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Abstract
To improve the understanding of cognitive processing stages, we combined two prominent traditions in cognitive science:
evidence accumulation models and stage discovery methods. While evidence accumulation models have been applied to a wide
variety of tasks, they are limited to tasks in which decision-making effects can be attributed to a single processing stage. Here, we
propose a new method that first uses machine learning to discover processing stages in EEG data and then applies evidence
accumulation models to characterize the duration effects in the identified stages. To evaluate this method, we applied it to a
previously published associative recognition task (Application 1) and a previously published random dot motion task with a
speed-accuracy trade-off manipulation (Application 2). In both applications, the evidence accumulation models accounted better
for the data when we first applied the stage-discovery method, and the resulting parameter estimates where generally in line with
psychological theories. In addition, in Application 1 the results shed new light on target-foil effects in associative recognition,
while in Application 2 the stage discovery method identified an additional stage in the accuracy-focused condition— challenging
standard evidence accumulation accounts. We conclude that the new framework provides a powerful new tool to investigate
processing stages.
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Introduction

Evidence accumulation is often seen as a basic cognitive
mechanism. Evidence accumulation entails that before exe-
cuting an action, cognitive agents (humans or animals) accrue
evidence for the appropriateness of that action, until a certain
criterion amount of evidence is collected. At that point in time,
the action is initiated. Typically, this action is considered an
explicit motor action— a key press— but it could also be an
internal decision leading to the next step in a sequence of
cognitive processes.

The idea of evidence accumulation has been applied to
explain a variety of cognitive processes. For example, recog-
nition memory— that is, answering the question whether we
have encountered something before — can be described as a
process in which people compare a new stimulus to represen-
tations in memory. Evidence is accumulated until a certain

threshold is reached, and people are confident that the stimu-
lus represents something they have observed before or not
(Gillund and Shiffrin 1984; Raaijmakers and Shiffrin 1981).
Indeed, computational models that incorporate the evidence
accumulation principle accurately describe the data of recog-
nition memory tasks, such as old/new recognition judgments
(Neville et al. 2019; Ratcliff 1978).

Similarly, perceptual discrimination processes can be de-
scribed as the accumulation of evidence that a stimulus be-
longs to one category or another. The hallmark task in this
domain — the random dot motion task (RDM) — has been
described over and over using evidence accumulation models.
In the RDM task, participants are asked to indicate the direc-
tion of motion of a cloud of moving dots. While a proportion
of the dots move in a target direction, the remainder moves
randomly and makes discriminating the direction more diffi-
cult. Also in this domain, evidence accumulation models ac-
curately describe the data that have been collected, and it has
been shown that the rate of evidence accumulation reflects the
difficulty of the discrimination (Gold and Shadlen 2001;
Mulder et al. 2013; Palmer et al. 2005; Van Maanen et al.,
2016a, b).

What these examples illustrate is that the principle of evi-
dence accumulation seems diversely applicable and that
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computational models describing evidence accumulation have
been successful at describing all kinds of behavior (Forstmann
et al. 2016; Ratcliff et al. 2016). Moreover, evidence accumu-
lation has not only been successful as a description of cogni-
tive processing but has also been considered as an explanatory
mechanism at the level of the brain (Gold and Shadlen 2007;
Mulder et al. 2014; O’Connell et al. 2012).

Evidence accumulation theories do not propose that all of
behavior consists of an evidence accumulation process.
Instead, most applications of evidence accumulation models
assume that behavior is the result of three consecutive stages
(Ratcliff and McKoon 2008): an initial perceptual encoding/
attention orientation stage in which a stimulus is perceived, an
accumulation stage in which evidence to engage in an action is
accumulated, and a final response execution stage that exe-
cutes the selected action. The perceptual and responses stages
are often collectively designated as non-decision time.
Although this subdivision in three processing stages seems
appropriate for very simple tasks, as soon as tasks become
more complex, cognition progresses through a more extended
sequence of stages (Anderson 2007; Gray and Ritter 2007;
Salvucci and Taatgen 2008; Van Rijn et al. 2016), and evi-
dence accumulation models can no longer be applied
straightforwardly.

In fact, there has been a long tradition in cognitive science
to discover and interpret sequences of processing stages (e.g.,
Donders 1868; Sternberg 1969). Whereas classical methods
necessarily relied on behavior alone, more recent methods
have applied neuroimaging to discover processing stages
(Anderson and Fincham 2014; Blankertz et al. 2011; Borst
et al. 2016; Borst and Anderson 2015; King et al. 2016;
King and Dehaene 2014; Sternberg 2011; Sudre et al. 2012).
Recently, Anderson and colleagues developed a powerful
method that can discover processing stages in M/EEG data:
HsMM-MVPA analysis (Anderson et al. 2016). By combin-
ing hidden semi-Markov models (HsMMs) with multivariate-
pattern analysis (MPVA), this machine-learning method has
been successful in detecting latent sequences of processing
stages in tasks ranging from associative recognition
(Anderson et al. 2016; Portoles et al. 2018; Zhang et al.
2017) to working memory (Zhang et al. 2018) and mathemat-
ical problem-solving (Anderson et al. 2018; Zhang et al.
2017).

Among the tasks analyzed with HsMM-MVPA were an
associative recognition task and two working memory tasks.
Although the structure of these tasks resembles the recogni-
tion memory tasks that were previously successfully analyzed
using evidence accumulation models (Neville et al. 2019;
Ratcliff 1978), Anderson and colleagues found evidence for
a sequence of at least five processing stages. This is an indi-
cation that the typical three-stage assumption of evidence ac-
cumulation models might not hold, even in such relatively
simple tasks.

The discrepancy in the number of processing stages be-
tween the two analysis traditions may not be a critical problem
for evidence accumulation models, as long as an important
assumption is met. This assumption is that all observed
decision-related effects (e.g., between conditions or partici-
pants) are generated by a single stage that accounts for the
evidence accumulation process. Under this assumption, all
other stages contribute to the non-decision time component
in evidence accumulation models. Unfortunately, this as-
sumption does not always hold (e.g., Zhang et al. 2017), ren-
dering the application of evidence accumulation models po-
tentially problematic, especially in tasks with multiple chained
decision processes. In addition, if the non-decision time con-
sists of multiple non-decision stages, fitting the evidence ac-
cumulation process will suffer, and estimated parameters will
be less precise, as each additional stage introduces noise.
Instead, if we could isolate a decision stage on a trial-by-trial
basis, fitting the evidence accumulation process could be
improved.

The current research therefore proposes to combine the
EEG stage-discovery method (i.e., HsMM-MVPA) with evi-
dence accumulation models. It introduces a methodology to
first identify processing stages in a bottom-up manner using
the stage-discovery method and subsequently test predictions
about the distribution of processing stage durations using ev-
idence accumulation models. The structure of the paper is as
follows:

1. We will provide an overview of the analysis tools. The
first tool is the HsMM-MVPA method introduced by
Anderson et al. (2016) that identifies latent processing
stages. The second tool is the diffusion decision model
(DDM), a prototypical evidence accumulation model for
analyzing response time distributions.

2. Wewill apply the combinedmethodology to two datasets.
For each dataset we describe its methodological specific-
ities and results regarding the HsMM-MVPA and the
DDM, followed by a discussion of its results.

a. The first dataset (Application 1) pertains the associa-
tive recognition task reported by Anderson et al.
(2016). Previous work has revealed that behavior in
this task can be decomposed in six serial stages, one
of which differs in duration for different conditions—
memory retrieval. Here, we interpret the stage with
duration differences in terms of evidence accumula-
tion. This application will illustrate how evidence ac-
cumulation models can shed light on critical cognitive
processes that are embedded in complex tasks.

b. The second dataset (Application 2) pertains a typical
perceptual categorization task from Boehm et al.
(2014). In this task, participants were asked to make
a perceptually informed choice, while either being
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cued for fast responses or accurate responses. With
our combined methodology, we found support for
the often-found interpretation of the accumulator
model parameters but also found surprising evidence
for an additional stage in the accuracy-cued condition.
This application highlights the added value of com-
bining evidence accumulation models with the stage
discovery method.

3. We will end the paper with a general discussion of the
new methodology.

Methods Overview

HsMM-MVPA

The first step in the combined stage-discovery evidence accu-
mulation framework is discovering processing stages in a task.
To discover processing stages, we will apply the bottom-up
HsMM-MVPA method (Anderson et al. 2016) to both EEG
datasets independently. The resulting processing stages will
subsequently be analyzed with evidence accumulation
models.

The HsMM-MVPA method was founded on two major
theories that link the measured EEG signal to cognitive pro-
cessing (Makeig et al. 2002). The classical theory (Shah et al.
2004) assumes that the onset of significant cognitive events
cause phasic bursts of activity and associated voltage peaks,
which are added to the ongoing neural oscillations in involved
brain regions. If one averages across trials, the uncorrelated
EEG signal will go to zero, and the peaks will be identified—
as in a standard ERP analysis. According to the synchronized
oscillation theory (Basar 1980; Makeig et al. 2002), signifi-
cant cognitive events do not cause a burst of activity but in-
stead reset the phase of EEG oscillations in a certain frequency
range. As a result, oscillations become briefly synchronized,
leading to a similar peak in the EEG signal as predicted by the
classical theory (in fact, both theories of ERP generation can
produce indistinguishable waveforms; Yeung et al. 2004,
2007). Thus, both theories link the onset of a cognitive process
to a peak in the EEG signal; however, such peaks typically
have low signal-to-noise and can only be observed when one
averages across trials . Given such a pattern of EEG activity,
the HsMM-MVPA method assumes that a processing stage
(except the first, which starts at stimulus onset) starts with
peaks with a consistent topology across trials which are
followed by zero mean amplitude throughout the remainder
of the stage.

If one could measure such peaks on single trials, one would
be able to identify the onset of cognitive processing stages.
Unfortunately, on single trials these peaks typically disappear
in the noise. If one averages across trials in standard ERP

fashion instead, peaks are only clear when they are close to
fixed time points (e.g., stimulus onset, response). The further
away from a common fixed time point across trials, the less
clear ERP components become as the variation in timing of
the peaks across trials increases.

The HsMM-MVPA method solves this problem for a
predefined number of processing stages by using a hidden
semi-Markov model to integrate the information present
across all trials (typically starting at stimulus presentation
and ending at a response) of all participants, to ultimately
identify multivariate bumps, the peaks at the onsets, and flats,
the periods of zero mean amplitude, on single trials (Anderson
et al. 2016). Thus, while the method does take all trials into
account simultaneously while estimating the model, one can
afterwards inspect the temporal location of bumps and flats in
single trials. Given that these bumps are hypothesized to sig-
nify the same underlying cognitive events across trials, their
topology is assumed to be the same for all trials and all par-
ticipants (Fig. 1, red dotted arrows). In contrast, the duration
of the flats can vary between trials, reflecting the variability in
stage length across trials and participants. This variable flat
duration is modeled by gamma-2 distributions (Fig. 1, blue
dotted arrows). The HsMM-MVPA method identifies the
bumps and gamma distributions that maximize the likelihood
of the data from all trials simultaneously using a standard
expectation maximization algorithm for HsMMs (Yu 2010).
It is important to note that this is not a hierarchical method, but
we optimized the likelihood of the data of all trials of all
subjects simultaneously.

As an example, Fig. 1 shows the scalp topologies (bumps)
and gamma distributions associated with six stages identified
in EEG data of an associative recognition task (Anderson et al.
2016; Portoles et al. 2018). Each bump indicates the onset of a
new cognitive processing stage. The first stage is initiated by
trial onset. It includes the time for the signal to reach the brain
and so reflects both pre-cortical processing and time until the
signal initiates cognitive processing. The last stage terminates
with the response. In this example, stage four was on average
much longer than the other stages, and also more variable. In
addition, it was longer for more difficult associative retrievals
and therefore interpreted as a memory retrieval stage. We will
discuss this in more detail below as part of the first application
of our combined HsMM-MVPA-evidence accumulation
framework.

There are several things to note in this analysis. First, the
analysis identifies bumps that signify the onset of a new stage,
and not necessarily the offset. The bumps— potentially orig-
inating in the basal ganglia (Kriete et al. 2013; Stewart et al.
2012; Stocco et al. 2010) — reconfigure cortical activation,
thereby starting processes in certain brain regions. However,
in principle, these processes can continue while processes in
other regions are started at the next bump. Thus, while the
HsMM-MVPA method implies sequential stages, this is not
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necessarily the correct interpretation of the underlying neural
processes. However, in most cases— as in the current exper-
iments— the cognitive processes in the stages depend on each
other For example, in a recent study, we manipulated only a
decision rule (so not the stimuli or response options) between
two experiments. We found that the duration of the penulti-
mate stage was longer for the more difficult decision rule.
Consequently the final stage was “pushed backwards”
(Berberyan et al. 2021), indicating that the onset of the final
stage was triggered by an event in the penultimate stage, sug-
gesting serial dependence.

Second, the analysis is based on several assumptions. For
example, it assumes that the activity following a bump is on
average 0 in a region. While this is a strong assumption, it has
been shown to be the case in the majority of identified stages,
and even if this assumption is violated, the method can still
reliably identify stages. This assumption and several other
assumptions were tested using synthetic data in the original
HsMM-MVPA study (Anderson et al. 2016; see in particular
the Appendix). In the current manuscript, we adopt the as-
sumptions and standard practices from these earlier HsMM-
MVPA applications but discuss the assumptions and limita-
tions again in the discussion.

Evidence accumulation

The second element of the new analysis framework is the
diffusion decision model (Ratcliff 1978; Ratcliff et al. 2016;
Ratcliff and McKoon 2008), a prototypical evidence accumu-
lation model, and an important simplification, the shifted
Wald model (Anders et al. 2016; Heathcote 2004; Luce
1986; Fig. 2a). This model assumes that over time, evidence
samples are drawn from a normal distribution with a positive

mean (v in Fig. 2) and a standard deviation s. These samples
are accumulated until a threshold value is reached (a).
Because on each iteration of this process (i.e., each experi-
mental trial), this process differs slightly due to random sam-
pling, the model predicts a specific distribution of finishing
times of the process, that crucially depends on v and a. To
account for processes outside of the evidence accumulation
stage, the model additionally assumes an intercept t0, which is
assumed to be the sum of the duration of an initial perceptual
encoding stage and a final response execution stage (the non-
decision time).

The typical application of this model is to estimate the v, a,
and t0 that best describe the observed distribution of response
times in a particular experimental condition. The optimal set
of parameters is consequently interpreted as describing the
properties of cognitive processes in the task. For example,
differences in the average rate of evidence accumulation are
often interpreted as differences in the difficulty to extract in-
formation from a stimulus (e.g., Donkin and Van Maanen
2014) or from memory (e.g., Wagenmakers et al. 2008).
Differences in the distance toward the threshold are often
thought to reflect response caution (e.g., Van Maanen et al.
2011) or the prior probability of the response (that is, bias,
e.g., Mulder et al. 2012; Neville et al. 2019).

The shifted Wald model describes the evidence accumula-
tion process when one possible course of action is extremely
likely. In many experimental paradigms, however, the ob-
served behavior consists of choices between various response
options and associated choice response times. A special case
are so-called two-alternative forced choice paradigms
(2AFC), in which participants are asked to choose between
two predetermined options. 2AFC tasks are often analyzed
using a two-sided version of the shiftedWald model, in which

Fig. 1 HsMM-MVPA analysis. Based on the measured EEG, the HsMM-MVPA method discovers bumps (top) in a bottom-up manner. These bumps
constitute the boundaries of cognitive processing stages, of which the duration across trials is modeled using gamma distributions (bottom)
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case evidence accumulation can go to two different threshold
values. This model is typically referred to as the simple or
standard DDM. In the two applications that follow, we esti-
mated the parameters of the shifted Wald model (Application
1) and the DDM (Application 2), respectively, on the predict-
ed durations of a single stage in each trial.

HsMM-MVPA Evidence Accumulation Framework

The combined HsMM-MVPA evidence accumulation frame-
work consists of three steps. In step 1, the processing stags are
identified with the HsMM-MVPA. Because the number of
latent stages needs to be specified beforehand, we fit several
HsMMs with increasing numbers of stages to the data. As
HsMMs with more stages have more free parameters, they
will typically fit the data better. To avoid overfitting, we apply
leave-one-out cross-validation (LOOCV, Anderson et al.
2016) to each of the HsMMs. For the LOOCV, we first esti-
mate maximum likelihood parameters of an HsMM on the
data of all but one of the subjects. Given the identified bump
topologies and gamma parameters, we then calculate the log-
likelihood of the data of the left-out subject — this process is
rotated over all subjects. To select the model with the optimal
number of stages, we use a sign test: we only choose a more
complex model if the data of a significant number of subjects
fits better to it than to a model with fewer parameters. The
underlying idea is that even if the true number of bumps is k,
an HSMM with k+1 bumps might fit the data better in the
estimation phase. However, it is at least as likely to fit the data
of the left-out subject worse (Anderson et al. 2016; Anderson
and Fincham 2014; Borst and Anderson 2015).1

In step 2, we identify which discovered stage(s) vary in
duration with experimental condition. First, we inspect results
of the best-fitting HsMM. Even though we use only a single
gamma distribution per stage to account for all conditions in
step 1, different conditions might still have different average
durations for a certain stage. To formally identify if a stage
varies in duration between conditions, we can then fit an
HsMM with the same number of stages but separate gamma
distributions per condition on the stage that varies in duration.
Then we use our LOOCV-approach to test whether such a
more complex model explains significantly better the data.
Thus far, the analysis is identical to previous HsMM-MVPA
analyses. However, to avoid biasing the models to a group-
wide pattern that would affect the evidence accumulation es-
timates, we added an additional step. In this step we estimate
separate gamma parameters for each subject given the bump
topologies common to all subjects, allowing stage length to
vary by subject.2

In step 3, we use either the shifted Wald or the DDM to fit
an evidence accumulation model to the trial-by-trial stage du-
rations of the identified processing stage. Using particle
swarm optimization, we maximize the likelihood of those
stage durations, given the parameters of the model. Because
participants perform the tasks under various conditions, we
varied the way parameters were constrained across conditions
to identify parameters that systematically differ between con-
ditions. The various model specifications obtained in this way
were compared using the Bayesian information criterion
(BIC, Schwarz 1978), to find the model specification that best
balances the flexibility of the model across conditions with the
goodness-of-fit. For each application, we report Schwarz
weights, which represent the probability that a particular mod-
el generated the data, under the assumption that the data-
generating model was in the set of to-be-compared models
(Wagenmakers and Farrell 2004). Once the optimal model is

1 The LOOCV method followed by a sign test is relatively conservative;
instead one could opt for simply taking the solution with the maximum like-
lihood. However, like all other HsMM-MVPA studies, we follow Anderson
and Fincham (2014) who argue that adding the sign test helps to ensure that the
identified stages generalize across subjects. Because the results of the analysis
depend partly on the quality and resolution of the data (see also Borst and
Anderson 2015), for some subjects additional substages might be identified.
We used the sign test to ensure that a significantmajority of the subjects indeed
show evidence for each stage.

2 This step is not strictly necessary, the qualitative results with or without this
step are the same. However, it does not unfairly bias the evidence accumula-
tion models fit to stage durations.

Fig. 2 Standard evidence accumulators. a The shifted Wald model. The
model assumes that evidence is accumulated with a mean rate of v, until a
threshold value a is reached. Then, the sum of the durations of perceptual
encoding and response execution is added (the additional durations

marked t0). Shown is one example evidence accumulation process (i.e.,
one experimental trial). b The two-boundary generalization of the Wald
model is the canonical diffusion decision model
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identified, we can inspect the resulting model parameters in
order to better understand the cognitive process in this stage.

To illustrate the approach and highlight the kinds of in-
sights it can give, we will now apply it to two quite different
tasks. In Application 1, we use a relatively complex associa-
tive recognition task, while in Application 2 we apply the
method to a hallmark task of evidence accumulation models:
the random dot motion task.

Application 1: Associative Recognition Task

Application 1 shows howwe can combine the HsMM-MVPA
methodology with evidence accumulation models. This will
illustrate how an evidence accumulation model can help inter-
pret and understand a cognitive processing stage. Secondly, it
will show how the estimation of the evidence accumulation
model will improve when it is focused on a single stage of a
more complex stage sequence, in contrast to when it is fit to
overall RT. We reanalyzed data of an associative recognition
task collected by Borst et al. (2013), which was previously
analyzed with the HsMM-MVPA method by (Anderson et al.
2016; Borst and Anderson 2015).

Associative recognition is the important ability to learn that
two items co-occur. In our dataset, subjects first studied word
pairs. In a subsequent test phase, they had to discriminate
target pairs from re-paired foils (a recombination of target
words) and new foils (entirely new words). Whereas remem-
bering whether the component words were studied (item in-
formation) was sufficient to discriminate between targets and
new foils, successful discrimination between targets and re-
paired foils also required remembering how the words were
paired during study (associative information). To influence a
potential associative retrieval process, the associative fan, or
associative strength, of the words was manipulated. Fan refers
to the number of pairs a particular word appears in, and thus to
the number of other items in memory the word is associated
to. Fan is well-known to have strong effects on reaction time
and accuracy, with higher fan resulting in longer RTs and
lower accuracy (Anderson and Reder 1999; Schneider and
Anderson 2012).

Theories of recognition memory are concerned with the
cognitive processes that subjects go through when making
the decision whether they learned a word pair. There are three
major theories: global matching, dual-process, and ACT-R.
All theories assume an encoding stage and a response stage,
but the central cognitive stages vary (for reviews, see
Malmberg 2008; Wixted 2007; Yonelinas 2002). Global
matching assumes that the central stage consists of a matching
process in which a cue that includes both words is compared
to all relevant items in memory (Clark and Gronlund 1996;
Gillund and Shiffrin 1984; Murdock 1993; Wixted and
Stretch 2004). The combined similarity to all items in

memory, reflecting the familiarity of the words, is compared
to a response criterion. If it exceeds this criterion the model
responds “yes,” if not it responds “no.” If global matching
theories are correct, this implies that associative recognition
data could directly be analyzed with an evidence accumula-
tion model, without separating overall RTs into multiple ac-
cumulation stages.

According to dual-process theories, such a fast familiarity
process is insufficient. An additional recollection process is
proposed, which is slower and yields qualitative information
about the studied items, such as associative information (e.g.,
Malmberg 2008; Rugg and Curran 2007; Yonelinas 2002). It
is assumed that the familiarity process distinguishes between
new foils and targets/re-paired foils — directly proceeding to
the response stage in the case of new foils (new foils are
responded to faster than either targets or re-paired foils;
Gronlund and Ratcliff 1989; Ratcliff and McKoon 1989;
Rotello and Heit 2000), while recollection is required to dis-
tinguish between targets and re-paired foils (which are equally
familiar). In such a framework, an initial stage analysis before
applying an evidence accumulation model would be useful, as
the retrieval stage would only be one in a sequence of different
processes.

The third model is a symbolic process model developed in
the ACT-R cognitive architecture (adaptive control of thought
— rational; Anderson 2007). To account for associative rec-
ognition, it assumes three stages between encoding and re-
sponse: a familiarity stage, an associative retrieval stage, and
a decision stage (since Anderson et al. 2016, earlier it only
assumed a retrieval stage and a decision stage, cf. Anderson
and Reder 1999). If the individual words are familiar— not a
new foil — the ACT-R model retrieves the best matching
word pair from memory. In a short decision stage, the re-
trieved word pair is compared to the pair on the screen.
Thus, also in the case of re-paired foils, a retrieval is made,
but if the retrieved pair does not match with what is on the
screen, a negative response is issued. Such a recall-to-reject
process is consistent with a wide range of data on associative
recognition (Anderson and Reder 1999; Malmberg 2008;
Rotello et al. 2000; Rotello and Heit 2000; Schneider and
Anderson 2012). Also in this account, an initial stage analysis
would aid in fitting an evidence accumulation model to the
data, as three different cognitive processes occur between per-
ception and response.

Previously, this dataset was analyzed with the HsMM-
MVPA method (Anderson et al. 2016; Portoles et al. 2018).
Figures 1 and 3 show the results: 5 bumps were discovered,
resulting in 6 different stages. Based on the topologies, dura-
tions, and connectivity analyses of the data, these stages were
interpreted as a pre-encoding, encoding, familiarity, retrieval,
decision, and a response stage. These results highlighted the
value of the HsMM-MVPA analysis: it indicated that none of
the theories above were complete. The matching stage as
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proposed by global matching theories was only one in a more
complex sequence of stages; in addition to the familiarity and
recollection processes proposed by dual-process models, a
decision stage was necessary; and in contrast to the original
ACT-R model, a familiarity stage was shown to play an im-
portant role. Finally, it was shown that only the retrieval stage
— indicated in red in Fig. 3— varied significantly in duration
between conditions, which is why we will focus on explaining
this stage using an evidence accumulation model. This should
result in a better characterization and interpretation of the dif-
ferences in retrieval duration between conditions.

HsMM-MVPA

Here, we first reproduce the analysis of Anderson et al.
(2016). In the interest of explaining the proposed HsMM-
MVPA evidence accumulation framework, we will briefly
explain the methods and analysis that was performed.

Methods In the first phase of the experiment, twenty
participants memorized 32 word pairs. Half of these pairs
were fan-1 pairs, that is, the component words only occurred
in a single pair. For the other half of the pairs, the fan-2 pairs,
each component word occurred in exactly two pairs. In the
second phase of the experiment— during which EEG was
collected — subjects were presented with probe word pairs.
Their task was to discriminate targets from re-paired foils and
new foils. Targets and re-paired foils were repeated 13 times
over the course of the experiment, while new foils were only
presented once. Subjects completed 13 blocks of 80 trials, for
a total of 1040 trials. Nevertheless, for new foils, a different
cognitive processing sequence was discovered in Anderson
et al. (2016), and they cannot be analyzed using the same
evidence accumulation model as targets and re-paired foils.
Therefore, we will disregard these trials for the purposes of the
current paper. Details of the experimental methods and EEG
recordings are reported in Borst et al. (2013).

To preprocess the EEG data, we followed Portoles et al.
(2018), which follows a similar pipeline to Anderson et al.
(2016) except for minor differences. Preprocessing consisted
of visual inspection to remove artifacts, removing eye blinks
using independent component analysis, band-pass filtering the

data between 1-35Hz, and down-sampling the data to 100 Hz
to reduce computational load. As the HsMM-MVPA analysis
is performed on single trial data, we then segmented the data
and retained the data between stimulus onset and response for
each trial. Next, each trial was detrended, and its covariance
matrix was computed. Incomplete trials, incorrect trials, trials
with response times greater than 3 SDs per condition and
subject, and trials with amplitudes exceeding ± 80 μV were
removed. Finally, a principal component analysis was per-
formed with the mean covariance matrix across all trials of
all subjects, and the first 10 components (explaining more
than 95% of the variance) were normalized and used for the
HsMM-MVPA analysis.

Result

In this paper, we repeat the analysis of Anderson et al. (2016)
for targets and re-paired foils. For targets and re-paired foils,
HsMMs with 1–8 bumps were estimated. LOOCV showed a
log-likelihood increase up to 6 bumps, but it was argued in
Anderson et al. (2016) that the 5-bump accounted better for
the data (see also Anderson et al. 2018 for a similar analysis
and conclusion based on MEG data). We will therefore use a
5-bump HsMM for the current analysis; this model is shown
in Fig. 3.

In the first step, Anderson and colleagues used a single
gamma distribution for each stage across conditions. To test
which stage durations varied with experimental condition,
Anderson and colleagues then estimated separate gamma dis-
tributions for each stage and condition. Through an LOOCV-
procedure, it was shown that the log-likelihood only increased
for a significant number of subjects if different gamma distri-
butions were used for stage 4. This result is apparent in Fig. 3,
where only the duration of stage 4 differs clearly between
conditions.

Based on the duration effects on the different stages, as
well as their connectivity patterns (Portoles et al. 2018), the
six stages were identified as pre-encoding (the time for the
physical appearance of the stimulus to trigger a reaction in
the brain), encoding the words, a familiarity process, memory
retrieval, decision, and response. As discussed above, stage 4
was the only stage that varied significantly in duration

0 200 400 600 800 1000 1200
Time (ms)

Foil Fan2

Foil Fan1

Target Fan2

Target Fan1

Fig. 3 Resulting stage models for
the associative recognition task,
with average stage duration (SEs)
and topologies at the stage
boundaries. Error bars represent
mean between-participant stan-
dard errors of the stage durations
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between the different conditions of the experiment. In combi-
nation with the interpretation of the other stages, and given
that it is longer for more difficult associations (fan-2 pairs) and
foils, this stage was interpreted as a memory retrieval stage.
This was later corroborated by anHsMM-MVPA analysis of a
MEG dataset of the same task, which showed hippocampal
and prefrontal activation during this stage (Anderson et al.
2018; Borst et al. 2016).

The ACT-R theory explains the fan and target/foil effects
on the duration of the retrieval stage as follows. It is assumed
that information that we perceive in the environment spreads
activation to our memory system. In the case of the current
experiment, the information that spreads activation are the two
encoded words of the word pair on the screen. In the case of
fan-1 targets, both words spread activation to the single target
pair in memory, resulting in the fastest retrieval. In the case of
a re-paired foil, only one of the words spreads activation to a
target word pair, as the combination does not exist in memory.
Consequently, the to-be-retrieved pair receives less activation
and is retrieved slower as a result.

The fan effect on retrieval duration — i.e., fan-2 pairs are
slower than fan-1 pairs — has been explained by assuming
that the amount of spreading activation of an encoded word
depends crucially on the number of memory items that contain
that word (e.g., Anderson 2007; Anderson and Reder 1999;
Schneider and Anderson 2012). The basic idea is that the more
predictive the encoded word is of the to-be-retrieved memory,
the more activation is spread. That is, if one only has a single
memory trace concerning Paris in memory, reading “Paris”
will be very predictive of retrieving that memory trace.
However, if one lives in Paris, reading “Paris” will be hardly
predictive of what information needs to be retrieved. Thus,
fan-2 pairs in memory receive less activation than fan-1 pairs,
as the encoded words are less predictive of what needs to be
retrieved, given that there are two pairs in memory containing
each of the encoded words.

In terms of evidence accumulation, the ACT-R account
predicts that the drift rate will be higher for fan-1 pairs and
targets than for fan-2 pairs and foils, as more spreading acti-
vation results in a more efficient retrieval process (Anderson
2007; Schneider and Anderson 2012; VanMaanen et al. 2012;
Van Maanen and Van Rijn 2007a). We will now fit evidence
accumulation models to the duration of stage 4 to test whether
these predictions are borne out by the data.

Evidence Accumulation

Methods

The HsMM-MVPA results suggest that all stages of the four
conditions in this task are comparable, except for stage 4.
Therefore, we only fit an accumulator model to the predicted
durations of stage 4, as these are assumed to explain the

critical differences between conditions. Henceforth we will
refer to these durations as the decision times (DT). Because
previous work relates stage 4 to a memory retrieval process
(Anderson et al. 2016, 2018; Borst et al. 2016; Borst and
Anderson 2015; Portoles et al. 2018), it is appropriate to mod-
el the retrieval process as a noisy accumulation (e.g., Criss
2010; Neville et al. 2019; Ratcliff 1978). We chose to apply
the shifted Wald Model (Anders et al. 2016) to model the
decision times. The choice of the Wald model was informed
by the small number of errors in this task (less than five for
most participants in at least one condition). A limited number
of errors compromise the estimation of the error RT distribu-
tion as well as reliably estimating the HsMM stages. We per-
formed model comparisons in which the drift rate and thresh-
old are systematically varied over the two dimensions of the
experimental design (Table 1). Additionally, we included
models in which a shift parameter was estimated (t0), to inves-
tigate whether this parameter was indeed external to the re-
trieval stage and therefore would not meaningfully contribute
to the fit.

For comparison, we additionally analyzed the observed re-
sponse times of the associative recognition task, disregarding
the identification of a critical retrieval stage using the HsMM-
MVPAmethod. Again, we systematically varied which param-
eters were fixed or free across conditions. However, we

Table 1 Model specifications of the Wald model for Application 1

Model v a nPar

1 free free 8

2 free fan 6

3 free tf 6

4 fan free 6

5 tf free 6

6 fixed free 5

7 free fixed 5

8 fan fan 4

9 fan tf 4

10 tf tf 4

11 tf fan 4

12 fixed fan 3

13 fixed tf 3

14 fan fixed 3

15 tf fixed 3

16 fixed fixed 2

Note: v refers to drift rate; a refers to the distance to threshold. The model
specifies the dimensions over which the parameters are separately esti-
mated: tf means separate estimates for target and foil, fan means separate
estimates for the two fan conditions, free means separate estimates for all
four design cells, and fixed means one estimate shared across all design
cells. nPar: total number parameters that is estimated
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assumed that all remaining stages are of the same duration and
are therefore captured by the shift parameter (t0).

Results

The Schwarz weights in Fig. 4a reveal a consistent preference
for Model 9 across participants. Specifically, each cell of the
matrix in Fig. 4a is a specific model-participant combination,
with the color representing the Schwarz weight. For 7 out of
20 participants, Model 9 has the highest probability of having
generated the data (under the assumption that the true data-
generating model was included in the comparison), with an
additional 3 participants best described by model 9t. This
model is equivalent to Model 9 but estimates an additional
t0. The estimated value was however quite low. In fact, for
13 participants this parameter was estimated at the lower
bound (0.0001 ms), meaning that effectively the best fit did
not include a shift. For the remaining participants, the mean

estimate was 45 ms, which seems small in comparison to the
response times. Finally, the stage durations of the majority of
participants are best described by models that do not include a
shift parameter (14/20).

Figure 4b shows the averaged (Ratcliff, 1979; Vincent
1912) fit to the decision time distributions of the four condi-
tions of the associative recognition task, revealing that the fit
is excellent and captures the variability in the data. Figure 4 c
and d shows the mean parameter estimates for Model 9. The
drift rates estimated for the two levels of associative fan differ
(paired t-test, t(19) = 11.1, p < 0.001), as do the threshold
values for the targets and repaired foil conditions (paired t-
test, t(19) = 11.9, p < 0.001).

We fit the shifted Wald model to the response time data as
well, to illustrate the standard (not EEG-informed) practice in
the field of evidence accumulation modeling. Figure 5 shows
the results. A couple of aspects stand out. Firstly, the agree-
ment among individual participants with respect to which

Fig. 4 Accumulator model results
for the decision times in
Application 1 reveal selective
influence of the experimental
manipulations. a Model
comparison matrix showing the
Schwarz weights of all fitted
models, separately for all
participants. The models are
ordered according to the average
BIC weight, the participants are
ordered by the maximum BIC
weight. Model numbers refer to
Table 1. Models with “t”
appended additionally have an
estimated t0. b The aggregate fit
of the best model against the data.
Shown here are the 10, 30, 50, 70,
and 90% quantiles of the decision
time distributions. Error bars
represent between-participant
standard errors of the quantiles. c
Mean drift rate for each condition.
d Mean threshold distance for
each condition. Error bars in c and
d represent within-participant
standard errors of the mean
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model is best is less than the agreement with the EEG-
informed modeling. This can be seen when comparing Fig.
5a with Fig. 4a. A wider variety of models is considered the
optimal model for individual participants, and there are more
individuals where the model selection is ambiguous (indicated
by yellow/orange colors). Secondly, the best model for the
group (Model 11, which has the highest average Schwarz
weight) seems to have a less convincing fit of the model to
the data. That is, the model seems to miss the tails of the RT
distributions for the fan-2 conditions (Fig. 5b), which was not
an issue for the model fit on stage 4 durations (cf. Fig. 4b).
Supplementary simulation 1 illustrates that this is expected
when inserting an additional stage, as we assume is the case
here.

Discussion

In Application 1 we first identified processing stages using the
HsMM-MVPA methodology in an associative recognition
task. We used a previously fitted model with 6 processing
stages (Anderson et al. 2016). Next, we identified the stage
that shows differences in mean stage durations across condi-
tions. Fitting an evidence accumulator model to those data
revealed that the experimental manipulation of associative
fan seems to result in a difference in drift rates and presenting
target and foil stimuli results in a different threshold distance.
In other words, the observation that stage 4 in this task varies
in duration across experimental conditions can be attributed to
two distinct cognitive mechanisms. In addition, estimating an

additional t0 did not improve the fits, suggesting that we were
successful in isolating a retrieval stage.

Previous work has clearly linked stage 4 to a memory re-
trieval process (Anderson et al. 2016, 2018; Borst et al. 2016;
Borst and Anderson 2015; Portoles et al. 2018). In this stage,
participants retrieve from memory the closest pair that they
studied as compared to the pair currently shown on the screen.
According to the ACT-R theory, fan-1 pairs and targets are
retrieved faster due to higher spreading activation, predicting a
higher drift rate for those pairs. While this was indeed shown
to be the case for fan-1 pairs compared to fan-2 pairs, there
was no difference in drift rate found between targets and foils.
Thus, where ACT-R explained the duration effects on RT
with a single mechanism, the current results show that two
different mechanisms play a role.

Because stage 4 seems a memory retrieval stage, it was
appropriate to analyses the stage durations using evidence
accumulation models. Memory retrieval has been character-
ized as a noisy accumulation process before (Ratcliff 1978).
The lower drift rates for higher fan pairs could be a reflection
of memory interference: Stimuli that are associated with mul-
tiple item pairs may be harder to retrieve from memory
(Anders et al. 2015; Van Maanen et al. 2012; Van Maanen
and Van Rijn 2007b). This is in line with the standard ACT-R
explanation, where fan-1 pairs retrieve more spreading activa-
tion than fan-2 pairs. Alternatively, it could be that those pairs
were less well learned, making it harder to re-activate the

Fig. 5 If the parameters of the Wald distribution are estimated using the
observed responses times (RT), different conclusions are derived. a
Model comparison matrix showing the Schwarz weights of all fitted
models, separately for all participants. The models are ordered
according to the average BIC weight, the participants are ordered by the

maximum BIC weight. Model numbers refer to Table 1. The best model
is less consistent across participants. b The aggregate fit of the best model
against the RT data shows a poorer fit. Shown here are the 10, 30, 50, 70,
and 90% quantiles of the RT distributions. Error bars represent between-
participant standard errors of the quantiles

0 The mathematical formulation used here for the Wald model is equivalent to
a formulation in which separate parameters were estimated for start points of
accumulation rather than thresholds.
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associated memory traces. This latter explanation is supported
by the fact that subjects make more than twice the number of
errors in the training phase on fan-2 pairs than on fan-1 pairs,
while they required twice as many repetitions to memorize the
fan-2 pairs (Borst et al. 2013, 2016).

The lower distance between the starting point of accumu-
lation and the threshold that was found for target pairs relative
to repaired foils3 could be explained by assuming that the
evidence accumulation process ends when the re-activated
memory item reaches a certain similarity to the used memory
probe (i.e., the encoded words from the screen). Such a deci-
sion criterion could be implemented by Luce’s choice rule
(Luce 1986; see also Van Maanen et al. 2012; Van Maanen
and Van Rijn 2010, 2019). In the target condition, there is
hardly any co-activation of competing memory traces; where-
as in the repaired foil condition, there is co-activation because
of additionally activated word pairs (cf. Fig. 3a and 4a in Van
Maanen et al. 2012). Co-activation influences the time re-
quired to reach the critical decision criterion, assuming
Luce’s choice rule. However, because the activation of the
to-be-retrieved memory trace is the same in both conditions,
the amount of activation at the moment of retrieval is less in
the target condition than in the repaired foil condition. This
level of activation at the moment of the decision is what ap-
pears to be reflected in the decision threshold parameter of the
shifted Wald model.

It is important to stress that this explanation is post-hoc and
would need independent confirmation. Nevertheless, a similar
mechanism has been proposed in a detailed neural learning
framework that accounts for familiarity, (associative) recogni-
tion, and recall processes (Norman 2010; Norman and
O’Reilly 2003; O’Reilly and Norman 2002). While this seems
to run counter to the standard interpretation that the threshold
parameter is set independent of condition, it is in fact consis-
tent with this idea: here the mechanism is set independent of
condition, but because the to-be-compared item that is used by
this mechanism is dependent on condition, it does yield a
different threshold parameter per condition.

Of special interest is the observation that fitting the same 16
models to the response time data led to different conclusions.
Note that we assumed that non-decision time t0 was the same
for all four conditions. This assumption was based on the
observation from the EEG time courses that the stages dura-
tions were comparable. When analyzing response times in the
absence of additional information such as this, a researcher
might consider the option of varying the t0 parameter across
conditions as well, leading to a total of 64 different model
specifications to compare. Nevertheless, such simplifying as-
sumptions are very common, even when no neurophysiolog-
ical data is available to inform such assumptions. For exam-
ple, Gayet et al. (2016) tested and compared two evidence
accumulation models that represented two competing hypoth-
eses about the content of visual working memory. In doing so,

they ignored potential variability in the remaining parameters
in much the same way as we do here.

Application 2: Perceptual Speed-Accuracy
Trade-off

With Application 2, we aim to validate the new analysis
framework in an experimental paradigm that is traditionally
the domain of evidence accumulation modeling. Firstly, we
expect to find support for previous conclusions regarding the
way people make perceptual discriminations that did not iso-
late the critical decision stage. Secondly, we aim to identify
the stages in a relatively simple perceptual decision task, to
illustrate that (1) the task structure may not (always) be as
straightforward as typically assumed by evidence accumula-
tion models, (2) identification of stages contributes to our
understanding of perceptual decisions over and beyond what
we already know, and (3) to illustrate how HsMM-MPVA
handles erroneous responses. Finally, we will use this appli-
cation to demonstrate in more detail how one can decide be-
tween HsMM solutions with different numbers of stages.

The task we chose here is a perceptual choice task, with an
instruction to switch between speed-focused and accuracy-
focused response regimes. In the context of our current study,
this is an interesting experiment for multiple reasons. The first
reason is that the random-dot motion task that participants had
to perform is the hallmark task in the field of perceptual deci-
sion-making. In this task, participants were asked to indicate
the direction of motion of a cloud of moving dots. While a
proportion of the dots moved in a target direction, the remain-
der moved randomly and makes the direction discrimination
more difficult. Previous research shows that the difficulty of
the task can be directly expressed as the rate of evidence
accumulation (e.g., Mulder et al. 2013; Palmer et al. 2005).
The second reason is that the speed-accuracy trade-off manip-
ulation is typically assumed to be related to the threshold
setting in an evidence accumulation model (e.g., Van
Maanen et al. 2011). That is, if participants are instructed to
respond quickly, they lower their threshold, allowing for a
shorter accumulation process and faster responses. However,
a lower threshold also increases the probability that the partic-
ipant makes errors, resulting in the classical speed-accuracy
trade-off (Bogacz et al. 2010; Heitz 2014; Schouten and
Bekker 1967; Wickelgren 1977).

Although the notion that speed-accuracy trade-off is purely
driven by response threshold adjustment is theoretically ap-
pealing, this is not always found. In particular, in some stud-
ies, it is found that in addition to adjustments in response
threshold, also an adjustment of non-decision time best ex-
plains the differences between speed-focused and accuracy-
focused conditions (e.g., Mulder et al. 2010; Rinkenauer et al.
2004; Van Maanen et al. 2016a, b). A shorter non-decision
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time for speeded choices is often interpreted as a form of
motor preparation. Another observation that is sometimes
made is that the rates of accumulation are higher for speeded
choices than for accuracy-focused choices (Ho et al. 2012;
Rae et al. 2014). This is interpreted as increased attention,
although other interpretations are possible as well (Miletić
and Van Maanen 2019).

We reanalyzed the data of Boehm et al. (2014), who col-
lected behavioral responses and EEG of participants who per-
formed a random-dot motion task. In this task, participants
were asked to indicate the direction of motion of a cloud of
moving dots. While a proportion of the dots moved in a target
direction, the remainder moved randomly and makes the di-
rection discrimination more difficult. Difficulty of the task
was calibrated per subject. Prior to each trial, participants re-
ceived a cue that indicated whether they should respond as
quickly as possible or whether they should focus on giving an
accurate response. We reanalyzed the data of 25 participants
(17 female, mean age 21 years), who each performed 200
trials. For more details about the experimental design and
apparatus, we refer to Boehm et al. (2014).

HsMM-MVPA

Methods

The EEG data were preprocessed similar to Application 1,
although the first preprocessing steps were done according
to Boehm et al. (2014). Preprocessing was performed with
the FieldTrip toolbox (Oostenveld et al. 2011). First, trials
with artifacts were removed: artifactual events with ampli-
tudes exceeding ± 300 μV, clipping artifacts longer than 10
ms, z-values higher than 50, and z-values higher than 25 in the
110 to 140 Hz interval. Next, EEG data were low-pass filtered
at 35 Hz and eye blinks corrected with independent compo-
nent analysis. A 1-Hz high-pass filter was applied. Then, trials

were defined from stimulus onset to response. Each trial was
detrended and a covariance matrix computed. Finally, a prin-
cipal component analysis was carried out with the average
covariance matrix of trials and subjects. The first ten principal
components (explaining more than 95% of the variance) were
z-scored and kept for the HsMM.

Results

We estimated an overall HsMM across both experimental
conditions (speed and accuracy focus), as well as separate
HsMMs for each condition. In the overall HsMM, bump to-
pologies and gamma distributions were the same across con-
ditions, while they were fully independent for the separate
HsMMs.

Figure 6 shows the results of the LOOCV procedure that
we applied. Panel 7A indicates that the log-likelihood for the
overall model did not increase for a significant number of
subjects over a 1-bump-2-stage solution (yellow line; a ratio
higher or equal to 18/25 subjects indicates a significant im-
provement in a sign test). If we fit separate models for the
speed- and accuracy-focused conditions and inspect their
summed log-likelihood, it increases up to a 3-bump-4-stage
solution (red line). In addition, when comparing this summed
speed-accuracy log-likelihood to the log-likelihood of the
overall model, we find a significant improvement for any
number of stages (gray arrows). Thus, separate HsMMs for
the accuracy- and speed-focused conditions are clearly pre-
ferred over a single overall model, and on average a 3-bump
solution is preferred.

To determine their respective most likely number of stages,
we separately plotted the log-likelihoods of those models (Fig.
6b). The speed model increases up to a 2-bump-3-stage model
(green line; the 4-bump model does not significantly improve
over the 2-bump model). For the accuracy-focused trials, we
find evidence for a 3-bump-4-stage model. Importantly, the

Fig. 6 LOOCV results of
Application 2. Colored numbers
indicate the number of subjects
that improve to a solution with a
certain number of bumps. For
example, “16/25” for the
combined model at bump 2
indicates that 16 of the 25 subjects
fitted better in a 2-bump model
than in a 1-bump model. a A
combined speed-accuracy-focus
model is compared to two sepa-
rate models. The number of sub-
jects that improve between those
two models is indicated in grey. b
The log-likelihood of the separate
models is shown for 1–6 bumps
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curve for the latter model seems shifted by one bump overall.
We are therefore confident that when presented with an
accuracy-focus cue, subjects go through one additional cogni-
tive stage as compared to the speed-focused cue.

Figure 7 shows the estimated stage topologies and stage
durations for the separate models. Interestingly, in both con-
ditions, the last stage is the longest stage, culminating in a
response. We interpret this last stage as a decision-making
stage. Another interpretation would be that state 3 in the
accuracy-focused condition is the decision stage, and stage 4
reflects a check of the decision that was made. However, we
deem this option unlikely, because stage 3 in the accuracy-
focused condition is shorter than the last stage in the speed-
focused condition, which would suggest that evidence accu-
mulation would be faster when cued to be accurate and slower
when cued to be fast. In addition, the last stage for the speed-
focused condition is shorter than the last stage for the
accuracy-focused condition. In combination with the extra
stage, this explains the longer response times in this condition.
In the next section, we will explore where the differences in
duration of the decision stages originate.

Evidence Accumulation

Methods

We estimated the parameters of a simple diffusion decision
model (DDM), both on the observed response times and
choices and on the decision-making stages and choices.
Note that we make a critical assumption here, which is that
all choice errors are due to a noisy evidence accumulation
process. This is a simplification, since it is conceivable that
some of the incorrect (and also some of the correct) choices
are due to guessing or due to problems in earlier perceptual
stages. Moreover, since there was no systematic response
hand effect on RT (paired t(24) = 0.52; p = 0.60), we decided
to collapse the data across response hands.

Similar to Application 1, we estimate the parameters of all
possible model specifications, listed in Table 2. In this case
however, we also include models in which t0 differs between
conditions, since there is some evidence that speed-accuracy
instructions seem to affect it (Mulder et al. 2010, 2014;
Rinkenauer et al. 2004; Van Maanen et al. 2016a, b; Winkel
et al. 2012). Variability parameters were estimated for drift
rates, non-decision times, and thresholds (Ratcliff and
Rouder 1998). We used the standard variability assumptions
in DDM: drift rates were assumed to vary across trials accord-
ing to a normal distribution with standard deviation sv; non-
decision times were assumed to vary uniformly across trials
between st0 and t0; and the distance to threshold was assumed
to vary uniformly across trials between sz and a.4 These were
constrained in the same way as their central tendency coun-
terparts (cf. Archambeau et al. 2019). Again, we included
models were the non-decision time was constrained to 0, to
test the hypothesis that also in this dataset this parameter re-
flects time external to the critical decision stage.

Results

Figure 8 displays the results of fitting the DDM to the distri-
bution of durations and choices of the decision stages. The
preferred model is surprisingly consistent across participant
(Fig. 8a), with only six participants better fit by another model.
Model 6t fits the aggregate data reasonably well (Fig. 8b),
although the tails of the distributions seem to be missed. Of
note is that the decision times show an interaction between
response accuracy and condition (F(1,24) = 27, p < 0.001).
The model captures this pattern as well, albeit that the predict-
ed effect size is substantially smaller (see Supplementary
Materials for details). Figure 8c drives home that, consistent
with an abundance of previous studies (Boehm et al. 2014;
Forstmann et al. 2008, 2010; Van Maanen et al. 2011; Van
Maanen et al. 2016a, b; Winkel et al. 2012), the threshold
parameter is estimated higher for the accuracy-focused condi-
tion than the speed-focused condition (paired t-test, t(24) =
8.8, p < 0.001). The variability in threshold distance did not
differ across conditions (paired t-test, t(24) = − 1.4, p = 0.17),
and the remaining parameters were fixed across conditions.

0 100 200 300 400 500 600 700 800 900 1000
Time (ms)

Speed
focus

Accuracy
focus

Fig. 7 Resulting stage models for
accurate and speed conditions,
with average stage duration (SEs)
and topologies at the stage
boundaries

4 This source of variability is typically thought of as starting point variability
but can also be interpreted as variability in the distance to boundary. The
predictions for choices and response times of these two conceptualizations
are equivalent. We provide a simulation that illustrates this as
Supplementary Material.
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The mean non-decision time was estimated to be 87 ms (SE =
10 ms).

Contrary to Application 1, model comparison based on the
RT data seems mostly consistent with model comparison

based on the stage duration data, at least on the group level.
Model 6t is overall the preferred model (Fig. 9a), with 7 out of
25 participants better fit by another model. However, close
inspection reveals that these participants differ from the devi-
ant participants of the stage-based fitting, suggesting more
uncertainty in the results. This is supported by inspecting the
aggregate fit, which seems less convincing (comparing Fig. 9b
and Fig. 8b). The estimated mean non-decision based on the
RT data is 406 ms (SE = 23 ms), which is substantially larger
than the non-decision time estimated from the DT data.

Discussion

The results of fitting the durations of one, critical, stage in the
perceptual choice task of Application 2 are in line with what
was expected based on parameter estimates from response
time data. However, the estimated non-decision times differed
substantially depending on the DT or RT fitting procedure.
The non-decision time based on RT was approximately
319 ms larger on average, representing the duration of the
remaining stages. While this is a reassuring result, the analysis
also led to two new theoretical findings.

The first finding was that the critical stage on which stage
durations differed per condition was the final stage. This is in

Table 2 Regression model specification for Application 2

Model v a t0 nPar

1t free free free 12

2t free free fixed 10

3t free fixed free 10

4t free fixed fixed 8

5t fixed free free 10

6t fixed free fixed 8

7t fixed fixed free 8

8t fixed fixed fixed 6

2 free free 0 8

4 free fixed 0 6

6 fixed free 0 6

8 fixed fixed 0 4

Note: v refers to drift rate; a refers to threshold; t0 refers to non-decision
time. free means separate estimates for conditions, and fixed means one
estimate shared across conditions. nPar: total number parameters that is
estimated

Fig. 8 Accumulator model results
for the critical stage duration in
Application 2 reveal that the
speed-accuracy trade-off is
expressed in a difference in
threshold. a Model comparison
matrix showing the Schwarz
weights of the fitted models, sep-
arately for all participants. The
models are ordered according to
the average BIC weight; the par-
ticipants are ordered by the max-
imum BIC weight. Model num-
bers refer to Table 2. b The ag-
gregate fit of the best model
against the data. Shown here are
the 10, 30, 50, 70, and 90%
quantiles of the stage duration
distributions. Error bars represent
between-participant standard er-
rors of the quantiles. c Mean
threshold distance for each con-
dition. Error bars represent
within-participant standard errors
of the mean
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contrast with the typical assumption in the evidence accumu-
lation field that the decision stage in simple perceptual tasks is
the middle of three stages. The first stage, that typically does
not differ across conditions, is believed to be a perceptual
encoding stage, with the final stage only representing the re-
sponse execution (Mulder et al. 2014; Mulder and Van
Maanen 2013). Here, we show that evidence is accumulated
up to the moment of the response, directly linking incoming
visual information to response preparation. There is some con-
verging evidence to support this finding (Gallivan et al. 2018).
For example, Thura and Cisek (2014, 2016) report that mon-
keys performing a reaching decision show primary motor cor-
tex (M1) activation prior to action execution. The pattern of
M1 activation seems to reflect the evidence accumulation pro-
cess of the monkey, with easy decisions resulting in a faster
increase in neural firing rates in M1 than hard decisions. This
pattern would be consistent with a relatively late temporal
locus of the evidence accumulation process. In general, our
results are in line with reports using electromyography that
show that motor execution is not independent of decision
stages. Prior work, in particular related to decisions with

conflicting information, has revealed that both response hands
can become active, even if eventually only one response but-
ton is pressed (Burle et al. 2014; Coles et al. 1985; Servant
et al. 2015, 2016; Spieser et al. 2017). This line of reasoning is
supported by the small non-decision time that we found in this
final stage. This duration could reflect the final execution of
the button press. For example, Byrne and Anderson (2001)
estimate this at 60 ms, which is comparable in magnitude to
the 87 ms that we found on average.

A second, even more striking finding is the presence of an
additional stage when participants are asked to focus on
responding accurately. This finding seems consistent with ev-
idence accumulation modeling that reports non-decision time
differences between speed focused and accuracy-focused con-
ditions (Mulder et al. 2010, 2014; Rinkenauer et al. 2004; Van
Maanen et al. 2016a, 2016b; Winkel et al. 2012). However, in
our own evidence accumulation modeling of the response
times in Application 2, we did not observe convincing evi-
dence for a non-decision time difference between conditions,
which seems inconsistent with the HsMM-MVPA result. The
accumulator model seems to account for the non-decision
time difference by estimating a much larger variability in
threshold distance for the speed focused condition then for
the accuracy-focused conditions. Larger variability in the dis-
tance to threshold yields faster responses, in particular faster
error responses (Ratcliff and McKoon 2008). This is consis-
tent with the overall patterns in the data, because errors in the
speed focused condition are indeed faster than errors in the
accuracy-focused condition. It seems therefore that the added
noise by the additional stages that form the response times
resulted in an inappropriate model being preferred. Ignoring
those stages, The DT-based evidence accumulation model in-
deed does not require condition differences in this variability
parameter nor differences in non-decision time.

General Discussion

The goal of this paper was to combine two prominent tradi-
tions in cognitive science: evidence accumulation modeling
and stage discovery methods. To this end, we proposed a new
method that first applies HsMM-MVPA EEG analysis to dis-
cover processing stages in a task and then use evidence accu-
mulation models to investigate the stage of interest in more
detail. By isolating the important stages in a task before ap-
plying evidence accumulation models, we aimed to (a) im-
prove the estimation of such models by removing or reducing
noise from auxiliary processes and importantly (b) aid the
interpretation of duration effects of discovered cognitive
stages.

Application 1, in which we analyzed EEG data from an
associative recognition task, illustrated both goals. First, it
was shown that estimating the parameters of an evidence

Fig. 9 Accumulatormodel results based on response times in Application
2 corroborate the stage-based results. a Model comparison matrix show-
ing the Schwarz weights of the fitted models, separately for all partici-
pants. b The aggregate fit of the best model against the data. Shown here
are the 10, 30, 50, 70, and 90% quantiles of the RT distributions. Error
bars represent between-participant standard errors of the quantiles
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accumulation model on stage durations compared to estimat-
ing them on RT resulted in a much clearer picture of the
underlying process. That is, the agreement of fitted parameters
among individual participants was higher, and it resulted in a
more convincing fit of the model to the data. Second, the
estimated parameters clearly indicated that the difference be-
tween fan-1 and fan-2 pairs was due to a higher drift rate for
fan-1 pairs, while the difference between targets and foils was
best explained by a difference in threshold. This runs counter
to one of the major computational models of associative rec-
ognition, ACT-R, which assumes that both condition effects
are caused by a difference in spreading activation (e.g.,
Anderson et al. 2016).

In Application 2 we took on a hallmark evidence accumu-
lation task: the RDM task, with a speed-accuracy trade-off
manipulation. This yielded a surprising outcome: we discov-
ered an additional stage in the accuracy-focused condition. As
a result, the DDM fitted to the stage duration seemed to ac-
count better for the data, and it did not require estimating a
variable non-decision time, which was necessary for the DDM
fit to the overall RT. In agreement with the general literature,
the duration effects were attributed to a difference in
threshold.

The two applications illustrate the added value of first dis-
covering processing stages before using evidence accumula-
tion models to explain the underlying cognitive mechanisms.
In both cases, the evidence accumulation models explained
the data better when fit to discovered stage durations as com-
pared to overall RT. In addition, the parameter estimates of the
accumulator models seem sensible: in the case of the fan effect
of Application 1 and the speed-accuracy trade-off in
Application 2, they are in clear agreement with the general
literature, while the target-foil effect in Application 1 can be
explained by some existing models and challenges others.
Finally, these applications show that first applying the
HsMM-MVPA analysis does not result in similar parameter
estimates in all tasks: in Application 1, drift rate was the most
important factor, while Application 2 resulted in different
threshold settings.

One of the goals of combining the HsMM-MVPA method
with evidence accumulation models was to improve the inter-
pretability of these models. When fitting such models, it is
typically necessary to estimate non-decision time. This is not
a problem as long as all behavioral effects are due to a single
processing stage. Under this assumption, the remaining stages
sum to the non-decision time. However, even in this case,
fitting the evidence accumulation process would be more pre-
cise if one could isolate a decision stage on a trial-by-trial
basis. This argument has also been put forward by Verdonck
and Tuerlinckx (2016), who show that a non-parametric esti-
mation of the non-decision time distribution yields a superior
fit and more reliable parameters than simply assuming a stan-
dard distributional form of the non-decision time. When the

non-decision time represents a compound of multiple process-
es, then these considerations become more important as well.

Importantly, when behavioral effects are due to multiple
different processing stages, this assumption becomes prob-
lematic. This is especially the case when condition effects
counter each other. For example, Zhang et al. (2017) conduct-
ed an associative recognition experiment with three-word as-
sociates, allowing them to manipulate similarity between
probes and targets on a more continuous scale. They analyzed
their EEG data using the HsMM-MVPAmethod. Their results
showed that a retrieval stage was shortest when probes were
most similar to the studied triple, while a comparison stage
was longest in that case. They conclude that “[t] he opposing
ways in which probe similarity impacted retrieval and com-
parison stages explained why this factor had only a modest
effect on overall RT; for instance, RTs were nearly identical
for similar 1 foils and targets, yet the durations of the retrieval
and comparison stages clearly differed” (Zhang et al. 2017, p.
364).

This clearly poses a challenge for evidence accumulation
models, including D*M (Verdonck and Tuerlinckx 2016) that
only have access to overall RT. Given that RT hardly varied
between conditions, it is hard to imagine how such a model
would identify the variation in underlying cognitive processes.
However, the new HsMM-MVPA evidence accumulation
framework applied to his task would give a more precise char-
acterization of the underlying mechanisms of both the retriev-
al and the comparison stage. This also illustrates how this
method could open up more complex tasks in which multiple
decision processes are chained to an analysis based on evi-
dence accumulation models: first identify the different stages
and then fit an accumulator model to each stage separately.

Although the HsMM-MVPA decomposition of the re-
sponse times removes processing stages that do not systemat-
ically contribute to a response time difference between condi-
tions, this does not entail that there cannot be any residual time
left in the stage durations that are subsequentially modeled
with the evidence accumulation framework. For this reason,
we explicitly included models with a non-decision time pa-
rameter in the model comparisons of the stage durations. In
Application 1, we found that models without non-decision
time were preferred over models with non-decision time, but
in Application 2 we found the inverse. The average non-
decision time of the critical final stage was estimated at
87 ms on average. We interpreted this as the duration of a
button press — necessarily part of the final stage — which
would not be expected to differ between conditions.

Focusing on a single processing stage does not entail that
an improvement in evidence accumulation model fit can be
uniquely ascribed to this noise reduction. A first additional
reason that the EAMs fit better on DTs than on RTs is because
the RTs are inherently more variable (in addition to more
noisy) than DTs. More variable datasets result in poorer fit
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of the evidence accumulation model (Ratcliff and McKoon
2008; Ratcliff and Tuerlinckx 2002). A second additional rea-
son might lie in the fact that the stage durations are predicted
using a gamma distribution. The gamma distribution effec-
tively acts as a filter, smoothing noise in the DTs resulting in
a potentially better fit.

There is a large body of work devoted to the detection of
serial processing stages, often contrasted with parallel pro-
cessing or co-activation accounts (e.g., Liu 1996; Miller
1993; Schweickert 1989; Townsend and Nozawa 1995). A
prominent approach to address this question is systems facto-
rial technology (SFT, Townsend and Nozawa 1995). SFT
aims to differentiate between serial and parallel processing
by making qualitative predictions of how RT distributions
differ under serial and parallel processing assumptions and
then subsequently test for those differences in highly specific
experimental designs. Interestingly, one such study involves a
test of serial processing in associative recognition, similar to
our Application 1 (Cox and Criss 2017). Cox and Criss (2017
) found evidence for parallel processing of associations be-
tween items of a pair, and the items themselves, which could
be interpreted as evidence against strictly serial processing.
This is in line with our current results, if one assumes that
the familiarity stage (stage 3) continues during the associative
retrieval stage (stage 4), an interpretation we have put forward
in the past (Borst and Anderson 2015).

Limitations

These results rely on the assumptions underneath of our new
analysis framework, as well as the validity of the HsMM-
MVPA and evidence accumulation models. Several of the
assumptions of the HsMM-MVPA were challenged with syn-
thetic data in the original paper (Anderson et al. 2016). For
example, they explored the effects of missing bumps, varying
bump topologies, and different shape parameters of the gam-
ma distribution. In all those cases, the method could still reli-
ably identify stages under normal variation conditions.

An assumption of the HsMM-MVPA method that is rele-
vant for the current analysis framework relates to the bump-
flat model underlying the EEG data. This bump-flat model, as
we have explained above, is grounded in the theories of ERP
generation. The flat imposes that within a stage, the mean
amplitude of each signal is equal to zero. This assumption
might be in conflict with studies indicating that evidence ac-
cumulation is directly detectable in EEG signals O’Connell
et al. (2012). However, the zero-mean amplitude assumption
is flexible enough to accommodate neural processes leading to
EEG signals with non-stationary properties such as zero-
crossing trends or time-varying variances. In addition, even
if the zero-mean amplitude assumption is violated, the
HsMM-MVPA can identify the stages reasonably well in syn-
thetic data (Anderson et al. 2016). That said, if the

corresponding bump becomes too broad because of a non-
stationary EEG signal, the method might have trouble detect-
ing it.

Regarding the bumps, the HsMM-MVPA assumes that
there is a fixed number of bumps and each of them last 50
ms. If the length of a bump would be compared to an ERP
component, we should take into account that ERP analyses are
typically time-locked to stimulus onset or to the response,
which leads to smearing (elongating) of the ERP components
due to the trial-to-trial temporal variability of the latent cogni-
tive processes (Borst and Anderson 2021). Nevertheless, the
HsMM-MVPA is able to identify bumps up to 110 ms in
synthetic data (Anderson et al. 2016).

With respect to the number of bumps— and consequently
stages — that best explain the data, there is no single correct
approach. This is a limitation intrinsic to HsMM models.
Here, we chose the number of stages that best generalized
across subjects, using an LOOCV method combined with a
sign test. This approach ensures a parsimonious sequence of
stages that fits all subjects, and it has been the default approach
in all applications of the HsMM-MVPA that we are aware of.
There are other approaches to select the number of stages,
such as taking the mean or total likelihood across subjects.
Such approaches might explain more variance in the EEG
data, but they might also be biased by a small set of subjects
that fit extremely well or very badly to the model. Ultimately,
a method that includes individual variability while still
resulting in an overall model would be preferred. However,
this is not feasible with the current method.

Finally, the HsMM-MVPA method is based on two theo-
ries of EEG: the classical theory (Shah et al. 2004) and the
synchronized oscillation theory (Basar 1980; Makeig et al.
2002). Both theories predict multivariate peaks at the start of
new processing stages, which is the main assumption under-
neath the HsMM-MVPA method. In a recent study, we found
direct support for this assumption: we did two identical exper-
iments, except that a decision rule was made more difficult in
the second experiment. Here, we observed that the decision
difficulty had a very clear effect on the duration of one of the
stages (Berberyan et al. 2021). This also indicated that stages
are typically serial, even though the HsMM-MVPA does not
enforce this. However, even if it turns out that these theories
are incorrect, the current framework will be less powerful but
still useful. The HsMM-MVPA method will still be able to
divide trials into segments separated by EEG components, but
such a segment might not be an isolated cognitive process.
Even in that case, the evidence accumulation models would
have less variance to deal with and would still yield more
precise results than when fitted to the overall RT data.

In the new framework, we combine the HsMM-MVPA
method with evidence accumulation models. To account for
stage durations, the HsMM-MVPA analysis uses gamma dis-
tributions with a shape parameter of 2. At the same time, the
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evidence accumulation models use the Wald distribution or
the related Wiener distribution (in case of DDM) to account
for these same stage durations. While both distributions are
cases of generalized inverse Gaussian distributions, one might
wonder if this difference in underlying distributions is a prob-
lem. This shows that the resulting distributions are highly
similar and imply that the difference in underlying distribu-
tions is not problematic. That said, it would be preferred to
have one analysis method that integrates evidence accumula-
tion models directly into the HsMM-MVPA method, but that
remains currently out of reach.

Conclusion

To conclude, we believe that the proposed framework pro-
vides a powerful new tool for analyzing cognitive processes.
On the one hand, it enables the use of evidence accumulation
models for tasks consisting ofmultiple stages and, on the other
hand, presents a way of characterizing and interpreting previ-
ously discovered cognitive stages in more detail. Although it
is particularly useful for more complex cognitive tasks, we
have shown that it can even lead to surprising new insights
in the standard random dot motion paradigm.
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