning might be more appropri-
te. In addition, our partitioning results in non-overlapping rectangular
artitions, where the overlap is added after the partitioning without ac-
ounting for the work load. For this study, we assume that each active
3
ell has the same weight. Furthermore, we assume that flow and salt
ransport share the same partition. This seems a valid assumption for
s, since for our models flow and salt transport always share the same
odel boundaries. By this, we do see any need to explicitly parallelize

he coupling between the flow and salt transport computational domain,
herefore strongly simplifying implementation.

.2.1. Uniform partitioning

For regular rectangular grids, so-called uniform partitioning is a
traightforward method for minimizing edge cuts, hence the number
f connections at the interface between the partitions, while ignoring
he work load that is typically defined by the active cells. Let n be the
inimum of n c and n r . From all possible combinations P = P c P r , where
 c and P r are the number of blocks (subdomains) in column and row-
irection, respectively, that specific combination is selected such that
 𝑖 = max {1 , ⌊𝑛 ∕ √𝑛 c 𝑛 r 𝑃

−1 ⌋} , where i = c when n = n c or i = r otherwise.
or the example of Fig. 1 a, process p1 clearly has the largest number of
ctive cells (42, enclosed by red colored box) and the load imbalance
or the non-overlapping uniform partitioning is I = 4 × 42/100 = 1.68.

.2.2. Orthogonal recursive bisection partitioning

Real-world groundwater flow and salt transport models usually
ave irregular model boundaries, e.g. following coastlines or watershed
oundaries to define an area of interest. This means that the computa-
ional load, typically represented by the active cells, can be scattered
cross the entire computational domain. Load balancing for such ir-
egular boundaries is challenging and requires an appropriate partition
trategy. This was also observed by Schreuder (2005) , who developed
n iterative partition method for a groundwater model with an irregu-
ar domain of the San Luis Valley, Colorado, USA. This method initially
tarts with a uniform partition and iteratively merges cell-weighted rect-
ngles and shifts interfaces to obtain sub-optimal partitions. However,
his method was found to be not sufficiently general or robust for gen-
ral use (Schreuder, 2005).

As a more robust alternative method to account for irregular
oundaries our partitioning supports orthogonal recursive bisection
 Berger and H. Bokhari, 1987 ; Boman et al., 2012 ; Fox, 1988), or briefly
RB. This commonly used divide-and-conquer partitioning method re-
ursively bisects intermediate partitions perpendicular to their longest
imension k ≥ 0 times until P = 2 k non-overlapping, equally loaded, par-
itions are obtained. For the example of Fig. 1 b, all the non-overlapping
artitions have the same load (equal to 25), and hence there is no load
mbalance.

J. Verkaik, J. van Engelen, S. Huizer et al. Advances in Water Resources 154 (2021) 103976

n

t

d

l

t

o

t

e

t

l

o

s

2

t

a

e

g

a

o

i

t

w

M

w

a

t

d

i

d

a

c

i

a

i

s

m

t

o

h

t

n

c

t

h

t

v

t

b

a

t

F

o

t

c

c

r

(

u

t

W

t

a

n

p

c

i

a

b

t

p

o

M

l

e

f

m

i

m

n

e

e

t

p

o

c

i

(

l

w

t

i

a

B

s

p

2

a

fl

p

t

S

o

W

p

s

u

M

g

r

a

a

t

d

a
[

i
[

p

t

1 Note the GCG solver being used in SEAWAT is also preconditioned, but this
is omitted in the acronym.
In the originally proposed method (Berger and H. Bokhari, 1987), the
umber of partitions can only be a power of two and therefore we modify
his method to be applicable to general number of partitions P . This is
one by applying a prime factorization of 𝑃 =

∏𝑘

𝑖 =1 𝑓 𝑖 , where at each
evel i recursively f i parts of equal load are obtained by dividing along
he longest dimension. When f i = 2 for all i , the original ORB method is
btained. It should be noted that our ORB implementation also includes
he Dirichlet boundary conditions (or constant-value active cells; as in
xample Fig. 1 b denoted by index -1). Since these cells are eliminated in
he linear system, this means that a load imbalance might occur during
inear solving. Although the ORB partitioning could therefore be further
ptimized for these boundary conditions, this was not a subject of this
tudy.

.2.3. Overlap and communication

Solving the variable-density groundwater flow equation and salt
ransport equation in parallel requires that all necessary coefficients
t subdomain interfaces should be available for the discretization and
valuation of the computational stencil. For solving the variable-density
roundwater flow equation, this means that interface coefficients such
s the (inter-cell) transmissivity should be known and (matrix-vector)
perations with the 7-point stencil across interfaces should be possible
n parallel. For solving the advection-dispersion equation in parallel,
wo downstream nodal concentrations should be available at interfaces
hen applying the third-order TVD advection scheme using the ULTI-
ATE limiter (Leonard, 1988 ; Zheng and Wang, 1999). Furthermore,
hen applying dispersion using the full tensor (Scheidegger, 1961),
ll data near subdomain interfaces should be available for evaluating
he dispersion cross terms for the 19-point stencil. Since we follow a
istributed memory parallelization approach, and data at subdomain
nterfaces typically depend on both processes sharing the interface,
ata availability can be problematic. To overcome these difficulties,
nd to strongly simplify parallel implementation, we introduce a so-
alled physical overlap by specifying additional cells (for the example
n Fig. 1 denoted by the pink boxes). These so-called halo (or ghost cells)
re used to automatically compute the correct coefficients at subdomain
nterfaces from shared input data without any communication or recon-
truction necessary. Besides this, using a physical overlap requires less
odifications of the serial code.

In our parallelization, each process is responsible for computing
he groundwater heads and concentrations for the cells in the non-
verlapping partition exclusively. This means that for the additional
alo cells only copies of computed heads and concentrations are stored
hat are received from neighboring processes. Hence, besides synchro-
ized heads and concentrations, halo cells are similar to other non-halo
ells. Synchronization is done by local, point-to-point, MPI communica-
ion. This synchronization is typically done after the linear Krylov solver
as finished, in which halo cells are used to synchronize search direc-
ions at each (inner) iteration to account for matrix-vector products in-
olving the computational stencil across the subdomain boundaries. For
his purpose, we use a data structure that is arranged in communication
ands. Each band has sending cells, corresponding to cells where the
ssociated process is responsible for, and receiving cells, corresponding
o the halo cells where data from adjacent processes are being received.
ig. 1 illustrates this for the case of two bands, corresponding to an
verlap of two rows that is required for the TVD advection scheme. For
he uniform partitioning in of Fig. 1 a, process p1 has local communi-
ation with neighbors p2 and p3. Considering the first band, p1 sends
omputed values to p2 from column 8 and rows 1-8 (light green) and
eceives computed value from p1 in the halo cells of column 9, rows 1-8
dark green). Note that almost half of these cells are inactive and have a
ser-defined no-data value. Nevertheless, in the chosen implementation,
hese inactive cells are also communicated and are therefore redundant.

hen dispersion is applied accounting for the full tensor, p1 also needs
o communicate with p4. In that case, cell 71 and cells 72, 77 and 78
re also part of the halo cells for band 1 and 2, respectively. It should be
4
oted that although our code has the flexibility to perform a point-to-
oint communication for only the outer band, in this study we always
ommunicate for all bands at the same time. This means that when TVD
s applied, local communication within the linear solver is for two bands
lthough only values from the first band are used. Furthermore, as can
e seen in Fig. 1 b, ORB partitioning results in more local communica-
ion than uniform partitioning since p2 has at least three neighbors (p1,
3 and p4). This additional communication is the trade-off for obtaining
ptimal load balance.

Besides local (point-to-point) communication, global (collective)
PI communication is required. This is mainly required within the

inear Krylov solver, for computing inner (vector-vector) products and
valuating global grid maxima. Global communication is also necessary
or synchronizing the salt transport timestep length (global grid mini-
um), accumulating volumetric or mass budgets for output, or gather-

ng observation wells for output. In general, global communication is
ore expensive than local communication, since this type of commu-
ication requires a synchronization point involving all processes. For
xample, computing an inner (vector-vector) product value that nec-
ssarily needs to be available for each process prior to continuing to
he next linear iteration, means that each process first needs to com-
ute its partial sum before synchronizing, then sends this value to all
ther processes, and each process performs the addition. Global MPI
ommunication strongly depends on the number of nodes used and the
nterconnection network characteristics such as diameter and latency
delay).

In this study, we mainly focus on relatively coarse-grained paral-
elization (many cells per subdomain) using fast interconnection net-
orks having a low latency and high bandwidth. Coarse-grained means

hat the computational time, that can be directly related to partition size,
s large compared to the total execution time. We therefore may neglect
ctual communication times spent on local and global communication.
y this, we assume that communication overhead is exclusively the re-
ult of wait states, i.e. periods where processes sit idle at synchronization
oints, that can directly be related to load imbalance (Böhme, 2013) ().

.3. Linear parallel Krylov solver

The linear systems are solved by preconditioned Krylov subspace
cceleration (see e.g., Barrett et al., 1995): for solving groundwater
ow, the preconditioned CG method is used and for solving salt trans-
ort the preconditioned Bi-CGSTAB method. Within these methods,
he (one-level) additive Schwarz preconditioner (Dolean et al., 2015 ;
mith et al., 1996) is taken, corresponding to the block matrix diag-
nal, see Appendix B for more details. Our implementation in SEA-
AT, called the parallel Krylov solver (PKS), corresponds to a double

recision unstructured grid solver that is largely based on the PCGU
olver from MODFLOW-USG (Hughes and White, 2013). Commonly
sed Krylov subspace methods within SEAWAT are the PCG solver for
ODFLOW (Hill, 1990) and the (compulsory) generalized conjugate

radient (GCG

1) solver for MT3DMS (Zheng and Wang, 1999). In the
emainder of this paper we will sometimes refer to those linear solvers
s “default SEAWAT solvers ”. Our PKS has the same termination criteria
s the PCG and GCG solvers. Hence, for flow the infinity norm is used
o declare converge of the linear iterates if the maximum absolute head
ifferences are ≤ 𝜀 hclose [m] and the maximum absolute head residuals
re ≤ 𝜀 rclose [kg/day] for sufficient small values of 𝜀 hclose [m] and 𝜀 rclose
kg/day]. For salt transport, the relative stopping criteria in the Euclid-
an norm is used for the concentrations satisfying small values of 𝜀 cclose
-]. For the remainder of this paper, we refer to the additive Schwarz
reconditioned CG solver for solving flow as the flow PKS (FPKS) and
he additive Schwarz preconditioned Bi-CGSTAB solver for solving salt

J. Verkaik, J. van Engelen, S. Huizer et al. Advances in Water Resources 154 (2021) 103976

Fig. 2. Boundary conditions and model parameters for
the 3D Henry test case in the xz -plane.

t

t

i

2

n

t

p

o

p

r

V

i

S

b

f

o

p

n

g

a

a

t

r

d

t

l

3

3

w

t

F

c

s

t

s

p

(

Q

p

i

c

f

p

t

𝜀

t

i

i

u

1

H

3

d

t

y

d

2

3

w

T

c

n

a

a

l

s

g

r

v

k

d

d

(

t

S

a

f

ransport as the transport PKS (TPKS). For both methods respectively,
he algorithms are given by Fig. B1 and Fig. B2 in Appendix B , that
nclude pseudocode for indicating the MPI communication points.

.4. Input and output

Our parallelized code as part of iMOD WQ supports all ASCII and bi-
ary grid input data from standard SEAWAT in a serial manner, meaning
hat each process first needs to read the entire grid data into memory
rior to clipping the data to its partition. Since this is not a scalable
peration, such input mechanism might have negative effects on the
arallel performance for transient simulations requiring many stress pe-
iod input data. As a more scalable alternative, iMOD Data Files (IDFs;
ermeulen et al., 2019) are supported, where each process directly reads

ts local grid data exclusively by applying direct access binary reads.
tandard SEAWAT column data input for stress packages, e.g. for river
oundary conditions, are read in parallel by selectively reading only
or cells that belong to the (overlapping) partition. As a more scalable
ption, we also support stress package input using IDFs by reading all
arameters as grids. Output is done in a straightforward parallel man-
er, where each process uniquely writes its partition output, e.g. binary
roundwater heads and concentrations. Besides standard SEAWAT files
nd IDFs, we support parallel VTK output files that can directly be visu-
lized by graphical user interfaces such as ParaView and Tecplot. Fur-
hermore, we extended the SEAWAT code by adding a pre-processing
outine for setting up an entire SEAWAT model with a single key-word
riven run file, that is easy-to-use and allows hydrogeological modelers
o specify macros for efficiently setting up models consisting of many
ayers and stress periods.

. Test cases

.1. Test case 1: Henry 3D model

Solving the Henry saltwater intrusion problem (Henry, 1964) is a
ell-known benchmark for variable-density groundwater flow and salt

ransport simulation codes. The Henry test case considered here, see
ig. 2 , depends on the three dimensionless parameters a = Q in /(K f 𝜀 d),
omparing viscous and buoyancy forces, b = D m

/ Q in , comparing diffu-
ive and advective salt fluxes, and aspect ratio 𝜉 = L / d . For our test we
ake a = 0.263, b = 0.1 and 𝜉 = 2, corresponding to what Henry evaluated
emi-analytically, and similar values as taken by Langevin et al. (2008) .

To make the problem computationally challenging for parallel com-
uting, we expand the original 2D geometry to 3D by taking 2 units
m) in the y -direction perpendicular to the xz -plane, hence specifying
 = 11.405 m

3 /day. However, by doing this, the flow and salt trans-
in

5
ort remains 2D in the xz -plane. For this test case, Δx = Δy = 0.002m
s taken and Δz = 0.01m, resulting in 100 million active computational
ells (1000 columns × 1000 rows × 100 layers).

The cell-centered finite-difference scheme is taken for advection and
or dispersion all cross terms are lumped to the righthand-side. Cou-
ling between flow and salt transport is chosen to be explicit. For
he FPKS the chosen stopping criteria are 𝜀 hclose = 1.0 × 10 − 8 m and
 rclose = 1.0 × 10 − 5 kg/day, for the TPKS 𝜀 cclose = 1.0 × 10 − 7 [-]. Since
he flow problem is linear in each time step, a maximum number of inner
terations (2500) for both linear solvers are taken such that convergence
s achieved after one single outer iteration.

For this test case, a maximum of 1024 cores are taken considering a
niform partitioning. The number of subdomains in x - and y -direction is
, 2, 4, 6, 8, 10, 14, 16, 24 and 32, and a single subdomain in z-direction.
ence, using 1024 cores this corresponds to a xyz -decomposition of
2 × 32 × 1. Since for this test case it is assumed that there is no flow in y -
irection, this means that the domain decomposition in x -direction con-
ributes directly to the linear solver iterations, and the decomposition in
 -direction corresponds to data decomposition only. All the grid input
ata for this test case are specified as binary IDF files (Vermeulen et al.,
019).

.2. Test case 2: Sand Engine model

In 2011, a large sand nourishment of approximately 20 million m

3

as placed along the Dutch coastline between Hook of Holland and
he Hague for testing its protective efficacy against long-term climate
hange effects such as sea level rise and storm surges (Mulder and Ton-
on, 2011 ; Stive et al., 2013). As part of this Sand Engine pilot project,
 SEAWAT model was developed (Huizer et al., 2016), here referred to
s “Sand Engine model ”, for assessing the effects of long-term morpho-
ogical evolution of the sand replenishment on the local groundwater
ystem and the existing fresh groundwater resources.

This calibrated SEAWAT model computes both variable-density
roundwater flow and salt transport in 3D using 50 model layers, 234
ows, 234 columns, having a uniform horizontal cell size of 50 m with a
arying layer thickness of 1 to 10 m, covering a total model area of 11.7
m

2 . The molecular diffusion coefficient used is 10 − 9 m

2 /s, the longitu-
inal dispersivity used is 0.2 m, with a ratio of transversal to longitu-
inal dispersivity of 0.02. The model computes total dissolved solutes
TDS) values, with seawater density of 𝜌s = 1020 kg/m

3 and concentra-
ion C s = 28 kg/m

3 , that is lower than the average salinity of the North
ea due to a freshening by the river Rhine. The chloride concentrations
re obtained afterwards by multiplying the computed TDS values by a
actor of 0.55.

J. Verkaik, J. van Engelen, S. Huizer et al. Advances in Water Resources 154 (2021) 103976

Fig. 3. Sand Engine model location and used cell weights for orthogonal recur-
sive bisection partitioning.

g

h

m

l

c

l

i

a

m

𝜀

A

p

b

i

s

3

s

w

fi

a

o

n

p

m

p

T

p

m

t

c

t

t

t

i

s

o

fi

c

>

p

l

i

u

i

n

p

M

m

c

c

s

(

i

r

p

i

b

4

4

C

a

r

n

e

r

l

a

(

s

h

c

c

i

s

n

t

i

P

1

4

i

c

t

t

c

c

t

t

F

a

F
m

In this paper we consider a realistic test case version of the Sand En-
ine model having a higher horizontal resolution of 25 m and simulating
alf a year using daily timesteps (July till December 2011). Having 25
 cells, this test case consists of a total of 4,733,797 active cells (50

ayers, 468 rows, 468 columns). The TVD scheme and cell-centered dis-
retization is used for advection, and for dispersion all cross terms are
umped to the righthand-side. Coupling between flow and salt transport
s chosen to be explicit. For solving groundwater flow, the FPKS criteria
re 𝜀 hclose = 1.0 × 10 − 6 m and 𝜀 rclose = 0.1 kg/day, setting 2500 as a
aximum number of linear solver iterations. For solving salt transport,
 cclose = 0.1 [-] is taken for the TPKS with a maximum of 50 iterations.
n initial timestep of 1.0 × 10 − 3 days is taken and a total of 186 trans-
ort timesteps are required to finish the simulation.

For this test case, a maximum of 256 subdomains are used generated
y ORB partitioning. Cell weights are defined as the sum of active cells
n z -direction, see Fig. 3 . All the grid input data for this test case are
pecified as standard SEAWAT ASCII data.

.3. Hardware and compiler

The parallel performance of both test cases is evaluated on the Carte-
ius Dutch national supercomputer (SURFsara, 2014). At the time of
riting, this machine has 1913 NUMA nodes connected by a fast In-
niband interconnection network in a fat tree topology, summing up to
 total of 47,776 Intel Xeon CPU cores and 128 TB RAM memory. All
ur experiments are done on so-called (Haswell) thin nodes, where each
ode has 64 GB RAM memory and two Intel Xeon E5-2690 v3 12-core
rocessors, and each CPU has its own socket and four channels to main
emory. We use a maximum of four cores per thin node (two cores
er CPU) since this value generally results in lowest wall-clock times.
his is based on our experiences on Cartesius and a variation of cores
er node for a fixed number of cores considering our test cases. This
eans that during computation at least 20 cores are idle and therefore

he core utilization is low (17% non-idle). The reason why using more
ores per CPU results in an increase in run times is very likely related
o the large memory usage of our models and the competition of mul-
iple cores within a multi-core CPU for the main memory bandwidth
hrough the caches (Tudor et al., 2011). This seems a hardware related
ssue inherent to multi-core NUMA architectures and not a direct re-
6
ult from our parallelization approach, and therefore further research
n core utilization is kept outside the scope of this study. Nevertheless,
rst observation for the largest Henry 3D case indicate that run times
an increase ~15% when using four cores per CPU (33% non-idle) and
 100% when using all 12 cores per CPU. Although hybrid MPI-OpenMP
arallelization could possibly be a good approach to increase core uti-
ization, previous experiments with MODFLOW did not show significant
mprovement (Verkaik et al., 2015). Furthermore, for each core config-
ration two runs are executed, and the minimum of wall-clock times
s taken to exclude hardware variation, e.g. due to CPU throttling or
etwork related issues.

We compiled iMOD WQ on Cartesius using the Intel Fortran com-
iler v15.0.0, using high level O3-optimization, linked with the Intel
PI library v5.0 update 3. We used mixed real-precision compilation,
eaning that variables of type real used in the code can have single pre-

ision accuracy (4 bytes) or double precision accuracy (8 bytes). This
ontrasts with the USGS provided SEAWAT binary that was compiled
uch that each real variable corresponds to a double precision accuracy
compiler flags: -real-size 64, -align dcommons). The reasons for not do-
ng this explicitly are the incompatibility with the iMOD library, that
equires mixed precision, and the increasing memory usage that double
recision usage involves. However, mixed real-precision might result in
nstability due to rounding errors with SEAWAT, although none of this
ehavior is observed for the test cases considered in this paper.

. Results

.1. Henry 3D test case

Fig. 4 a shows the results for running the Henry 3D test case on the
artesius supercomputer up to 1024 cores, using the PKS. The speedups
re presented as relative values to two cores (p ref = 2), since the se-
ial run requires more memory (96 GB) than available on a single thin
ode (64 GB maximum). Because of this, we take two thin nodes for
valuating the speedup with two cores. Using 1024 cores, a maximum
elative speedup of 140 is obtained. To estimate the value of the abso-
ute speedup, a smaller run, using 10 layers, is compared on both a thin
nd so-called fat node that has more memory (256 GB) but a slower CPU
2.7 GHz Intel Xeon E5-4650). Estimating that the fat node is 1.13 times
lower, the serial execution time on a thin node is estimated to be 16
ours 57 minutes 47 seconds, hence estimating the speedup with two
ores to be S 2 = 1.78. This estimates the absolute speedup with 1024
ores to be 140 × 1.78 ≈ 249. Fig. 4 b shows the total number of linear
terations, hence accumulated over all outer iterations. It can be clearly
een that the total number of linear solver iterations increases with the
umber of processor cores used. For the FPKS iterations considering flow
his is a factor 3, for the TPKS iterations considering salt transport this
s a factor 3.7. The accuracy of the PKS is verified against the combined
CG (flow) and GCG (transport) solvers for a sample configuration of
44 cores, see Fig. 5 for the computed differences in isochlors.

.2. Sand Engine test case

Fig. 6 a shows the measured speedups and Fig. 6 b the linear solver
terations, for running the Sand Engine test case on Cartesius up to 256
ores (p ref = 1). Using 256 cores, a speedup of 86 is obtained. While
he linear FPKS iterations for flow increased with a factor 1.7 compared
o the serial run, the linear TPKS iterations for salt transport remain
onstant at a value of 372. For 256 cores using the PKS, Fig. 7 a and
 show the computed groundwater table and concentrations at the last
ime step, respectively, and differences (serial – parallel) compared to
he serial run with the PCG and GCG solvers in Fig. 7 b and d accordingly.
or the head differences, the minimum, maximum and average values
re − 3.14 × 10 − 5 m, 1.24 × 10 − 5 m, and 2.41 × 10 − 6 m, respectively.
or the concentrations those values are − 5.40 × 10 − 3 mg/l, 7.34 × 10 − 3

g/l and 2.41 × 10 − 6 mg/l, respectively.

J. Verkaik, J. van Engelen, S. Huizer et al. Advances in Water Resources 154 (2021) 103976

Fig. 4. Measured speedups relative to two cores (a) and linear solver iterations (b), considering the Henry 3D test case. The execution time was reduced from 9
hours, 31 minutes and 12 seconds (2 cores) to 4 minutes and 5 seconds (1024 cores).

Fig. 5. Computed isochlors for the Henry 3D test case, relative to seawa-
ter concentration of 35 kg/m

3 , comparing the PKS using 144 cores (black
lines) to the combined serial PCG and GCG solver (white lines); it can be
seen that both lines most of the time lie on top of each other.

Fig. 6. Measured speedups (a) and linear solver it-
erations (b) for the Sand Engine test case. Using 256
cores, the execution time is reduced from 1 hour 47
minutes 55 seconds to 2 minutes 40 seconds.

5

6

b

a

i

i

b

t

t

b

s
. Discussion

The results show that significant speedups are obtained (Figs. 4 a and
 a), up to two orders of magnitude for the Henry 3D test case, and for
oth test cases there is a strong linear solver iteration increase (Figs. 4 b
nd 6 b) for an increasing number of processor cores. However, surpris-
ngly, this iteration increase does not hold for the Sand Engine transport
7
terations that remain constant (see Fig. 6 b). The reason for this might
e found in the small mechanical dispersion used in the Sand Engine
est case, implying highly advection dominated flow and salt transport
hat therefore does not heavily strain the linear salt transport solver.

It can be seen in Figs. 4 a and 6 a that for an increasing num-
er of cores the speedup curves tend to deviate more from ideal
peedups and therefore our parallelization becomes less scalable (see

J. Verkaik, J. van Engelen, S. Huizer et al. Advances in Water Resources 154 (2021) 103976

Fig. 7. Results for comparing a parallel run using 256 cores and the
PKS with a serial run (PCG & GCG), considering output for January
1st of 2012 (time step 184). Subplot (a) and (b) show the groundwa-
ter heads computed in parallel (meters above Mean Sea Level) and
the difference serial – parallel (in millimeters), respectively. Subplot
(c) and (d) show the chloride concentrations computed in parallel (in
milligrams per liter) and the difference serial – parallel (in milligrams
per liter), respectively.

Table 1

Root mean squared errors of the computed groundwater heads (top value, in m) and computed salt concentrations (bottom, in TDS) for
the Sand Engine test case comparing different solvers.

PCG & GCG, P = 1 FPKS & TPKS, P = 1 PCG & TPKS, P = 1 FPKS & GCG, P = 1 FPKS & TPKS,
P = 256

PCG & GCG

P = 1
- - - - -

FPKS & TPKS

P = 1
5.09 × 10 − 4 m

9.69 × 10 − 5 kg/m

3

- - - -

PCG & TPKS

P = 1
5.09 × 10 − 4 m

6.36 × 10 − 5 kg/m

3

9.73 × 10 − 7 m

1.35 × 10 − 5 kg/m

3

- - -

FPKS & GCG

P = 1
1.10 × 10 − 6 m

9.28 × 10 − 6 kg/m

3

5.09 × 10 − 4 m

9.71 × 10 − 5 kg/m

3

5.09 × 10 − 4 m

1.48 × 10 − 5 kg/m

3

- -

FPKS & TPKS

P = 256

5.09 × 10 − 4 m

9.71 × 10 − 5 kg/m

3

9.95 × 10 − 7 m

1.31 × 10 − 5 kg/m

3

1.08 × 10 − 6 m

9.69 × 10 − 5 kg/m

3

5.09 × 10 − 4 m

9.70 × 10 − 5 kg/m

3

-

S

t

o

a

𝐶

t

p

s

e

i

𝐶

a

n

F

(

t

c

c

p

l

w

r

a

s

b

b

F

(

F

e

i

f

l

T

f

i

t

c

i

t

b

m

o

M
ection 2.1). We analyze this behavior by using Scalasca code profiling
ools (Geimer et al., 2010) to identify the main non-scalable components
f the code. This is done by analyzing the component cost 𝐶

𝑐
𝑝
= 𝑝𝑇 𝑐

𝑝
for

 component c in relation to the total cost C p = pT p . Fig. 8 a and c show

𝑐
𝑝
∕ 𝐶 ref for the Henry 3D test case (C ref = C 2 = 2 T 2) and Sand Engine

est case (C ref = T 1), respectively. In Fig. 8 b and d values for 𝐶

𝑐
𝑝
∕ 𝐶 𝑝 are

lotted for the Henry test case and Sand Engine test case, respectively,
howing the portion of work for a certain component relative to the total
xecution time. In the ideal case, perfect strong scaling (or cost optimal-
ty) is achieved if for all (or at least for the most dominant) components

𝑐
𝑝
∕ 𝐶 ref remains constant for an increasing number of cores. However,

s can be seen in Fig. 8 a and c this is not the case.
The linear solver execution times are the main non-scalable compo-

ents that increase with the number of processes (see FPKS and TPKS in
ig. 8 a and c). The reason for this is the linear solver iteration increase
see Figs. 4 b and 6 b), that can likely be explained from mathematics by
he presence of low frequency eigenmodes induced by the domain de-
omposition in the dominant flow direction, hampering the linear solver
onvergence (Dolean et al., 2015 ; Smith et al., 1996). This is a known
roblem (see e.g. Hammond et al., 2014) and our solver convergence can
ikely be improved by combining the additive Schwarz preconditioner
ith a multi-level preconditioner, such as the additive coarse grid cor-

ection preconditioner. The Henry case would likely benefit most from
8
pplying such preconditioner, since up to 256 cores the portion of work
pend in the linear solver remains constant at about 80% (see in Fig. 8 b
y adding for FPKS and TPKS). We can estimate a theoretical upper
ound for the speedup by assuming no iteration increase, as shown in
ig. 9 . The speedups are estimated by using the linear iteration time
computation and MPI; cost of ~5 and ~9 seconds using 2 cores, for
PKS and TPKS respectively) and reducing the total execution time lin-
arly with the iteration increase, while neglecting any additional work
ntroduced by multi-level preconditioning. By doing this, almost per-
ect scalability can be achieved up to 256 cores. Correcting for iteration
oss we estimate S 256 = 602 which is big improvement of a factor 2.4.
his, more or less, fine tuning of our parallelization is recommended for
uture research.

Considering the Henry test case, load imbalance occurs when us-
ng more than 256 cores. This can be seen in Fig. 8 b by the downward
rend of the linear solver computation time and upward trend of MPI
ommunication time. Load imbalance is likely to be caused by the phys-
cal overlap, that is added after the partitioning (see Section 2.2). For
he Henry case this is one additional row for interfacing with a neigh-
oring subdomain since we are using finite-difference advection. This
eans that the amount of total work will increase, e.g. the time spend

n matrix assembly for dispersion, see the slightly upward trend of “T
at. Assembly ” in Fig. 8 a starting from 256 cores. Although the linear

J. Verkaik, J. van Engelen, S. Huizer et al. Advances in Water Resources 154 (2021) 103976

Fig. 8. Measured time for the non-scalable components, presented as compo-
nent costs relative to reference cost, 𝐶 𝑐

𝑝
∕ 𝐶 2 for the Henry test case (a), and

𝐶 𝑐
𝑝
∕ 𝑇 1 for the Sand Engine test case (c), and component cost relative to parallel

cost 𝐶 𝑐
𝑝
∕ 𝐶

𝑝
for the Henry test case (b) and Sand Engine test case (d). “FPKS ”: ex-

ecution time within the flow PKS; “TPKS ”: execution time within the salt trans-
port PKS; “MPI FPKS ”: communication wait time for the flow PKS; “MPI TPKS ”:
communication wait time for the salt transport PKS; “MPI other ”: communica-
tion wait time other than within solvers; “T Mat assembly ”: matrix assembly
execution time for salt transport; “IO ”: input/output time.

Fig. 9. Estimated relative speedups for the Henry 3D test case assuming no
iteration increase.

s

t

b

t

(

r

c

t

m

s

d

s

t

o

t

i

a

c

i

I

i

c

n

u

t

o

i

i

p

a

1

e

s

s

S

s

c

e

s

f

a

a

t

F

t

f

s

i

s

b

p

T

w

a

l

w

s

l

s

p

v

f

n

t

h

a

i

e

E

d

G

s

t
olvers are mathematically strict non-overlapping, we also expect that
he linear solver is responsible for a certain part of the load imbalance
ecause all DO-loops in our code are defined over all the cells including
he overlap.

The reason why larger speedups are obtained for the Henry test case
 Fig. 6 a) than for the Sand Engine test case (Fig. 7 a), might be directly
elated to the partition sizes and hence the grain sizes. For each core
onfiguration, the number of active cells for each partition is about 21
imes larger for the Henry test case than for the Sand Engine test case,
aking the parallelization coarser grained. Considering 256 cores, the
9
peedup for the Sand Engine model of 86 (~19.5k active cells per sub-
omain) is smaller than the estimated speedup of 119 (= 66.6 × 1.78;
ee Section 4.1) for the Henry test case (~390k active cells per parti-
ion). As long as the computational time remains dominant, one should
nly have to focus on parallelizing computation, which is generally rela-
ively straightforward to do in order to obtain strong scaling as we have
llustrated for the iteration increase. The effect of the finer-grained par-
llelization for the Sand Engine can be seen in Fig. 8 c, where the MPI
urves grow faster than the linear solver iteration computational time,
ndicating load imbalance. Furthermore, for the Sand Engine test case
/O becomes dominant taking 27% of the total execution time when us-
ng 256 cores. The non-scalability of I/O for the Sand Engine test case
an be explained by the usage of standard SEAWAT input data that does
ot scale in parallel (see Section 2.4). We expect to improve this by
sing iMOD binary data files (IDFs) exclusively for this model in the fu-
ure. Since the Sand Engine test case is relatively fine-grained, analysis
f constant iteration increase did not show any significant improvement
n speedups because of the load imbalance and I/O overhead.

As a rule of thumb for users, one can say that our parallelization
s most suitable for relatively larger models (>> 10 5 active cells per
artition), lesser suitable for relatively smaller models (10 4 − 10 5 of
ctive cells per partition), and not suitable for very small models (<
0 4 of active cells per partition). Although highest speedups are to be
xpected for relatively larger models like the Henry 3D test case, still
ignificant (although less efficient) speedups can be obtained when a
ufficient number of processor cores is available, as illustrated by the
and Engine test case.

From our modeling experiences we believe that our PKS computes
ufficiently accurate heads and concentrations that have comparable ac-
uracy compared to the default PCG and GCG solvers in SEAWAT. Nev-
rtheless, from a numerical point of view, a hydrogeological modeler
hould be aware that small differences might occur. This is also the case
or the Sand Engine test case, see Fig. 7 , where the observed maximum
bsolute head difference of 3.14 × 10 − 5 m for the top view layer with
ctive cells is larger than 𝜀 hclose = 1.0 × 10 − 6 , as well as for the Henry
est case, where small differences occur for the 99% isochlors, see Fig. 5 .
ocusing on the Sand Engine test case, we also observe that at the final
imestep, some computational cells have higher absolute maximum dif-
erences (3.04 × 10 − 4 m for head and 4.84 × 10 − 1 kg/m

3 TDS) than the
olver stopping criteria. Although we did not find motivations for do-
ng an extensive accuracy analysis, we suspect that the reasons for these
mall differences that accumulate during simulation time are likely to
e related to differences in solver methods, rounding errors due to finite
recision arithmetic, and perhaps too aggressive compiler optimization.
he preconditioner used in the PKS (ILU(0)) differs from the one used
ithin the PCG solver (modified incomplete Cholesky preconditioner)
nd the one used within the GCG solver (symmetric successive over re-
axation). Furthermore, the FPKS used the Bi-CGSTAB Krylov method
hile the GCG solver uses Lanczos/ORTHOMIN. These differences in

olver methods might result in differences in accuracy after solving the
inear systems for flow and salt transport. Furthermore, mathematically
een, for each different core configuration a different additive Schwarz
reconditioner is applied with the PKS, hence resulting in different con-
ergence behavior. Moreover, different core configurations result in dif-
erent finite-precision, rounded arithmetic, e.g. for the computing of in-
er product coefficient within the CG algorithm by adding partial sums
hat are computed by each core simultaneously. In addition, the TPKS
as double precision accuracy while the GCG solver has single precision
ccuracy, meaning that in our applications using the GCG solver might
ntroduce small rounding errors. Table 1 shows the root mean square
rror (RMSE) measured over all daily timesteps and cells of the Sand
ngine test case, comparing the PKS (FPKS & TPKS) for 256 cores with
ifferent serial solver configurations (default SEAWAT solvers PCG &
CG, FPKS & TPKS, PCG & TPKS, and FPKS & GCG). The RMSE values

how that the main difference between the PKS using 256 cores and
he default SEAWAT solvers (see also Fig. 7) is caused by the differ-

J. Verkaik, J. van Engelen, S. Huizer et al. Advances in Water Resources 154 (2021) 103976

e

t

6

3

a

p

t

l

F

a

c

i

c

a

t

fi

h

o

m

p

t

t

i

m

t

d

t

w

t

m

t

c

p

D

i

t

C

I

i

&

B

c

c

A

t

a

p

(

s

c

c

t

a

t

A

a

t

w

s
[

s

L

D

𝐪

w

f

𝜌

t

s

𝜌

w

C

e

(

fl

i

a

g

w

[

c

t

𝐷

w

p

c

a

w

E

o

a

𝜌

w

t

k

𝜌

B

c

t

𝐀

w

s
nce between the GCG solver and the TPKS. This is very likely related
o differences in solver methods or finite precision arithmetic.

. Conclusions and recommendations

A parallel version of SEAWAT (MODFLOW/MT3DMS) for simulating
D variable-density groundwater flow and salt transport is developed,
s part of iMOD WQ. In this paper, we showed that our parallel im-
lementation is capable of significantly reducing computing times, up
o two orders of magnitude, and capable of running models with very
arge memory requirements. Our parallelization differs from other MOD-
LOW and MT3DMS parallelization efforts done by other researchers in
 way that a) salt transport is parallelized using a physical overlap to ac-
ount for e.g. TVD advection; b) our approach fully distributes memory
ncluding parallel input/output; c) we apply the robust orthogonal re-
ursive bisection partitioning method to address irregular model bound-
ries. Since our parallelization is easy to use and open source, we expect
hat our parallelization may lead to new scientific advancement in the
eld of groundwater flow and salt transport modeling, where ultimately
uge 3D problems having billion of cells can be solved with thousands
f cores. Therefore, we believe that our work can be an asset for water
anagers and decision makers in coastal areas, in a way that it helps to
rovide them with high-resolution estimates and future projections of
he groundwater salinity distribution and fresh groundwater reserves.

Although our reported speedups are high, there is still room for fu-
ure improvement. First, our parallelization may be improved by reduc-
ng the linear solver iteration increase by applying a suitable parallel
ulti-level preconditioner. Second, load balancing might by further op-

imized by explicitly considering the weights of the physical overlap
uring the partitioning phase. Third, our implementation should be fur-
her analyzed on different hardware and multi-core CPU configurations
ith the aim of improving processor core utilization. We expect that in

he future multi-core CPUs, having more and more cores, will become
ore efficient for memory-bound problems (such as the latest genera-

ion AMD EPYC Zen CPUs) and result in improved speedup and better
ore utilization for 3D variable-density groundwater flow and salt trans-
ort modeling.

eclaration of Competing Interest

The authors declare that they have no known competing financial
nterests or personal relationships that could have appeared to influence
he work reported in this paper.

RediT authorship contribution statement

J. Verkaik: Conceptualization, Methodology, Software, Validation,
nvestigation, Resources, Data curation, Writing – original draft, Writ-
ng – review & editing. J. van Engelen: Resources, Writing – review
 editing. S. Huizer: Methodology, Writing – review & editing. M.F.P.

ierkens: Conceptualization, Writing – review & editing. H.X. Lin: Con-
eptualization, Writing – review & editing. G.H.P. Oude Essink: Con-
eptualization, Writing – review & editing.

cknowledgements

We thank Christian D. Langevin and Joseph D. Hughes for
heir suggestions and comments on parallelization SEAWAT. We
lso thank Deltares and Utrecht University for making this research
ossible. This work was part of the development of iMOD WQ
 https://oss.deltares.nl/nl/web/imod) and we thank Gijs Janssen for his
upport. Furthermore, we thank Edwin Sutanudjaja and Martijn Russ-
her for their support on running jobs on Cartesius. All experiments were
arried out on the Dutch national e-infrastructure with the support of
he SURF Cooperative. The authors also would like to thank the editor
nd two anonymous reviewers for their valuable comments and sugges-
ions.
10
. Governing equations for variable-density groundwater flow

nd salt transport

Conservation of fluid mass can be expressed by the continuity equa-
ion (see e.g. in Bear, (1979))

𝜕 (𝜃𝜌)
𝜕𝑡

+ ∇ ⋅ (𝜌𝐪) − 𝜌ss 𝑞 ss = 0 , (1)

ith 𝜃 [-] the effective porosity, 𝜌 [kg/m

3] the groundwater den-
ity, q [m/day] the specific discharge (or Darcy velocity) vector, 𝜌ss
kg/m

3]and q ss [1/day] the fluid density and flow rate from the
inks and sources, respectively. Following the notation of Guo and
angevin (2002) , conservation of momentum can be expressed by
arcy’s law, neglecting viscosity effects for sake of simplicity,

 = − 𝐊 f (∇ ℎ f +

𝜌 − 𝜌f
𝜌f

∇ 𝑧) , (2)

here K f [m/day] is the hydraulic conductivity tensor for saturated
resh groundwater, h f [m] the (to-be-solved) fresh groundwater head,

f [kg/m

3] the freshwater density (typically 1000 kg/m

3) and z [m]
he elevation. Assuming isothermal conditions, expanding 𝜕 (𝜃𝜌)/ 𝜕 t and
ubstituting (2) , Eq. (1) can be written as

𝑆 f
𝜕 ℎ f
𝜕𝑡

− ∇ ⋅
[
𝜌𝐊 f (∇ ℎ f +

𝜌 − 𝜌f
𝜌f

∇ 𝑧)
]
+ 𝜃

𝜕𝜌

𝜕𝐶

𝜕𝐶

𝜕𝑡
− 𝜌ss 𝑞 ss = 0 , (3)

here S f [1/day] is the specific storage for fresh groundwater and
 [kg/m

3] is the salt (e.g. chloride) concentration to be solved. This
quation is known as the variable-density groundwater flow equation
VDGFE), which reduces to the ordinary constant-density groundwater
ow equation when 𝜌 = 𝜌ss = 𝜌f . Neglecting chemical reactions, assum-

ng that diffusive and dispersive salt transport are based on Fick’s law,
ssuming single species, conservation of salt can be expressed by the
overning advection-dispersion equation,

𝜕 (𝜃𝐶)
𝜕𝑡

+ ∇ ⋅ (𝐪 𝐶 − 𝜃𝐃 ∇ 𝐶) − 𝑞 ss 𝐶 ss = 0 , (4)

here C ss [kg/m

3] is the concentration for sink and sources, and D
m

2 /day] the hydrodynamic dispersion tensor with coefficients, for in-
orporating mechanical dispersion and molecular diffusion. This equa-
ion can be expressed as

 𝑖𝑗 = (
𝛼T
𝜃
‖𝐪 ‖2 + 𝐷 m) 𝛿𝑖𝑗 +

𝛼L − 𝛼T
𝜃

𝑞 𝑖 𝑞 𝑗 ‖𝐪 ‖2 , (5)

here 𝛼L [m] and 𝛼T [m] are the and longitudinal and transversal dis-
ersivities, respectively, D m

[m

2 /day] the effective molecular diffusion
oefficient, and 𝛿ij denotes the Kronecker delta. Eq. (4) is also known
s the salt transport equation (STE; see Zheng and Wang, 1999). Since
ith the variable-density groundwater flow Eq. (3) and salt transport
q. (4) we have three unknowns (h f , 𝜌 and C) an additional equation
f state is required. Neglecting other density effects due to temperature
nd pressure, we can use the linear relation

(𝐶) = 𝜌f +

𝜕𝜌

𝜕𝐶

𝐶 ≈ 𝜌f +

𝜌s − 𝜌f
𝐶 s

𝐶, (6)

here 𝜌s [kg/m

3] and C s [kg/m

3] are the density and salt concentra-
ion of seawater, respectively. Typical values for seawater are 𝜌s = 1025
g/m

3 and C s = 35 kg/m

3 of total dissolved solutes simplifying Eq. 6 to
(C) ≈ 1000 + 0.7143 C .

. Parallel linear solver algorithms for flow and salt transport

Finite volume discretization of the VDGFE Eq. (3) and STE Eq. (4) ex-
luding advection, results in, after (Picard) linearization and eliminating
he Dirichlet boundary (constant-value) conditions, the linear equation

 { 𝑓 ,𝑡 } 𝐱 { 𝑓 ,𝑡 } = 𝐛 { 𝑓 ,𝑡 } , (7)

here subscript f here denotes flow , and subscript t denotes transport . For
olving the flow equation, x f [m] is the vector of unknown fresh-water

https://oss.deltares.nl/nl/web/imod

J. Verkaik, J. van Engelen, S. Huizer et al. Advances in Water Resources 154 (2021) 103976

Fig. B1. FPKS algorithm for solving groundwater flow corresponding to the additive Schwarz preconditioned conjugate gradient algorithm. The symbol ← denotes
that the left-hand side is assigned to the value of the right-hand side, according to Smith et al. (1996) . “maxinner ” is the maximum of inner iterations; for further
notation see Fig. 2.5 of Barrett et al, (1995) . The numbers (.) denote the MPI communication points.

h

c

s

a

𝐀

v

c

m

t

i

t

t

s

(

i

d

𝐌

w

t

c

⎡⎢⎢⎢⎢⎣

w

t

c

a

t

m

e

3

m

i

b

o

S

𝐌

c

a

z

S

w

s

w

G

T

g

C

i

‖

s

c

(

t

P

m
eads, 𝐀

𝑓
[kg/(m

• day)] a square, symmetric positive-definite, coeffi-
ient matrix with the hydraulic cell-by-cell conductivity times the den-
ity, and b f [kg/day] the vector with groundwater sink/source and stor-
ge terms. The corresponding computational stencil is 7-point, hence

𝑓
has 7 bands. For solving the transport equation, x t [kg/m

3] is the

ector of unknown salt concentrations, 𝐀 𝑡 [m

3 /day] represents the dis-
retization of dispersion/sink/source and is generally a nonsymmetric
atrix, and b t [kg/day] is the vector with sink/source terms. When full

ensor dispersion is used, this will result in a 19-point stencil. However,
n our study we assume that all dispersion cross terms are lumped to
he right-hand side vector, resulting in A t to have 7 bands like 𝐀

𝑓
. For

he preconditioned CG method (FPKS), the symmetrized preconditioned
ystem

 𝐌

−1∕2 𝐀 𝑓 𝐌

−1∕2) 𝐌

1∕2 𝐱 𝑓 = 𝐌

−1∕2 𝐛 𝑓 , 𝐌

−1∕2 𝐌

−1∕2 = 𝐌

−1 (8)

s solved and for the preconditioned Bi-CGSTAB (TPKS) the left precon-
itioned system

−1 𝐀 𝑡 𝐱 𝑡 = 𝐌

−1 𝐛 𝑡 , (9)

here the matrix M is the preconditioner (Barrett et al., 1995).
Using block-wise natural node ordering for the non-overlapping par-

itions, as illustrated by the positive numbering in Fig. 1 , the matrix A
an be written as a block matrix of the form:

𝐀 1 , 1 𝐀 1 , 2 ⋯ 𝐀 1 ,𝑃
𝐀 2 , 1 𝐀 2 , 2 ⋮
⋮ ⋱ ⋮

𝐀 𝑃 , 1 ⋯ ⋯ 𝐀 𝑃 ,𝑃

⎤ ⎥ ⎥ ⎥ ⎥ ⎦
, (10)

here A ii correspond to the interior node coefficients and A i,j , i ≠ j to
he coupling coefficients between the subdomains. Considering a 7-point
omputational stencil and a single band for the uniform partitioning ex-
mple in Fig. 1 a then block matrix (10) has 4 × 4 blocks (P = 4) and for
he first subdomain p1 the interior coefficient sub-matrix A 1,1 has di-
ension 37 × 37, local coupling sub-matrix A 1,2 contains two non-zero
11
ntries (33 → 38, 37 → 39) and A 1,3 four non-zero entries (34 → 44,
5 → 45, 36 → 46, 37 → 47), and A 1,4 = ∅. Note that in a distributed
emory parallel setting block matrix (10) is never been formed explic-

tly since each processor only has local coefficients corresponding to a
lock row of this system.

Taking M as the block diagonal matrix of A results in the (non-
verlapping) additive Schwarz preconditioner (Dolean et al., 2015 ;
mith et al., 1996), here denoted by M AS :

 AS ≡

⎡ ⎢ ⎢ ⎢ ⎢ ⎣

𝐀 1 , 1
𝐀 2 , 2

⋱

𝐀 𝑃 ,𝑃

⎤ ⎥ ⎥ ⎥ ⎥ ⎦
.

In each CG or Bi-CGSTAB iteration, called inner iteration, the pre-
onditioner is being applied (once for CG and twice for Bi-CGSTAB)
nd the system of the form M AS y = z has to be solved, where y and
 are denoted as typical search directions. The benefit of the additive
chwarz preconditioner is that this can be solved entirely in parallel
here each processor solves A i,i y i = z i independently, called the local

ubdomain solve. Since it turns out that this can be done inaccurately,
e apply an incomplete LU factorization with zero fill in (ILU(0)) using
aussian elimination, where A i,i = LU for the non-zero entries of A i,i .
he subdomain solution is obtained by first solving for the lower trian-
ular matrix 𝐋 ̃𝐲 = 𝐳 𝑖 and then for the upper triangular matrix 𝐔 𝐲 𝑖 = �̃� .
onvergence at the k -th inner iteration is obtained for FPKS by us-

ng the infinity norm (‖𝐲‖∞ ≡ max
𝑖

|𝑦 𝑖 |) such that the stopping criteria

x (k) − x (k − 1) ‖∞ ≤ 𝜀 hclose and ‖b − Ax (k) ‖∞ ≤ 𝜀 rclose are satisfied, for
ufficiently small values of 𝜀 hclose [m] and 𝜀 rclose [kg/m

3]. For TPKS the
riterium ‖b − Ax (k) ‖2 ≤ 𝜀 cclose • ‖b ‖2 should hold for Euclidian norm
 ‖𝐲‖2 ≡ (

∑
𝑖 𝑦

2
𝑖
) 1∕2) for 𝜀 cclose [-] small enough.

The FPKS and TPKS algorithms are given by Fig. B1 and Fig. B2 ,
hat include pseudocode for indicating the MPI communication points.
arallelization of these method involves a) local MPI point-to-point com-
unication of vectors between subdomains prior to sparse matrix vector

J. Verkaik, J. van Engelen, S. Huizer et al. Advances in Water Resources 154 (2021) 103976

Fig. B2. TPKS algorithm for solving groundwater transport corresponding to the additive Schwarz preconditioned biconjugate gradient stabilized algorithm. The
symbol ← denotes that the left-hand side is assigned to the value of the right-hand side, according to Smith et al. (1996) . “maxinner ” is the maximum of inner
iterations; for further notation see Fig. 2.10 of Barrett et al, (1995) . The numbers (.) denote the MPI communication points.

m
j

t

s

R

A

B

B

B

B
B

B

B

C

D

D

D

D

D

E

E

F

F

F

F

G

ultiplication, in order to account for the coupling coefficients A i,j , i ≠
 near the subdomain interfaces, b) global collective MPI communica-
ion to determine global sums for inner products and global maxima for
topping criteria.

eferences

bdelaziz, R., Le, H.H., 2014. MT3DMSP - A parallelized version of the MT3DMS code. J.
African Earth Sci. 100, 1–6. doi: 10.1016/j.jafrearsci.2014.06.006 .

akker, M., Post, V., Langevin, C.D., Hughes, J.D., White, J.T., Starn, J.J., Fienen, M.N.,
2016. Scripting MODFLOW Model Development Using Python and FloPy. Groundwa-
ter 54, 733–739. https://doi.org/10.1111/gwat.12413 .

alay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W., Kaushik, D., Knepley, M.,
McInnes, L.C., Smith, B., Zhang, H., 2014. PETSc Users Manual Revision 3.4. Work.
https://doi.org/10.2172/1178104

arrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J.M., Dongarra, J., Eijkhout, V.,
Pozo, R., Romine, C., S., G.W., van der Vorst, H., 1995. Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods. Math. Comput. 64, 1349.
https://doi.org/10.2307/2153507 .

ear, J. , 1979. Hydraulics of Groundwater. Dover Publications, inc., Mineola, New York .
erger, M., H. Bokhari, S., 1987. A Partitioning Strategy for Nonuniform Problems on

Multiprocessors. IEEE Trans. Comput. https://doi.org/10.1109/TC.1987.1676942 .
öhme, D. , 2013. Characterizing load and communication imbalance in parallel applica-

tions. Ph.D. dissertation, RWTH Aachen University .
oman, E.G. , Catalyurek, U.V , Chevalier, C. , Devine, K.D. , 2012. The Zoltan and Isorropia

Parallel Toolkits for Combinatorial Scientific Computing: Partitioning, Ordering, and
Coloring. Sci. Program. 20, 129–150 .

heng, T., Mo, Z., Shao, J., 2014. Accelerating Groundwater Flow Simulation in
MODFLOW Using JASMIN-Based Parallel Computing. Groundwater 52, 194–205.
https://doi.org/10.1111/gwat.12047
12
elsman, J.R., Hu-a-ng, K.R.M., Vos, P.C., de Louw, P.G.B., Oude Essink, G.H.P.,
Stuyfzand, P.J., Bierkens, M.F.P., 2014. Paleo-modeling of coastal saltwater intrusion
during the Holocene: an application to the Netherlands. Hydrol. Earth Syst. Sci. 18,
3891–3905. https://doi.org/10.5194/hess-18-3891-2014 .

eltares, 2020. iMOD 5.2: IMOD-WQ (Water Quality) [WWW Document]. URL
https://oss.deltares.nl/web/imod

iersch, H.-J.G. , 2002. FEFLOW reference manual. Inst. Water Resour. Plan. Syst. Res. Ltd
278 .

olean, V., Jolivet, P., Nataf, F., 2015. An Introduction to Domain Decomposition Meth-
ods: Algorithms, Theory, and Parallel Implementation. Soc. Industr. Appl. Math.
https://doi.org/10.1137/1.9781611974065 .

ong, Y., Li, G., 2009. A parallel pcg solver for MODFLOW. Ground Water 47, 845–850.
https://doi.org/10.1111/j.1745-6584.2009.00598.x .

ijkhout, V. , Chow, E. , van de Geijn, R. , 2015. Introduction to High Performance Scientific
Computing, 2nd. lulu.com, p. 553 .

lmroth, E., Ding, C., Wu, Y.S., 2001. High performance computations for large scale
simulations of subsurface multiphase fluid and heat flow. J. Supercomput. 18, 235–
258. https://doi.org/10.1023/A:1008117130225 .

aneca S ̀anchez, M., Gunnink, J.L., Van Baaren, E.S., Oude Essink, G.H.P., Siemon, B.,
Auken, E., Elderhorst, W., De Louw, P.G.B., 2012. Modelling climate change effects
on a dutch coastal groundwater system using airborne electromagnetic measurements.
Hydrol. Earth Syst. Sci. 16, 4499–4516. https://doi.org/10.5194/hess-16-4499-2012 .

erguson, G., Gleeson, T., 2012. Vulnerability of coastal aquifers to
groundwater use and climate change. Nat. Clim. Chang. 2, 342–345.
https://doi.org/10.1038/nclimate1413 .

orum, M.P. , 1994. MPI: A Message-Passing Interface Standard. University of Tennessee,
Knoxville, TN, USA .

ox, G.C., 1988. A Graphical Approach to Load Balancing and Sparse Matrix Vector Mul-

tiplication on the Hypercube BT - Numerical Algorithms for Modern Parallel Computer

Architectures , in: Schultz, M. (Ed.), Springer US, New York, NY, pp. 37–61.
eimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B., 2010. The

scalasca performance toolset architecture. Concurr. Comput. Pract. Exp. 22, 702–719.
https://doi.org/10.1002/cpe.1556 .

https://10.1016/j.jafrearsci.2014.06.006
https://doi.org/10.1111/gwat.12413
https://doi.org/10.2307/2153507
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0005
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0005
https://doi.org/10.1109/TC.1987.1676942
http://refhub.elsevier.com/S0309-1708(21)00131-7/optvR2Wp9HLrZ
http://refhub.elsevier.com/S0309-1708(21)00131-7/optvR2Wp9HLrZ
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0007
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0007
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0007
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0007
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0007
https://doi.org/10.5194/hess-18-3891-2014
https://oss.deltares.nl/web/imod
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0012
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0012
https://doi.org/10.1137/1.9781611974065
https://doi.org/10.1111/j.1745-6584.2009.00598.x
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0015
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0015
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0015
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0015
https://doi.org/10.1023/A:1008117130225
https://doi.org/10.5194/hess-16-4499-2012
https://doi.org/10.1038/nclimate1413
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0019
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0019
https://doi.org/10.1002/cpe.1556

J. Verkaik, J. van Engelen, S. Huizer et al. Advances in Water Resources 154 (2021) 103976

G

H

H

H

H

H

H

H

H

H

J

J

L

L

L

L

M

M

M

N

N

O

O

O

P

R

S

S

S

S

S

S

T

V

V

W

Y

Z

uo, W. , Langevin, C. , 2002. User’s Guide to SEAWAT: A Computer Program for Simu-
lation of Three-Dimensional Variable-Density Ground-Water Flow. Tech. Water-Re-
sources Investig. B. 6 Chapter A7 01–434 .

ammond, G.E., Lichtner, P.C., Mills, R.T., 2014. Evaluating the performance of parallel
subsurface simulators: An illustrative example with PFLOTRAN. Water Resour. Res.
50, 208–228. https://doi.org/10.1002/2012WR013483 .

arbaugh, A.W., Banta, E.R., Hill, M.C., McDonald, M.G., 2000. MODFLOW-2000, The
U.S. Geological Survey modular ground-water model — User guide to modularization
concepts and the ground-water flow process. U.S. Geological Survey, Open file report
00-92. doi: 10.3133/ofr200092 .

arbo, M.S. , Pedersen, J. , Johnsen, R. , Petersen, K. , 2011. Groundwater in a future climate
The CLIWAT Handbook .

enry, H.R. , 1964. Effects of dispersion on salt encroachment in coastal aquifers, in “Sea-
water in Coastal Aquifers. U.S. Geol. Surv. Water- Supply Pap. 1613–C, C70–C84 .

ill, M.C. , 1990. Preconditioned Conjugate-Gradient 2 (PCG2), a Computer Program for
Solving Ground-water Flow Equations, Water-resources investigations report. Depart-
ment of the Interior, U.S. Geological Survey .

uang, L., Wang, L., Shao, J., Liu, X., Hao, Q., Xing, L., Zheng, L., Xiao, Y., 2018. Parallel
processing transport model MT3DMS by using openMP. Int. J. Environ. Res. Public
Health 15. https://doi.org/10.3390/ijerph15061063 .

ughes, J.D., White, J.T., 2013. Use of General Purpose Graphics Processing Units with
MODFLOW. Groundwater 51, 833–846. https://doi.org/10.1111/gwat.12004 .

uizer, S., Oude Essink, G.H.P., Bierkens, M.F.P., 2016. Fresh groundwater re-
sources in a large sand replenishment. Hydrol. Earth Syst. Sci. 20, 3149–3166.
https://doi.org/10.5194/hess-20-3149-2016 .

wang, H.T., Park, Y.J., Sudicky, E.A., Forsyth, P.A., 2014. A parallel com-
putational framework to solve flow and transport in integrated surface-
subsurface hydrologic systems. Environ. Model. Softw. 61, 39–58.
https://doi.org/10.1016/j.envsoft.2014.06.024 .

i, X., Li, D., Cheng, T., Wang, X.S., Wang, Q., 2014. Parallelization of MODFLOW using
a GPU library. Groundwater 52, 618–623. https://doi.org/10.1111/gwat.12104 .

ung, Y., Pau, G.S.H., Finsterle, S., Doughty, C.A., 2018. TOUGH3 User’s Guide, Version
1.0. https://doi.org/10.2172/1461175 .

ang, S., Wittum, G., 2005. Large-scale density-driven flow simulations using parallel un-
structured Grid adaptation and local multigrid methods. Concurr. Comput. Pract. Exp.
17, 1415–1440. https://doi.org/10.1002/cpe.900 .

angevin, C.D., Guo, W., 2006. MODFLOW/MT3DMS-based simulation of variable-
density ground water flow and transport. Ground Water 44, 339–351.
https://doi.org/10.1111/j.1745-6584.2005.00156.x .

angevin, C.D., Thorne Jr., D.T., Dausman, A.M., Sukop, M.C., Guo, W., 2008. SEAWAT
Version 4: A Computer Program for Simulation of Multi-Species Solute and Heat
Transport. Tech. Methods https://doi.org/10.3133/tm6A22 .

eonard, B.P. , 1988. Universal limiter for transient interpolation modeling of the advective
transport equations: The ULTIMATE conservative difference scheme. Nasa, pp. 1–115 .

inderhoud, P.S.J., Erkens, G., Pham, V.H., Bui, V.T., Erban, L., Kooi, H., Stouthamer, E.,
2017. Impacts of 25 years of groundwater extraction on subsidence in the Mekong
delta. Vietnam. Environ. Res. Lett. 12. https://doi.org/10.1088/1748-9326/aa7146 .

o, Z., Zhang, A., Cao, X., Liu, Q., Xu, X., An, H., Pei, W., Zhu, S., 2010. JASMIN: A
parallel software infrastructure for scientific computing. Front. Comput. Sci. China 4,
480–488. https://doi.org/10.1007/s11704-010-0120-5 .

ulder, J.P.M., Tonnon, P.K., 2011. SAND ENGINE “ : BACKGROUND AND DESIGN
OF A MEGA-NOURISHMENT PILOT IN THE NETHERLANDS. Coast. Eng. Proc. 1.
https://doi.org/10.9753/icce.v32.management.35 , management.35.
13
aff, R.L. , 2008. Technique and Application of a Parallel Solver to MODFLOW. In: Proc.
MODFLOW More, pp. 19–21 .

eumann, B., Vafeidis, A.T., Zimmermann, J., Nicholls, R.J., 2015. Future coastal popula-
tion growth and exposure to sea-level rise and coastal flooding - A global assessment.
PLoS One 10. https://doi.org/10.1371/journal.pone.0118571 .

ude Essink, G.H.P., 2003. Mathematical models and their application to
salt water intrusion problems. Netherlands Inst. Appl. Geosci. 57–77.
https://doi.org/10.13140/2.1.1637.4727 .

ude Essink, G.H.P. , Boekelman, R.H. , 1996. Problems with large-scale modelling of salt
water intrusion in 3D. 14th Salt Water Intrusion Meet 16–31 .

ude Essink, G.H.P., Van Baaren, E.S., De Louw, P.G.B., 2010. Effects of climate change
on coastal groundwater systems: A modeling study in the Netherlands. Water Resour.
Res. 46. https://doi.org/10.1029/2009WR008719 .

ruess, K. , Oldenburg, C. , Moridis, G. , 2011. TOUGH2 user’s guide, version 2.1,
LBNL-43134 (revised). Lawrence Berkeley Natl. Lab, Berkeley, CA .

enaud, F.G., Syvitski, J.P.M., Sebesvari, Z., Werners, S.E., Kremer, H., Kuenzer, C.,
Ramesh, R., Jeuken, A.D., Friedrich, J., 2013. Tipping from the Holocene to the An-
thropocene: How threatened are major world deltas? Curr. Opin. Environ. Sustain. 5,
644–654. https://doi.org/10.1016/j.cosust.2013.11.007 .

cheidegger, A.E., 1961. General theory of dispersion in porous media. J. Geophys. Res.
66, 3273–3278. https://doi.org/10.1029/JZ066i010p03273 .

chneider, A., Kröhn, K.P., Püschel, A., 2012. Developing a modelling tool for density-
driven flow in complex hydrogeological structures. Comput. Vis. Sci. 15, 163–168.
https://doi.org/10.1007/s00791-013-0207-2 .

chreuder, W.A. , 2005. Parallel Numerical Solution of Groundwater Flow Problems, Ph.D.
dissertation. University of Colorado .

mith, B.F. , Bjørstad, P.E. , Gropp, W.D. , 1996. Domain Decomposition: Parallel Multilevel
Methods for Elliptic Partial Differential Equations. Cambridge University Press, New
York, NY, USA .

tive, M.J.F., de Schipper, M.A., Luijendijk, A.P., Aarninkhof, S.G.J., van Gelder-Maas, C.,
van Thiel de Vries, J.S.M., de Vries, S., Henriquez, M., Marx, S., Ranasinghe, R., 2013.
A New Alternative to Saving Our Beaches from Sea-Level Rise: The Sand Engine. J.
Coast. Res. 290, 1001–1008. https://doi.org/10.2112/jcoastres-d-13-00070.1 .

URFsara, 2014. Description of the Cartesius system [WWW Document]. URL
https://userinfo.surfsara.nl/systems/cartesius/description .

udor, B.M., Teo, Y.M., See, S., 2011. Understanding off-chip memory contention of
parallel programs in multicore systems. Proc. Int. Conf. Parallel Process 602–611.
https://doi.org/10.1109/ICPP.2011.59 .

erkaik, J. , Hughes, J.D. , Sutanudjaja, E.H. , 2015. A Hybrid, Parallel Krylov Solver for
MODFLOW using Schwarz Domain Decomposition. AGU Fall Meeting Abstracts .

ermeulen, P.T.M., Roelofsen, F.J., Minnema, B., Burgering, L.M.T., Verkaik, J., Rako-
tonirina, A.D., 2019. iMOD User Manual.

aterloo Hydrogeologic, 2021. Visual MODFLOW Flex [WWW Document]. URL
https://www.waterloohydrogeologic.com/visual-modflow-flex/

ang, J., Graf, T., Herold, M., Ptak, T., 2013. Modelling the effects of tides and storm
surges on coastal aquifers using a coupled surface-subsurface approach. J. Contam.
Hydrol. 149, 61–75. https://doi.org/10.1016/j.jconhyd.2013.03.002 .

heng, C. , Wang, P.P. , 1999. MT3DMS : A Modular Three-Dimensional Multispecies Trans-
port Model for Simulation of Advection, Dispersion, and Chemical Reactions of Con-
taminants in Groundwater Systems. US Army Corps Eng. Eng. Res. Dev. Cent. 220 .

http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0022
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0022
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0022
https://doi.org/10.1002/2012WR013483
https://10.3133/ofr200092
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0025
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0025
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0025
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0025
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0025
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0026
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0026
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0027
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0027
https://doi.org/10.3390/ijerph15061063
https://doi.org/10.1111/gwat.12004
https://doi.org/10.5194/hess-20-3149-2016
https://doi.org/10.1016/j.envsoft.2014.06.024
https://doi.org/10.1111/gwat.12104
https://doi.org/10.2172/1461175
https://doi.org/10.1002/cpe.900
https://doi.org/10.1111/j.1745-6584.2005.00156.x
https://doi.org/10.3133/tm6A22
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0037
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0037
https://doi.org/10.1088/1748-9326/aa7146
https://doi.org/10.1007/s11704-010-0120-5
https://doi.org/10.9753/icce.v32.management.35
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0041
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0041
https://doi.org/10.1371/journal.pone.0118571
https://doi.org/10.13140/2.1.1637.4727
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0044
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0044
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0044
https://doi.org/10.1029/2009WR008719
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0046
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0046
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0046
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0046
https://doi.org/10.1016/j.cosust.2013.11.007
https://doi.org/10.1029/JZ066i010p03273
https://doi.org/10.1007/s00791-013-0207-2
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0050
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0050
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0051
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0051
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0051
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0051
https://doi.org/10.2112/jcoastres-d-13-00070.1
https://userinfo.surfsara.nl/systems/cartesius/description
https://doi.org/10.1109/ICPP.2011.59
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0055
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0055
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0055
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0055
https://www.waterloohydrogeologic.com/visual-modflow-flex/
https://doi.org/10.1016/j.jconhyd.2013.03.002
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0059
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0059
http://refhub.elsevier.com/S0309-1708(21)00131-7/sbref0059

	Distributed memory parallel computing of three-dimensional variable-density groundwater flow and salt transport
	1 Introduction
	2 Methods
	2.1 Parallel performance measurement
	2.2 Subdomain partitioning
	2.2.1 Uniform partitioning
	2.2.2 Orthogonal recursive bisection partitioning
	2.2.3 Overlap and communication

	2.3 Linear parallel Krylov solver
	2.4 Input and output

	3 Test cases
	3.1 Test case 1: Henry 3D model
	3.2 Test case 2: Sand Engine model
	3.3 Hardware and compiler

	4 Results
	4.1 Henry 3D test case
	4.2 Sand Engine test case

	5 Discussion
	6 Conclusions and recommendations
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgements
	A Governing equations for variable-density groundwater flow and salt transport
	B Parallel linear solver algorithms for flow and salt transport
	References

