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Abstract The human subcortex is comprised of more than 450 individual nuclei which lie deep in

the brain. Due to their small size and close proximity, up until now only 7% have been depicted in

standard MRI atlases. Thus, the human subcortex can largely be considered as terra incognita.

Here, we present a new open-source parcellation algorithm to automatically map the subcortex.

The new algorithm has been tested on 17 prominent subcortical structures based on a large

quantitative MRI dataset at 7 Tesla. It has been carefully validated against expert human raters and

previous methods, and can easily be extended to other subcortical structures and applied to any

quantitative MRI dataset. In sum, we hope this novel parcellation algorithm will facilitate functional

and structural neuroimaging research into small subcortical nuclei and help to chart terra incognita.

Introduction
Subcortical brain structures are often neglected in neuroimaging studies due to their small size, lim-

ited inter-regional contrast, and weak signal-to-noise ratio in functional imaging (Forstmann et al.,

2016; Johansen-Berg, 2013). Yet, these small and diverse structures are prominent nodes in func-

tional networks (Marquand et al., 2017; Ji et al., 2019), and they undergo pathological alterations

already at early stages of neurodegenerative diseases (Andersen et al., 2014; Koshiyama et al.,

2018). Deep brain stimulation surgery, originally performed to reduce motor symptoms in essential

tremors, is now a promising therapeutic option in later stages of Parkinson’s disease and movement

disorders, as well as refractory psychiatric illnesses in obsessive-compulsive disorder, anorexia, or

depression (Forstmann et al., 2017; Mosley et al., 2018). Evolutionary genetics even uncovered

that in modern humans, Neanderthal-inherited alleles were preferentially down-regulated in subcor-

tical and cerebellar regions compared to other brain regions (McCoy et al., 2017), suggesting these

structures to be essential in making us specifically human.

Despite their importance, these areas are particularly difficult to image. Furthermore, the size,

shape, and location of these brain regions changes with development and aging (Fjell et al., 2013;

Keuken et al., 2013; Yeatman et al., 2014; Herting et al., 2018). Experience-based plasticity con-

tinuously remodels myelin (Tardif et al., 2016; Hill et al., 2018; Turner, 2019), iron and other mag-

netic substances accumulate with age or pathology (Andersen et al., 2014; Zhang et al., 2018),

both bringing changes in the MRI appearance of subcortical regions with diverse tissue characteris-

tics (Draganski et al., 2011; Keuken et al., 2017).

Thus, mapping the structure and function of the subcortex is a major endeavor as well as a major

challenge for human neuroscience. Extensive work available from animal brain models unfortunately

does not translate in a straightforward way to human subcortical anatomy nor does it shed much

light on its involvement in human cognition (Steiner and Tseng, 2017). Besides serious difficulties in
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obtaining adequate measures of subcortical neural activity in functional MRI (de Hollander et al.,

2017; Miletić et al., 2020), atlases and techniques for labeling accurately and reliably individual sub-

cortical structures have also been scarce (Frazier et al., 2005; Chakravarty et al., 2006;

Ahsan et al., 2007; Yelnik et al., 2007; Qiu et al., 2010; Patenaude et al., 2011), typically labeling

the thalamus, striatum (or its subdivision into caudate and putamen), and globus pallidus (internal

and external segments combined), sometimes the amygdala. However, recent advances in anatomi-

cal MRI, combining multiple contrasts and/or quantitative MRI mapping and utilizing the higher reso-

lution achievable with 7 Tesla (7T) and above have started to reduce the gap, each mapping a few

additional structures or sub-structures, primarily the iron-rich substantia nigra, red nucleus and sub-

thalamic nucleus (Keuken et al., 2013; Xiao et al., 2015; Visser et al., 2016a; Visser et al., 2016b;

Wang et al., 2016; Makowski et al., 2018; Ewert et al., 2018; Iglesias et al., 2018; Pauli et al.,

2018; Sitek et al., 2019). While these efforts generated valuable atlases, they do not yet enable to

identify many subcortical structures in individual subjects. Manual delineation, on the other hand,

requires extensive manual labor from highly trained experts which cannot be easily applied to large

cohorts or clinical settings.

Here, we propose a new automated parcellation technique to identify and label 17 individual sub-

cortical structures of varying size and composition in individual subjects, based on a large quantita-

tive 7T MRI database (Alkemade et al., 2020), using quantitative maps of relaxation rates R1 and

R2* (1/T1 and 1/T2*, respectively) and quantitative susceptibility maps (QSM) as anatomical con-

trasts. The algorithm, named Multi-contrast Anatomical Subcortical Structure Parcellation (MASSP),

follows a Bayesian multi-object approach similar in essence to previous efforts (Fischl et al., 2002;

Eugenio Iglesias et al., 2013; Visser et al., 2016a; Garzón et al., 2018), combining shape priors,

intensity distribution models, spatial relationships, and global constraints. The main innovation of

our approach is to explicitly estimate interfaces between subcortical structures based on a joint

model derived from signed distance functions. Modeling interfaces in addition to the structure itself

provides a rich basis to encode relationships and anatomical knowledge in shape and intensity pri-

ors. A voxel-wise Markovian diffusion regularizes the combined priors for each defined interface,

lowering the imaging noise. Finally, the voxel-wise posteriors for the different structures and interfa-

ces are further combined into global anatomical parcels by topology correction and region growing

taking into account volumetric priors, which regularizes parcellation results further in smaller nuclei

with low or heterogeneous contrast. To validate the results from this new method, in a thorough

comparison with expert manual labeling, we show that the proposed method provides results very

close from manual raters in many structures and exhibit reasonable bias across the adult lifespan.

The method can easily be extended to new structures, can be applied to any quantitative MRI data-

set and is available in Open Source as part of Nighres (Huntenburg et al., 2018), a neuroimage

analysis package aimed at high-resolution neuroimaging.

Results
The MASSP parcellation method presented here has been trained to parcellate the following 17

structures: striatum (Str), thalamus (Tha), lateral, 3rd and 4th ventricles (LV, 3V, 4V), amygdala (Amg),

globus pallidus internal segment (GPi) and external segment (GPe), SN, STN, red nucleus (RN), ven-

tral tegmental area (VTA), fornix (fx), internal capsule (ic), periaqueductal gray (PAG), pedunculopon-

tine nucleus (PPN), and claustrum (Cl), see Figure 1. These structures include the most commonly

defined subcortical regions (Str, Tha, Amg, LV), the main iron-rich nuclei (GPi, GPe, RN, SN, STN), as

well as smaller, less studied areas (VTA, PAG, PPN, Cl), white matter structures (ic, fx), and the cen-

tral ventricles (3V, 4V).

MASSP uses a data set of ten expert delineations as a basis for its modeling. From the delinea-

tions, an atlas of interfaces between structures, shape skeletons, and interface intensity histograms

are generated, and used as prior in a multiple-step non-iterative Bayesian algorithm, see Figure 2

and Materials and methods.

Validation against manual delineations
In a leave-one-out validation study comparing performance with the manual delineations, MASSP

performed above 95% of the level of quality of the raters for Str, Tha, 4V, GPe, SN, RN, VTA, ic in

terms of Dice overlap, the most stringent of the quality measures (see Figures 3 and 4 and Table 1).
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Several of the smaller structures have lower overlap ratios likely due to their smaller size (GPi, STN,

PAG, PPN). Structures with an elongated shape (fx, Cl) remain challenging, due to the fact that small

differences in location can substantially reduce overlap (Bazin et al., 2016). Despite these chal-

lenges, when comparing the dilated Dice scores, all structures were above 75% of overlap, with

most reaching over 90% of the manual raters ability. Note that the Dice coefficient is very sensitive

to size, as smaller structures will have lower overlap ratios for the same number of misclassified vox-

els. The dilated Dice coefficient is more representative of the variability regardless of size, as the

smaller structures can reach high levels of overlap, both in manual and automated parcellations (see

Table 1). The average surface distance confirms these results, showing values generally between

one and two voxels of distance at a resolution of 0.7 mm, except in the cases of Amg, LV, fx, PPN,

and Cl. These structures are generally more variable (LV), elongated (fx, Cl), or have a particularly

low contrast with neighboring regions (Amg, PPN).

Comparison to other automated methods
To provide a basis for comparison, we applied other freely available methods for subcortical struc-

ture parcellation to the same 10 subjects. MASSP performs similarly to or better than Freesurfer, FSL

FIRST and a multi-atlas registration using ANTs (see Table 2). Multi-atlas registration provides high

accuracy in most structures as well, but is biased toward under-estimating the size of smaller and

elongated structures where overlap is systematically reduced across the individual atlas subjects.

Multi-atlas registration is also quite computationally intensive when using multiple contrasts at high

Figure 1. The 17 subcortical structures currently included in the parcellation algorithm in axial (A), sagittal (B), and coronal (C) views.

Figure 2. The MASSP parcellation pipeline. Atlas priors for interfaces between structures are combined to the MRI data, regularized via probability

diffusion and topology correction, and the final structure posteriors are jointly estimated by region growing.
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resolution. Finally, MASSP provides many more structures than Freesurfer and FSL FIRST, and can be

easily applied to new structures based on additional manual delineations.

Application to new MRI contrasts
Quantitative MRI has only become recently applicable in larger studies, thanks in part to the devel-

opment of integrated multi-parameter sequences (Weiskopf et al., 2013; Caan et al., 2019). Many

data sets, including large-scale open databases, use more common T1- and T2-weighted MRI. In

Figure 3. Leave-one-out validation of the structures parcellated by MASSP, compared to the human rater with most neuroanatomical expertise. Scores

for the left and right side are computed separately and then combined into box-and-whisker plots.
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order to test the applicability of MASSP to such contrasts, we obtained the test-retest subset of the

Human Connectome Project (HCP, Van Essen et al., 2013) and applied MASSP to the 45 pre-proc-

essed and skull-stripped T1- and T2-weighted images from each of the two test and retest sessions.

While performing manual delineations on the new contrasts would be preferable, the model is

already rich enough to provide stable parcellations. Test-retest reproducibility is similarly high for

MASSP and Freesurfer, and are generally in agreement, see Figure 5 and Table 3.

Figure 4. Inter-rater variability for the human expert raters. Scores for the left and right side are computed separately and then combined into box-

and-whisker plots.
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Biases due to atlas size
A common concern of brain parcellation methods is the risk of biases, as they are typically built from

a small number of manual delineations. Our data set is part of a large scale study of the subcortex,

for which we obtained manual delineations of the STN, SN, RN, GPe, and GPi on 105 subjects over

the adult lifespan (18–80 year old, see Alkemade et al., 2020 for details). First, we investigated the

impact of atlas size. We randomly assigned half of the subjects from each decade to two groups,

and built atlas priors from subsets of 3, 5, 8, 10, 12, 15, and 18 subjects from the first group. The

subjects used in the atlas were taken randomly from each decade (18-30, 31-40, 41-50,51-60, 61-70,

71-80), so as to maximize the age range represented in each atlas. Atlases of increasing size were

Table 1. Mean overlap and distance measures for the leave-one-out validation.

Str STN SN RN GPi GPe Tha LV 3V 4V Amg ic VTA fx PAG PPN Cl

Dice overlap

MASSP 0.893 0.648 0.805 0.870 0.702 0.800 0.867 0.849 0.741 0.869 0.723 0.745 0.570 0.527 0.641 0.496 0.485

Manual 0.897 0.800 0.841 0.875 0.762 0.813 0.877 0.907 0.797 0.882 0.866 0.732 0.574 0.823 0.791 0.665 0.727

Ratio 0.995 0.811 0.957 0.996 0.925 0.987 0.989 0.936 0.936 0.988 0.836 1.020 0.994 0.641 0.814 0.754 0.664

Dilated overlap

MASSP 0.982 0.919 0.977 0.991 0.909 0.956 0.970 0.929 0.890 0.951 0.891 0.915 0.863 0.756 0.897 0.795 0.789

Manual 0.987 0.988 0.985 0.995 0.953 0.972 0.970 0.967 0.944 0.961 0.978 0.924 0.818 0.957 0.960 0.910 0.914

Ratio 0.995 0.930 0.992 0.995 0.955 0.984 1.000 0.961 0.946 0.991 0.911 0.992 1.059 0.790 0.935 0.879 0.863

Average surface distance

MASSP 0.750 0.911 0.676 0.491 1.140 0.863 1.058 2.690 0.994 0.817 1.476 1.275 1.074 2.950 0.955 1.484 1.685

Manual 0.723 0.508 0.571 0.482 0.902 0.804 0.971 0.615 0.637 0.671 0.779 1.045 1.204 0.703 0.555 0.801 0.670

Ratio 0.971 0.590 0.852 0.996 0.861 0.943 0.916 0.277 0.662 1.020 0.553 0.834 1.161 0.287 0.610 0.619 0.465

Table 2. Comparison with multi-atlas registration, Freesurfer, and FSL FIRST.

Str STN SN RN GPi GPe Tha LV 3V 4V Amg Ic VTA Fx PAG PPN Cl

Dice overlap

MASSP 0.893 0.648 0.805 0.870 0.702 0.800 0.867 0.849 0.741 0.869 0.723 0.745 0.570 0.527 0.641 0.496 0.485

Multi-atlas 0.855 0.662 0.760 0.820 0.742 0.796 0.859 0.734 0.660 0.691 0.761 0.718 0.626 0.478 0.674 0.539 0.398

Freesurfer 0.876 0.778 0.838 0.858 0.430 0.769 0.692

FSL FIRST 0.875 0.813 0.839 0.653

Dilated overlap

MASSP 0.982 0.919 0.977 0.991 0.909 0.956 0.970 0.929 0.890 0.951 0.891 0.915 0.863 0.756 0.897 0.795 0.789

Multi-atlas 0.976 0.938 0.968 0.989 0.947 0.968 0.970 0.920 0.920 0.908 0.921 0.939 0.924 0.798 0.943 0.871 0.811

Freesurfer 0.975 0.922 0.946 0.974 0.562 0.911 0.857

FSL FIRST 0.976 0.946 0.950 0.843

Average surface distance

MASSP 0.750 0.911 0.676 0.491 1.140 0.863 1.058 2.690 0.994 0.817 1.476 1.275 1.074 2.950 0.955 1.484 1.685

Multi-atlas 0.961 0.891 0.858 0.675 0.992 0.882 1.083 1.417 0.932 1.249 1.359 1.129 0.813 1.362 0.794 1.055 1.273

Freesurfer 0.770 1.211 1.405 0.685 4.071 1.361 1.749

FSL FIRST 0.867 1.143 1.675 1.746

Volume bias

MASSP 0.041 0.017 -0.038 0.007 0.066 0.089 0.040 0.0470 0.121 0.047 0.078 0.183 0.032 -0.016 0.026 0.009 0.023

Multi-atlas 0.020 -0.087 -0.009 0.031 0.009 0.014 0.020 -0.003 -0.007 -0.092 -0.038 0.055 -0.067 -0.264 -0.090 -0.269 -0.376

Freesurfer 0.017 0.087 0.163 0.122 -0.551 0.351 0.468

FSL FIRST -0.100 -0.021 0.165 -0.249
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constructed by adding subjects to previous atlases, so that atlases of increasing complexity include

all subjects from simpler atlases. Results applying these atlases to parcellate the second group are

given in Figure 6. As in previous studies (Eugenio Iglesias et al., 2013; Bazin and Pham, 2008),

performance quickly stabilized with atlases of more than five subjects (no significant difference in

Figure 5. Parcellation with Freesurfer (top, on T1w image) and MASSP (bottom, on T2w image) on Human Connectome Project data. MASSP priors

were not derived from the contrasts, but transferred via a spatial mapping of the quantitative MRI intensities from AHEAD subjects.

Table 3. Test-retest comparison with Freesurfer on Human Connectome Project data.

Str STN SN RN GPi GPe Tha LV 3V 4V Amg ic VTA fx PAG PPN Cl

Dice overlap

MASSP test-retest 0.914 0.701 0.818 0.829 0.791 0.859 0.928 0.881 0.837 0.870 0.866 0.860 0.738 0.774 0.714 0.713 0.785

Freesurfer test-retest 0.898 0.770 0.919 0.894 0.842 0.849 0.852

MASSP – Freesurfer 0.876 0.778 0.838 0.858 0.430 0.769 0.692

Dilated overlap

MASSP test-retest 0.987 0.939 0.977 0.978 0.963 0.977 0.990 0.980 0.979 0.986 0.981 0.973 0.969 0.961 0.965 0.972 0.966

Freesurfer test-retest 0.986 0.926 0.986 0.989 0.972 0.975 0.978

MASSP – Freesurfer 0.954 0.788 0.919 0.934 0.435 0.901 0.866

Average surface distance

MASSP test-retest 0.513 0.528 0.467 0.461 0.532 0.508 0.488 0.509 0.391 0.419 0.533 0.536 0.431 0.464 0.428 0.402 0.433

Freesurfer test-retest 0.876 0.778 0.838 0.858 0.430 0.769 0.692

MASSP – Freesurfer 0.976 1.673 1.605 1.946 5.699 1.428 1.478
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Welch’s t-tests between using 18 subjects or any subset of 8 or more for all structures and

measures).

Biases due to age differences
To more specifically test the influence of age on parcellation accuracy, we defined again six age

groups by decade and randomly selected 10 subjects from each group. Each set of subjects was

used as priors for the five structures above, and applied to the other age groups. Results are

Figure 6. MASSP parcellation scores as a function of increasing number of subjects included in the atlas. Scores for the left and right side are

computed separately and then combined into box-and-whisker plots.
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summarized in Figure 7. Examining this age bias, we can see a decrease in performance when par-

cellating subjects in the range of 60 to 80 years of age. The choice of priors seem to have a limited

impact, which varies across structures. In particular, using priors from a similar age group is not

always beneficial.

Bias on individual measures
Finally, we investigated the impact of this decrease in performance in the estimation of anatomical

quantities, see Figure 8. The bias did affect the morphometric measures of structure volume and

thickness, but the effects on the local measure of thickness was reduced compared to the global

measure of volume. Quantitative MRI averages were very stable even when age biases are present

in the parcellations.

For reference, we report structure volumes, thickness, R1, R2* and QSM values estimated from

the entire AHEAD cohort for different age groups, extending our previous work based on manual

delineations on a different data set (Keuken et al., 2017; Forstmann et al., 2014). Results are given

in Table 4, describing average volumes, thickness, and quantitative MRI parameters for young, mid-

dle-aged, and older subjects for the 17 subcortical structures.

Discussion
Our goal with the MASSP algorithm was to provide a fully automated method to delineate as many

subcortical structures as possible on high-resolution structural MRI now available on 7T scanners. We

Figure 7. MASSP parcellation scores over the lifespan. Each matrix show the average Dice overlap (top), dilated Dice overlap (middle), and average

surface distance (bottom) for using one age group as prior (’train’) to parcellate another age group (’test’).
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modeled 17 distinct structures, taking into account location, shape, volume, and quantitative MRI

contrasts to provide individual subject parcellations. Based on our results, we can be confident that

the automated parcellation technique performs comparably to human experts, providing delinea-

tions within one or two voxels of the structure boundaries (dilated Dice overlap over 75% for all

structures, including in aging groups). Results were nearly indistinguishable from expert delineations

for eight major structures (Str, Tha, 4V, GPe, SN, RN, VTA, ic), and smaller structures retain high lev-

els of overlap, comparable to trained human raters. This parcellation includes the most commonly

defined structures (Str, Tha, SN, RN, STN) with overlap scores comparable to those previously

Figure 8. Regression of volume (log scale), structure thickness, R1, R2*, and QSM MRI parameters estimated using manual delineations versus MASSP

automated parcellations. Circles show individual data points, linear regression is indicated by a straight line, and 95% confidence interval is given as the

shaded area. Pearson correlation coefficients are indicated when significant (p-value<0.01).
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reported (Garzón et al., 2018; Visser et al., 2016a; Eugenio Iglesias et al., 2013;

Chakravarty et al., 2013; Patenaude et al., 2011). More importantly, it also includes structures sel-

dom or never before considered in MRI atlases and parcellation methods, such as GPe, GPi, VTA,

3V, 4V, ic, fx, PAG, PPN, Cl. The technique handles structures of varying sizes well, as indicated by

dilated overlap and boundary distance. Additional structures can be added, if they can be reliably

delineated by expert raters on single-subject MRI at achievable resolutions. Some enhancement

techniques such as building a multi-subject template (Pauli et al., 2018) or adding a denoising step

(Bazin et al., 2019) may be beneficial. Co-registration to a high-precision atlas as in Ewert et al.,

2018 may also improve the initial alignment over the MASSP group average template.

Age biases are present both in expert manual delineations and automated parcellation techni-

ques. Age trajectories in volume and quantitative MR parameters indicate systematic shifts in con-

trast intensities and an increasing variability with age, associated with changing myelination, iron

deposition, and brain atrophy (Draganski et al., 2011; Daugherty and Raz, 2013; Fjell et al., 2013;

Keuken et al., 2017). These changes seem only to impact the parcellation accuracy for age groups

beyond 60 years and age-matched priors did not provide specific improvements, thus indicating

that an explicit modeling of age effects may be required to further improve parcellation quality in

elderly populations. These results also point to exercising caution when applying automated parcel-

lation methods to study morphometry in elderly or diseased populations, where measured differen-

ces may include biases. They also point out that while global volume and local thickness are indeed

affected by such biases, quantitative MRI measures are much more robust. Note that this bias is

likely present is many automated methods, although they have not been systematically investigated

due to the extensive manual labor required. Interestingly, biases also exist in expert delineations:

when the size or shape of a structure is refined in neuroanatomical studies, experts may become

more or less conservative in their delineations. Automated methods provide a more objective mea-

sure in such case, as the source of their bias is explicitly encoded in the atlas prior delineations and

computational model. Important applications of subcortical parcellation also include deep-brain

stimulation surgery (Ewert et al., 2018), where the number of structures parcellated by MASSP can

Table 4. Mean volume and quantitative MRI values for each age group.

Age
Str STN SN RN GPi GPe Tha LV 3V 4V Amg ic VTA fx PAG PPN Cl

Volume (mm3)

18-40 10656 118 566 253 567 1366 7112 7524 1895 1391 1315 4335 254 1632 250 193 843

41-60 10572 124 583 256 586 1403 7492 8850 2024 1408 1363 4495 264 1808 255 195 830

61-80 10734 130 584 260 586 1397 7463 9142 2023 1407 1321 4407 272 1910 259 192 829

Thickness (mm)

18-40 5.94 1.89 2.55 4.64 3.09 3.56 8.31 4.27 2.77 4.03 4.81 4.06 1.69 2.06 1.78 1.92 1.79

41-60 5.47 1.86 2.66 4.58 2.96 3.41 8.28 5.08 2.95 3.89 4.85 4.19 1.76 1.96 1.84 1.86 1.80

61-80 5.22 1.83 2.60 4.11 2.92 3.22 8.28 4.90 3.18 4.06 4.73 4.19 1.80 1.97 1.90 1.95 1.82

qR1 (Hz)

18-40 0.647 0.949 0.857 0.928 0.868 0.850 0.761 0.332 0.346 0.274 0.546 0.906 0.819 0.714 0.654 0.779 0.650

41-60 0.662 0.968 0.893 0.939 0.879 0.856 0.758 0.278 0.315 0.269 0.559 0.904 0.833 0.671 0.653 0.771 0.664

61-80 0.648 0.952 0.882 0.903 0.860 0.830 0.743 0.273 0.300 0.270 0.552 0.884 0.814 0.638 0.647 0.764 0.669

qR2* (Hz)

18-40 43.8 67.1 67.8 63.2 75.2 79.6 38.1 14.7 18.9 9.0 25.5 36.8 39.2 37.4 25.9 32.7 32.6

41-60 50.4 74.1 74.1 77.1 80.2 87.9 40.3 8.4 12.4 11.7 28.1 38.7 42.8 37.4 28.0 33.4 36.9

61-80 51.8 77.0 72.5 73.8 77.8 87.0 40.1 8.5 10.2 12.0 30.1 39.6 52.6 35.7 28.4 34.2 35.4

QSM (ppm)

18-40 0.0329 0.0609 0.0738 0.0717 0.1015 0.1150 0.0138 0.0130 0.0100 0.0279 0.0036 �0.0234 0.0241 0.0079 0.0119 0.0135 �0.0122
41-60 0.0400 0.0647 0.0713 0.0829 0.0984 0.1241 0.0134 0.0115 0.0025 0.0234 0.0085 �0.0226 0.0201 0.0079 0.0089 0.0099 �0.0110
61-80 0.0411 0.0705 0.0610 0.0738 0.0925 0.1249 0.0064 0.0089 �0.0034 0.0236 0.0061 �0.0243 0.0177 0.0100 0.0039 0.0096 �0.0091
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help neurosurgeons orient themselves more easily, although precise targeting will still require man-

ual refinements, especially in neurodegenerative diseases.

We observed that dilated overlap, that is, the overlap of structures up to one voxel, provided a

measure of accuracy largely independent of size, for automated or manual delineations. Imprecision

in the range of one voxel in the boundary is to be expected due to partial voluming which impacts

Dice overlap. The dilated overlap measure is a better representative of performance and indicates

that conservative or inclusive versions of the subcortical regions can be obtained by eroding or dilat-

ing the estimated boundary by a single voxel. Such masks may be useful when separating functional

MRI signals between neighboring nuclei or when locating smaller features inside a structure. Addi-

tionally, the Bayesian estimation framework provides voxel-wise probability values, which can also be

used to further weight the contribution of each voxel within a region in subsequent analyses.

In summary, our method provides fast and accurate parcellation for subcortical structures of vary-

ing size, taking advantage of the high resolution offered by 7T and the specificity of quantitative

MRI. The algorithm is based on an explicit model of structures given in a Bayesian framework and is

free of tuning parameters. Given a different set of regions of interest or different populations, new

priors can be automatically generated and used as the basis for the algorithm. If more MRI contrasts

are available, the method can also be augmented to take them into account. The main requirement

for the technique is a set of manual delineations of all the structures of interest in a small group of

representative subjects. Performance may further improve with the number of included structures,

as the number of distinct interfaces increases, refining in particular the intensity priors. In future

works, we plan to include more structures or sub-structures and model the effects of age on the pri-

ors. We hope that the method, available in open source, will help neuroscience researchers to

include more subcortical regions in their structural and functional imaging studies.

Materials and methods

Data acquisition
Our parcellation method has been developed for the MP2RAGEME sequence (Caan et al., 2019).

Briefly, the MP2RAGEME consists of two interleaved MPRAGEs with different inversions and four

echoes in the second inversion. Based on these images, one can estimate quantitative MR parame-

ters of R1, R2* and QSM. In this work, we used the following sequence parameters: inversion times

TI1,2 = 670 ms, 3675.4 ms; echo times TE1 = 3 ms, TE2,1–4 = 3, 11.5, 19, 28.5 ms; flip angles

FA1,2 = 4˚, 4˚; TRGRE1,2 = 6.2 ms, 31 ms; bandwidth = 404.9 MHz; TRMP2RAGE = 6778 ms; SENSE

acceleration factor = 2; FOV = 205�205 x 164 mm; acquired voxel size = 0.70�0.7 x 0.7 mm; acqui-

sition matrix was 292 � 290; reconstructed voxel size = 0.64�0.64 x 0.7 mm; turbo factor

(TFE) = 150 resulting in 176 shots; total acquisition time = 19.53 min.

T1-maps were computed using a look-up table (Marques et al., 2010). T2*-maps were computed

by least-squares fitting of the exponential signal decay over the multi-echo images of the second

inversion. R1 and R2* maps were obtained as the inverse of T1 and T2*. For QSM, phase maps were

pre-processed using iHARPERELLA (integrated phase unwrapping and background phase removal

using the Laplacian) of which the QSM images were computed using LSQR (Li et al., 2014). Skull

information was removed through creation of a binary mask using FSL’s brain extraction tool on the

reconstructed uniform T1-weighted image and then applied to the quantitative contrasts

(Smith, 2002). As all images were acquired as part of a single sequence, no co-registration of the

quantitative maps was required (see Figure 9).

Anatomical structure delineations
Manual delineations of subcortical structures were performed by two raters trained by an expert

anatomist, according to protocols optimized to use the better contrast or combination of contrasts

for each structure and to ensure a consistent approach across raters. The following 17 structures

were defined on a group of 10 subjects (average age 24.4, eight female): striatum (Str), thalamus

(Tha), lateral, 3rd and 4th ventricles (LV, 3V, 4V), amygdala (Amg), globus pallidus internal segment

(GPi) and external segment (GPe), SN, STN, red nucleus (RN), ventral tegmental area (VTA), fornix

(fx), internal capsule (ic), periaqueductal gray (PAG), pedunculopontine nucleus (PPN), and claustrum

(Cl). Separate masks for left and right hemisphere were delineated except for 3V, 4V, and fx. In the
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following the algorithm treats each side separately, resulting in a total of 31 distinct structures (see

Figure 1).

Anatomical interface priors
In order to inform the algorithm, we built a series of priors derived from the manual delineations.

Each subject was first co-registered to a MP2RAGEME anatomical template built from 105 subjects

co-aligned with the MNI2009b atlas (Fonov et al., 2011) with the SyN algorithm of ANTs

(Avants et al., 2008) using successively rigid, affine, and non-linear transformations, high levels of

regularization as recommended for the subcortex (Ewert et al., 2019) and mutual information as

cost function.

The first computed prior is a prior of anatomical interfaces, recording the most likely location of

boundaries between the different structures, defined as follows. Given two delineated structures i; j,

let ’i; ’j be the signed distance functions to their respective boundary, that is, ’iðxÞ is the Euclidean

distance of any given voxel to the boundary of i, with a negative sign inside the structure. Then we

define the interface Bijj with the distance function dijj:

dijjðxÞ ¼min ’iðxÞ;’jðxÞ� d;0
� �

(1)

Figure 9. MP2RAGEME maps and delineations: quantitative R1 (left), quantitative R2* (middle), QSM (right). Manual delineations for the 17 structures

of interest are overlaid on all images.
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where d is a scale parameter for the thickness of the interface. These interfaces functions are not

symmetrical, as the intensity inside i next to j is generally different from the intensity inside j next to

i. Based on this definition, the prior for a given interface based on N manual delineations is given by:

Pðx2 BijjÞ~ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps2

ijjðxÞ
p exp� 1

2

�2

ijjðxÞ
s2

ijjðxÞ

�ijjðxÞ ¼ 1

N

P

n2N dijj;nðxÞ; sijjðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

P

n2N dijj;nðxÞ��ijjðxÞ
� �2

q

þ d

(2)

These probability functions are calculated for all possible configurations including iji, which repre-

sent the inside of each structure. We thus have a total of N2 functions, but only a few are non-zero at

a given voxel x, and we may keep only the 16 largest values to account for any number of interfaces

in 3D (Bazin et al., 2007). Finally, we need to scale the prior to be globally consistent with the priors

below by assuming that the 95th percentile of the highest kept Pðx2 BijjÞ values have a probability of

0.95. The scale parameter d is set to one voxel, representing the expected amount of partial volum-

ing. The resulting interface prior is shown in Figure 10A.

Anatomical skeleton priors
Next, we defined priors for the skeleton of each structure, representing their essential shape regard-

less of exact boundaries (Blum, 1973). As we are mostly interested in the most likely components of

the skeleton or medial axis Si, we follow a simple method to estimate its location:

Figure 10. Anatomical interface (A) and skeleton (B) priors derived from the 10 manually delineated subjects.
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Si ¼ x; jr’iðxÞj<
1

2

� �

(3)

We define as siðxÞ the signed distance function of this discrete skeleton, and define prior proba-

bilities as above:

Pðx2 SiÞ~ 1
ffiffiffiffiffiffiffiffiffiffiffiffi

2ps2

i
ðxÞ

p exp� 1

2

�2

i
ðxÞ

s2

i
ðxÞ

�iðxÞ ¼ 1

N

P

n2N si;nðxÞ siðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

P

n2N si;nðxÞ��iðxÞ
� �2

q

þ d
(4)

The skeletons are defined inside each structure, which implies Pðx2 SiÞ � Pðx2 BijiÞ. To respect

this relationship, we scale Pðx2 SiÞ with the same factor as Pðx2 BijiÞ but use
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pðx2 SiÞ
p

when com-

bining probabilities during the estimation stage. The obtained anatomical skeleton priors are given

on Figure 10B.

Interface intensity priors
While anatomical priors already provide rich information, they are largely independent of the under-

lying MRI. From the co-aligned quantitative MRI maps and manual delineations, we defined intensity

priors for every interface ijj, in the form of intensity histograms to ensure a flexible representation of

intensity distributions. Given a quantitative contrast RnðxÞ, we built a histogram Hijj;n for each subject

n and interface ijj. Histograms have 200 bins covering the entire intensity range within a radius of 10

mm from any of the delineated structures. To obtain an average histogram, we combine each histo-

gram with a weighting function wnðxÞ giving the likelihood of the subject’s intensity measurement

compared to the group:

wijj;nðxÞ ¼ Pðx2 BijjÞ
1
ffiffiffiffiffiffiffiffiffiffiffiffi

2ps2

R

p exp�1

2

ðRnðxÞ��RðxÞÞ2

sRðxÞ2
(5)

where �RðxÞ is the median of the RnðxÞ values at x, and sRðxÞ is 1.349 times the inter-quartile range

of RnðxÞ. These are robust estimators of the mean and standard deviation, used here to avoid biases

by intensity outliers. To further combine the R1, R2*, and QSM contrasts we take the geometric

mean of the histogram probabilities: HijjðxÞ ¼
Q

RHijjðRðxÞÞ1=3.

Global volume priors
The last type of priors extracted from manual delineations are volume priors for each of the struc-

ture. Here, we assume a log-normal distribution for the volumes Vi and simply estimate the mean

�V ;i and standard deviation sV ;i of logVi;n over the subjects.

Voxel-wise posterior probabilities
When parcellating a new subject, we first co-register its R1, R2*, and QSM maps jointly to the tem-

plate and use the inverse transformation to deform the anatomical priors into subject space. Then

we derive voxel-wise posteriors as follows:

Pðx2 BijjjRðxÞÞ~Pðx2 BijjÞHijjðxÞ if i 6¼ j

and

Pðx2 BijijSiðxÞ;RðxÞÞ~maxðPðx2 BijiÞ;Pðx2 SiÞ1=2ÞHijiðxÞ
(6)

Once again we should compute all possible combinations, but due to the multiplication of the pri-

ors we can restrict ourselves to the 16 highest probabilities previously estimated. To balance the

contribution of the anatomical priors and the intensity histograms, we also need to normalize the

intensity priors sampled on the subject’s intensities. We use the same approach, namely assuming

that the 95th percentile of the highest kept HijjðxÞ values have a probability of 0.95, separately for

each contrast. The voxel-wise parcellation and posteriors obtained are shown in Figure 11A.
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Markovian diffusion
The voxel-wise posteriors are independent from each other and do not reflect the continuous nature

of the structures. The next step is to combine information from neighboring voxels. We define a

sparse Markov Random Field model for the posteriors:

Figure 11. Successive parcellation results: (A) voxel-wise posteriors and parcellation, (B) diffused posteriors and parcellation, (C) topology-corrected

posteriors and final region-growing parcellation.
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Pðx2 BijjjR;S;CÞ ¼
X

y2CðxÞ
Pðy~xjRÞPðy2 BijjjR;S;CÞ (7)

with Pðy~xjRÞ ¼
Q

R exp�ðRðyÞ�RðxÞÞ2=2s2

R, where sR is the median of the standard deviations sijj;R
of the contrast histograms HijjðRðxÞÞ. The neighborhood CðxÞ is defined as x itself and the four 26-

connected neighboring voxels with highest probability Pðy~xjRÞ, thus representing the neighbors

most likely to be connected to x. The model is similar to a diffusion process and can be estimated

with an iterated conditional modes (ICM) approach, updating sequentially the probabilities

(Bazin and Pham, 2007):

Pðx2 BijjjR;S;CÞ 
X

y2CðxÞ
Pðy~xjRÞPðy2 BijjjR;S;CÞ (8)

from the initial voxel-wise posteriors until the ratio of changed parcellation labels decreases below

0.1, typically within 50–80 iterations. The diffused probabilities and parcellation are shown in

Figure 11B.

Topology correction
The final step of the parcellation algorithm takes a global view of the individual structures, growing

from the highest posterior values inside toward the boundaries. This region growing approach

makes the implicit assumption that posterior maps should be monotonically decreasing from inside

to outside, which is not necessarily the case. Therefore, we perform first a topology correction step

on the individual structure posteriors Pðx 2 ijR;B; S;CÞ ¼ maxijj Pðx 2 BijjjR; S;CÞ with a fast marching

algorithm (Bazin and Pham, 2007). While the corrected posterior is very similar to the original one

(see Figure 11C), it ensures that all regions obtained by growing to a threshold have spherical

object topology.

Anatomical region growing
Last, we turn the posteriors into optimized parcellations, by growing them concurrently (to avoid

overlaps) until the target volume for each structure is reached. Given the volume ViðR;B; S;CÞ of the
parcellation of the diffused and topology-corrected posteriors, we define the following target

volume:

V̂i ¼ PðVij�V ;i;sV ;iÞViþð1�PðVij�V ;i;sV ;iÞÞexp�V ;i (9)

taking a weighted average of the volume estimated from the data and the prior volume. This

approach ensures that even in extreme cases where some structures have low posteriors, they are

still able to grow to a plausible size. The region growing algorithm is driven from the most likely vox-

els, defined as Pðx2 ijR;B;S;CÞ�maxj 6¼iPðx2 jjR;B;S;CÞ, and further modulated to follow isocontours

of the skeleton prior:

Pðx yÞ~ Pðy2 ijR;B;S;CÞ�maxj 6¼iPðy2 jjR;B;S;CÞ
�jPðy2 SiÞ�Pðx2 SiÞj

(10)

Directionality of internal structures is a useful tool for understanding mechanical function in bones

(Maquer et al., 2015). Here, we adapt this concept by using the skeleton isocontours as a represen-

tation of internal directionality, maintaining the intrinsic shape of structures. Thus, voxels with high-

est probability compared to the other structures and with similar distance to the internal skeleton

are preferentially selected. The final parcellation is given in Figure 11C.

Validation metrics
To validate the method against manual expert delineations, we compared the MASSP results and

the expert delineations with the following three measures:

1. The Dice overlap coefficient (Dice, 1945) DðA;BÞ ¼ 2A\B
AþB , which measures the strict overlap

between voxels in both delineation;
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2. The dilated overlap coefficient dDðA;BÞ ¼ A[dðBÞþB[dðAÞ
AþB , where dð:Þ is a dilation of the delineation

by one voxel, which measures the overlap between delineations allowing for one voxel of
uncertainty;

3. The average surface distance asdðA;BÞ, measuring the average distance between voxels on the
surface boundary of the first delineation to the other one and reciprocally, which measures the
distance between both delineations.

We computed all three measures for the manual delineations from the two independent raters, as

well as the ratio of overlaps (automated over manual) and distances (manual over automated) to

compare both performances, as detailed in the Results section.

Comparisons with other automated methods
To assess the performance of MASSP compared to existing parcellation tools, we ran Freesurfer

(Fischl et al., 2002), FSL FIRST (Patenaude et al., 2011) and a multi-atlas registration approach (co-

registering 9 of the 10 manually delineated subjects on the remaining one with ANTs [Avants et al.,

2008] and labeling each structure by majority voting, similarly to the MAGeT Brain approach of

Chakravarty et al., 2013). Freesurfer and FIRST were run on the skull-stripped R1 map, while the

multi-atlas approach used all three R1, R2*, and QSM contrasts. All methods were compared in

terms of Dice overlap, dilated overlap and average surface distance. We also assessed the presence

of a systematic volume bias, defined as the average of the signed difference of the estimated struc-

ture volume to the manually delineated volume, normalized by the manually delineated volume.

Application to new MRI contrasts
Before applying MASSP to unseen contrasts, we need to convert its intensity prior histograms Hijj;R

to the new intensities. In order to perform this mapping, we first created a groupwise median of the

HCP subjects, by co-registering every subject to the MASSP template using ANTs with non-linear

registration and both T1w, T2w contrasts matched to the template’s R1 and R2* maps. The histo-

gram bins are then updated as follows:

Hbin;ijj;R �
X

xjRðxÞ2bin
Pðx2 BijjÞHijj;R1Hijj;R2�Hijj;QSM (11)

adding the joint probability of the quantitative contrasts weighted by their importance for each

interface to define the new intensity histograms. This model is essentially projecting the joint likeli-

hood of the MASSP contrasts onto the new contrasts, assuming that the co-registration between the

two is accurate enough. With these new histograms, we compared the test-retest reliability and

overall agreement of MASSP with Freesurfer parcellations included in the HCP pre-processed data

set.

Measurement of structure thickness
Finally, when comparing derived measures obtained over the lifespan with MASSP compared to

manual delineations, we explored the utility of a shape thickness metric, based on the medial repre-

sentation. Given the signed distance function ’i of the structure boundary and si of the structure

skeleton, the thickness is given by:

thiðxÞ ¼ 2 siðxÞ�’iðxÞð Þ (12)

Like in cortical morphometry, thickness is a local measure, defined everywhere inside the struc-

ture, and expected to provide additional information about anatomical variations. Indeed, a similar

measure of shape thickness has recently been able to highlight subtle anatomical changes in depres-

sion (Ho et al., 2020).

Software implementation
The proposed method, Multi-contrast Anatomical Subcortical Structure Parcellation (MASSP), has

been implemented as part of the Nighres toolbox (Huntenburg et al., 2018), using Python and Java

for optimized processing. The software is available in open source from (release-1.3.0) and . A
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complete parcellation pipeline is included with the Nighres examples. Computations take under 30

min per subject on a modern workstation.
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