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Common irrigation drivers of freshwater
salinisation in river basins worldwide
Josefin Thorslund 1,2✉, Marc F. P. Bierkens 2,3, Gualbert H. P. Oude Essink 2,3, Edwin H. Sutanudjaja2 &

Michelle T. H. van Vliet 2

Freshwater salinisation is a growing problem, yet cross-regional assessments of freshwater

salinity status and the impact of agricultural and other sectoral uses are lacking. Here, we

assess inland freshwater salinity patterns and evaluate its interactions with irrigation water

use, across seven regional river basins (401 river sub-basins) around the world, using long-

term (1980–2010) salinity observations. While a limited number of sub-basins show per-

sistent salinity problems, many sub-basins temporarily exceeded safe irrigation water-use

thresholds and 57% experience increasing salinisation trends. We further investigate the role

of agricultural activities as drivers of salinisation and find common contributions of irrigation-

specific activities (irrigation water withdrawals, return flows and irrigated area) in sub-basins

of high salinity levels and increasing salinisation trends, compared to regions without salinity

issues. Our results stress the need for considering these irrigation-specific drivers when

developing management strategies and as a key human component in water quality mod-

elling and assessment.
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Freshwater salinisation is a major water quality problem,
affecting both surface- and groundwater systems, with
impacts on agricultural production, sectoral water use,

biogeochemical cycling, water quality regulation, as well as
human and ecosystem health1–3. Although increasing salinity is a
growing threat in many regions4, salinity issues have received
limited attention compared to other global water quality issues,
such as eutrophication, pesticides and metal pollution5. Particu-
larly, more large-scale (cross-regional) research on inland surface
water salinity levels and change has been called for, as well as
long-term salinity effects on human water use sectors, including
the agricultural sector6,7. Evaluating salinity impacts for irrigation
water use is particularly relevant as it is the largest water use
sector globally and it has the most stringent salinity threshold
compared to other sectors8. This sector is vulnerable to salinity
issues within the whole water-soil-crop system and salinisation is
seen as a major threat to the sustainability of irrigated agriculture
and food production9.

In addition to quantifying the status and impact of freshwater
salinisation, a better understanding of its large-scale drivers
(Fig. 1) is needed10. Evaluation of large-scale drivers in coastal
regions has been well-studied11 and includes saltwater intrusion
caused by excessive groundwater pumping12, extreme hydro-
logical events13, tidal flows and/or storm surges14. These pro-
cesses are likely to increase under climate change and relative sea-
level rise15. However, the need to also assess and manage drivers
of inland salinisation, both in arid and humid regions, is
becoming more and more pressing16. In addition to hydrocli-
matic drivers17, relevant human drivers to inland freshwater
salinisation include road salt application18, mining19 and
agriculture20. Among these human drivers, the impact of
road salts on rising salinity levels has been relatively well-
quantified and reviewed across multiple inland surface water
bodies and regions18,21. With regards to agricultural drivers, there
are several studies at local and regional scales22,23, including

raising saline groundwater due to irrigation withdrawals24, or
spreading of salt-containing fertilisers to the groundwater and/or
surface water system25. However, there is a lack of systematic
assessments of the impact of agricultural activities on surface
water salinisation at cross-regional to global scales.

Here, we assess freshwater salinisation and its relation to
agricultural activities, both in terms of (i) impacts of salinity
levels for irrigation water use, as well as (ii) contributions of
agricultural drivers to freshwater salinisation across regional
scales. Specifically, we quantify salinity levels, trends and dri-
vers in 401 river sub-basins (hereafter referred to as sub-
basins), across seven regional river basins around the world
(Fig. 2). These regions, which span different hydroclimatic and
geographical regions and varying anthropogenic impacts, are:
Mississippi (North America), Ebro, Danube, Rhine (Europe),
Orange (Africa), Mekong (Asia) and Murray-Darling (Aus-
tralia). Within these regions, we delineate the sub-basins from
all river monitoring locations with a minimum of 15 years of
monthly salinity data within the period 1980–2010 (Supple-
mentary Figs. 1 and 2). We compute monthly mean salinity
levels of stations from over 400,000 salinity observations
(electrical conductivity; EC), synthesised from a new open-
access global database26. We then classify the sub-basins into
different salinity levels, based on international threshold values
for irrigation water use27,28 and assess salinity trends over the
1980 and 2010 period. We further acquire global-scale open
data of agriculturally relevant variables for evaluating their
contributions to observed salinity levels, as well as some addi-
tional hydroclimatic and geographic variables that are expected
to influence salinity levels. Sub-basin averages of 26 driver
variables (Table 1 and Supplementary Section S2) are calculated
and their relationship across salinity levels and trends are
assessed, using both statistical and machine-learning (random
forest (RF)) methods29. Our results show that irrigation-specific
activities (particularly irrigation water withdrawals, return

Fig. 1 Potential drivers of freshwater salinisation within a hydro(geo)logical landscape. The drivers are categorised according to hydroclimatic (blue
arrows), geographic (green arrows) and human (orange arrows) drivers. Examples of human drivers include polluted return flows from agricultural,
domestic, and industrial activities (including mining), as well as road salt applications and saltwater intrusion caused by excessive groundwater
withdrawals. Geographic drivers for instance include geological weathering products, atmospheric salt deposition and natural saltwater intrusion through
seawater inundation caused by fresh-saline water density difference effects, tides, storm-surges and even long-term transgressions. Hydroclimatic drivers
may impact salinisation through changes in discharge (ΔQ) and resulting dilution capacity, as well as through increasing evapo-concentration under
increasing evapotranspiration (ΔET) and/or decreasing precipitation (ΔP) or discharge (ΔQ).
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flows and irrigated area) are significantly elevated in sub-basins
of high salinity levels and in regions that have experienced
increasing salinisation, compared to regions without salinity
issues. The identified significance of irrigation-specific drivers
offers guidance for the development of salinity-specific mon-
itoring programs and for considering irrigation as a key human
component in water quality assessments and modelling.

Results
River salinity levels and threshold exceedance. Overall, a
majority of the investigated sub-basins show low long-term
average salinity levels, with 65 % of the total 401 sub-basins
occurring within the Low salinity impact class, which is below the
threshold value for irrigation water use (<700 µS cm−1)
(Fig. 2). In contrast, 35% of the sub-basins have long-term
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Fig. 2 Long-term average salinity levels across the studied river sub-basins. Overview of the seven selected regional river basins and associated
delineated 401 sub-basins from monitoring locations (black dots), with number of sub-basins of each regional river basin given in each zoomed panel. The
salinity (EC) data availability criteria per monitoring station is at least 15 years of monthly data over the 1980–2010 period. The full distribution of salinity
measurements per station is given in Supplementary Fig. S1.2. Each sub-basin is classified into different salinity impact classes, based on thresholds for
irrigation water use, with Low (EC < 700 µS cm−1; green colour), Moderate (<700–1500 µS cm−1; yellow colour) and High (>1500 µS cm−1; orange colour)
classes and associate total number of sub-basins within each class (N), based on long-term annual average EC over the 1980–2010 period. Sub-basins in
white did not meet the data criteria of stations with a minimum of 15 years of monthly salinity data within the study period.
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average salinity levels exceeding this threshold value, with the
majority (n= 108 out of 401) within the Moderate salinity impact
class (700–1500 µS cm−1) and a smaller subset (n= 31) within
the High salinity impact class (>1500 µS cm−1). Considering the
spatial context, our results show both within and cross-regional
heterogeneity of salinity levels, with the occurrence of sub-basins

of all salinity impact classes in each of the regional river basins.
The overall largest variability across sub-basins is seen in the
Mississippi, Ebro and Murray-Darling river basins, while the
Mekong and the Danube river basins show the overall lowest
variability across sub-basins (while dominated by the Low salinity
impact class).

Table 1 Information on all main driver variable groups and their respectively sub-categories included in this study.

Driver variable (abbreviation;
unit)a

Dataset Dataset resolution Source

Temperature (T, °C) CRU TS4.03 Globally gridded (0.5°),
at monthly temporal
resolution (1980–2010)

https://catalogue.ceda.ac.uk/uuid/
10d3e3640f004c578403419aac167d82

Precipitation (P; m month−1) PCR-GLOBWB 273 Globally gridded (5×5
arc-minute), at monthly
temporal resolution
(1980–2010)

https://www.geosci-model-dev.net/11/2429/2018/

Potential evapotranspiration
(PET; m month−1)

PCR-GLOBWB 2 Same as above Same as above

Actual evapotranspiration
(AET; m month−1)

PCR-GLOBWB 2 Same as above Same as above

Evaporative ratio (−):
(i) PET/P and (ii) AET/P

Estimated from P,
PET, AET

Same as above Same as above

Discharge (Q; m3 sec−1) PCR-GLOBWB 2 Same as above Same as above
Sectoral water withdrawal (m
month−1): (i) irrigation (Irr.
ww), (ii) non-irrigation
sectors (domestic, industrial
and livestock combined),
(Non-irr. ww)

PCR-GLOBWB 2 Same as above https://www.geosci-model-dev.net/11/2429/2018/

Return flows (m month−1) for:
(i) irrigation (Irr. rf) (ii) non-
irrigation sectors (Non-irr. rf;
sum of domestic, industrial
and livestock sectors)

PCR-GLOBWB 2 Same as above Same as above

Dams: (i) total dam capacity
(Dam storage; Mm3), (ii)
number (Nr. Dams; −) (iii)
ratio of dam capacity to sub-
basin area (Norm. dam
storage; −), (iv) ratio of dam
area to sub-basin area (Norm.
dam area; −)

Global Reservoir and
Dam (GRanD), v174,75

Global coverage https://sedac.ciesin.columbia.edu/

Land-use (m2): (i) Total
cropland area (Tot. cropland)
and (ii) Ratio irrigated area to
sub-basin area (Norm.
irr. area)

(i) NOAA-HYDE76,77, (ii)
MIRCA200078

(i) Globally gridded
(0.5°) at annual temporal
resolution (1980–2010),
(ii) Globally gridded
(0.5°) at year 2000

(i) https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.
noaa.ncdc:C00814#
(ii) https://www.uni-frankfurt.de/45218023/MIRCA

Fertiliser application (tons) of:
(i) Nitrogen (N. total) (ii)
Phosphorous (P. total) and
(iii) Total (sum of (i) and (ii);
Tot. Fert.)

Nitrogen and phosphorus
use for global agriculture
production during 1900-
201379

Global gridded (0.5°),
monthly resolution
1980–2010

10.1594/PANGAEA.863323

Soil salinity (dS m−1) of (i)
top layer (0–20 cm; EC top
soil), (ii) sub soil layer
(20–40 cm; EC sub soil) and
(iii) its average (EC soil aver.)

WISE30sec80 Globally gridded, at 30
arc-seconds

https://data.isric.org/

Elevation (m.a.s.l.) Void-filled, hydrologically
corrected DEM

Globally gridded, at 15
arc-sec resolution

https://www.hydrosheds.org/

(i) Actual distance from coast
(Dist. coast; km), (ii) Relative
distance from coast (Rel. dist.
coast; −)

(i) Coastline vector map
from Natural Earth, (ii)
calculated from (i) and
elevation

Global coverage https://www.naturalearthdata.com

aDetailed descriptions of processing steps for each driver variable are included in the supplementary information (Supplementary Section S2).
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Fig. 3 Distribution and timeseries of sub-basin salinity threshold exceedance. Panel a shows three examples of the distribution of sub-basin salinity
exceedance levels (% of months exceeding the threshold 700 µS cm−1 compared to total number of monthly measurements for each sub-basin) within the
Mississippi, Ebro and Orange regional river basins, grouped over sub-basins within the Low salinity impact class (i.e., sub-basins with long term annual
average salinity values below 700 µS cm−1; blue boxplots), and sub-basins within the Moderate-High salinity impact class (i.e., long-term salinity levels
above 700 µS cm−1; red boxplots). Panel b shows monthly timeseries of one individual sub-basin station from the Low salinity impact class (selected from
the longest timeseries available), from each river basin example in a, with salinity levels exceeding the threshold highlighted in red.
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Compared to these long-term average levels, we also analyse
sub-basin exceedance frequency of salinity values above the
700 µS cm−1 irrigation threshold, both within and across
regions (i.e., the fraction of months compared to total that each
sub-basin exceeds the salinity threshold). We separate the
effects to show the exceedance level of all sub-basins within the
Low salinity impact class (i.e., sub-basins with long term annual
average salinity values below 700 µS cm−1), compared to all
sub-basins within the Moderate-High salinity impact class (i.e.,
long-term salinity levels above this threshold). Examples from
the Mississippi, Ebro and Orange basins highlight that even
when long-term salinity levels are below the 700 µS cm−1

threshold (i.e., Low salinity impact class), sub-basin exceedance
still occur on shorter timescales (blue boxplots of Fig. 3a) and
there can be large intra-annual variability in salinity levels
(Fig. 3b). We see similar results considering all regions, with an
average sub-basin exceedance level of 33% (Supplementary
Fig. 3a), but with highly variable results (sub-basin exceedance
levels of between 0 and 58%; Supplementary Fig. 3b). Such
intra-annual threshold exceedance can have important implica-
tions for water use management, as these water resources may
not always be of suitable salinity level for irrigation water use
purposes.

Driver contributions across salinity levels. To investigate the
contributions of the selected set of driver variables to observed
salinity levels, we quantify long-term (i) (agriculture-related)
human (ii) hydroclimatic and (iii) geographic variables over each
sub-basin, and compare their contributions across the different
salinity impact classes (Low, Moderate, High). To statistically
assess the different contribution of each driver across observed
salinity impact classes, we perform the Wilcoxon rank sum test.
This test identifies if there is a statistically significant shift in the
distribution of each driver variable between sub-basins of dif-
ferent salinity impact classes (Low-High, Low-Moderate, Mod-
erate-High), at the 95% significance level, i.e., p < 0.05 (see
Methods for further details).

Our results show higher contributions of (human) agricultural
drivers in sub-basins of Moderate to High salinity levels (Fig. 4;
yellow and orange boxplots), compared to those of Low salinity
levels (Fig. 4; green boxplots). These results are particularly strong
for irrigation-related variables, with significantly higher levels of
irrigation water withdrawals (Irr. ww) and irrigation return flows
(Irr. rf) in sub-basins within the High, compared to the Low
salinity impact class (Fig. 4; green-orange boxplots, and Wilcoxon
test results in Supplementary Table 1; Low-High pair compar-
ison). Our results also show the contribution of agricultural land-
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Fig. 4 Contributions of hydroclimatic, geographic and human drivers across sub-basin salinity impact classes. Distribution of driver levels across sub-
basin salinity impact classes, for a selection of 17 out of the total 26 considered driver variables. The selection includes all driver categories (as listed in
Table 1), but where multiple variables within the same category exists (e.g., for soil salinity), only one variable was included. The salinity impact classes are
based on groups of sub-basins with Low (EC < 700 µS cm−1; green boxplots), Moderate (EC= 700–1500 µS cm−1; yellow boxplots) and High (EC > 1500
µS cm−1; orange boxplots) salinity levels, classified from long-term annual average values (as illustrated in Fig. 2). The selected drivers are plotted along
groups of (i) hydroclimatic, (ii) geographic and (iii) human (agricultural-related) drivers on the x-axis, and their normalised levels on the y-axis. The values
were normalised by dividing each sub-basin specific driver value by the group-average value, for each driver and then grouped over each salinity impact
class. Full driver names and original units are given in Table 1. Boxplot statistics include the median (vertical thick black lines), interquartile range (IQR: 25th
percentile; Q1 and 75th percentile; Q3) and whiskers (confidence interval of Q1− 1.5∗IQR to Q3+ 1.5∗IQR). The stars (*) over the boxplots indicate where
there are statistically significant differences in the driver contributions between the Low-High salinity impact classes (all summary statistics are included in
Supplementary Table 1).
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use, with higher fractions of irrigated area (Norm. irr. area), total
cropland area (Tot. cropland) and fertiliser use (Tot. fert.) in sub-
basins of the Moderate, compared to the Low salinity impact class
(Fig. 4; green-yellow boxplots, and Supplementary Table 1, Low-
Moderate class comparison), as well as to a lower extent non-
irrigation human water withdrawal and return flows (Non-irr.
ww; Non-irr. rf; Fig. 4 across boxplot levels, and Supplementary
Table 1). We also find evidence of similar agricultural land-use
contributions with increasing salinity levels within most regional
river basins (Supplementary Fig. 4). Specifically, sub-basins of
higher salinity levels within the Mississippi, Ebro, Orange and
Mekong basins have higher contributions of irrigation water
withdrawals and return flows (Irr. ww; Irr. rf; Supplementary
Fig. 4a, b, e, f). There are also within-regional effects of higher
cropland (Tot. cropland; Supplementary Fig. 4b, c, e, f, g) and
relative irrigated area (Norm. irr. area; Supplementary Fig. 4a, b,
e, f, g) with increasing salinity levels. In contrast, higher salinity
sub-basins within the Rhine and Murray-Darling are dominated
by a higher contribution of non-irrigation (i.e., domestic,
industrial and livestock) water withdrawals and return flows
(Non-irr. ww; Non-irr. rf; Supplementary Fig. 4c, d).

Surprisingly, for the hydroclimatic drivers, although we
observe significant differences in evaporative ratios (PET/P,
AET/P) and temperature (T) between salinity impact classes, the
contribution of all these drivers decrease with increasing salinity
levels (Fig. 4; direction across from green to orange boxplots).
Such changes are opposite to expectations based on evapo-
concentration effects (i.e., increasing salinity with increasing
evaporation). It is also generally expected that the impact of
irrigation in high salinity regions would correspond to more arid
regions, which requires more irrigation. To further investigate
this unexpected correlation between salinity and aridity, we
explore relations between aridity and irrigation within each sub-
basin, including irrigated area, irrigation consumption and
irrigation water withdrawals. We find that all these irrigation-
specific parameters have a higher contribution in sub-basins of
lower aridity (lower aridity index; PET/P), compared to higher
aridity regions (Supplementary Fig. 5). These results support our
finding of the contribution of irrigation drivers in high salinity
sub-basins, and explain the inverse relation between salinity levels
and aridity, since irrigation area and water use are elevated in less
arid regions. A likely explanation to why we observe lower
irrigation water use with increasing aridity could be due to water
limitations in the more arid regions (172 of our investigated sub-
basins occur in dry sub-humid to arid regions). While crop
irrigation water demands are expected to be higher in more arid
catchments, it is also more likely that the demand cannot be met
due to a lack of available water resources (i.e., actual irrigation
withdrawals and consumption is thus lower). Another possible
explanation to the inverse relationship between irrigation and
aridity could be due to irrigation‐climate interactions. Recent
studies have shown that irrigation can lead to increasing soil
moisture and relative humidity, which in turn, reduces atmo-
spheric aridity30. Due to the land–atmospheric coupling processes
described above, irrigated regions across the world can therefore
cause local/regional atmospheric cooling, which may reduce
aridity31. Such effects could also contribute to observed relation-
ships between lower aridity and increasing irrigation, which are in
line with our findings of higher salinity in less arid regions.

To further investigate the robustness of the driver analyses
results, we also test for significance between driver contributions
across two new salinity impact classes, based on salinity levels
above (N= 139) and below (N= 262) the salinity threshold level
of 700 µS cm−1 for irrigation water use. This alternative grouping
still allows for comparison between sub-basins with and without
salinity issues for irrigation water use, but increases the sample

size of the sub-basins with elevated salinity levels (above; >700 µS
cm−1). Our results for this sub-group analysis also agree with
previous quantifications, showing again the high contribution of
irrigation-specific and agricultural land-use drivers (Irr. ww, Irr.
rf, Tot. cropland, Norm. irr. area, Tot. fert.), as well as lower
evaporative indexes in salinity-affected regions (Supplementary
Table 2). Although our focus is on evaluating the impact of
agricultural-related human drivers, we perform additional
analyses to quantify possible impacts of mining and road salt
use on salinity levels, to test the robustness of our results. We use
a new global gridded dataset of mining areas32, to evaluate the
contribution of mining area (total and normalised) within all sub-
basins, across salinity impact levels. For road salt, we estimate
annual average application (in pounds) within available years of
our study period (1992–2010)33 for all sub-basins within the
Mississippi river basin as a case study (N= 167). We focus on this
region, due to due to limitations of global datasets and the lack of
relevance of road salt in many of our considered regions (located
in climate zones with snow-free winters, where road salt
application is not present/limited). We did not find any
significant contributions of road salt or mining in sub-basins
within the High or Moderate salinity impact class (Supplemen-
tary Fig. 6).

River salinity trends. Salinity trends of each sub-basin were then
quantified, based on Mann-Kendall trend tests34,35 and Sen’s
slope analyses36, considering monthly timeseries over the
1980–2010 period. We found that 57% (229 out of 401) of all
investigated sub-basins exhibit increasing basin-average salinity
trends over the study period (with 32% of total sub-basins
showing statistically significant increasing trends; p < 0.05)
(Fig. 5a, b). In contrast, 43% (172 of 401) of the sub-basins show
decreasing basin-average salinity trends over the considered 30-
year period (with 24% of total sub-basins being statistically sig-
nificant). Most regions show spatial heterogeneity across sub-
basins, with the presence of both salinisation and decreasing
salinity trends, sometimes in close proximity (see e.g., clusters of
opposite trends within Mississippi, Ebro and Murray-Darling),
whereas some regional river basins (e.g., Orange) show more
consistent trends throughout the sub-basins (Fig. 5a). Overall, the
Murray-Darling (78%) and Danube (73%) river basins are
dominated by decreasing salinity trends, whereas the Mississippi
and Orange basins have the relatively largest number of sub-
basins experiencing salinisation (73% respectively 63% of their
total sub-basins show increasing trends; Fig. 5). A large propor-
tion of the positive salinity trends in the Mississippi and Orange
basins are statistically significant (Fig. 5b), highlighting a stronger
within-regional degree of salinisation compared to other regions.

Driver contributions across salinity trends. We used the Ran-
dom Forest (RF) approach, together with the conditional per-
mutation importance (CPI)37 method, to examine the relative
importance of the considered drivers to predicting salinity
levels in sub-basins of contrasting salinity trends (increasing vs.
decreasing trends; see Methods and Supplementary Section S4).
The RF model performs slightly better (R2= 0.62; Supple-
mentary Table 4) in predicting salinity levels for sub-basins
experiencing salinisation (i.e., the group of sub-basins with
increasing long-term salinity levels), compared to sub-basins
experiencing decreasing salinity trends (R2= 0.51; see Supple-
mentary Table 4 for all accuracy parameters). In terms of driver
importance evaluation, we get the same top 15 predictors
regardless of chosen CPI threshold, suggesting robustness of
this method within the chosen threshold range (see Methods
for specifics). For sub-basins experiencing salinisation, our
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results clearly show that irrigated area (Norm. irr. area; Fig. 6a),
plays the most significant role in achieving prediction accuracy
of the RF model, out of the 26 included driver variables. This is
identified by its higher CPI accuracy importance score com-
pared to the other variables (unitless; a higher score means a
higher relative contribution compared to other variables).
Other top predictors include landscape position (Dist. coast;
Rel. dist. coast; Elevation) and soil salinity (EC top soil), as well
as, from the human driver variables; irrigation water with-
drawals and return flows (Irr. ww, Irr. rf).

For sub-basins with decreasing salinity trends, distance from
the coast plays the most significant role in achieving prediction
accuracy, suggesting this geographic variable is important to
consider in all salinity predictions. In contrast, for human driver
variables, non-irrigation return flows and withdrawals emerges as
top predictor variables (Non-irr. rf, Non-irr. ww; Fig. 6b) for sub-
basins with decreasing salinity trends. This suggests that other
sectoral activities, rather than irrigation activities, may be more
important to consider when predicting salinity levels in areas that
are not experiencing salinisation. The gap is however less between
the top driver and the other variables here (Fig. 6b) compared
with increasing salinisation locations (6a), suggesting a lower
distinctive individual contribution from any driver among sub-
basins experiencing decreasing salinity trends.

The relative importance of irrigation-specific drivers in sub-
basins that have undergone increasing salinisation, but not in
sub-basins with decreasing salinity trends, are in line with our
earlier analyses (Fig. 4), and also highlights the contribution of
irrigation activities in regions with increasing salinity trends. In
line with earlier analysis, we also included mining and road salt as
predictor variables in the RF and CPI-analysis, to predict salinity
levels in sub-basins experiencing salinisation. Mining showed a
very low CPI accuracy importance score compared to the other
variables, which indicates its lack of relevance for predicting
salinity levels within the here studied regions (Supplementary
Fig. 8a, b). For the Mississippi case study example, road salt was
more important than mining, but was still only the 14th highest
ranked variable in this region, scoring lower than all irrigation-
related parameter (Supplementary Fig. 8a, b). To further under-
stand the absolute contributions of the different drivers between
sub-basins of increasing and decreasing salinity levels, more
detailed analysis of actual driver levels and/or trends should be
considered. For example, irrigation return flows (Irr. rf) emerge
among the top 15 predictors for both increasing and decreasing
salinity trends (Fig. 6a, b). This means that this variable is
important to consider when predicting salinity levels, regardless
of the underlying salinity trend. However, actual driver impact
level must be related to further analyses, for instance combined
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with correlations assessment (Fig. 4) or other statistical analyses.
The results of the RF and the CPI analyses are valuable tools for
moving away from “black-box” type predictions, by identifying
variables that are critical for successful salinity predictions. Using
these methods in regions experiencing contrasting salinity trends
is an important first step for improving our understanding of
relations between salinity levels, trends and drivers.

Discussion
This study provides new data-driven insights on cross-regional
salinity levels, trends and drivers in a large selection of river sub-
basins worldwide. Many local to regional studies have suggested
that freshwater salinisation is occurring at an increasing rate and
at expanding scale4–6,10. Using long-term publicly available sali-
nity monitoring data26, we here expand on the spatial scale of
previous findings, by showing that a majority of quantified sub-
basins indeed experience increasing salinity trends. However, our
results also reveal large spatial heterogeneity in the direction of
trends, both within and across (regional) river (sub-) basins. We
also found that many sub-basins which did not exhibit persistent
salinity problems, still temporarily exceeded salinity irrigation
water-use threshold levels. This suggests that problems of fresh-
water salinisation might fluctuate highly, both within and across
seasons38, which could have important implication for intra-
annual irrigation water use. In addition, salinity water use con-
straints are underestimated if quantified at the annual to long-
term scales, highlighting the need for further studies to account
for seasonal aspects with regards to both salinity levels and trends.

Irrigating with saline water could severely affect crop yields,
due to long-term soil salinisation build-up, waterlogging and
reduced water availability for crops when salinity increases39.
Yield reductions of between 10 and 25% have been shown to
affect saline sensitive crops (e.g., beans, carrots and lettuce) when
irrigating with saline water of around 1000 µS cm−1 (i.e., salinity
levels within the Moderate and High salinity impact classes of this
study)40. Although salt-tolerant crops (such as halophytes) exist
and may provide a suitable adaptation strategy to high saliniza-
tion for some regions, the large-scale potential of saline irrigation
is still an underexplored research area41. In addition, the risks of

higher yield reductions increase over time, due to soil salinity
build-up42. Given the global relevance of the irrigation water use
sector, our assessment highlights both vulnerable areas in need of
further salinity assessment and management, as well as regions
where salinity levels are not (yet) an issue. Additional research,
focusing on agricultural production impacts, considering for
instance crop-specific salinity thresholds over the seasons and
yield analyses, would add valuable details to our large-scale
analysis. More generally, although our focus has been on evalu-
ating salinity levels with regards to limitations for irrigation of
most crops, our results and salinity dataset could be used for
other impact assessments. This includes other human water uses,
such as increasing water scarcity for the domestic and industrial
sectors43, as well as human health44. Also, in terms of ecological
assessments, high freshwater salinity levels can have multiple
effects on biota, with impacts on species richness, abundance and
functional traits, as well as on ecosystem processes6,45. However,
it is worth noting that naturally occurring saline aquatic systems,
especially in arid regions, also provide important ecosystem ser-
vices and valuable habitats for salt adapted species46. Therefore,
high salinity levels do not always result in ecosystem degradation,
but salinity levels must be evaluated with regards to underlying
conditions and specific impact assessments. Further cross-
regional assessments with regards to these various aspects could
add valuable knowledge to the more wide-ranging impacts of the
here quantified salinity levels.

In addition to being affected by high salinity levels, our ana-
lyses show cross-regional effects of the contribution of agri-
cultural, and particularly irrigation-specific activities (irrigation
water withdrawals, return flows and irrigated area), in sub-basins
of elevated salinity levels and increasing salinity trends, compared
to regions with lower or no salinity issues. These results both
agree with, and increase the spatial extent of previously reported
effects of agricultural activities on salinisation21,22. For example, a
study using a similar RF approach as here and considering drivers
to river salinisation across the US showed that the largest salinity
increases were impacted by a combination of agriculture (% crop
land cover), mining and groundwater pumping47. Irrigation-
specific practices have also been shown to increase salinity of
surface waters, as salts evapoconcentrate from the application of

Fig. 6 Relative driver contributions for predictions of salinity levels across trends. Bar charts show the relative importance of driver variables in
predicting salinity levels in sub-basins with (a) increasing salinity trends (red bars) and (b) decreasing salinity trends (blue bars), using the conditional
permutation importance method within the Random Forest approach. The accuracy importance score (y-axis; unitless) represent the relative importance of
each predictor variable in achieving the prediction capacity of the Random Forest model (note the different y-axes in panel a and b and that the absolute
values of the scores should not be interpreted, only the relative scores between drivers).
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irrigation water to agricultural fields48. This is a particularly (well-
known) reported problem in arid and semi-arid regions where
large water volumes are needed for crop production. Since all salts
in the irrigation water are not absorbed by the crops, salt may
concentrate in the soil, which can lead both to soil degradation
and spreading of salts to surface and groundwater resources49.
Our results however show that these problems are not limited to
arid regions, but that irrigation activities could also significantly
contribute to salinity issues in more humid regions. These results
highlight the need for more studies on the interactions between
salinity and irrigation practices, water availability and soil char-
acteristics beyond arid regions.

Our results are based on both classical statistical and machine-
learning (random forest (RF)) methods, which have been used
successfully in a range of environmental studies, including salinity
issues50. The inclusion of the CPI method37 allows more reliable
interpretation of driver contributions, which has earlier been a
main issue within RF modelling analyses51. Additionally,
machine-learning methods offers potential for predicting salinity
patterns in areas where empirical measurements are few or
lacking, as well as for usages with other salinity proxies, including
remote sensing datasets52. By identifying critical variables for
salinity predictions, our approach encourages further application
of these methods to the problem of freshwater salinity, specifically
to develop a deeper understanding of the relative contribution of
considered drivers to salinity changes across space and time. Such
applications could also expand and further explore the impact of
road salt and mining, which did not show significant contribu-
tions to salinisation for our study sites, but are known to be
important contributors in other regions18,38,53.

Although the datasets and models used in this study are
associated with uncertainties, the use of global hydrological and
climate models have become essential tools for cross-regional to
global assessments54. For example, the sector-specific water use
data from PCR-GLOBWB that we use, has been applied exten-
sively in global water resource assessment studies55, and has been
validated to reported values and observed timeseries on various
scales and to independent assessments56. Using state-of-the-art
models and datasets available at the global scale therefore enabled
us to conduct systematic assessments across these multiple
regions and temporal scales, combined with the large amounts of
salinity observational data. However, to complement the large-
scale results of this study, refined analyses of irrigation-specific
drivers (e.g., considering local irrigation techniques and specific
irrigation water sources, as well as crop rotation practices) could
aid in assessing model uncertainties and add more detailed
knowledge of local-regional effects and feedbacks on salinity level
and changes.

In summary, our analysis of freshwater salinity changes and its
drivers in river sub-basins around the world stresses the large-
scale contribution of irrigation land- and water use (water with-
drawals, return flows and irrigated area) in regions experiencing
salinisation issues. Future irrigation water use is projected to
increase, driven by higher food demands with a growing world
population57. Irrigation water demands may also increase due to
hydroclimatic changes, which are expected to bring more severe
drought events and dryland expansion58. In light of these
expected future changes, the results of this study clearly highlight
the need for timely action on freshwater salinity management.
The identified contribution of irrigation-specific drivers to
freshwater salinisation highlights the need to include these
human components in further water quality assessments and for
enabling reliable model predictions. Our results offer directions
for the development of salinity-specific monitoring programs and
management efforts of freshwater resources in agricultural
regions.

Methods
River salinity data selection and processing. For the selection of case study
regions, we used electrical conductivity (EC) data from our previously synthesised
global salinity dataset26, in combination with data from the GEMStat59 and the
Mekong River commission data portal60. We considered all river monitoring
locations from this dataset with a minimum timeseries of 15 years of monthly EC
data availability within the period 1980–2010. In total, our dataset contains
417,315 salinity observations, from which we computed the monthly averages. The
time period of 1980–2010 was selected due to its span over a 30-year period, which
enables long-term trend assessment. This specific period is consistent with most of
the driver variable datasets (see Table 1). The data criterion of 15 years of monthly
available data allow locations with some data gaps, which is a very common trait
for water quality monitoring data, while still ensuring long timeseries data span-
ning over at least half of the 30 years full time period considered.

From the monitoring locations fulfilling the selection criteria (see
Supplementary Fig. 1 for all locations), we select seven regional river basins for
further analyses; Mississippi (North America), Ebro, Danube, Rhine (Europe),
Orange (Africa), Mekong (Asia) and Murray-Darling (Australia) (Fig. 2 and
Supplementary Fig. 2 for measurement distributions and time series lengths).
Beyond having multiple monitoring locations fulfilling the selection criteria, these
river basins were selected to span different hydroclimatic and geographical regions
and different anthropogenic impacts. Individual sub-basins from each selected
salinity monitoring location within these seven regional river basins were then
derived, using the hydrology toolset in ArcMap. We used the 15 arcsec flow
direction data from HydroSHEDS61, from which flow accumulation zones were
computed. To adjust for EC locations being slightly off the river network, we run
the “Snap Pour Point” tool to adjust and re-locate the EC sampling points to cells
of high accumulated flow. All individual sub-basins with an area of less than 1 km2

were excluded, due to the hydrologically unrealistic appearance of these sub-basins.
This resulted in a set of 401 sub-basins within seven regional river basins around
the world (zoomed panels of Fig. 2). The final set of sub-basin shapefiles was then
exported and further processed in R (detailed processing steps below and in
Supplementary Section S2).

Driver variables selection and processing. We acquired and processed a total of
26 geographic, hydroclimatic and human (mainly agricultural-related), driver
variables, either as time series (monthly or annual) over the 1980–2010 period, or
as constant values (see specifications in Table 1). The considered drivers were
selected based on their expected influence on surface water salinity levels from a
physical perspective and availability of data for selected river basins globally. Many
anthropogenic activities may drive salinity changes, from which agricultural
practices often are considered as having potentially large impacts. For example,
irrigation can drive salinisation through different mechanisms; either through poor
irrigation practices, raising saline groundwater volumes due to increased irrigation
groundwater withdrawals24, or from increasing evapotranspiration over irrigated
fields62. For comparison purposes, we also considered sectoral water use and return
flow beyond the irrigation sector, as these may also impact freshwater salinisation,
e.g., through polluted runoff from urban and industrial sectors63. Regarding
hydroclimatic variables, it is well known that salinity may increase with evapora-
tion, due to evapo-concentration effects64 and could change with changing dis-
charge levels, due to changing dilution effects. Thus, we considered discharge,
temperature, precipitation, as well as actual and potential evapotranspiration to be
relevant hydroclimatic variables to be included in the analyses. Geographic vari-
ables that we considered, include soil salinity, elevation and distance to the coast,
due to their known potential to influence salinity levels. Full processing steps of
each of the considered driver variable are described in the supplementary infor-
mation (Supplementary Section S2).

Spatio-temporal analyses
Long-term salinity levels and threshold exceedance. Long-term annual average sali-
nity levels from each selected river monitoring location were used to classify the
derived sub-basins into three overall salinity impact classes: Low (i.e., <700 µS cm−1),
Moderate (700–1500 µS cm−1) and High (i.e., >1500 µS cm−1) salinity (Fig. 2). The
classification levels are based on global international threshold values for irrigation
water use27. According to the Food and Agriculture Organization (FAO)27, Electrical
conductivity (EC) values of 700 µS cm−1 represents slight to moderate restriction for
irrigation uses and values >3000 µS cm−1 represents severe restrictions. Zaman
et al.27 and references therein, define salinity levels <750 µS cm−1 as having no
effects, values 750–1500 µS cm−1 risk having detrimental effects on sensitive crops,
and levels >1500 µS cm−1 having adverse effects on many crops. We used these
global salinity threshold levels as a basis for our classification, due to the large-scale
focus of our study and to allow for comparisons across river basins in different
regions. Also, thresholds for irrigation water use are one of the most stringent,
compared to other water use sectors.

In addition to classifying sub-basin average salinity conditions, we also
computed threshold frequency exceedance. For this, we considered all monthly
salinity observations and estimated the fraction (%) of months to the total
number of months that each sub-basin exceeds the salinity threshold value of
700 µS cm−1.
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Significance between salinity levels and driver variables. To investigate the relation
between sub-basin salinity and driver levels, long-term average values for each of
the 26 driver variables (as listed in Table 1) within each salinity impact class (Low;
N= 263, Moderate; N= 108, High; N= 31) were calculated over each sub-basin.
The values were then normalised by dividing each sub-basin specific driver value
by the group-average values, for each driver variable, and plotted over each salinity
impact class (Low, Moderate, High). Boxplot statistics (including the median,
interquartile ranges, whiskers) of driver contributions across the three salinity
impact classes were summarised over the full dataset (N= 401; Fig. 4), as well as
over each of the seven regional river basins (Supplementary Fig. 4).

Furthermore, we perform a nonparametric Wilcoxon rank sum test to assess
differences in the distributions of each driver among the salinity impact classes
(Low-High, Low-Moderate, Moderate-High), considering significance at the 95%
significance level, i.e., p < 0.05 (Supplementary Tables 1 and 2). This test is useful
when samples are independent (unpaired), which is assumed reasonable for this
study, since each salinity impact class contains sub-basins of different
characteristics.

Trend analyses. The nonparametric Mann-Kendall (MK) test34,35 and Sen’s slope
estimation method36 were applied to each sub-basin’s timeseries values, for both
salinity and driver variables (where possible, see specifications in Table 1 and
Supplementary Section S2), to assess their variability and change over the
1980–2010 period. The MK test does not assume any data distribution pattern and
is particularly useful when data are limited or incomplete, which is common for
water quality monitoring data. MK tests have been widely used in environmental
time series data studies, to which we refer for further details65. We used the MK
test to determine whether there was a positive or negative trend in salinity and each
considered driver. The strength of the trend was assessed using Kendall’s tau
(ranging from −1 to 1), with significant trends identified at 95% confidence level (p
value < 0.05). The magnitude of each sub-basin’s time series trend (i.e., average
salinity changes in µS cm−1 per year) was then evaluated by the Sen’s slope esti-
mate. Specifically, for each river location, available instantaneous raw data over the
1980–2010 period was used, from which the trend tests were computed. For driver
variables, either monthly or annual averages were used, based on timeseries data
availability (Table 1).

Random Forest model approach. Random Forest (RF) is a well-established
machine-learning algorithm29, which is being increasingly used to improve
understanding of the key-factors in environmental and freshwater problems66. The
two different types of RF models are (i) classification, which is used for categorical
values, and (ii) regression, which is used for discrete values. Although RF models
were developed originally for prediction purposes, they are now also being used for
association studies, i.e., for evaluating the extent to which a predictor plays a role
for the prediction accuracy of the model. For this purpose, several variable
importance measures have been implemented in RF approaches, with the purpose
of ranking the importance of each predictor variable67.

In this study we used RF regression to investigate the extent to which the
different considered hydroclimatic, geographic and human drivers play a role for
the prediction of observed salinity levels. We developed two RF regression models,
one including all sub-basins with statistically significant increasing salinity trends
(N= 128) and one including all sub-basins with statistically significant decreasing
salinity trends (N= 96). Long-term annual average salinity values were used as the
dependent variable for each sub-basin and the set of driver variables (both their
long-term sub-basin averages, as well as each Sen’s slope trend value) were used as
independent variables.

Model training and tuning. A RF model attempts to predict outcomes for unseen
data, based on what it has learnt from the training data. We trained each RF model
with 80% of the dataset, randomly and proportionally selected from the salinity
dataset. The predictive accuracy of the model was estimated with the remaining
20% of the data. The main tuning parameters of RF models are the number of trees;
ntree, in the forest and the number of predictors sampled for each tree; mtry. The
ntree parameter can be set to any number, but has been shown to continue to
increase the RF accuracy up to a certain point, for which increasing the number
after that threshold makes no model performance improvement68. Tuning was
conducted, by varying ntree between 500, 750, 1000, 1500, 2000, 3000, 5000, 7500
and mtry between 1 and the maximum number of included driver variables. We
then applied the optimal settings in each of the two RF models (Model 1;
ntree=5000, mtry=12, model 2; ntree=5000, mtry=2).

Driver importance evaluation. It has been shown that correlated variables can
impact the capacity of the model in identifying the strongest predictors, since any
of the correlated variables can be used as the predictor from the model perspective,
with no concrete preference of one over the others69,70. However, once one pre-
dictor is selected, the variable importance measure of the others is significantly
reduced. This can lead to interpretation issues that one variable is a strong pre-
dictor, while others in the same group are not, whereas actually they are very close
in terms of their relationship with the response variable37.

Since several of the drivers considered here are correlated (Supplementary
Fig. 7), we used conditional permutation importance (CPI)37 to obtain a more

reliable assessment of each predictor’s importance for salinity predictions. The
CPI method is used to correct for the bias of feature importance when variables
are correlated, due to its conditional (or partial) perspective. This means that the
impact of a predictor variable is evaluated, while also considering the impact of
all other variables. The CPI method has been shown to increase the
interpretability and stability of RF computations in terms of variable importance,
and has been used in a range of research areas37. A full methodological
description of the original as well as the updated CPI method is given in Debeer
and Strobl37.

Specifically, the CPI method was implemented after the tuning of the ntree and
mtry parameters, using the “permimp” function of the party package. This function
allows the user to specify a threshold value s (0 ≤ s ≤ 1, with 0.95 as default), which
is a parameter that can be modified to make the CPI less or more conditional
(1 representing completely unconditional). As recommended by the authors37, we
used different threshold values around the default (0.8-1), which enables us to
study the changes in the CPI pattern between the importance of a predictor
according to a more partial and a more marginal perspective. Due to the relative
robustness of the results between these thresholds (viz. always the same top 15
predictors) and the high correlation between many of the considered variables, we
present final results using a threshold value of 0.85.

After the CPI method had been used to identify the top 15 predictors, we
further used recursive feature elimination71. to find the minimal set of variables
leading to the best predictive capacity of each model. This was done through
recursively running each RF model, starting with the top two predictors from the
CPI method, and then adding one more variable in each run, in order of
importance score until all variables had been added. The two final RF models
include their respectively set of variables leading to the best model performance
(Supplementary Table 3).

Model performance. The predictive performance of each RF model was evaluated
using multiple statistical model performance indicators. Firstly, we compared
observed salinity values with the predictions, by the squared correlation coefficient
(R2). In addition, to offer more in-depth assessment of model accuracy, we also
calculated the Root Mean Squared Error (RMSE), which measures the absolute
model error (in the same unit as the salinity measurements; µS cm−1), as well as
the Mean Absolute Error (MAE) and normalised MAE (NMAE), to get an estimate
of the error magnitude.

Data availability
The salinity, driver variables and sub-basin shapefile data generated and used in this
study have been deposited in the “Salinity and drivers (human, geographic,
hydroclimatic) datasets for assessing freshwater salinisation in river basins around the
world” database under accession code (https://doi.org/10.5281/zenodo.4704824)72. The
major part of the raw salinity datasets analysed in this study are publicly available in the
PANGAEA repository, at: https://doi.org/10.1594/PANGAEA.91393926. The rest of the
raw data can be downloaded or requested from the GEMStat59 and the Mekong River
commission data portal60.

Code availability
Code to generate the main figures of this study and for conducting the Random Forest
modelling are available at Zenodo (https://doi.org/10.5281/zenodo.4704824)72.
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