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In this paper, we present the information graph (IG) formalism, which provides a precise 
account of the interplay between deductive and abductive inference and causal and 
evidential information, where ‘deduction’ is used for defeasible ‘forward’ inference. IGs 
formalise analyses performed by domain experts in the informal reasoning tools they are 
familiar with, such as mind maps used in crime analysis. Based on principles for reasoning 
with causal and evidential information given the evidence, we impose constraints on the 
inferences that may be performed with IGs. Our IG-formalism is intended to facilitate the 
construction of formal representations within AI systems by serving as an intermediary 
formalism between analyses performed using informal reasoning tools and formalisms that 
allow for formal evaluation. In this paper, we investigate the use of the IG-formalism as 
an intermediary formalism in facilitating Bayesian network (BN) graph construction. We 
propose a structured approach for automatically constructing from an IG a directed BN 
graph, together with qualitative constraints on the probability distribution represented by 
the BN. Moreover, we prove a number of formal properties of our approach and identify 
assumptions under which the construction of an initial BN graph can be fully automated.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Bayesian networks (BNs) [20] are compact graphical representations of joint probability distributions that have found 
applications in many fields where uncertainty and evidence plays a role, including medicine, engineering, forensics and law 
[16]. For instance, in recent years legal and forensic experts have increasingly developed and used BNs for the interpretation 
of different types of forensic trace evidence [36], such as glass fragments, DNA traces and finger marks [34], as well as for 
modelling crime linkage [44]. A BN consists of a directed acyclic graph (DAG), which captures the probabilistic independence 
relation among variables relevant to the domain, and locally specified (conditional) probability distributions that collectively 
describe a joint probability distribution. BNs are well-suited for reasoning about the uncertain consequences that can be 
inferred from evidence. Domain experts, however, typically do not have the expertise to construct mathematical models and 
misinterpret the directed arcs of a BN as non-symmetric relations of cause and effect instead of collectively encoding an 
independence relation [12]. Especially in data-poor domains, BN construction therefore needs to be done mostly manually 
through a knowledge elicitation procedure in consultation with the domain expert, which is a difficult and error-prone task 
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[18], and domain experts resort to using other reasoning tools including mind maps [26,38], argument diagrams [1,3,26], 
Wigmore charts [43], and ontologies [17,31], as well as basic text-based tools such as Microsoft Word and Excel [26].

Methods have been proposed that facilitate BN construction by extracting information relevant for a BN from analyses 
performed in tools used by experts. For instance, methods for constructing BNs from information represented in ontologies, 
knowledge representations which capture relations between concepts in a domain, have been proposed [17,31]. To apply 
these approaches in practice, the problem under consideration first needs to be specified in the formal ontology language 
required as input. Aforementioned tools such as mind maps, argument diagrams and Wigmore charts similarly do not 
directly allow for guiding BN construction due to their informal nature. In contrast with ontologies, these tools are used 
to capture inferences made with causal and evidential information (see [2,6]), instead of with generic relations between 
concepts. In this paper, we focus on reasoning tools such as mind maps, where we wish to formalise analyses performed 
using such tools in a manner that (1) adheres to principles from the literature on reasoning with causal and evidential 
information [2,21,27,29], while (2) allowing inference to be performed in a manner closely related to the way in which 
inference is performed using such tools, and that (3) allows for guiding BN construction.

Principles from the literature on reasoning with causal and evidential information state that inference is often performed 
using domain-specific generalisations [1,2], also called defaults [27,32], which capture knowledge about the world in condi-
tional form. We distinguish between causal generalisations (e.g. fire typically causes smoke) and evidential generalisations 
(e.g. smoke is evidence for fire) [2,27]. Inference can be performed in a deductive or forward fashion, where from a gener-
alisation (e.g. fire typically causes smoke) and its antecedent (fire), the consequent (smoke) is inferred, and in an abductive
[21] or backward fashion, where from a causal generalisation and by affirming the consequent the antecedent is inferred. 
Note that the term ‘deduction’ is not consistently used in the literature, as it can either mean strict inference, in which the 
consequent universally holds given the antecedents (e.g. [30]), or defeasible inference, in which the consequent tentatively 
holds given the antecedents (e.g. [35]). In this paper, ‘deduction’ is used for defeasible ‘forward’ inference.

When performing analyses in aforementioned reasoning tools such as mind maps, domain experts naturally mix both 
causal and evidential generalisations and perform both deductive and abductive inferences, where the used generalisations 
and the inference type (deduction, abduction) are typically left implicit. Hence, in formalising analyses performed using 
these tools we need a precise account of the interplay between the different types of inferences and generalisations and the 
constraints on performing inference we need to impose. In this paper we present the information graph (IG) formalism [42], 
which provides such an account. IGs are knowledge representations that formalise analyses performed by domain experts 
using the informal reasoning tools they are familiar with in a manner that makes the causal and evidential generalisations 
used in performing inference explicit. Based on principles for reasoning with causal and evidential generalisations, we then 
define how deductive and abductive inference can be performed with IGs given a set of propositions labelled evidence. Most 
existing formalisms that allow both inference types with causal and evidential information are logic-based (e.g. [2,29,35]); 
instead, we prefer a graph-based formalism to remain closely related to analyses performed using aforementioned graph-
based tools as well as the BN-formalism.

Our IG-formalism is intended to facilitate the construction of formal representations within AI systems by serving as 
an intermediary formalism between analyses performed using informal reasoning tools and formalisms that allow for for-
mal evaluation. In this paper, we investigate the use of the IG-formalism as an intermediary formalism in facilitating BN 
graph construction. We propose a structured approach for automatically constructing a directed BN graph from an IG by 
exploiting the causal and evidential knowledge expressed in an IG. In manual BN graph construction, the notion of causality 
is commonly used as a guiding principle [16,20] instead of directly eliciting conditional independencies. In IGs, causality 
information is made explicit and can thus be directly used in BN graph construction. In addition, we demonstrate that the 
inferences that can be read from an IG given the evidence provide for qualitative constraints on the probability distribution 
represented by the BN. We formally prove that BN graphs constructed by our approach capture reasoning patterns similar 
to those represented by the original IG. Moreover, we identify assumptions under which the fully automatically constructed 
initial graph is guaranteed to be a DAG, and identify bounds on the complexity of probabilistic inference in BNs constructed 
by our approach.

The IG-formalism as presented in this paper is a further specification of the IG-formalism that appeared in our previous 
work [42], in which the relations between inference as it can be performed with IGs and argumentation were investigated. 
Argumentation [15,30] is particularly suited for adversarial settings such as the legal domain, where arguments for and 
against claims are constructed from evidence. In [42], it is shown that an Argumentation Framework (AF) as in Dung 
[15] can straightforwardly be generated from an IG by considering the available evidence, which allows arguments to be 
formally evaluated. The BN graph construction approach as presented in the current paper extends on our previous work 
on facilitating BN graph construction [5,39,40]; further details of this work are discussed in Sect. 9.

The paper is structured as follows. In Sect. 2 we provide principles for reasoning with causal and evidential information. 
In Sect. 3 we present an example of an analysis performed using a tool typically used by domain experts, namely a mind 
mapping tool, which illustrates that both deduction and abduction are performed by domain experts, using both causal 
and evidential generalisations. Based on this example, in Sect. 4 we motivate and define our IG-formalism. Sections 5 to 
8 concern the construction of BNs from IGs. Section 5 provides preliminaries on BNs. In Sect. 6 we present our approach 
for constructing BN graphs from IGs. In Sect. 7 we prove formal properties of our approach. In Sect. 8 we illustrate and 
perform a first validation of our approach by applying it to parts of an actual legal case, namely the well-known Sacco and 
Vanzetti case, where we compare our results to a previous BN modelling of the same case [22]. In Sect. 9 related research 
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on among others inference with causality information and BN graph construction is discussed. In Sect. 10 we discuss future 
work, summarise our findings, and conclude.

2. Reasoning with causal and evidential information

In this section, we provide principles for reasoning with causal and evidential information, where we review the ter-
minology used to describe it and introduce assumptions that demarcate the scope of the work presented in this paper. 
Inference is the process of drawing conclusions from premises starting from the evidence, where evidence is that what 
has been established with certainty in the context under consideration. For instance, in the context of a legal trial the ev-
idence consists of that what is actually observed by a judge or jury, such as documents (e.g. police and autopsy reports) 
and other tangible evidence, as well as testimonial evidence [2]. Inference is often performed using domain-specific gener-
alisations [1,2], also called defaults [27,32], which capture knowledge about the world in conditional form. We distinguish 
between causal and evidential generalisations [2,27]. Causal generalisations are of the form ‘c1, . . . , cn usually/normally/typ-
ically cause e’ (e.g. ‘fire typically causes smoke’) and evidential generalisations are of the form ‘e1, . . . , en are evidence for c’
(e.g. ‘smoke is evidence for fire’). We denote generalisations as fire → smoke, where fire is the generalisation’s antecedent
and smoke its consequent. For a causal generalisation, its antecedents express a cause for the consequent, and for an evi-
dential generalisation, its consequent expresses the usual cause for its antecedents. We assume that generalisations have 
one or more antecedents and exactly one consequent. In case a generalisation has multiple antecedents, it expresses that 
only the antecedents together allow us to infer the consequent. The notation →c and →e is used for causal and evidential 
generalisations, respectively.

Different types of inferences can be performed with generalisations depending on whether their antecedents or conse-
quent are affirmed in that they are either observed or inferred; here, a consequent or antecedent is inferred iff it is either 
deductively or abductively inferred.

2.1. Deductive inference

Inference can be performed in a deductive fashion, where from a causal or evidential generalisation and by affirming 
the antecedents, the consequent is inferred by modus ponens on the generalisation. As noted in the introduction, the term 
‘deduction’ is used for defeasible ‘forward’ inference; hence, deduction is not a stronger or more reliable form of inference 
than abduction, which is another type of defeasible inference. Prediction [35] is a specific type of deductive inference in 
which the consequent of a causal generalisation is deductively inferred by affirming its antecedents.

2.2. Abductive inference

Abduction [21] can also be performed: from a causal generalisation and by affirming the consequent, the antecedents 
are inferred, since if the antecedents are true it would allow us to deductively infer the consequent modus-ponens-style. 
In case multiple causes for a common effect are abductively inferred using multiple causal generalisations with the same 
consequent, then these causes are considered to be competing alternative explanations [21] for the common effect expressed 
by the consequent. In case a causal generalisation has multiple antecedents, we assume that these antecedents are not in 
competition among themselves.

Example 1. Consider the causal generalisations fire →c smoke and smoke_machine →c smoke. By affirming the common 
consequent (smoke), fire and smoke_machine are abductively inferred, which are then competing alternative explanations of 
smoke. �

2.3. Representing causal knowledge

Abductive inference with causal generalisations and deductive inference with evidential generalisations are related: in 
some cases, we will accept not only causal generalisation ‘c usually/normally/typically causes e’ but also evidential general-
isation ‘e is evidence for c’ [4,27], which we will call the evidential counterpart of the causal generalisation. However, it can 
be argued that we only accept the evidential counterpart of a causal generalisation if c is the usual cause of e, where we 
assume that only one cause can be the usual cause of e.

Example 2. Fire can be considered the usual cause of smoke, so we will accept both causal generalisation g : fire →c smoke
and its evidential counterpart g′ : smoke →e fire. In this case, abductive inference with generalisation g can be encoded 
as deductive inference with generalisation g′ . Because a smoke machine cannot be considered the usual cause of smoke, 
we will accept causal generalisation smoke_machine →c smoke but we will not accept evidential generalisation smoke →e
smoke_machine. �

Note that a causal generalisation g can only have an evidential counterpart g′ in case g has a single antecedent, as we 
assume generalisations have a single consequent but multiple antecedents. Furthermore, as we assume that only one cause 
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can be the usual cause of e, only one of the causal generalisations c1 →c e or c2 →c e can be replaced by an evidential 
generalisation. Hence, we do not consider c1 and c2 to be competing alternative explanations of e in case deduction is 
performed using evidential generalisations e →e c1 and e →e c2.

2.4. Mixed inference

Deduction and abduction can be iteratively performed, where mixed abductive-deductive inference is also possible.

Example 3. Suppose that from the causal generalisation fire →c smoke and by affirming its consequent (smoke), its an-
tecedent (fire) is inferred. Now, if the additional causal generalisation fire →c heat is provided, then its consequent (heat) 
can be deductively inferred (or predicted) as the antecedent (fire) has been previously abductively inferred. �

Mixed deductive inference, using both causal and evidential generalisations, can also be performed [4], but as noted by 
Pearl [27] care should be taken in performing mixed inference that no cause for an effect is inferred in case an alternative 
cause for this effect was already previously inferred.

Example 4. (a) Consider the example in which a causal generalisation smoke_machine →c smoke and an evidential generali-
sation smoke →e fire are provided. Deductively chaining these generalisations would make us infer that there is a fire when 
seeing a smoke machine, which is clearly undesirable.

(b) Similarly, in performing mixed deductive-abductive inference, care should be taken that no cause for an effect is 
inferred in case an alternative cause for this effect was already previously inferred. Consider the above example, where 
instead of an evidential generalisation smoke →e fire a causal generalisation fire →c smoke is now provided. Upon seeing 
a smoke machine, this would make us infer that there is a fire in case deductive inference and abductive inference are 
performed in sequence, which is again undesirable. �

Accordingly, we wish to prohibit these types of inference patterns, and refer to the constraint that no cause for an effect 
should be inferred in case an alternative cause for this effect was already previously inferred as Pearl’s constraint [27].

2.5. Ambiguous inference

Finally, situations may arise in practice in which both deductive and abductive inference can be performed with the 
same causal generalisation; the inference type is, therefore, considered ambiguous.

Example 5. Consider the causal generalisation fire →c smoke and assume that both fire and smoke are affirmed but not 
observed, then both deductive and abductive inference can be performed to either infer smoke from fire or fire from smoke, 
respectively. �

3. Example of an analysis performed using a mind mapping tool

In this section, we present an example of an analysis performed using a mind mapping tool [26], which is an example 
of a tool typically used by domain experts, for instance in crime analysis [38]. Based on this example, we motivate and 
illustrate the design choices for our IG-formalism in Sect. 4. A mind map usually takes the shape of a diagram in which 
hypotheses and claims are represented by boxes and underlined text, and undirected edges symbolise relations between 
these hypotheses and claims. An example is depicted in Fig. 1, which is based on a standard template used by the Dutch 
police for criminal cases involving the suspicious death of a person. The mind map represents various scenario-elements 
and the crime analyst uses evidence to support or oppose these elements, indicated in the mind map by plus and minus 
symbols, respectively.

Example 6. An example of a partially filled in mind map is depicted in Fig. 1, which also serves as our running example. In 
this example case, adapted from [2], the high-level hypothesis ‘Murder’ is considered; for illustration purposes the details 
of the case have been changed. The case concerns the murder of Leo de Jager, which took place in the small Dutch town of 
Anjum. Leo’s body was found on the property of Marjan van der E.; we are interested in her involvement in the murder. As 
a police report (police_report) indicates that Leo’s body was found on Marjan’s property, the claim marjan_murdered_leo is 
added as an answer to the ‘Who’ question. By means of a plus symbol and an undirected edge connecting the evidence to 
the claim, it is indicated that the police report supports the claim that Marjan murdered Leo. Possible motives (motive_1 and 
motive_2) are provided as to why Marjan may have wanted to murder Leo, which are connected to the ‘Why’ question via 
undirected edges. Claims testimony_1 and testimony_2 support these two motives, indicated by the plus symbols connected 
to these claims. In her testimony (testimony_3), Marjan denied any involvement in the murder of Leo, which is indicated by 
a minus symbol. This opposes the claim that Marjan murdered Leo. Further testimony (testimony_4) indicates that Marjan 
had reason to lie when giving her testimony (lie). By means of a minus symbol and an undirected edge connecting lie to 
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Fig. 1. Example of a partially filled in mind map.

testimony_3, it is indicated that this claim weakens the inference step from her testimony to the claim that she did not 
murder Leo. �

As the edges in a mind map are undirected, it is unclear from this graphical representation alone which types of general-
isations and inferences were used in constructing this map. Establishing this with certainty would require directly consulting 
the domain experts involved in constructing the chart. We note, however, that the reasoning performed in constructing this 
mind map can be interpreted in multiple ways. One interpretation is that the domain expert first (preliminarily) inferred 
that Marjan murdered Leo from the police report via deductive inference using the evidential generalisation police_report
→e marjan_murdered_leo, and then abductively inferred the two possible motives using the causal generalisations gi : mo-
tive_i →c marjan_murdered_leo; i = 1, 2. These two causes are then competing alternative explanations as to why Marjan 
murdered Leo and are subsequently grounded in evidence, namely via deductive inference from the testimonies using ev-
idential generalisations g′

j : testimony_j →e motive_j; j = 1, 2. An alternative interpretation is that the mind map was 
constructed iteratively from the evidence, where from the testimonies the motives are inferred via deductive inference 
using generalisations g′

1 and g′
2. The claim that Marjan murdered Leo is then inferred modus-ponens style: from causal 

generalisations g1 and g2 and the previously inferred antecedents, the consequent is deductively inferred. In this way, the 
two motives are not in competition for the common effect that Marjan murdered Leo.

The above example illustrates that the types of generalisations and inferences that are involved in the analysis of a case 
using a mind mapping tool are typically left unspecified. Similarly, in mind maps the exact manner in which claims and 
links conflict is not precisely specified: a minus symbol can either indicate support for the opposing claim (e.g. testimony_3
supports the negation of marjan_murdered_leo) or indicate an exception to the performed inference (e.g. lie opposes the 
inference from testimony_3 to the negation of marjan_murdered_leo).

4. The information graph formalism

The example from Sect. 3 makes it plausible that both deduction and abduction are performed by domain experts when 
performing analyses using reasoning tools they are familiar with. In performing such analyses, the used generalisations, 
as well as the inference type (deduction, abduction), are left implicit. Furthermore, the assumptions of domain experts 
underlying their analyses are typically not explicitly stated, making these analyses ambiguous to interpret. For current 
purposes, we wish to provide a precise account of the interplay between the different types of inferences and generalisations 
that formalises and disambiguates these analyses in a manner that makes the used generalisations explicit. Information 
graphs (IGs) [42], which we define in Sect. 4.1, are knowledge representations that explicitly describe causal and evidential 
generalisations in the graph. In Sect. 4.2, we define how deductive and abductive inferences can be read from IGs given the 
evidence, based on the principles for reasoning with causal and evidential information discussed in Sect. 2.

4.1. Information graphs

IGs are defined as follows.

Definition 1 (Information graph). An information graph (IG) is a directed graph GI = (P, AI ), where P is a set of nodes 
representing propositions from a propositional literal language with ordinary negation symbol ¬. AI is a set of (hyper)arcs 
that divides into three pairwise disjoint subsets G, N and Exc of generalisation arcs, negation arcs and exception arcs, 
defined in Definitions 2, 6, and 7, respectively.

We write p = −q in case p = ¬q or q = ¬p. Note that an IG GI does not have to be a connected graph.

Definition 2 (Generalisation arc). Let GI = (P, AI ) be an IG. A generalisation arc g ∈ G ⊆ AI is a directed (hyper)arc g :
{p1, . . . , pn} → p, indicating a generalisation with antecedents P1 = {p1, . . . , pn} ⊆ P and consequent p ∈ P \P1 . Here, propo-
sitions in P1 are called the tails of g , denoted by Tails(g), and p is called the head of g , denoted by Head(g). G divides into 
two disjoint subsets Gc and Ge of causal and evidential generalisation arcs, respectively.
253



R. Wieten, F. Bex, H. Prakken et al. International Journal of Approximate Reasoning 136 (2021) 249–280
Fig. 2. An IG corresponding to a possible interpretation of the mind map of Fig. 1 (a); adjustment to the IG of Fig. 2a including generalisation arc g3 : {mot1, 
mot2} → murder (b).

Curly brackets are omitted in case |Tails(g)| = 1. In figures in this paper, generalisation arcs are denoted by solid (hy-
per)arcs, which are labelled ‘c’ for g ∈ Gc and ‘e’ for g ∈ Ge.

A causal generalisation g : c → e may have an evidential counterpart of the form g′ : e → c (see Sect. 2.3), but only 
if c is the usual cause of e. Definition 2 does not prohibit the coexistence of a causal generalisation g : c → e and its 
evidential counterpart g′ : e → c in an IG, and inferences can be read from IGs including both generalisations without 
yielding anomalous results; hence, both generalisations may be included if this is considered desirable. However, it should 
be noted that g and g′ represent the same knowledge, and that care should be taken in for instance modelling exceptions 
to generalisations (see Definition 7), as an exception to g can also be considered an exception to g′ . Ultimately, it is the 
responsibility of the knowledge engineer in consultation with the domain expert to decide which knowledge to include in 
the IG and to ensure this knowledge is correctly and consistently represented.

In the following example, the mind map of Sect. 3 is modelled as an IG.

Example 7. In Fig. 2a, an IG is depicted for a possible interpretation of the running example. First, we consider the undi-
rected edges connected to the testimonies and the police report in the mind map of Fig. 1. In an empirical study in the 
legal domain, van den Braak and colleagues [6] found that subjects often considered testimonies to be evidential, where 
generalisations are of the form ‘Testimony to fact x is evidence for x’. Police reports can similarly be considered evidential. 
The IG therefore includes generalisation arcs g1, g2, g4, g7 ∈ Ge to denote these generalisations. As tes3 concerns Marjan’s 
testimony to denying any involvement in the murder, ¬murder is included in P and g6 : tes3 → ¬murder in Ge . A motive 
for committing an act can be considered a cause for committing that act [6]. The IG therefore includes generalisation arcs 
g3 : mot1 → murder and g5 : mot2 → murder in Gc to denote these generalisations. �

Specific configurations of generalisation arcs express that two propositions are alternative causes of a common effect, as 
captured by the following definition.

Definition 3 (Alternative causes). Let GI = (P, AI ) be an IG. Then c1 ∈ P and c2 ∈ P are alternative causes of e ∈ P, as indicated 
by generalisations g and g′ in G, iff one of the following holds:

1. g ∈ Ge , Head(g) = c1, e ∈ Tails(g), and either:
1a) g′ ∈ Ge , g′ �= g , Head(g′) = c2, e ∈ Tails(g′), or;
1b) g′ ∈ Gc , Head(g′) = e, c2 ∈ Tails(g′).

2. g ∈ Gc , Head(g) = e, c1 ∈ Tails(g), and either:
2a) g′ ∈ Gc , g′ �= g , Head(g′) = e, c2 ∈ Tails(g′), or;
2b) g′ ∈ Ge , Head(g′) = c2, e ∈ Tails(g′).

Generalisation chains are sequences of generalisation arcs.

Definition 4 (Generalisation chain). Let GI = (P, AI ) be an IG. Generalisation arcs g1, . . . , gm ∈ G ⊆ AI form a generalisation 
chain [g1, . . . , gm] in GI iff Head(gi−1) ∈ Tails(gi) for 1 < i ≤ m.

Note that a subchain of a generalisation chain is again a generalisation chain.

Example 8. In the IG of Fig. 2a, [g2, g3] is a generalisation chain as Head(g2) = mot1 ∈ Tails(g3).
Consider the IG of Fig. 2b, which is an adjustment to the IG of Fig. 2a in which generalisation arc g3 : {mot1, mot2} →

murder in Gc is included instead of two separate generalisation arcs g3 and g5. According to Definition 4, [g2, g3] is a 
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Fig. 3. Examples of IGs including causal cycles.

generalisation chain, but mot2 is neither a head nor a tail of generalisation arc g2; it suffices that Head(g2) = mot1 ∈
Tails(g3). �

We define the following notion of a causal cycle.

Definition 5 (Causal cycle). Let GI = (P, AI ) be an IG. Proposition p ∈ P expresses a direct cause for q ∈ P iff ∃g ∈ G ⊆ AI
with g ∈ Gc , p ∈ Tails(g), q = Head(g) or g ∈ Ge , p = Head(g), q ∈ Tails(g). Proposition p1 ∈ P expresses an indirect cause
for p3 ∈ P iff ∃p2 ∈ P, p2 �= p1, p2 �= p3, such that p1 expresses a direct cause for p2 and p2 expresses a direct or indirect 
cause for p3. A causal cycle exists in GI iff ∃p, q ∈ P such that p expresses a direct or indirect cause for q ∈ P and q or −q
expresses a direct or indirect cause for p or for −p.

Examples of IGs including causal cycles are provided in Fig. 3.
We assume that graphs constructed in our IG-formalism conform to the following restrictions on generalisation chains, 

which arguably are reasonable rational constraints to impose on IGs. Informally, assumptions 1 and 2 exclude the possibility 
of using a proposition p to deductively infer itself or −p.

1. IGs only contain non-repetitive generalisation chains [g1, . . . , gm] in that Head(gm) /∈ Tails(g1).
2. IGs only contain consistent generalisation chains [g1, . . . , gm] in that �i, j ∈ {1, . . . , m} such that Head(gi) = −Head(g j).
3. IGs do not include causal cycles (see also [29]).

A negation arc captures a conflict between a proposition and its negation1 expressed in an IG.

Definition 6 (Negation arc). Let GI = (P, AI ) be an IG. A negation arc n ∈ N ⊆ AI is a bidirectional arc n : p � q in GI that 
exists between a pair p, q ∈ P iff q = −p.

Example 9. Consider the running example. As both murder and ¬murder are included in the IG of Fig. 2a, negation arc n :
murder � ¬murder is also included in the graph. �

As generalisations hardly ever hold universally, exceptional circumstances can be provided under which a generalisation 
may not hold; hence, we allow exceptions to generalisations to be explicitly specified in IGs.

Definition 7 (Exception arc). Let GI = (P, AI ) be an IG. An exception arc exc ∈ Exc ⊆ AI is a hyperarc exc : p � g , where p ∈ P
is called an exception to generalisation g ∈ G.

An exception arc directed from p to g indicates that p provides exceptional circumstances under which g may not hold.

Example 10. In the running example, proposition lie, which states that Marjan had reason to lie when giving her testimony, 
provides an exception to evidential generalisation g6 : tes3 → ¬murder in Ge . In Fig. 2a, this is indicated by a curved 
hyperarc exc : lie � g6 in Exc. �

1 Note that while we only consider ordinary negation in this paper, more general notions of conflicts such as contrariness (see e.g. [30]) are also available.
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Fig. 4. The IG of Fig. 2a, where evidence Ep and resulting inference steps (�) are also indicated.

4.2. Reading inferences from information graphs

We now define how deductive and abductive inferences can be read from IGs. By itself, a generalisation arc only ex-
presses that the tails together allow us to infer the head in case this generalisation is used in deductive inference, or that 
the tails together can be inferred from the head in case of abductive inference. Only when considering the available evidence 
can directionality of inference actually be read from the graph.

Definition 8 (Evidence set). Let GI = (P, AI ) be an IG. An evidence set is a subset Ep ⊆ P such that for every p ∈ Ep it holds 
that ¬p /∈ Ep .

The restriction that for every p ∈ Ep it holds that ¬p /∈ Ep ensures that not both a proposition and its negation are 
observed. In figures in this paper, nodes in GI corresponding to elements of Ep are shaded and all shaded nodes correspond 
to elements of Ep . We emphasise that various evidence sets Ep can be used to establish (different) inferences from the same 
IG.

Example 11. In the running example, the evidence consists of the testimonies and the police report. In Fig. 4, the IG of 
Fig. 2a is again depicted, with nodes in Ep = {tes1, tes2, tes3, tes4, police} shaded. �

We now define when we consider configurations of generalisation arcs and evidence to express deductive and abductive 
inference.

4.2.1. Deductive inference
First, we specify under which conditions we consider a configuration of generalisation arcs and evidence to express 

deductive inference.

Definition 9 (Deductive inference). Let GI = (P, AI ) be an IG, and let Ep ⊆ P be an evidence set. Let p1, . . . , pn, q ∈ P, with 
q /∈ Ep . Then given Ep , q is deductively inferred from propositions p1, . . . , pn using a generalisation g : {p1, . . . , pn} → q in G, 
denoted p1, . . . , pn�g q, iff ∀pi , i = 1, . . . , n:

1. pi ∈ Ep , or;
2. pi is deductively inferred from propositions r1, . . . , rm ∈ P using a generalisation g′ : {r1, . . . , rm} → pi , where g′ ∈ Ge if 

g ∈ Ge , or;
3. pi is abductively inferred from a proposition r ∈ P using a g′ : {pi, r1, . . . , rm} → r in Gc , g �= g′ , r1, . . . , rm ∈ P (see 

Definition 10).

In accordance with our assumptions stated in Sect. 2.1, deductive inference can be performed using both causal and 
evidential generalisations. The condition q /∈ Ep ensures that deductive inference cannot be performed with a generalisation 
to infer its consequent in case its consequent is already observed. Deductive inference can only be performed using a 
generalisation g ∈ G to infer its consequent Head(g) from its antecedents Tails(g) in case every antecedent pi ∈ Tails(g)

has been affirmed in that either pi is observed (i.e. pi ∈ Ep), pi itself is deductively inferred, or pi is abductively inferred. 
In correspondence with Pearl’s constraint (see Sect. 2.4), we assume in condition 2 that a proposition q ∈ P cannot be 
deductively inferred from p1, . . . , pn ∈ P using a generalisation g ∈ Ge if at least one of its antecedents pi ∈ Tails(g) is 
deductively inferred using a generalisation g′ ∈ Gc. Condition 3 of Definition 9 is further explained in Sect. 4.2.3, after 
abductive inference is defined.

Example 12. In the IG of Fig. 4, given Ep mot1 and mot2 are deductively inferred from tes1 and tes2 using generalisations 
g2 and g4, respectively, as tes1, tes2 ∈ Ep (condition 1 of Definition 9). Similarly, murder, ¬murder and lie are deductively 
inferred from police, tes3 and tes4 using generalisations g1, g6 and g7, respectively, as police, tes3, tes4 ∈ Ep .
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Fig. 5. Examples of IGs illustrating the restrictions put on performing deductive inference within our IG-formalism (a-c).

Proposition murder is also deductively inferred from mot1 and mot2 using causal generalisations g3 and g5, as mot1 and 
mot2 are deductively inferred (condition 2 of Definition 9). This illustrates mixed deductive inference using both evidential 
and causal generalisations. �

The following example illustrates the restrictions put on performing deductive inference within our IG-formalism.

Example 13. Fig. 5a depicts an example of an IG in which q cannot be deductively inferred from p using g1, as Head(g1) =
q ∈ Ep . In Fig. 5b, q cannot be deductively inferred from p1 and p2 using g1, as p2 /∈ Ep and p2 is neither deductively nor 
abductively inferred.

In Fig. 5c, Example 4a from Sect. 2.4 illustrating Pearl’s constraint for deductive inference is modelled as an IG. As 
smoke_machine ∈ Ep , smoke is deductively inferred from smoke_machine using g1 by condition 1 of Definition 9. fire cannot 
in turn be inferred from smoke using g2, as g2 ∈ Ge and smoke is deductively inferred using g1 ∈ Gc . �

4.2.2. Abductive inference
Next, we specify under which conditions we consider a configuration of generalisation arcs and evidence to express 

abductive inference.

Definition 10 (Abductive inference). Let GI = (P, AI ) be an IG, and let Ep ⊆ P be an evidence set. Let p1, . . . , pn, q ∈ P, with 
{p1, . . . , pn} ∩ Ep = ∅. Then given Ep , p1, . . . , pn are abductively inferred from q using a generalisation g : {p1, . . . , pn} → q in Gc , 
denoted q �g p1; . . . ; q �g pn , iff:

1. q ∈ Ep , or;
2. q is deductively inferred from r1, . . . , rm ∈ P using a generalisation g′ : {r1, . . . , rm} → q, g �= g′ (see Definition 9), where 

g′ ∈ G \ Gc , or;
3. q is abductively inferred from a proposition r ∈ P using a generalisation g′ : {q, r1, . . . , rm} → r in Gc , r1, . . . , rm ∈ P.

In accordance with our assumptions stated in Sect. 2.2, abduction is modelled using only causal generalisations and not 
evidential generalisations. The condition {p1, . . . , pn} ∩ Ep = ∅ ensures that abduction cannot be performed with a causal 
generalisation to infer its antecedents in case at least one of its antecedents is already observed. Furthermore, abduction 
can only be performed using a generalisation g ∈ Gc to infer its antecedents Tails(g) from its consequent Head(g) in 
case Head(g) has been affirmed in that either Head(g) is observed (i.e. Head(g) ∈ Ep), Head(g) is deductively inferred, or 
Head(g) is itself abductively inferred. In correspondence with Pearl’s constraint (see Sect. 2.4), we assume in condition 2
that propositions p1, . . . , pn ∈ P cannot be abductively inferred from a proposition q ∈ P using a generalisation g ∈ Gc if its 
consequent q is deductively inferred using a generalisation g′ �= g , g′ ∈ Gc.

Example 14. In the IG of Fig. 6a, p is abductively inferred from q using generalisation g1 ∈ Gc by condition 2 of Definition 10, 
as q is deductively inferred from r using generalisation g2 ∈ Ge by condition 1 of Definition 9. In the IG of Fig. 6b, q and r1
are abductively inferred from r using generalisation g3 : {q, r1} → r in Gc by condition 1 of Definition 10, as r ∈ Ep . Then by 
condition 3 of Definition 10, p1 and p2 are abductively inferred from q using generalisations g1 and g2, respectively. �

Fig. 6. Examples of IGs illustrating abductive inference (a-b).
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Fig. 7. An IG illustrating Pearl’s constraint for mixed deductive-abductive inference (a); an IG illustrating prediction (b).

The following example illustrates that Pearl’s constraint for mixed deductive-abductive inference is adhered to (see 
Sect. 2.4).

Example 15. In Fig. 7a, Example 4b from Sect. 2.4 is modelled as an IG. As smoke_machine ∈ Ep , smoke is deductively 
inferred from smoke_machine using g1. fire cannot be inferred from smoke, as g2 ∈ Gc and smoke is deductively inferred 
using g1 ∈ Gc (condition 2 of Definition 10). �

4.2.3. Prediction
Our IG-formalism allows for predictive reasoning (deductive inference with causal generalisations, see Sect. 2.1).

Remark 1 (Prediction). Let GI = (P, AI ) be an IG, and let Ep ⊆ P be an evidence set. Let g ∈ Gc . Then Head(g) is predicted
from Tails(g) iff Head(g) is deductively inferred from Tails(g).

Example 16. In Fig. 7b, Example 3 from Sect. 2.4 illustrating prediction is modelled as an IG. From smoke, fire is abduc-
tively inferred using g1, as smoke ∈ Ep . Then heat is deductively inferred (or predicted) from fire using g2 (condition 3 of 
Definition 9). �

In the above example, prediction is performed with g2 by affirming its antecedent fire via abductive inference; besides 
illustrating prediction, this example thus also illustrates that mixed abductive-deductive inference can be performed within 
our IG-formalism, as apparent from Definitions 9 and 10.

4.2.4. Ambiguous inference
The conditions under which we consider a configuration of generalisation arcs and evidence to express deductive and 

abductive inference according to Definitions 9 and 10 are not mutually exclusive. Under specific conditions, both inference 
types can be established from the same causal generalisation in an IG given the provided evidence; the inference type is, 
therefore, ambiguous (see Sect. 2.5). The following result follows directly from Definitions 9 and 10.

Remark 2 (Ambiguous inference). Let GI = (P, AI ) be an IG, and let Ep ⊆ P be an evidence set. Let g ∈ Gc with Head(g) =
q, Tails(g) = {p1, . . . , pn}, and p1, . . . , pn, q /∈ Ep . Assume that for every p1, . . . , pn, q, it holds that it is deductively or 
abductively inferred. Then q is deductively inferred from p1, . . . , pn and p1, . . . , pn are abductively inferred from q using g .

Example 17. Consider the IG of Fig. 4. Given Ep , murder is deductively inferred from police using g1 and mot1 and mot2
are deductively inferred from tes1 and tes2 using g2 and g4, respectively. As murder, mot1, mot2 /∈ Ep , murder is deductively 
inferred from mot1 and mot2 and mot1 and mot2 are abductively inferred from murder using g3 and g5, respectively. �

4.2.5. Competing alternative explanations
Finally, we consider how the concept of competing alternative explanations (see Sect. 2.2) is captured within our IG-

formalism.

Definition 11 (Competing alternative explanations). Let GI = (P, AI ) be an IG, and let Ep ⊆ P be an evidence set. Let g, g′ ∈ Gc

with g �= g′ , Head(g) = Head(g′) = p, and possibly Tails(g) ∩ Tails(g′) �= ∅. Then given Ep , Tails(g) is considered to be in 
competition with Tails(g′) for the same effect expressed by p in case Tails(g) and Tails(g′) are abductively inferred from p
given Ep using g and g′ , respectively, and p can neither be deductively inferred from Tails(g) nor from Tails(g′) given Ep
using g or g′ , respectively.

The condition that g, g′ ∈ Gc with g �= g′ , Head(g) = Head(g′) = p implies that every pair of propositions pi , q j for 
pi ∈ Tails(g), q j ∈ Tails(g′) are considered alternative causes of p by condition 2a of Definition 3. The condition that only 
abduction and not deduction is performed with g and g′ implies that the inference type for neither g nor g′ is ambiguous 
(see Remark 2). The above definition captures competition between sets of propositions Tails(g) and Tails(g′), as these sets 
are abductively inferred from p using g and g′ , respectively. More specifically, individual propositions in Tails(g) are not 
in competition with individual propositions in Tails(g′) in case separate causal generalisations gi : pi → p and g′ : q j → p
j
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Fig. 8. Adjustment to the IG of Fig. 2a involving two competing alternative explanations mot1 and mot2 for murder (a); the IG of Fig. 2b with evidence Ep
and resulting inference steps now indicated, involving two non-competing alternative explanations mot1 and mot2 for murder (b).

for pi ∈ Tails(g), q j ∈ Tails(g′) are not provided. In case a causal generalisation arc has multiple tails, we assume that these 
tails are not in competition among themselves, as the generalisation expresses that only the tails together allow us to infer 
the head.

Example 18. Consider Fig. 8a, which depicts an adjustment to the IG of Fig. 2a. Given Ep = {police}, propositions mot1
and mot2 are abductively inferred from murder using g3 and g5, respectively, as murder is deductively inferred from police
using g1. Furthermore, murder can neither be deductively inferred from mot1 nor from mot2 using g3 or g5, respectively. 
Therefore, mot1 and mot2 are in competition for common effect murder.

In Fig. 8b, the IG of Fig. 2b is again depicted, where evidence Ep = {tes1, tes2} and resulting inferences are also indicated. 
In this IG, murder is deductively inferred from {mot1, mot2} given Ep using g3 : {mot1, mot2} → murder in Gc; therefore, 
mot1 and mot2 are not in competition for murder. �

5. Bayesian networks

In this section, Bayesian networks (BNs) [20] are reviewed. A BN compactly represents a joint probability distribution 
Pr(V) over a finite set of discrete random variables V; in this paper we assume all variables to be Boolean, where we write 
v to denote V = true and ¬v to denote V = false. Formally, a BN is defined as follows:

Definition 12 (Bayesian network). A Bayesian network (BN) is a pair (GB, Pr), where GB is a directed acyclic graph (D AG) 
(V, AB) over nodes V representing random variables.2 AB ⊆ V × V is a set of directed arcs Vi → V j from parent Vi ∈ V to 
child V j ∈ V, where Par(V) denotes the set of parents of V and Ch(V) denotes the set of children of V. Pr is a probability 
function which specifies for each variable V ∈ V a conditional probability table (CPT). This CPT describes the conditional 
probability distributions Pr(V | x) for each possible joint value combination x for Par(V).

The reflexive, transitive closures of V under the parent and child relations are denoted by Par∗(V) and Ch∗(V), respec-
tively, where nodes in Par∗(V) are called ancestors of V and nodes in Ch∗(V) are called descendants of V.

A BN is generally used for probabilistic inference [20], that is, calculating any prior or posterior distribution over the 
variables represented in the network. Posterior distributions are obtained by instantiating one or more variables EV ⊆ V in 
that they are set to a specific value. Instantiations are also called evidence. The inference algorithms associated with the 
BN-formalism provide for computing probabilities of interest and for processing evidence; these algorithms constitute the 
basic building blocks for reasoning with knowledge represented in the formalism. As in the current paper the focus lies on 
the knowledge that is represented by a BN by means of its graphical structure GB and its probability function Pr, algorithms 
for probabilistic inference are not further discussed.

Example 19. An example of a BN graph and one of its CPTs is depicted in Fig. 9, where ovals represent nodes and instan-
tiated nodes are shaded. In this BN graph, we are interested in whether a given suspect committed a burglary (Bur). This 
node is connected by arcs to nodes Mot1, Mot2 and Opp, which describe whether the suspect had motive(s) and opportunity 
to commit the burglary. In turn, nodes Mot1, Mot2 and Opp are connected to instantiated nodes Tes1, Tes2 and Tes3, which 
capture the testimonies provided to these claims. �

2 There is a one-to-one correspondence between nodes and variables in BNs. Throughout this paper, the terms ‘node’ and ‘variable’ are, therefore, used 
interchangeably.
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Fig. 9. An example of a BN (a); CPT for node Bur (b), where Mot1 and Mot2 exhibit a negative product synergy wrt value Bur = true in presence of 
uninstantiated parent Opp.

5.1. Bayesian network graphs

The BN graph GB encodes the probabilistic independence relation among its variables by means of the notion of d-
separation, which is defined by the notions of blocked and active chains. In the following, let GB = (V, AB) be a BN graph.

Definition 13 (Chain). A chain c = (V 1, A1, V 2, . . . , An−1, Vn) is a sequence of distinct nodes V1, . . . ,Vn ∈ V and arcs 
A1, . . . , An−1 ∈ AB such that for every Ai, 1 ≤ i < n, it holds that either Ai ≡ V i → V i+1 or Ai ≡ V i+1 → V i .

Definition 14 (Head-to-head node). A node V ∈ V is called a head-to-head node on a chain c in GB if it has two incoming arcs 
on c.

Definition 15 (Blocked chain). A chain c between nodes V1 ∈ V and V2 ∈ V in GB is blocked by a (possibly empty) set of 
instantiated nodes iff it includes a node V /∈ {V1, V2} such that either:

• V is an uninstantiated head-to-head node on c without instantiated descendants, or;
• V is instantiated and has at most one incoming arc on c.

A chain that is not blocked by the evidence is called active.

Definition 16 (d-separation). Two sets of nodes V1 ⊆ V and V2 ⊆ V are d-separated by a set of nodes Z ⊆ V iff there exist no 
active chains between any node in V1 and any node in V2 given instantiations for nodes Z.

If V1 and V2 are d-separated given instantiations for Z ⊆ V, then their corresponding variables are considered condition-
ally independent given Z.

Example 20. In Fig. 9, given the evidence for Z = {Tes1, Tes2, Tes3} all chains between Mot1 and Mot2 are blocked, as Bur 
is an uninstantiated head-to-head node without instantiated descendants on chain (Mot1, Mot1 → Bur, Bur, Mot2 → Bur, 
Mot2); hence, Mot1 and Mot2 are considered conditionally independent given the evidence for Z. �

Finally, we review the following concept from graph theory.

Definition 17 (Weakly connected component). Let G = (V, A) be a directed graph and let C = (Vc, Ac) with Vc ⊆ V and Ac ⊆
(Vc × Vc) ∩ A be a sub-graph of G . Then C is a weakly connected component of G iff:

1. For every pair of nodes V 1, V 2 ∈ Vc , there exists a chain between V 1 and V 2 in C ;
2. C is a maximal sub-graph of G for which property 1 holds.

5.2. Intercausal interactions and qualitative probabilistic constraints

Next, we review the concepts of intercausal interactions and qualitative probabilistic constraints. In case a head-to-head 
node or one of its descendants in a BN graph is instantiated, an active chain is induced between the parents of the head-to-
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head node, allowing for intercausal interactions.3 If one of the parents is true, then the probability of another parent being 
true as well may change, depending on the synergistic effect modelled in the CPT for the head-to-head node. In case the 
probability that one of the other parents is true decreases, this is called the ‘explaining away’ effect [13]. For Boolean nodes, 
we will generally assume an ordering true > false on its values unless specified otherwise. In case this ordering is reversed, 
then the occurrences of these two values need to be interchanged in the equations appearing in Definitions 18 and 20. 
To achieve the explaining away effect between two parents V1 and V3 of V2 for value v2, the CPT for V2 needs to be 
constrained such that V1 and V3 exhibit a negative product synergy wrt v2. First, we review the concept of product synergy I 
[13], which captures the special case in which all other parents of V2 are instantiated.

Definition 18 (Product synergy I). Let B = (GB, Pr) be a BN and let V1,V3 ∈ V be parents of V2 ∈ V in GB . Let X = Par(V2) \
{V1,V3} and let x be the combination of observed values for X. Then V1 and V3 exhibit a negative product synergy wrt v2, 
written X−({V1,V3}, v2), iff

Pr(v2 | v1, v3, x) · Pr(v2 | ¬v1,¬v3, x) ≤ Pr(v2 | v1,¬v3, x) · Pr(v2 | ¬v1, v3, x)

In case X = ∅, then this equation simplifies by leaving out every occurrence of x. V1 and V3 exhibit a zero product 
synergy wrt v2, written X0({V1,V3}, v2), in case ≤ in the above equation is replaced by =. In this case, no direct intercausal 
interaction effect exists between parents V1 and V3 for value v2 of V2. V1 and V3 exhibit a positive product synergy wrt v2, 
written X+({V1,V3}, v2), in case ≤ is replaced by ≥ in the above equation. In this case, the joint occurrence of the causes 
may be a more likely explanation of the common effect than would either of them considered individually.

Next, the case is considered in which X �= ∅ is not instantiated to a combination of values. First, we review the concept 
of matrix half negative semi-definiteness.

Definition 19 (Half negative semi-definite matrix). Let M be a square n × n matrix, n ≥ 1, and let x be any non-negative vector 
x of n elements. Then M is called half negative semi-definite iff xT Mx ≤ 0.

Similarly, a square matrix M is called half positive semi-definite iff xT Mx ≥ 0 for any non-negative vector x of n elements. 
We now provide the definition of extended product synergy, termed product synergy II [13].

Definition 20 (Product synergy II). Let B = (GB, Pr) be a BN and let V1, V3 ∈ V be parents of V2 ∈ V in GB . Let X = Par(V2) \
{V1, V3}. Let n denote the number of possible combinations of values for X. Then V1 and V3 exhibit a negative product synergy
wrt v2 iff the n × n matrix M with elements Mij = Pr(v2 | v1, v3, xi) · Pr(v2 | ¬v1, ¬v3, x j) − Pr(v2 | v1, ¬v3, xi) · Pr(v2 |
¬v1, v3, x j) is half negative semi-definite for all combinations of values xi and x j for X.

For a positive or zero product synergy, the matrix M has to be half positive semi-definite or zero, respectively. Note 
that product synergy I is a special case of product synergy II; hence, in referring to the general concept of product synergy 
throughout this article, we are referring to product synergy II.

Example 21. Consider the BN of Fig. 9. The entries of the CPT of Fig. 9b are chosen such that Mot1 and Mot2 exhibit a 
negative product synergy wrt value Bur = true in presence of uninstantiated parent Opp. Specifically, the 2 × 2 matrix M
consisting of the following four elements is half negative semi-definite:

M11 = 0.9 · 0.05 − 0.7 · 0.8 = −0.515; M12 = 0.9 · 0.01 − 0.7 · 0.1 = −0.061

M21 = 0.2 · 0.05 − 0.1 · 0.8 = −0.070; M22 = 0.2 · 0.01 − 0.1 · 0.1 = −0.008 �

5.3. BN construction

BN construction is typically an iterative process. After constructing an initial BN graph, it should be verified that it is 
acyclic and that it correctly captures the (conditional) independencies. If the graph does not yet exhibit these properties, 
arcs should be reversed, added or removed by the BN modeller in consultation with the domain expert. We call this the 
‘graph validation step’. Related research on BN graph construction is reviewed in Sect. 9.2.

The (conditional) probabilities of the BN are elicited in a separate quantification step. In the current paper, the focus lies 
on deriving the graphical structure of BNs and not on deriving the modelled probability distribution, although in some cases 
qualitative constraints on the (conditional) probabilities of the BN under construction in the form of product synergies are 
derived that can subsequently be used in the quantification step.

3 We note that, while the term ‘intercausal interactions’ is used, these interactions can also occur regardless of the type of relation between parents and 
child.
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6. Constructing Bayesian network graphs from information graphs

Based on our IG-formalism, we now propose a structured approach for automatically constructing a directed BN graph 
from an IG. In our approach, we focus on exploiting the knowledge captured in an IG to constrain the graphical structure of 
the BN and the conditional independence relation it encodes by means of the d-separation criterion, as well as constraining 
its probability function by means of product synergies.

Our IG-formalism serves as an intermediary formalism between analyses performed using informal reasoning tools and 
BNs. We expect direct IG construction to be more straightforward than direct BN construction for domain experts unfamiliar 
with the BN-formalism, a claim we intend to empirically evaluate in our future work. We believe this to be a plausible 
assumption, however, among other things due to the fact that the arcs of a BN are easily misinterpreted by domain experts 
unfamiliar with BNs as non-symmetric relations of cause and effect instead of collectively encoding an independence relation 
[12], making manual BN construction a difficult and error-prone process (see also [18]). Moreover, it is justified to assume 
that information regarding causality is present in the domain expert’s original analysis (see [2,6]), and in manual BN graph 
construction, conditional independencies are typically not directly elicited, but instead the notion of causality is commonly 
used as a guiding principle [16,20].

In IGs, causality information is made explicit by means of causal and evidential generalisations and can thus be directly 
used in BN graph construction. Whereas the ultimate goal of our approach is to facilitate domain experts in constructing BNs 
that can be used to evaluate their problems in a probabilistic manner, our proposed approach only serves for constructing an 
initial BN graph and for deriving qualitative constraints on the probabilities of the BN under construction. More specifically, 
as IGs only express qualitative and not quantitative (probabilistic) information, our BN construction approach can only serve 
for constructing a partially specified initial BN. Moreover, the qualitative probabilistic constraints that are derived from an 
IG given the evidence are generally only a subset of those required for the specification of a QPN [33] (see also Sect. 9.3). 
Hence, initial BNs constructed by our approach are only partially specified and cannot be directly used for probabilistic 
inference. The derived constraints may serve as input for a subsequent elicitation procedure for obtaining a fully specified 
QPN or BN for (qualitative) probabilistic inference.

In Sects. 6.1 and 6.2 we motivate the steps of our approach for automatically constructing an initial BN graph from an 
IG; the approach itself is presented in Sect. 6.3. In Sect. 6.4 we then explain and illustrate the steps of our approach with 
several examples.

6.1. Extracting information from an IG

First, we consider the graphical structure of the BN. For constructing a BN graph from an IG, the IG’s structure is used, 
specifically the generalisations, exceptions and negations expressed in the graph.

Information in proposition nodes For every proposition p ∈ P in an IG, we propose to form a single BN node in V describing 
both values p and ¬p, as captured by step 1 of our approach. By this step, two propositions p, −p ∈ P involved in negation 
are captured as two mutually exclusive values of the same node. Negation arcs present in an IG can thus be disregarded in 
BN construction, as such arcs are drawn between a pair p, q ∈ P iff q = −p.

Information in causal and evidential generalisations In the manual construction of BN graphs, arcs are typically directed 
using the notion of causality as a guiding principle [16,20]. Specifically, if the domain expert indicates that p or ¬p typically 
causes q or ¬q, then the arc is set from node P to node Q. By following this heuristic, causes form a head-to-head connection 
in the node corresponding to their common effect. As such, possible interactions between causes, for example due to the 
fact that they could be in competition, can be directly captured in the CPT for this node. Hence, we propose to use the same 
heuristic in automatically directing arcs, where we exploit causality information explicitly expressed in an IG by means of 
causal and evidential generalisations. Specifically, arcs in the BN graph are set in the same direction as generalisation arcs 
in Gc and in the opposite direction for generalisation arcs in Ge. This is captured by step 2 of our approach.

Information in exceptions Arcs in Exc denote exceptions to generalisations. For instance, if a generalisation is in the evi-
dential direction, then an exception suggests an alternative cause for the same effect. Exceptions to causal generalisations do 
not suggest alternative causes for the same effect, but do possibly interact with them (examples are provided in Sect. 6.4.2). 
Accordingly, we propose to enable capturing possible interactions between an exception and a generalisation arc, if any, in 
the CPTs for head-to-head nodes formed in the BN graph. This is captured by step 3 of our approach.

6.2. Exploiting induced inferences expressed by IGs

By itself, a generalisation arc only captures knowledge about the world in conditional form; only when considering the 
available evidence Ep in the IG can directionality of inference be read from the graph. In comparison, from a BN graph 
we can read the chains between nodes that are active given the evidence and will be exploited to propagate the evidence 
upon probabilistic inference. In our approach, we want to ensure that the sequences of propositions that can be iteratively 
inferred from each other given Ep in an IG are captured in the BN graph by means of active chains given the available 
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evidence for EV ⊆ V corresponding to Ep ⊆ P. In Sect. 7.2, we formally prove that BN graphs constructed by our approach 
indeed allow reasoning patterns similar to the sequences of propositions that can be iteratively inferred from each other 
given Ep in the original IG.

Exploiting competing alternative explanations Probabilistic constraints on the BN under construction are derived by con-
sidering the inferences that can be read from an IG given Ep . In case the tails of two causal generalisations are competing 
alternative explanations for the common effect expressed by the head given Ep (see Definition 11), we propose to constrain 
the CPT for the variable corresponding to the head such that the explaining away effect can occur between the variables 
corresponding to the tails of the generalisations, as captured by step 5a. In case abductive inference is performed with a 
generalisation given Ep , then the tails are not in competition among themselves and the explaining away effect should not 
occur, as captured by step 5b. Similarly, the tails of a generalisation are not in competition among themselves if deductive 
inference is performed, which is captured by the same step.

We note that various evidence sets Ep can be used to establish inferences from the same IG, and thus that, depending 
on Ep , different probabilistic constraints may be derived on the BN under construction. The structure of the BN does not 
depend on Ep , as the IG’s structure is used in BN graph construction and not the IG’s inferences.

Exploiting interactions between exceptions and generalisations The presence of an exception to a generalisation g weakens 
an inference step performed with g . Depending on whether deductive or abductive inference is performed with g given Ep , 
different probabilistic constraints are derived, as captured by step 6 of our approach.

6.3. The approach

In this subsection, we present the steps of our approach. Let Var : P → V be an operator mapping every proposition p
or ¬p ∈ P in an IG to a BN node Var(p) = Var(¬p) ∈ V describing values p and ¬p. For an IG GI = (P, AI ), a BN graph 
GB = (V, AB) is constructed as follows:

1) ∀p, ¬p ∈ P, include Var(p) in V; if p or ¬p ∈ Ep , also include Var(p) in EV .
2) For every generalisation arc g : {p1, . . . , pn} → p:

2a) If g ∈ Ge, include Var(p) → Var(pi ), i = 1, . . . , n in AB .
2b) If g ∈ Gc, include Var(pi ) → Var(p), i = 1, . . . , n in AB .

3) For every exception arc exc : p � g in Exc with g : {q1, . . . , qn} → q:
3a) If g ∈ Ge, include Var(p) → Var(qi), i = 1, . . . , n in AB .
3b) If g ∈ Gc, include Var(p) → Var(q) in AB .

While our approach exploits the domain knowledge captured in the IG in constructing an initial BN graph, the IG may lack 
information needed to prevent cycles and unwarranted (in)dependencies in the obtained BN graph; hence, the following 
manual validation step should be performed by the BN modeller in consultation with the domain expert. We note that this 
type of validation is standard in BN construction, especially in data-poor domains (see Sect. 5.3):

4) Manually verify the properties of the constructed graph GB by applying the standard graph validation step (see Sect. 5.3).

We define the following probabilistic constraints on the BN under construction:

5) For every generalisation arc g : P1 → q in G, P1 = {p1, . . . , pn} ⊆ P:
5a) ∀g′ : Q → q in G, Q = {q1, . . . , qm} ⊆ P, g �= g′ such that both g, g′ ∈ Gc and for which, given Ep , P1 and Q are 

competing alternative explanations for the common effect expressed by q (see Definition 11), constrain the CPT for 
Var(q) such that X−({Var(pi ), Var(q j)}, q) for pi ∈ P1 \ Q, q j ∈ Q \ P1 .

5b) If g is used to perform inference given Ep , constrain the CPT for Var(q) such that Xδ({Var(pi ), Var(p j)}, q) with 
δ �= −, pi, p j ∈ P1 , pi �= p j .

6) For every exc : p � g in Exc with p ∈ P and g : {q1, . . . , qn} → q in G:
6a) If g ∈ Ge and q is deductively inferred from q1, . . . , qn given Ep using g , constrain the CPT for Var(qi ) such that 

X−({Var(p), Var(q)},qi), i = 1, . . . , n. If in addition ∃exc′ : p′ � g in Exc, further constrain the CPT for Var(qi ) such 
that X−({Var(p), Var(p′)}, qi), i = 1, . . . , n.

6b) If g ∈ Gc and q is deductively inferred from q1, . . . , qn given Ep using g , constrain the CPT for Var(q) such that 
Pr(q | p, q1, . . . , qn) < Pr(q | ¬p, q1, . . . , qn).

6c) If g ∈ Gc and q1, . . . , qn are abductively inferred from q given Ep using g , constrain the probabilities of the BN such 
that Pr(qi | p, q) < Pr(qi | ¬p, q), i = 1, . . . , n.
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Fig. 10. BN graph constructed from the IG of Fig. 8a by our approach (a); a possible CPT for node Murder (b).

We reiterate that the initially constructed BN by our approach should always be verified by the BN modeller in consul-
tation with the domain expert, which includes verifying the derived probabilistic constraints. After this verification step, 
the derived constraints can be used in subsequent probability assessment, thereby partially simplifying it. In particular, 
since we are considering BN construction in data-poor domains the required conditional probabilities will often need to be 
elicited from domain experts, where it can be monitored whether the assessed conditional probabilities satisfy the derived 
probabilistic constraints.

We note that the above probabilistic constraints concern intercausal interactions between individual nodes and not sets, 
as to the best of our knowledge no approaches have been proposed in the literature that allow for capturing interactions 
between sets of parents of a node. The type of competition between sets of nodes in an IG as captured by Definition 11
can, therefore, not be straightforwardly captured between variables in a corresponding BN; instead, in step 5a we propose 
to constrain the CPT for Var(q) such that X−({Var(pi ), Var(q j)}, q) for pairs of propositions pi ∈ P1 \ Q, q j ∈ Q \ P1 , where 
the intersection of P1 and Q is not considered. Similarly, in step 6a interactions between pairs of nodes and not sets are 
considered. In our future work, we intend to investigate whether the concept of product synergy can be extended to sets of 
nodes.

6.4. Explanation and illustration of the steps of the approach

In this section, we explain and illustrate the steps of our approach through our running example, introduced in Sect. 3. In 
Sect. 6.4.1 we illustrate that steps 1 − 2 of our approach suffice for constructing BN graphs from restricted IGs not including 
exception arcs, where the CPTs of the BN under construction should be constrained according to step 5. In Sect. 6.4.2 we 
then illustrate that the BN under construction needs to be further constrained in case exception arcs are present in the IG; 
this is accounted for in steps 3 and 6 of our approach.

6.4.1. Explanation and illustration of steps 1 − 2 and 5
First, we explain and illustrate the main idea behind our approach by applying it to the IG depicted in Fig. 8a.

Steps 1 − 2 The first step is to capture every proposition in GI and its negation as two mutually exclusive values of the 
same BN node in GB . In steps 2a and 2b, arcs in the BN graph are directed using the notion of causality in that for every 
g ∈ Gc, arcs in the BN graph are directed from nodes corresponding to Tails(g) to Var(Head(g)), and vice versa for g ∈ Ge. 
This formalises the approach typically taken in the manual construction of BN graphs, namely that of setting arcs in the 
causal direction as a guiding principle [16,20]. The resulting BN graph is depicted in Fig. 10a.

Step 5a The inferences that can be read from an IG given the evidence allow us to derive constraints on the CPTs of 
the BN. In the IG of Fig. 8a, given Ep = {police} propositions mot1 and mot2 are abductively inferred from murder using 
g3 and g5, respectively, as given Ep murder is deductively inferred from police using g1. Therefore, mot1 and mot2 are 
competing alternative explanations for common effect murder in that accepting one explanation will diminish our belief 
in the other (see Definition 11). We propose to link this type of intercausal interaction in IGs to the explaining away 
effect in BNs. Specifically, as proposed in step 5a of our approach, the CPT for Murder should be constrained such that 
X−({Mot1, Mot2}, murder). Note that the IG only informs us that there should be a negative product synergy between Mot1
and Mot2 wrt value Murder = true; it does not inform us whether a product synergy should also be exhibited between 
these variables wrt value Murder = false, as proposition ¬murder does not appear in the IG. Fig. 10b depicts a possible 
CPT for Murder, where X−({Mot1, Mot2}, murder) as 0.4 · 0.1 ≤ 0.6 · 0.5. However, as 0.6 · 0.9 ≥ 0.4 · 0.5, it also holds that 
X+({Mot1, Mot2}, ¬murder). Care should be taken, therefore, in eliciting the involved probabilities, as it may be undesirable 
that a positive product synergy for value ¬murder is exhibited.

By following steps 2a and 2b of our approach, causes automatically form a head-to-head connection in the node cor-
responding to their common effect for any given IG; interactions between causes in an IG, for instance because they are 
competing alternative explanations for the common effect, can, therefore, always be directly captured in the CPT for the 
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Fig. 11. Example of an IG (a); the BN graph constructed by directing arcs according to the inferences that can be read from this IG given Ep (b); the BN 
graph constructed by directing arcs according to the generalisations in the IG (c).

node corresponding to the common effect. We note that directing arcs in the BN graph in the same direction as the in-
ferences that can be read from an IG given the evidence would lead to undesirable results. Consider the IG depicted in 
Fig. 11a. By directing arcs according to the inferences that can be read from this IG given Ep , the BN graph of Fig. 11b is 
constructed. In the IG of Fig. 11a, p and q are competing alternative explanations for common effect r given Ep; however, 
this competition cannot be directly captured in the CPT for node R in the BN graph of Fig. 11b as a divergent connection is 
formed. Moreover, all chains between P and Q are blocked given EV = {R}; hence, interactions between causes expressed in 
an IG cannot always be captured by directing arcs in a corresponding BN graph according to the induced inferences in an 
IG.

Step 5b Next, consider the IG of Fig. 8b. Given Ep , murder is deductively inferred from mot1 and mot2 using g3; therefore, 
mot1 and mot2 are not competing alternative explanations for murder in this IG. By following steps 1 −2 of our approach, the 
BN graph of Fig. 12a is constructed. As mot1 and mot2 are not competing alternative explanations for murder in this example, 
we need to assure that the explaining away effect cannot occur between Mot1 and Mot2 for value Murder = true. This can 
be achieved by constraining the CPT for Murder such that Xδ({Mot1, Mot2}, murder) for δ �= −, as captured by step 5b of our 
approach. This is a relaxation of our previously proposed solution [39], in which we proposed to constrain the CPT for the 
node corresponding to the common effect such that a zero product synergy is exhibited wrt the indicated value in the IG. 
Specifically, we now also allow that a positive product synergy is exhibited; what counts is that no negative product synergy 
is exhibited between Mot1 and Mot2 for value Murder = true, as mot1 and mot2 are not competing alternative explanations 
for the common effect. Fig. 12b depicts a possible CPT for Murder, where X+({Mot1, Mot2}, murder) as 0.8 · 0.1 ≥ 0.2 · 0.2.

6.4.2. Explanation and illustration of steps 3 and 6
Next, IGs including exception arcs are considered.

Step 3a In Fig. 13a, an example of an IG is depicted in which exceptions to both an evidential and a causal generalisation 
are provided. Proposition lie, which states that Marjan had reason to lie when giving her testimony, provides an exception to 
the evidential generalisation tes3 → ¬murder. Since tes3 is either the result of Marjan truly not committing the murder or 
due to a lie, ¬murder and lie can be seen as competing alternative explanations for Marjan’s testimony. Generally, exceptions 
to an evidential generalisation can be considered competing alternative explanations for the common effects expressed by 
the antecedents of the generalisation. We therefore propose to enable capturing such interactions between an exception and 
an evidential generalisation by forming head-to-head nodes in the nodes corresponding to the tails of the generalisation 
arc. By step 2a of our approach, the BN graph under construction includes arc Murder → Tes3. A head-to-head node can, 
therefore, be formed in node Tes3 by adding additional arc Lie → Tes3 to the BN graph; this is captured by step 3a of our 
approach.

Step 6a Given Ep = {police, alibi, tes3, tes4}, ¬murder is deductively inferred from tes3. As proposition lie provides an 
exception to the generalisation used in performing this inference step and thereby weakens the inference, we propose to 
constrain the CPT for Tes3 such that the explaining away effect can occur between Lie and Murder for value Tes3 = true. 
This is achieved by constraining the CPT for Tes3 such that X−({Lie, Murder}, tes3), as captured by step 6a of our approach. 

Fig. 12. BN graph constructed from the IG of Fig. 8b by our approach (a); a possible CPT for node Murder (b).
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Fig. 13. IG involving exceptions to generalisation arcs in Ge and Gc (a); the corresponding BN graph constructed by our approach (b); a possible CPT for 
node Tes3 (c).

In this particular example, ¬murder is one of the possible causes of tes3; therefore, for variable Murder the ordering false
> true is assumed. For example, the CPT for Tes3 can be chosen as in Fig. 13c, as in this case it holds that Pr(tes3 |
¬murder, lie) · Pr(tes3 | murder, ¬lie) = 0.2 · 0.01 ≤ Pr(tes3 | ¬murder, ¬lie) · Pr(tes3 | murder, lie) = 0.8 · 0.3.

We note that multiple exceptions to an evidential generalisation arc g express different competing alternative explana-
tions for the common effects expressed by Tails(g). We therefore propose to constrain the CPTs for the nodes corresponding 
to the tails such that a negative product synergy is exhibited between the nodes corresponding to each pair of exceptions, 
as captured by step 6a of our approach.

Step 3b In the IG of Fig. 13a, proposition ¬opp, which states that Marjan did not have opportunity to commit the murder 
as she has an alibi (alibi), provides an exception to the causal generalisation arc mot1 → murder. In contrast with the 
exception to the evidential generalisation arc, this exception cannot be considered a competing alternative explanation for 
the tail of the generalisation arc; the absence of opportunity cannot be considered a cause for motive. Instead, it allows 
us to infer that Marjan did not murder Leo (¬murder). For exceptions to generalisations g ∈ Gc, we therefore propose to 
form a head-to-head node in Var(Head(g)) as opposed to in Var(pi ) for pi ∈ Tails(g). By step 2b of our approach, the BN 
graph under construction includes arc Mot1 → Murder. A head-to-head node can, therefore, be formed in Murder by adding 
additional arc Opp → Murder to the BN graph; this is captured by step 3b of our approach. The corresponding BN graph is 
depicted in Fig. 13b. As Murder describes both values murder and ¬murder, possible interactions, if any, between mot1 and 
¬opp, and hence between Mot1 and Opp, can be captured in the CPT for this node.

Steps 6b-c Bex and Renooij [5] previously noted that, for deduction, the presence of a proposition opposing an inference 
step from q1, . . . , qn to q should decrease the probability that q is true. We propose to take a similar approach for exceptions 
to causal generalisations used in performing inference. For deduction with a generalisation q1, . . . , qn → q in Gc in presence 
of an exception p, we propose to constrain the CPT for Var(q) such that Pr(q | p, q1, . . . , qn) < Pr(q | ¬p, q1, . . . , qn), as 
captured by step 6b of our approach. For abduction with a generalisation q1, . . . , qn → q in Gc, the probability that qi is 
true given q should decrease in the presence of an exception p for i = 1, . . . , n. Accordingly, we propose to constrain the 
probabilities of the BN such that Pr(qi | p, q) < Pr(qi | ¬p, q), i = 1, . . . , n, as captured by step 6c of our approach. The latter 
constraints cannot be directly imposed on the CPTs for nodes Var(p), Var(q), or Var(qi ), as nodes Var(qi ) and Var(p) are 
parents of node Var(q) by steps 2b and 3b of our approach. We note that approaches have been proposed that allow one 
to use this set of probability constraints in an elicitation procedure for obtaining the required local probability distributions 
[14].

7. Properties of the approach

In this section, we prove a number of formal properties of our approach. In Sect. 7.1, we study conditions on IGs under 
which the fully automatically constructed initial BN graph is guaranteed to be acyclic. In Sect. 7.2, we prove that, as intended, 
BN graphs constructed by our approach capture reasoning patterns similar to those that can be read from an IG given the 
evidence. In Sect. 7.3, we look into the size of the CPTs and complexity of probabilistic inference in BN graphs constructed by 
our approach. Finally, in Sect. 7.4, we look into mapping properties of our approach; specifically, we investigate conditions 
under which the same BN graph is constructed from different IGs by our approach, and discuss ways by which a distinction 
can be made in the (conditional) probabilities of the BN under construction.

7.1. Constructing acyclic graphs

In this section, we study conditions under which the initial graph constructed by steps 1–3 of our approach is guaranteed 
to be a DAG. Hence, under these conditions the (manual) verification step of whether the obtained graph contains cycles 
(part of step 4 of our approach) can be skipped.

Conditions a) and b) of Proposition 1 concern the existence of exception arcs in IGs. Specifically, cycles are possibly intro-
duced within weakly connected components of the BN graph under construction in step 3 of our approach in case exception 
arcs exist within weakly connected components of IGs (condition a). Furthermore, cycles are also possibly introduced in the 
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BN graph from a node V1 in one weakly connected component via a node V2 in another weakly connected component in 
this step in case exception arcs exist between propositions in separate weakly connected components of IGs (condition b). 
Examples of IGs violating these conditions are provided after the formal result.

Proposition 1. Consider IG GI = (P, AI ), and let G∗
I = (P, A∗

I ) be the possibly disconnected sub-graph of GI with A∗
I = AI \ Exc. 

Let C = {C = (Pc, Ac
I ) | Pc ⊆ P, Ac

I ⊆ A∗
I , C is a weakly connected component of G∗

I } be the set of IG components. Assume that the 
following conditions are satisfied:

a) For any IG component C ∈ C, there does not exist an exc : p � g in Exc with p ∈ Pc , g ∈ Ac
I .

b) For every pair of IG components C1, C2 ∈ C, there does not exist both an exc1 : p1 � g1 in Exc with p1 ∈ Pc1 , g1 ∈ Ac2
I and an 

exc2 : p2 � g2 in Exc with p2 ∈ Pc2 , g2 ∈ Ac1
I .

Let GB = (V, AB) be the graph constructed from GI according to steps 1–3 of our approach. Then GB is a DAG.

Proof. By setting arcs in AB per step 2 of our approach, no cycles are introduced. Specifically, our non-repetitiveness and 
consistency assumptions (see Sect. 4.1) jointly assume that for every p ∈ P there does not exist a generalisation chain 
[g1, . . . , gm] with p ∈ Tails(g1) such that either Head(gm) = p or Head(gm) = −p. Therefore, no chain of arcs exists in AB
from a node P to itself. The only other case in which cycles are possibly introduced in GB is when a causal cycle exists in 
GI , which is also prohibited by assumption (see Sect. 4.1).

We now prove that if C ∈ C is an IG component of GI , then the BN segment C ′ obtained from C after step 2 is a weakly 
connected component of the thus far constructed BN graph GB . Let C ∈ C be an IG component of GI . Then propositions 
within C are interconnected by arcs in G and N but are not connected to other propositions in the supergraph GI ; therefore, 
corresponding nodes in BN segment C ′ are interconnected but not connected to other nodes in supergraph GB . This is the 
case as per step 2, AB only includes arcs between the variables corresponding to Tails(g) and Head(g) for every g ∈ G; no 
arcs are introduced corresponding to n ∈ N. We then call C ′ the weakly connected component corresponding to IG component 
C . In step 3 of our approach, additional arcs are included in AB for every exc ∈ Exc. We now prove that no cycles are 
introduced within the weakly connected components of GB or from a node V 1 in one weakly connected component to 
itself via a node V 2 in another weakly connected component of GB in step 3. Under condition a), no cycles are introduced 
within a weakly connected component C ′ of GB in this step. Specifically, C ′ contains no cycles after step 2 and no cycles 
are introduced in C ′ in step 3 as no exception arc is directed from a p ∈ Pc to a g ∈ Ac

I in corresponding IG-component C . 
Furthermore, for every pair of IG components C1 and C2 of GI with corresponding weakly connected components C ′

1 and 
C ′

2 of GB , no cycles are introduced from a node V1 ∈ C ′
1 to itself via a node V2 ∈ C ′

2 under condition b). The resulting BN 
graph is therefore acyclic. �

Figs. 14a, 14c and 14e depict examples of IGs that do not satisfy condition a) of Proposition 1 and hence result in cyclic 
graphs. In general, an IG violating only condition a) either contains:

(1a) A generalisation chain [g1, . . . , gm], g1, . . . , gm ∈ Gc and an exception arc exc : Head(g j) � gi for 1 ≤ i < j ≤ m (see 
Figs. 14a and 14c), or;

(1b) A generalisation chain [g1, . . . , gm], g1, . . . , gm ∈ Ge and an exception arc exc : Head(gi) � g j for 1 ≤ i < j ≤ m, or;
(2) Propositions r, ¬r with n : r � ¬r in N, where ¬r provides an exception to a generalisation gi in a generalisation 

chain [g1, . . . , gm] with either:
(2a) Head(gm) = r and g1, . . . , gm ∈ Gc (see Fig. 14e), or;
(2b) r ∈ Tails(g1) and g1, . . . , gm ∈ Ge.

For 1a), Head(g j) poses an exception to a generalisation that was used in iteratively inferring Head(g j) in case solely de-
ductive inferences are performed with the generalisations in the chain, as illustrated in Fig. 14a. However, in case abductive 
inferences are performed with generalisations in the chain, it may not be the case that Head(g j) poses an exception to a 
generalisation that was used in iteratively inferring Head(g j), as illustrated in Fig. 14c. For 1b) Head(gi) poses an exception 
to a generalisation that is used to iteratively deductively infer another proposition from Head(gi), as only deduction can be 
performed with evidential generalisations. For (2), the question remains whether realistic examples of IGs including such 
conflict relations can be constructed; an abstract example is provided in Fig. 14e. Condition a) of Proposition 1 thus mostly 
poses a technical constraint to ensure acyclic graphs are constructed by our approach.

IGs violating condition b) may appear more frequently; an example is provided in Fig. 14g. In the validation step that 
follows the initial construction of BN graphs corresponding to IGs violating conditions a) and b), arcs can be reversed or 
removed to make these graphs acyclic. The choice of arc to reverse or remove will depend on its effect on active chains, 
including those between nodes not directly incident on the arc. We note that this type of (manual) verification is standard 
in BN construction, especially in data-poor domains (see Sect. 5.3). While the domain knowledge expressed in the original 
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Fig. 14. Examples of IGs (a, c, e, g) for which a cyclic graph is constructed by steps 1–3 of our approach (b, d, f, h).

IG has been exploited to construct an initial BN graph, additional domain knowledge may need to be elicited to obtain a 
valid graph.

7.2. Capturing induced reasoning patterns expressed by IGs as active chains

In this section, we study whether BN graphs constructed by our approach capture reasoning patterns similar to those 
that can be read from the original IG given the evidence. As motivated throughout this paper, generalisation arcs only 
capture knowledge about the world in conditional form; only when considering the available evidence Ep in the IG can 
directionality of inference be read from the graph. Specifically, in Definitions 9 and 10 conditions are specified under which 
(a set) of proposition(s) are deductively respectively abductively inferred from another (set of) proposition(s) given Ep . The 
following notion of an inference chain describes a sequence of propositions that are iteratively inferred from each other 
given Ep . For those familiar with argumentation, we note that inference chains are comparable to arguments as defined in 
ASPIC+ [30]. A key distinction is that we define inference chains and not inference trees (which would more closely resemble 
arguments), as our current focus lies on defining a concept that is more closely related to the concept of active chains for 
BNs. Furthermore, the notion of attack is not required for our current purposes. In previous work [42], we investigated the 
relations between argumentation and inference as it can be performed with our IG-formalism; more specifically, it is shown 
that an Argumentation Framework (AF) as in Dung [15] can straightforwardly be generated from an IG by considering the 
available evidence. For details, the reader is referred to [42].

First, we define the concept of a chain for IGs.

Definition 21 (Chain in an IG). Let GI = (P, AI ) be an IG, and let Ep ⊆ P be an evidence set. Let {p1, . . . , pn} ⊆ P and let 
G′ = {g1, . . . , gn−1} ⊆ G. Then (p1, g1, p2, g2, . . . , pn−1, gn−1, pn) is a chain in GI iff for all 1 < i ≤ n it either holds that 
Head(gi−1) = pi , pi−1 ∈ Tails(gi−1) or Head(gi−1) = pi−1, pi ∈ Tails(gi−1).

We now define when a chain in an IG is an inference chain.

Definition 22 (Inference chain). Let GI = (P, AI ) be an IG, and let Ep ⊆ P be an evidence set. Let G′ = {g1, . . . , gn−1} ⊆ G, and 
let {p1, . . . , pn} ⊆ P such that �i, j ∈ {1, . . . , n} with pi = −p j , and such that (p1, g1, p2, g2, . . . , pn−1, gn−1, pn) is a chain in 
GI . Let p1 ∈ Ep or let p1 be deductively or abductively inferred using a generalisation g ∈ G \ G′ given Ep (see Definitions 9
and 10). Then chain (p1, g1, p2, g2, . . . , pn−1, gn−1, pn) is an inference chain in GI given Ep iff for all 1 < i ≤ n it holds that:

1. pi is deductively inferred using generalisation gi−1 ∈ G′ given Ep (see Definition 9), where Head(gi−1) = pi , pi−1 ∈
Tails(gi−1), or;

2. pi is abductively inferred from pi−1 using generalisation gi−1 ∈ G′ given Ep (see Definition 10), where Head(gi−1) = pi−1, 
pi ∈ Tails(gi−1).

We emphasise that an inference chain (p1, g1, p2, g2, . . . , pn−1, gn−1, pn) does not only describe that pi−1 was used in 
inferring pi for all 1 < i ≤ n; it also describes that the inference chain needs to start in a proposition p1 that is either 
observed or inferred, hence the conditions regarding p1 in Definition 22. We refer to the assumption that for inference 
chains (p1, g1, p2, g2, . . . , pn−1, gn−1, pn) it holds that all pi are distinct (enforced by assuming that {p1, . . . , pn} ⊆ P) as 
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Fig. 15. The IG of Fig. 8b, where inference chains are also indicated by connecting arcs with open arrowheads.

our non-repetitiveness assumption on inference chains. We refer to the assumption that for {p1, . . . , pn} it holds that �i, j ∈
{1, . . . , n} with pi = −p j as our consistency assumption on inference chains.

Compared to generalisation chains (see Definition 4), which are solely captured by the graphical structure of IGs, in-
ference chains can only be read from an IG by considering the evidence Ep . In case an inference chain only describes 
deductive inference steps, then our non-repetitiveness and consistency assumptions on inference chains coincide with our 
non-repetitiveness and consistency assumptions on generalisation chains as described in Sect. 4.1; however, these assump-
tions do not coincide in case an inference chain also describes abductive inference steps.

The following example illustrates the concept ‘inference chain’ and how it compares to the concept ‘generalisation chain’.

Example 22. In the IG of Fig. 15, (tes1, g2, mot1, g3, murder) is an inference chain given Ep , as mot1 is deductively inferred 
from tes1 ∈ Ep using g2, where Head(g2) = mot1 and tes1 ∈ Tails(g2), and murder is deductively inferred from mot1 and 
mot2 using g3, where Head(g3) = murder and mot1 ∈ Tails(g3). In this IG, [g2, g3] is also a generalisation chain (see Ex-
ample 8). Note that the presence of this inference chain does not imply that mot1 is by itself sufficient to infer murder; 
instead, murder can only be deductively inferred using g3 in case both mot1 and mot2 are affirmed. The broader context in 
which the inference step from mot1 to murder is performed using g3 is thus not directly apparent from this inference chain; 
instead, the role of proposition mot2 becomes apparent in considering other inference chains that can be read from this IG 
given Ep , specifically inference chain (tes2, g4, mot2, g3, murder).

In the IG of Fig. 4, (police, g1, murder, g3, mot1) is an inference chain given Ep: murder is deductively inferred from police
∈ Ep using generalisation g1 and mot1 is abductively inferred from murder using generalisation g3. However, [g1, g3] is not 
a generalisation chain, as Head(g1) = murder /∈ Tails(g3). �

To remain closely related to the concept of active chains for BNs, we assume in Definition 22 that inference chains 
(p1, g1, p2, g2, . . . , pn−1, gn−1, pn) do not need to start in evidence in that it does not need to hold that p1 ∈ Ep , as long as 
p1 is deductively or abductively inferred using a g ∈ G \ G′ given Ep .

Example 23. In Fig. 15, (mot1, g3, murder) is an inference chain given Ep: murder is deductively inferred from mot1 and 
mot2 using g3. However, mot1 /∈ Ep; instead, mot1 is deductively inferred using g2 ∈ G \ {g3} given Ep . �

The following example illustrates that inference chains are generally not symmetrical, in contrast with active chains for 
BNs.

Example 24. In the IG of Fig. 15, (tes1, g2, mot1, g3, murder) is an inference chain (see Example 22), but (murder, g3, mot1, 
g2, tes1) is not an inference chain as mot1 cannot be inferred from murder using g3 and tes1 cannot be inferred from mot1
using g2. �

We prove the following properties of inference chains. Lemma 1 states that for inference chains, only the first proposition 
in the chain can possibly be observed.

Lemma 1. Let GI = (P, AI ) be an IG, and let Ep ⊆ P be an evidence set. Let p1, . . . , pn ∈ P, g1, . . . , gn−1 ∈ G and let 
(p1, g1, p2, g2, . . . , pn−1, gn−1, pn) be an inference chain in GI given Ep . Then pi /∈ Ep for i > 1.

Proof. Let i > 1. In case pi is deductively inferred from pi−1 using gi−1, then pi = Head(gi−1) /∈ Ep per the restrictions 
of Definition 9. Similarly, in case pi is abductively inferred from pi−1 using gi−1, then pi /∈ Ep , as pi ∈ Tails(gi−1) and 
Tails(gi−1) ∩ Ep = ∅ per the restrictions of Definition 10. �

Lemma 2 states that an inference step between two consecutive propositions pi and pi+1 in an inference chain can only 
be performed with a generalisation gi for which Head(gi) = pi and pi+1 ∈ Tails(gi) in case gi is a causal generalisation.
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Lemma 2. Let GI = (P, AI ) be an IG, and let Ep ⊆ P be an evidence set. Let p1, . . . , pn ∈ P, g1, . . . , gn−1 ∈ G and let 
(p1, g1, p2, g2, . . . , pn−1, gn−1, pn) be an inference chain in GI given Ep . Let i ∈ {1, . . . , n − 1} and assume that Head(gi) = pi , 
pi+1 ∈ Tails(gi). Then gi ∈ Gc .

Proof. Assume a generalisation gi with Head(gi) = pi and pi+1 ∈ Tails(gi) is indicated in GI , then pi+1 cannot be inferred 
from pi in case gi ∈ Ge, as this would be an instance of abductive inference while per the restrictions of Definition 10
abduction can only be performed using generalisation arcs in Gc. �

In performing inference care should be taken that no cause for an effect is inferred if an alternative cause for this 
effect was already previously inferred (Pearl’s constraint, see Sect. 2.4). In the context of IGs, for g ∈ Gc, propositions in 
Tails(g) express a cause for the common effect expressed by Head(g), and for g ∈ Ge, Head(g) expresses the usual cause 
for propositions in Tails(g). Hence, in defining how inferences can be read from IGs, restrictions are put in Definitions 9
and 10 such that Pearl’s constraint is adhered to. We now formally prove that the inference chains that can be read from 
an IG given an evidence set Ep indeed never violate Pearl’s constraint.

First, we formally define Pearl’s constraint in the context of IGs.

Definition 23 (Pearl’s constraint). Let GI = (P, AI ) be an IG, and let Ep ⊆ P be an evidence set. Let c1, c2 ∈ P be alternative 
causes of e ∈ P, as indicated by generalisations g, g′ ∈ G (see Definition 3). Then chain (c1, g, e, g′, c2) is not an inference 
chain in GI given Ep .

We now formally prove that Pearl’s constraint is indeed adhered to.

Proposition 2 (Adherence to Pearl’s constraint). Let GI = (P, AI ) be an IG, and let Ep ⊆ P be an evidence set. Let c1, c2 ∈ P be 
alternative causes of e ∈ P, as indicated by generalisations g, g′ ∈ G (see Definition 3). Then Pearl’s constraint is adhered to.

Proof. We need to prove that chain (c1, g, e, g′, c2) is not an inference chain in GI given Ep . In performing the inference 
step from c1 to e, a generalisation g ∈ Ge, Head(g) = c1, e ∈ Tails(g) could not have been used (case 1 of Definition 3) per 
Lemma 2. Thus, we only need to consider case 2 of Definition 3, which is a deductive inference step. First, consider case 
2a of Definition 3. Then by Definition 10 (condition 2), c2 cannot be inferred from e using g′ . Next, consider case 2b of 
Definition 3. Then by Definition 9 (condition 2), c2 cannot be inferred from e using g′ . �
Example 25. In the IG of Fig. 5c, [g1, g2] is a generalisation chain but (smoke_machine, g1, smoke, g2, fire) is not an inference 
chain, as per Pearl’s constraint fire cannot be deductively inferred from smoke using g2. �

An IG, by means of its inference chains, describes sequences of propositions that can be iteratively inferred from each 
other given the available evidence. In comparison, from a BN graph we can read the chains between nodes that are active 
given the evidence and will be exploited to propagate the evidence upon probabilistic inference. We now formally prove 
that all inference chains that can be read from an IG given the evidence are captured in the BN graph by means of active 
chains given the available evidence for EV ⊆ V corresponding to Ep ⊆ P. This result implies that, for every inference chain 
(p1, g1, p2, g2, . . . , pn−1, gn−1, pn) given Ep , nodes Var(p1) and Var(pn) are not d-separated given the evidence for EV .

Proposition 3. Let GI = (P, AI ) be an IG with evidence set Ep ⊆ P, and let GB = (V, AB) be the BN graph constructed from GI
according to steps 1–3 of our approach. Let (p1, g1, p2, g2, . . . , pn−1, gn−1, pn) be any inference chain that can be read from GI
given Ep . Then there exists an active chain between Var(p1) and Var(pn) in GB given the evidence for EV.

Proof. Following steps 1 − 2 of our approach, a sequence of nodes and arcs is formed between Var(p1) and Var(pn) in GB , 
as for every gi , 1 ≤ i < n arcs between Tails(gi) and Head(gi) are added to AB . By our non-repetitiveness and consistency 
assumptions on inference chains, this is a sequence of distinct nodes and arcs and thus a chain in GB . We now prove that 
this chain in the BN graph is active given EV , as all options to block a chain do not occur. First, note that per Lemma 1
it holds that pi /∈ Ep for i > 1; therefore, corresponding nodes Var(pi ) in the BN graph are not instantiated and hence do 
not block chains. Possibly only p1 ∈ Ep . However, in this case, the corresponding node Var(p1) is an end-point of the chain 
which, therefore, does not block it. Hence, chains between Var(p1) and Var(pn) are never blocked by EV .

The only other option to block a chain occurs in case it includes an uninstantiated head-to-head node without instanti-
ated descendants. Consider pi−1, pi , pi+1 for an arbitrary 1 < i < n, and let gi−1 and gi be the corresponding generalisations 
used in the inferences from pi−1 to pi and from pi to pi+1, respectively. We show that a head-to-head node Var(pi−1) →
Var(pi ) ← Var(pi+1) is never formed. Note that by steps 2a and 2b of our approach, a head-to-head node Var(pi−1) →
Var(pi ) ← Var(pi+1) is only formed in case:

1. gi−1 ∈ Ge, Head(gi−1) = pi−1, pi ∈ Tails(gi−1), and either:
1a) gi ∈ Ge, Head(gi) = pi+1, pi ∈ Tails(gi), or;
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1b) gi ∈ Gc, Head(gi) = pi , pi+1 ∈ Tails(gi).

2. gi−1 ∈ Gc, Head(gi−1) = pi , pi−1 ∈ Tails(gi−1), and either:
2a) gi ∈ Gc, Head(gi) = pi , pi+1 ∈ Tails(gi), or;
2b) gi ∈ Ge, Head(gi) = pi+1, pi ∈ Tails(gi).

However, in performing the inference steps from pi−1 to pi and from pi to pi+1 none of these combinations of generali-
sations could have been used, as proven in Proposition 2. Thus a head-to-head node Var(pi−1) → Var(pi ) ← Var(pi+1) is 
never formed, and chains between Var(p1) and Var(pn) are never blocked.

Finally, in step 3 AB is extended for exception arcs. This step does not change the chains formed between Var(p1) and 
Var(pn) in step 2, which therefore remain active given EV . �

The implication in the other direction of Proposition 3 does not generally hold. Specifically, it does not generally hold that 
for every induced active chain in a BN graph constructed from an IG GI , there exists a corresponding induced inference 
chain in GI . For instance, since the notion of an active chain is a symmetrical concept, a BN graph will also capture 
reasoning patterns in the direction opposite of the inference chains that can be read from an IG. As inference chains are 
generally not symmetrical (see Example 24), reasoning patterns may appear in the BN graph that do not appear in the 
original IG.

7.3. Size and complexity of constructed BNs

The following properties concern the size and complexity of the resulting BN model. Proposition 4 gives an upper-bound 
on the total number of nodes and arcs introduced in a BN graph constructed from an IG by our approach.

Proposition 4. Let GI = (P, AI ) be an IG, and let GB = (V, AB) be the BN graph constructed from GI according to steps 1–3 of our 
approach. Let Exce and Excc be disjoint subsets of Exc consisting of exceptions to generalisation arcs in Ge and Gc , respectively. Then 
|V| = |P| − |{p | p ∈ P and ¬p ∈ P}| and |AB | ≤ ∑

g∈G
|Tails(g)| + |Excc| + ∑

p�g in Exce
|Tails(g)|. �

Proof. By step 1 of our approach, both p and its negation are mapped to the same node Var(p) = Var(¬p) ∈ V. Therefore, 
the exact number of nodes introduced in this step is |P \ {p | p ∈ P and −p ∈ P}|. In step 2, at most |Tails(g)| arcs are added 
to AB for every g ∈ G. For every exc ∈ Excc, one additional arc is added to AB in step 3b. For every exc : p � g in Exce, at 
most |Tails(g)| arcs are added to AB in step 3a. �

As a corollary, note that the complexity of constructing a BN graph from an IG using our approach is linear in the 
number of proposition nodes, generalisation arcs and exceptions arcs in the IG, as nodes in the BN graph are directly added 
according to the IG’s proposition nodes and arcs in the BN graph are directly added according to the IG’s generalisation arcs 
and exception arcs.

Proposition 5 gives an upper-bound on the number of parents introduced by our approach for each node Var(p) in 
V, which bounds both the size of the CPTs and the complexity of probabilistic inference in the BN [11, pp. 141–142]. 
Informally, this bound captures the number of generalisation arcs and exception arcs that involve either proposition p or 
¬p. The terminology used in Proposition 5 is illustrated in Fig. 16.

Proposition 5. Let GI = (P, AI ) be an IG, and let GB = (V, AB) be the BN graph constructed from GI according to steps 1–3 of our 
approach. For every p ∈ P, let Parp = {pi | pi ∈ Tails(g), g ∈ Gc, Head(g) ∈ {p, ¬p}}. Let Ge

p be a subset of Ge , where g ∈ Ge
p iff 

p ∈ Tails(g). Let Excp ⊆ Exc be the subset of exception arcs directed to a g ∈ Ge
p or a g ∈ Ge¬p . Similarly, let Exc′

p ⊆ Exc be the subset 
of exception arcs directed to a g ∈ Gc for which Head(g) ∈ {p, ¬p}. Then an upper-bound for the number of parents of Var(p) is:

|Parp| + |Excp| + |Exc′
p| + |Ge

p| + |Ge¬p|

Proof. For every g ∈ Gc with Head(g) ∈ {p, ¬p}, Var(p) has at most |Tails(g)| parents by step 2b of our approach; hence 
the term |Parp |. By steps 3a and 3b, AB includes a single arc directed towards Var(p) for every exception exc in Excp or 
in Exc′

p , respectively; hence the terms |Excp | and |Exc′
p |. For every g ∈ Ge with p or ¬p in Tails(g), a single arc directed 

towards Var(p) is included in AB by step 2a of our approach; hence the terms |Ge
p | and |Ge¬p|. �

Note that, in case Ge
p = Ge¬p = ∅, it follows that Excp = ∅; hence, terms |Ge

p|, |Ge¬p| and |Excp| are equal to zero in this 
case. Similarly, Parp may be empty, in which case Exc′

p = ∅ and terms |Parp | and |Exc′
p | are equal to zero.
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Fig. 16. Illustration of the terminology used in Proposition 5.

7.4. Mapping properties and probabilistic constraints

Finally, we investigate conditions under which the same BN graph is constructed from different IGs by our approach, and 
discuss ways by which a distinction can be made between these different cases in the (conditional) probabilities of the BN. 
First, we prove in Proposition 6 that for every finite BN graph GB , there exists a finite IG such that this IG is mapped to GB
by our approach.

Proposition 6. Let IG be the space of finite IGs and let BN be the space of finite BN graphs. Let F : IG → BN be the function defined by 
steps 1–3 of our approach. Then F is a surjection.

Proof. Let GB = (V, AB) be a BN graph in BN. Then we need to find at least one IG GI = (P, AI ) ∈ IG s.t. F (GI ) = GB . 
Define GI as follows. For every node P ∈ V, include proposition p ∈ P. For every arc P1 →P2 ∈ AB , include generalisation 
arc g : p1 → p2 in Gc. Then F (GI ) = GB by steps 1 and 2b. �

However, F is not an injection. Figs. 17a-d depict examples of IGs for which the same BN graph, namely the graph 
depicted in Fig. 17e, is constructed by F . Possible differences between these IGs can be captured in the (conditional) 
probabilities of the BN under construction. In Fig. 17a, a negation arc is drawn between r and ¬r. A possible probabilistic 
interpretation is that this IG informs us on probabilities Pr(r | p, q) and Pr(¬r | p, q), where a preference for r over ¬r
defines an ordering on these two probabilities. In our IG-formalism, we opted not to account for preferences, as these are 
typically not indicated using reasoning tools; hence, possible probabilistic constraints resulting from such preferences are 
not further discussed.

In Fig. 17b, p and q can each be considered sufficient for deductively inferring r, while in Fig. 17c both p and q are 
needed. A possible probabilistic interpretation of the IG in Fig. 17b is that it only informs us on probabilities Pr(r | p) and 
Pr(r | q) and not on Pr(r | p, q), while the reverse holds for the IG of Fig. 17c. Fig. 17c is distinguished from Fig. 17a, as 
Fig. 17c only informs us on Pr(r | p, q) while Fig. 17a also informs us on Pr(r | q) and Pr(¬r | p). For exception arcs, specific 
probabilistic constraints are derived, as captured by step 6 of our approach. Specifically, in the example of Fig. 17d, constraint 
Pr(r | p, q) < Pr(r | ¬p, q) is derived. Related research on the relations between probability and inference is discussed in 
Sect. 9.3.

8. Case study: the Sacco and Vanzetti case

In this section, we apply our BN graph construction approach to parts of an actual legal case, namely the well-known 
Sacco and Vanzetti case. The case concerns Sacco and Vanzetti, who were convicted for shooting and killing payroll guard 
Berardelli during a robbery in South Braintree, Massachusetts on 15 April 1920; a detailed description of the case is pro-
vided by Kadane and Schum [22]. Kadane and Schum performed a probabilistic analysis of this case by first constructing 

Fig. 17. Examples of IGs (a-d) for which the same BN graph (e) is constructed by our approach.
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Fig. 18. Wigmore chart concerning Sacco’s consciousness of guilt, along with the corresponding key list, adapted from Kadane and Schum [22, pp. 330–331].

Wigmore charts [43] (described below) of aspects of the case and then manually constructed corresponding BNs by assess-
ing the modelled independence relation and assessing the necessary (conditional) probabilities. In this section, we illustrate 
and perform a first validation of our approach by formalising one of Kadane and Schum’s Wigmore charts (chart 25, [22, 
pp. 330–331]) as an IG, where we compare the obtained BN graph to their BN graph. The currently presented case study 
is an extension of the case study that appeared in our previous work [39] in which parts of the case were interpreted as a 
preliminary version of an IG in which the roles of generalisation and inference are not separated. In the current paper, we 
describe our IG modelling choices in more detail and we provide a more detailed comparison of the BN graph constructed 
by our approach to that of [22].

This section is structured as follows. In Sect. 8.1 Kadane and Schum’s Wigmore chart concerning Sacco’s consciousness 
of guilt is presented, where a possible formalisation of this Wigmore chart as an IG is provided in Sect. 8.2. In Sect. 8.3
we then apply our BN graph construction approach to this IG and compare the obtained BN graph to that of Kadane and 
Schum. In Sect. 8.4 we then conclude the case study.

8.1. Wigmore chart concerning Sacco’s consciousness of guilt

According to Kadane and Schum, the ultimate claim under consideration in the Sacco and Vanzetti case is �3, which 
states that ‘It was Sacco who, with the assistence of Vanzetti, intentionally fired shots that took the life of Berardelli during the 
robbery and shooting that took place in South Brain tree.’ In the prosecution’s case against Sacco and Vanzetti, their alleged 
consciousness of guilt in the South Braintree crime played an important role. However, as noted by Kadane and Schum the 
inferences made based on the available evidence for this part of the case are not particularly strong; a significant part of 
Kadane and Schum’s analysis is, therefore, devoted to this part of the case. During their arrest, Sacco and Vanzetti were 
armed. According to the two arresting officers, Connolly and Spear, Sacco and Vanzetti made suspicious hand movements, 
from which the prosecution concluded that they intended to draw their concealed weapons in order to escape their arrest. 
This suggests that they were conscious of having committed a criminal act. In the remainder of this section, we only 
consider this part of the case.

In Fig. 18, a modernised Wigmore chart concerning Sacco’s consciousness of guilt is depicted, adapted from Kadane 
and Schum [22, pp. 330–331]. Wigmore charts are diagrams familiar to many legal experts in which symbols indicating 
hypotheses and claims are joined by lines representing relations between these hypotheses and claims. Wigmore charts 
were introduced by John Henry Wigmore [43] and were further developed and studied from an academic perspective 
by the so-called ‘New Evidence Theorists’ including Anderson, Schum and Twining (see [22, pp. 70–71]), who provided 
a modernised, more user-friendly version of Wigmore’s charting method. Wigmore introduced his method as an aid in 
structuring a mass of evidence in a legal case in detailed way. An important aspect of his method is that it not only used 
for expressing supporting reasons but also for revealing possible sources of doubt. Wigmore’s charts can be considered a 
precursor of diagrams in argument diagramming tools [26], as well as a forerunner of instantiations of formal argumentation 
systems [1].

Compared to Kadane and Schum’s original chart, we consider a subset of the mapped claims; in particular, claims 469, 
470, 155a, 156 and �3, additional claims regarding Sacco’s political beliefs (claims 471 − 480 in the original chart), and 
claims that were provided post-trial by historians are not considered. On the right-hand side of Fig. 18 the corresponding key 
list is depicted, which indicates for every number in the chart to which claim it corresponds. As noted by Kadane and Schum 
[22, p. 88], vertical arcs between nodes in their version of Wigmore’s charts indicate inferences between corresponding 
claims, where the generalisations used in performing these inferences are not explicitly recorded in the chart. Instead, in 
their analysis of the case some of the used generalisations are indicated in the text (see e.g. [22, pp. 97–98]). For instance, 
generalisations used in the inferences from the provided testimonies are of the general form ‘If a person testifying under 
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Fig. 19. An IG corresponding to a possible interpretation of the Wigmore chart of Fig. 18, along with the corresponding key list.

oath tells us that event E occurred, then this event (probably, usually, often, etc,) did occur.’ [22, p. 88]. As noted by Kadane and 
Schum [22, pp. 74–76], in constructing their charts abduction is in some instances performed to generate interim hypotheses 
between the evidence and the ultimate claim �3. However, Kadane and Schum do not explicitly indicate which inferences 
in their charts are abductive and which are deductive.

In their version of Wigmore charts, Kadane and Schum make a distinction between directly relevant and ancillary claims,4

where the role of an ancillary claim is to show why a generalisation holds or fails in a particular situation [22, p. 53]. 
Directly relevant and ancillary claims provided by the defence are represented as diamonds and triangles, respectively; for 
the prosecution, these are represented as circles and squares, respectively. Note that in the Wigmore chart of Fig. 18, all 
claims provided by the prosecution are directly relevant. All nodes in Kadane and Schum’s charts indicate either directly 
relevant or ancillary claims and nodes corresponding to the evidence are shaded. An arc directed from a node corresponding 
to an ancillary claim to an arc between two or more claims indicates that this ancillary claim either supports or weakens 
the applicability of the generalisation in the inference at hand [22, p. 87]. Finally, horizontal lines in the Wigmore chart 
indicate that information needs to be combined to draw a conclusion.

8.2. Formalising the Wigmore chart as an IG

We now provide a possible formalisation of Kadane and Schum’s Wigmore chart of Fig. 18 as an IG. In Fig. 19, an IG is 
depicted for a possible interpretation of this Wigmore chart. For every claim p in the Wigmore chart, a proposition node p
is included in P. In establishing which generalisations could have been used in performing the inferences indicated in the 
chart, we take the following general approach. In case generalisations are explicitly indicated by Kadane and Schum in the 
text, then these generalisations are used; otherwise, we first establish whether or not there is a causal relation between 
the nodes in the chart, and if so, what the direction of causality is. To aid in this process, we determine whether sequences 
of described events can be interpreted as instances of so-called story schemes [2], which capture stereotypical patterns of 
causal reasoning. In case p usually/normally/typically causes q, then we establish whether p can be considered the usual 
cause for q. If this is the case, then evidential generalisation q → p is included in Ge to explicitly capture in the IG that p
is considered the usual cause of q; otherwise, causal generalisation p → q is included in Gc (see also Sect. 2.3).

As noted by Kadane and Schum [22, p. 88], the generalisations used in the inferences from the provided testimonies are 
evidential (see Sect. 8.1). As propositions 150, 151, 463, 464, 466 and 468 denote testimonies, the IG includes generalisation 
arcs g1 : {150, 151} → 149, g7 : {463, 464} → 462, g8 : 466 → 465 and g9 : 468 → 467 in Ge. Here, testimonies 150, 151 and 
463, 464 are combined in the antecedents of generalisations g1 and g7, respectively, as these sets of propositions concern 
testimonies to the same claim.

The manner in which claims and links conflict is not precisely specified in Kadane and Schum’s Wigmore charts. As 
we wish to formalise the Wigmore chart of Fig. 18 as an IG, we consider how possible conflicts between claims proposed 
by the prosecution and defence can be interpreted in terms of the conflict relations defined in Sect. 4.1. As 461 concerns 
Sacco’s testimony to denying 149, proposition ¬149 is included in P, generalisation arc g2 : 461 → ¬149 is included in Ge, 
and negation arc n1 : 149 � ¬149 is included in N.

Kadane and Schum do not indicate which (types of) generalisations were used in performing the inferences between 
propositions 149 and 155. We note that the inferences between 149 and 155 fit a so-called episode scheme for intentional 
actions [2, p. 64], a story scheme in which someone’s psychological state causes them to form certain goals, which in 
turn lead to actions that have consequences. In this case, Sacco intended to escape from his arrest (154; goal) as he was 
conscious of having committed a criminal act (155; psychological state); therefore, we consider 155 to typically cause 154. 

4 Kadane and Schum [22] use the terms ‘directly relevant evidence’ and ‘ancillary evidence’. To avoid confusion with the manner in which the term 
‘evidence’ is used in this paper (i.e. that what has been established with certainty), we instead use the term ‘claim’.
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Sacco’s intention to use his weapon (153) can then be considered a sub-goal of 154 and his intention to draw his concealed 
weapon (152) a further sub-goal of 153. Sacco’s intention to draw his weapon (152) caused Sacco to attempt to put his 
hand under his overcoat (149; action); more specifically, we consider 152 to typically cause 149. Finally, we consider 153 to 
be the usual cause for 152, as the usual cause for wanting to draw a weapon is wanting to use this weapon; we therefore 
include g4 : 152 → 153 in Ge. Generalisation arcs g3 : 152 → 149, g5 : 154 → 153 and g6 : 155 → 154 are then included 
in Gc, as we do not consider their antecedents to express the usual cause for their consequents. Alternatively, it may be 
argued that some (or all) of these relations are evidential. Below, we show that similar inferences can be performed with the 
constructed IG and that the same BN graph is constructed from the IG regardless of whether these relations are interpreted 
as causal or evidential.

In Kadane and Schum’s Wigmore chart, it is indicated that 467 is an ancillary claim that weakens (or supports) the appli-
cability of generalisation g8 : 466 → 465 in the inference from 466 to 465. In this particular instance, 467 can be interpreted 
as an exception to generalisation g8, as the claim that Sacco was not a night watchman indicates that Sacco’s veracity in 
providing his testimony about the reason for carrying a weapon is questionable. Therefore, we include exc1 : 467 � g8 in 
Exc.

Finally, the conflicts between the defence’s claims 462 and 465 and the prosecution’s claims 152 and 153 are considered. 
A possible interpretation is that 462 and 465 indicate exceptions to generalisation g4 : 152 → 153 in Ge. Specifically, 462
and 465 can be considered competing alternative explanations for 152: as Sacco carried his weapon for an innocent reason 
(462 or 465), this caused him to draw his weapon (152) with the intention of surrendering it. In Fig. 19, these exceptions 
are indicated by curved hyperarcs exc2 : 462 � g4 and exc3 : 465 � g4 in Exc.

In the Wigmore chart of Fig. 18, the evidence consists of the testimonies; hence, Ep = {150, 151, 461, 463, 464, 466, 468}. 
Given Ep , the inferences that can be read from the IG of Fig. 19 coincide with the inferences indicated in the Wigmore 
chart. Specifically, given Ep , propositions 149, ¬149, 462, 465 and 467 are deductively inferred from 150 and 151, 461, 
463 and 464, 466, and 468 using generalisations g1, g2, g7, g8 and g9, respectively. Proposition 152 is then abductively 
inferred from 149 using g3, as 149 is deductively inferred. Propositions 153, 154 and 155 are then iteratively inferred using 
generalisations g4, g5 and g6, respectively.

As mentioned earlier, instead of including causal generalisations g3 : 152 → 149, g5 : 154 → 153 and g6 : 155 → 154, 
an alternative interpretation is that the antecedents of these generalisations express the usual cause for their consequents; 
accordingly, evidential generalisations g′

3 : 149 → 152, g′
5 : 153 → 154 and g′

6 : 154 → 155 may instead be included. Similar 
inferences can then be performed with the constructed IG given Ep; specifically, propositions 152, 153, 154 and 155 are 
then iteratively deductively inferred given Ep using g′

3, g4, g′
5 and g′

6 instead of that some of these inferences are abductive.

8.3. Constructing a BN graph from the IG

We now apply our BN graph construction approach to the IG of Fig. 19 and compare the obtained graph to that of 
Kadane and Schum.

8.3.1. Applying the BN graph construction approach
By applying our BN graph construction approach to the IG of Fig. 19, the BN graph depicted in Fig. 20b is obtained. By 

step 1 of our approach, every proposition and its negation are captured as two mutually exclusive values of the same node. 
Arcs in the BN graph corresponding to generalisation arcs in Ge ∪Gc are then directed according to step 2. Additional arcs are 
then added to AB for every exception arc in Exc by step 3 of our approach. Specifically, exc1 : 467 � g8, exc2 : 462 � g4 and 
exc3 : 465 � g4 are specified in the IG, where g8, g4 ∈ Ge; therefore, additional arcs 467 → 466, 465 → 152 and 462 → 152
are included in AB by step 3a.

Note that in case causal generalisations g3, g5 and/or g6 are replaced by evidential generalisations g′
3, g′

5 and/or g′
6, the 

same BN graph is obtained by our approach. More specifically, by step 2b arc Var(p) → Var(q) is included for every causal 
generalisation g : p → q, where the same arc is included in AB by step 2a of our approach for every evidential generalisation 
g : q → p.

8.3.2. Comparison to Kadane and Schum’s BN graph
The structure of the obtained graph is largely identical to that of the BN graph that Kadane and Schum manually con-

structed for this part of the case, depicted in Fig. 20c; the differences and similarities between the two BN graphs are 
now discussed. First, note that Kadane and Schum aggregate nodes 463 and 464 into a single Boolean node K . Sim-
ilarly, nodes 466, 467 and 468 are aggregated into Boolean node J ; possible intercausal effects between 467 and 465
can, therefore, not be explicitly captured in their BN. While aggregation as performed by Kadane and Schum reduces the 
number of conditional probabilities to be assessed, we prefer to explicitly capture all elements of the IG in the corre-
sponding BN graph to prevent loss of information. The only case in which IG elements are aggregated by our approach 
is when two propositions p and ¬p appear in the graph, which are then captured as two values of the same node. We 
note that, by step 6a of our approach, constraints on the CPTs of the BN under construction are automatically obtained, 
which partially simplifies subsequent probability assessment. Specifically, a head-to-head node is formed in 466, which al-
lows for directly capturing possible interactions between 465 and 467. By step 6a, constraint X−({465, 467}, 466 = true)
is derived on the CPT for node 466. For instance, entries for this CPT can be chosen as follows: Pr(466 | 465, 467) = 0, 
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Fig. 20. The IG of Fig. 19 (a); the corresponding BN graph constructed according to our approach (b); adaptation of the BN graph constructed by Kadane 
and Schum [22, p. 232] (c).

Pr(466 | ¬465, ¬467) = 0.4, Pr(466 | 465, ¬467) = 0.9, Pr(466 | ¬465, 467) = 0.2, as in this case 0 · 0.4 ≤ 0.9 · 0.2. Note that 
the conditioned event of conditional probability Pr(466 | 465, 467) cannot actually occur in practice, as Sacco cannot both 
be and not be a night watchman at the same time. Hence, the exact number to which this conditional probability is set is 
irrelevant: we choose to set Pr(466 | 465, 467) = 0. In case Sacco was indeed a night watchman (467 is not true) but Sacco 
did not carry a weapon because of this reason (465 is not true), then we find it plausible that Sacco was lying under oath 
in providing his testimony (Pr(466 | ¬465, ¬467) = 0.4); more specifically, as he was indeed a night watchman, he can use 
this as an excuse to claim that he carried his weapon because of this reason. In case Sacco was a night watchman (467 is 
not true) and Sacco actually carried a weapon because of his duties as a night watchman (465 is true), then we consider 
the event that Sacco testifies to this claim (466) to be very likely (Pr(466 | 465, ¬467) = 0.9). Finally, in case Sacco was not 
a night watchman (467 is true) and Sacco did not carry his weapon because of his duties as a night watchman (465 is 
not true), then we set Pr(466 | ¬465, 467) = 0.2 to again take into account the probability that Sacco may be lying under 
oath. We believe this probability to be lower than Pr(466 | ¬465, ¬467), as we consider it less likely for Sacco to come up 
with the explanation that he carried his weapon because of his duties as a night watchman if he was in fact not a night 
watchman.

In the BN graph of Fig. 20b, a head-to-head node is also formed in node 152, which allows for directly capturing 
possible interactions between 462, 465 and 153. These interactions cannot be captured in the BN graph of Fig. 20c, as in 
this graph arcs 153 → 465 and 153 → 462 are included instead of arcs 465 → 152 and 462 → 152. By step 6a, constraints 
X−({462, 153}, 152 = true), X−({465, 153}, 152 = true) and X−({465, 462}, 152 = true) are derived on the CPT for node 152
in our BN graph. Note that in the BN graph of Kadane and Schum, variables 462 and 465 are conditionally independent 
from 152 given 153; therefore, in contrast with our BN under construction, for Kadane and Schum’s BN it needs to hold 
that Pr(152 | 462, 465, 153) = Pr(152 | 153). As the entries for the CPT for node 152 in our BN cannot be compared to that 
of Kadane and Schum, the assessment of the involved probabilities is not further discussed.

We note that for every active chain that exists between two nodes in the BN graph of Fig. 20b given the evidence, 
there exists an active chain between these nodes in the BN graph of Fig. 20c given the evidence and vice versa; therefore, 
given EV , similar probabilistic inferences can be performed in both BN graphs, besides the aforementioned differences. More 
specifically, as 152 has an instantiated descendant in the BN graph of Fig. 20b, chains between 465 and 462 are active.

Finally, note that the BN constructed from the IG of Fig. 20a cannot be directly used for probabilistic inference. More 
specifically, the BN is partially specified as only qualitative probabilistic constraints and no exact probabilities are derived 
on the BN under construction. Moreover, the derived qualitative probabilistic constraints are only a subset of those required 
for the specification of a QPN [33] (see also Sect. 9.3). The derived qualitative probabilistic constraints may serve as input 
for a subsequent elicitation procedure for obtaining a fully specified QPN or BN for (qualitative) probabilistic inference.

8.4. Concluding remarks

In this section, we have performed a first validation of our BN graph construction approach by means of a case study. 
We have provided a possible interpretation of Kadane and Schum’s Wigmore chart as an IG, which illustrates that the IG-
formalism is sufficiently expressive to model a complex case in a precise way. We have then applied our approach to the 
constructed IG. Upon comparing the BN graph obtained by applying our approach to the BN graph that Kadane and Schum 
manually constructed, we have concluded that the graphs are largely identical and that similar probabilistic inferences can 
be performed for the case at hand. As Kadane and Schum provided a thorough and extensive probabilistic analysis of the 
case, these similarities are a positive result of our validation and offer a first indication that BNs constructed from IGs 
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by our approach are of good quality. Moreover, the differences obtained illustrate that our approach may provide a more 
principled way of constructing BN graphs than the manner in which Kadane and Schum constructed their BNs. In particular, 
Kadane and Schum in some cases aggregated multiple claims in the Wigmore chart into single nodes in the BN graph, while 
by applying our approach all elements of the IG are explicitly captured in the corresponding BN graph to prevent loss of 
information. Furthermore, in comparison to the BN graph of Kadane and Schum head-to-head nodes are formed in our BN 
graph, which allows for directly capturing possible interactions between nodes in the graph.

9. Related research

In this section, related research on inference with causality information (Sect. 9.1), BN graph construction (Sect. 9.2), the 
relations between probability and inference (Sect. 9.3), and intermediary formalisms (Sect. 9.4) are discussed.

9.1. Inference with causality information

In this paper, we have presented the graph-based IG-formalism for deductive and abductive inference with causal and 
evidential information. As mentioned earlier, the currently presented IG-formalism is a further specification of the IG-
formalism that appeared in our previous work [42]. More specifically, in the current paper we define a number of new 
concepts, namely negation arcs (Definition 6), competing alternative explanations (Definition 11) and (restrictions on) gen-
eralisation chains (Definitions 4 and 5 and p. 255), and we now explicitly describe a number of concepts in the form of 
definitions and remarks, including prediction (Remark 1), ambiguous inference (Remark 2) and alternative causes (Defini-
tion 3). Our IG-formalism extends on a preliminary formalism used in [39,40], in which the roles of generalisation and 
inference are not separated; therefore, this preliminary formalism does not provide a precise enough account of reasoning 
with causal and evidential information.

Most related formalisms for inference with causal and evidential information are logic-based instead of graph-based 
[2,4,21,29,35]. Poole’s Theorist framework [29] allows for both deductive and abductive inference, which is established using 
only causal defaults. Complications with reasoning using both causal and evidential defaults as identified by Pearl [27]
are thus avoided. In the hybrid theory proposed by Bex [2], deductive and abductive inference are used in constructing 
evidential arguments and causal stories. Compared to our IG-formalism, the hybrid theory does not allow for most types of 
mixed inference and largely avoids the problems associated with mixed inference as identified by Pearl [27]. Building on his 
hybrid theory, Bex proposed his integrated theory of causal and evidential arguments [4]. In Bex’ integrated theory, the roles 
of generalisation and inference are not separated; instead, causal and evidential inference rules are defined and arguments 
are constructed by forward chaining such inference rules. Actual abductive inference is thus not performed by constructing 
arguments.

As noted in Sect. 7.2, inference chains in IGs are comparable to arguments as defined in ASPIC+ [30]. Besides the 
mentioned distinctions between these formalisms, our graph-based IG-formalism deviates from the logic-based ASPIC+
framework as we introduce a new type of conflict, namely conflict between competing alternative explanations, and impose 
constraints on the different types of inferences that may be performed with the different types of generalisations.

Graph-based formalisms for reasoning with causality information have also been proposed, notably Pearl’s causal dia-
grams [28]. Pearl provides a framework for causal inference in which diagrams are queried to determine if the assumptions 
available are sufficient for identifying causal effects. Compared to our IG-formalism, the aim of this framework is different 
in that it serves to identify causality instead of providing a way to reason with modelled causal knowledge. Furthermore, 
causal diagrams require probabilistic quantification to be queried, while IGs are qualitative.

9.2. BN graph construction

To facilitate BN graph construction, construction methods have been proposed in the literature. As noted in the introduc-
tion, work on the construction of BNs from information represented in ontologies [17,31] is related to our BN construction 
approach based on IGs. In the approach of Fenz [17], an initial BN graph is automatically constructed after a manual selec-
tion of relevant concepts and relations from an OWL ontology. Specifically, concepts are mapped to nodes in the BN graph 
and the direction of the relation between two concepts is used to direct arcs between corresponding nodes in the graph 
as a first heuristic. However, properties regarding the represented independence relation are not investigated; instead, Fenz 
notes that the obtained BN graph needs to be verified and refined manually by the BN modeller. Ramírez-Noriega and col-
leagues [31] proposed a similar approach in the domain of intelligent tutoring systems, where the focus lies on obtaining 
the quantitative part of the BN.

In other related work, Bex and Renooij [5] identified constraints on BNs given arguments, based on the inferences on 
which arguments are built and the existing conflicts between arguments. These constraints suffice for constructing an undi-
rected skeleton of a BN graph. In their approach, ASPIC+ [30] is taken as a starting point for BN graph construction; for 
reasons mentioned in Sect. 9.1, we wish to refrain from using ASPIC+ as an intermediary formalism. In our previous work, 
we explored the possibility of BN construction from a graph-based intermediary formalism using a preliminary version of 
IGs in [39,40]. As mentioned in Sect. 9.1, this preliminary IG-formalism does not provide a precise enough account of rea-
soning with causal and evidential information; hence, the BN construction approaches provided in these papers are also 
imprecise.
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Throughout the literature, many (often domain-specific) BN fragments and modules, also called idioms, have been pro-
posed. In the legal domain, Fenton and colleagues [16, Ch. 13] proposed BN fragments to model recurring patterns of legal 
reasoning, such as structures for corroboration. Laskey and Mahoney [25] proposed BN fragments in the domain of military 
situation assessment, and studied how fragments can be combined to construct more complex networks. In contrast with 
these manual fragment-based approaches for BN graph construction, our approach allows for automatically constructing an 
initial BN graph from an IG that satisfies a number of desirable properties, for instance regarding the represented indepen-
dence relation, where generalisations and conflicts can be incorporated and combined in an IG without having to conform 
to any predefined pattern or configuration. Arguably this allows our BN construction approach to be applied more flexibly 
in practice, a claim that should be empirically evaluated in future work.

To facilitate incremental BN construction, Object-Oriented BNs (OOBNs) were introduced by Koller and Pfeffer [24]. With 
OOBNs, it becomes possible to incrementally construct a BN top-down, using fragments and modules such as proposed 
throughout the literature to gradually construct a network. Unlike our approach, OOBNs do not provide an automated way 
of constructing BN graphs; instead, OOBNs allow experts to more quickly construct a BN manually by allowing recurrent 
patterns to be incorporated. The concept of reusable network fragments was also the basis of Hypothesis Management 
Frameworks (HMFs) proposed by Van Gosliga and van de Voorde [19], which are generally applicable and not intended for a 
specific domain. With HMFs, a modular approach is taken, enabling the specification of details about a case without losing 
perspective on the case as a whole.

9.3. The relations between probability and inference

As discussed by Bex and Renooij [5], the exact probabilistic interpretation of inference and evidence, and hence the 
various types of constraints on a BN, is a contentious issue. The interpretation of strict inferences is straightforward: the 
consequent is necessarily true given the antecedents. However, with respect to defeasible inferences different ideas exist on 
how they should be modelled probabilistically. For instance, for a defeasible inference from p1, . . . , pn to q it can be assumed 
that Pr(q | p1, . . . , pn) > 0; however, this constraint is rather weak. Another possible interpretation is that this probability 
should be greater than 0.5 in that the antecedents make it more likely than not that the consequent is true. Yet another 
reading is that the probability of the consequent given the antecedents should be greater than the prior probability of the 
consequent, which is a Bayesian interpretation explored by for instance Crupi and colleagues [10]. This interpretation is 
based around the notion of conditional independence: in case Pr(q | p1, . . . , pn) = Pr(q), q is conditionally independent from 
{p1, . . . , pn}, and learning that {p1, . . . , pn} is the case will be uninformative to q. Therefore, according to this interpretation 
it should hold that Pr(q | p1, . . . , pn) > Pr(q).

Another possible probabilistic interpretation is to view inferences that can be read from an IG given the evidence 
as qualitative influences [13]. Specifically, variable P is said to have a positive qualitative influence on variable Q if 
Pr(q | p) ≥ Pr(q | ¬p) and a negative qualitative influence if Pr(q | p) ≤ Pr(q | ¬p). Interpreting all inferences between 
propositions p1, . . . , pn and q that can be read from an IG as positive qualitative influences and all inferences between 
propositions p1, . . . , pn and ¬q as negative qualitative influences, a fully specified qualitative probabilistic network (QPN) 
may be constructed by our approach which can be used for qualitative probabilistic inference [33]. Quantification of QPNs 
can then be performed incrementally by specifying probability intervals for CPTs for nodes in the graph as an intermedi-
ary step, resulting in so-called semi-qualitative probabilistic networks [33] that can also be used for probabilistic inference. 
Alternatively, a credal network [9] can be constructed [7].

The point of the above discussion is that there are many probabilistic interpretations of inference and evidence, and 
choosing exactly which ones to use is not trivial. One way to deal with discussions involving probabilistic constraints is to 
allow one to reason about such constraints [23,41]. Specifically, the approaches proposed in [23,41] allow domain experts to 
reason and argue about BN modelling decisions, where computational argumentation [15] is used to resolve disagreements 
as much as possible.

9.4. Intermediary formalisms

Our IG-formalism serves as an intermediary formalism between analyses performed using informal reasoning tools and 
formal AI systems such as argumentation systems (see [42]) and BNs. Viewed this way, in the context of argumentation 
the IG-formalism is comparable to the Argument Interchange Format (AIF) [3], an argumentation ontology that serves as an 
intermediary formalism between analyses performed using argument diagramming tools [1,26] and formal argumentation 
frameworks such as the ASPIC+ framework [30].

In the context of BNs, another graph-based intermediary formalism was proposed by Timmer and colleagues [37]. They 
introduced the support graph that captures general reasoning patterns represented by a BN for the purpose of explaining 
such patterns in terms of argumentation. Compared to the present paper, Timmer and colleagues’ work is in the reverse 
direction, namely from BNs to domain-specific rules and inferences (i.e. arguments).

10. Conclusion and future research

In this paper, we have presented the IG-formalism, which provides a precise account of the interplay between deductive 
and abductive inference and causal and evidential generalisations and which imposes constraints on the inferences that may 
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be performed with this knowledge given the evidence. Moreover, we have introduced a BN graph construction approach that 
demonstrates that the knowledge expressed in an IG, namely the generalisations and conflicts expressed in the graph, can 
be directly exploited for this purpose. Given the evidence, sequences of inferences can be read from an IG; we have formally 
proven that all such sequences in an IG are captured in the form of induced active chains in the corresponding BN graph 
constructed by our approach, as intended. Moreover, by considering the inferences that can be read from an IG given the 
evidence, some qualitative constraints on the (conditional) probabilities of the BN under construction are derived. These 
qualitative probabilistic constraints may serve as input for a subsequent elicitation procedure for obtaining a fully specified 
QPN [33] or BN for (qualitative) probabilistic inference. We have identified conditions on the IG under which the fully 
automatically constructed initial graph is guaranteed to be a DAG, simplifying the (manual) verification step. Lastly, we have 
identified bounds on the size of the CPTs and the complexity of probabilistic inference in BNs constructed by our approach.

Our IG-formalism, together with our BN construction approach, allow us to construct an initial BN graph from a domain 
expert’s initial analysis, capturing similar reasoning patterns as can be read from their IG given the evidence; it thereby 
simplifies the BN elicitation process. We note that BN construction is an iterative process in which both the domain expert 
and BN modeller should stay involved; this also holds when applying our approach, as even the provided IG may be 
incomplete or may be subject to change over time. To aid in this iterative process, approaches can be used [23,41] such as 
discussed in Sect. 9.3.

IGs formalise analyses performed by domain experts using the informal reasoning tools they are familiar with. In in-
terpreting a performed analysis as an IG, an additional knowledge elicitation step in consultation with the domain expert 
may be required as the used generalisations and the manner of conflict are typically left implicit in these analyses. IGs may 
also be directly constructed by domain experts in case work. As mentioned earlier, we expect direct IG construction to be 
more straightforward than direct BN construction for domain experts unfamiliar with the BN-formalism, a claim we intend 
to empirically evaluate in our future work.

In future work general guidelines for IG construction may be formulated. In our case study of Sect. 8 we constructed 
an IG corresponding to a Wigmore chart according to a number of general heuristics. For instance, in establishing which 
generalisations could have been used in constructing the chart we among other things determined whether sequences of 
described events could be interpreted as instances of story schemes [2] (see Sect. 8.2). In future work a database of schemes 
that capture general patterns of defeasible reasoning (including argumentation schemes [1] and story schemes) may be 
composed, instantiations of which can be used as building blocks in facilitating IG construction. Such an approach would in 
turn facilitate BN graph construction. In the context of BNs such an approach is comparable to the idiom-based approaches 
to BN construction discussed in Sect. 9.2. We also intend to increase the expressivity of our IG-formalism by allowing 
generalisations that are neither causal nor evidential. For instance, definitions, or abstractions [8] allow for reasoning at 
different levels of abstraction, such as stating that guns can generally be considered deadly weapons. Another example of a 
different type of generalisation is a generalisation representing a mere statistical correlation, such as a correlation between 
homelessness and criminality. In the manual construction of BN graphs, arcs are typically directed using the notion of 
causality as a guiding principle; however, non-causal relations are also considered in the literature. For instance, in the BN 
construction guidelines of Fenton and colleagues [16, Ch. 7] not only causal but also definitional relations are considered, 
in which arcs in the BN graph are oriented in the direction in which a sub-attribute (or combination of sub-attributes) 
defines an attribute. In previous research, we investigated BN graph construction from a preliminary form of IGs including 
abstractions and other types of generalisations [40]; in our future work, we intend to generalise the currently proposed BN 
graph construction approach to an extended IG-formalism allowing for such generalisations.

We will also focus on deriving more probabilistic constraints such as qualitative influences corresponding to inferences 
that can be read from an IG given the evidence. Our approach may then serve to construct fully specified QPNs for qualita-
tive probabilistic inference [33], as discussed in Sect. 9.3. We also intend to evaluate our approach by assessing the quality 
of BNs constructed from IGs. Since we are considering BN construction in data-poor domains, we assume that there is in-
sufficient data to learn a reliable BN from and that such a BN is therefore not available for comparison. A quality assessment 
should therefore mainly be based on compliance with best practice guidelines for BN construction [16, Ch. 7].
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