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Abstract

In bacterial cells, protein expression is a highly stochastic process. Gene expression noise

moreover propagates through the cell and adds to fluctuations in the cellular growth rate. A

common intuition is that, due to their relatively high noise amplitudes, proteins with a low

mean expression level are the most important drivers of fluctuations in physiological vari-

ables. In this work, we challenge this intuition by considering the effect of natural selection

on noise propagation. Mathematically, the contribution of each protein species to the noise

in the growth rate depends on two factors: the noise amplitude of the protein’s expression

level, and the sensitivity of the growth rate to fluctuations in that protein’s concentration. We

argue that natural selection, while shaping mean abundances to increase the mean growth

rate, also affects cellular sensitivities. In the limit in which cells grow optimally fast, the

growth rate becomes most sensitive to fluctuations in highly abundant proteins. This causes

abundant proteins to overall contribute strongly to the noise in the growth rate, despite their

low noise levels. We further explore this result in an experimental data set of protein abun-

dances, and test key assumptions in an evolving, stochastic toy model of cellular growth.

Author summary

Gene expression in bacterial cells is intrinsically stochastic: copy numbers of all proteins

vary between genetically identical cells, even in a homogeneous environment. Such noise

in gene expression affects metabolic fluxes and even propagates to the cellular level.

Indeed, also the growth rate of individual cells, an important proxy for fitness, fluctuates

strongly. This beckons the question as to which protein species contribute most to the

noise in the cell’s growth rate. We here derive general mathematical predictions stating

that if cells have been optimised by evolution to grow fast, abundant protein species con-

tribute most to the noise in the growth rate. This result is counter-intuitive, because the

noise levels in the expression of those highly expressed proteins are small.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009208 July 19, 2021 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Krah LHJ, Hermsen R (2021) The effect

of natural selection on the propagation of protein

expression noise to bacterial growth. PLoS Comput

Biol 17(7): e1009208. https://doi.org/10.1371/

journal.pcbi.1009208

Editor: Christopher Rao, University of Illinois at

Urbana-Champaign, UNITED STATES

Received: December 25, 2020

Accepted: June 22, 2021

Published: July 19, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1009208

Copyright: © 2021 Krah, Hermsen. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

information files.

Funding: LHJK was supported by the NWO

(Nederlandse Organisatie voor Wetenschappelijk

https://orcid.org/0000-0002-6879-3962
https://orcid.org/0000-0003-4633-4877
https://doi.org/10.1371/journal.pcbi.1009208
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009208&domain=pdf&date_stamp=2021-07-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009208&domain=pdf&date_stamp=2021-07-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009208&domain=pdf&date_stamp=2021-07-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009208&domain=pdf&date_stamp=2021-07-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009208&domain=pdf&date_stamp=2021-07-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009208&domain=pdf&date_stamp=2021-07-29
https://doi.org/10.1371/journal.pcbi.1009208
https://doi.org/10.1371/journal.pcbi.1009208
https://doi.org/10.1371/journal.pcbi.1009208
http://creativecommons.org/licenses/by/4.0/


Introduction

Stochasticity is inherent to gene expression [1–3]. Stochastic variation in the copy numbers of

proteins is observed even under constant external conditions, and among individual cells in a

population of isogenic bacteria. How cellular stochasticity, and noise in protein expression

specifically, interferes with the functioning, survival and fitness of bacteria has been of great

interest for many years [3–8].

Noisy gene expression is indeed commonly accepted as the dominant mechanism behind

the strong phenotypic variation that has been observed in populations of genetically identical

cells [9]. In an exponentially growing population of cells, even the growth rate of individual

cells is distributed surprisingly broadly [10]. Since cellular growth rate (and its population

average) is often considered an important proxy for bacterial fitness, the growth rate—and

how its variation is shaped by noisy gene expression—has received much attention [11–14].

Notably, noise in the concentration of metabolic proteins is shown to propagate from the pro-

tein-level, via the metabolic network, to the instantaneous single-cell growth rate [15].

Commonly, noise is characterised in terms of the coefficient of variation (CV), defined as

the standard deviation divided by the mean. In snapshots of bacterial populations, proteins

with a higher mean expression level (E½X�) generally have a lower coefficient of variation

squared (CV2) [16, 17]. For proteins with a low mean expression, noise is dominated by the

intrinsic stochasticity of the chemical reactions involved [18, 19] and CV2 scales as 1=E½X� [2,

5, 16, 20–22]. For higher mean expression, noise levels decrease to eventually reach a plateau,

where fluctuations in gene expression are dominated by extrinsic noise, such as noise resulting

from cell division or environmental noise. Because of their larger noise levels, lowly expressed

proteins are commonly assumed to be particularly important drivers of fluctuations in vari-

ables at the cellular level, such as the growth rate. At the same time the effects of the relatively

small fluctuations of highly abundant proteins have largely been neglected.

However, while protein noise levels are mainly determined by mean abundance, the mean

abundance itself is a product of evolution. Under many external conditions, bacteria indeed

seem to tune their protein levels in order to grow, on average, at a near-optimal rate [23–28].

Optimal gene expression for fast growth has also been an important and fruitful assumption in

countless modelling studies and techniques concerning deterministic growth, including Flux

Balance Analysis [29–31]. So far, however, the possible effects of natural selection on how

noise in protein expression affects the noise in macroscopic variables such as the growth rate,

have not been considered.

In this work, we therefore consider bacteria whose protein expression levels are shaped by

natural selection acting on the population growth rate. For the extreme case of cells growing

optimally fast, we obtain analytical predictions for the contribution of each protein to the

noise in the growth rate as a function of its mean expression only. The main result, directly

opposing common intuitions, is that proteins with a high mean expression are most important

for the noise at the cellular level. The argument is, in short, that a protein’s contribution to

noise in the growth rate does not only depend on the protein’s noise level, but also on the sen-

sitivity of the growth rate to that protein’s fluctuations. We show that when protein expression

levels are optimised for fast growth, the growth rate becomes most sensitive to fluctuations of

abundant protein species. This causes abundant proteins to overall contribute strongly to the

noise in the growth rate, despite their low noise levels. In a stochastic toy model of gene expres-

sion and growth, we verify and further investigate the role of natural selection on shaping

noise propagation properties. Lastly, an analysis on experimental data of protein abundances

and protein noise levels indicates that the common intuition –cells behave noisily because of

the low copy number of certain molecular species– might be incorrect.
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Results

To grow, bacteria need to express a certain set of (metabolic) proteins. Together, these proteins

create a metabolic flux used to build cellular components and new proteins. Since the cell’s

growth rate is limited by this metabolic flux, noise in the expression levels of the proteins

involved propagates through the metabolic network to affect the growth rate [15]. For any

fixed external environment, we therefore assume the existence of an unknown function μ(X)

that describes the instantaneous rate of cellular growth as a function of the copy numbers of all

proteins, X. The growth rate is thus a deterministic function of stochastic variables. In a popu-

lation snapshot, different individuals stochastically express different copy numbers of their

proteins and hence the growth rates of individuals will differ.

To quantify how variation in the expression of protein i affects growth rate μ, we use previ-

ously defined Growth Control Coefficients, which measure the sensitivity of the growth rate to

small changes in the copy number of protein i [32]:

Cm
i �

Xi

m

@m

@Xi

� ��
�
�
�
E½X�
: ð1Þ

Here, the expectation value is taken over the distribution of protein copy numbers across a

population of cells. As we will show below, these GCCs offer a way to decompose and analyse

the noise in the growth rate in terms of contributions by each of the noisy components, the

proteins.

To arrive at a comprehensive and useful noise decomposition, we adhere to two simplify-

ing assumptions. First, noise levels are assumed to be small, so that all protein abundances

are close to their means. The growth rate can then be approximated as a linear function of

the protein levels. Secondly, fluctuations in all protein species are assumed to be independent.

In bacterial cells, this is certainly not the case. However in the case of correlated fluctuations,

noise contributions can not be uniquely defined [33, 34]. Indeed, when two proteins corre-

late, and their joint fluctuations affect growth, the attribution of the noise contribution to

either protein is arbitrary. Therefore, we here present the simplified case where all protein

abundances are uncorrelated so that noise contributions can be uniquely defined and under-

stood intuitively.

Under these assumptions noise in the growth rate, CV2

m
, can be approximated as a sum of

contributions from all protein species:

CV2

m
�
X

i

CV2

i ðC
m

i Þ
2
; ð2Þ

where CVi is the coefficient of variation of the copy number of protein species i across a popu-

lation of cells (see S1 Appendix for the derivation). In this equation, each protein’s contribu-

tion consists of two factors. The first factor is no surprise: the proteins’ coefficient of variation

which quantifies the fluctuations in the expression of that particular protein. The second factor

is the protein’s GCC, which quantifies how strongly these fluctuations actually affect the cellu-

lar growth rate.

Distribution of growth control coefficients

To further quantify which proteins are important for noise in the growth rate, we need to gain

more insight into how growth control is distributed among proteins. This distribution is not

arbitrary due to three properties of the GCCs, which are discussed below.
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Sum rule. Firstly, the sum of the GCCs equals zero [32]:

X

i

Cm

i ¼ 0: ð3Þ

This sum rule originates from the so-called intensivity of the growth rate: if all protein copy

numbers inside a cell are increased by the same factor, the cellular flux increases, but the mass

increases as well, such that the cell’s growth rate (mass increase per mass) stays the same. That

the growth rate is to a good approximation an intensive variable has been shown in multiple

experiments [10, 15] and is a common modelling assumption [30]. Moreover, it is analogous

to the assumption that the metabolic flux and cellular mass are extensive variables, which has

been used in Metabolic Control Analysis to derive a similar sum rules for fluxes [35].

H-proteins. Secondly, there is a set of proteins, here called H-proteins, that are crucial for

the cell’s survival, but do not contribute to metabolism or cellular growth. This set H includes

‘house-keeping proteins’ participating in, e.g., stress-response, immunity, and DNA damage

repair; in bio-engineering, H may also contain engineered pathways. In wild type Escherichia
coli, the H-sector comprises an estimated 25–40% of the total protein mass [36]. Even when H-

sector proteins are not toxic or otherwise harmful to the cell, their control on the growth rate

will still be negative. This is because their synthesis does take up resources that otherwise could

go to growth-related enzymes. Previously, the GCC of such H-sector proteins has been calcu-

lated [32] to be equal to their mass fraction:

Cm
i2H ¼ � �i: ð4Þ

Here we write �i :¼ E½Xi�=
P

jE½Xj� for the proteome mass fractions ϕi of each protein spe-

cies i and ignore, for simplicity of notation, that different proteins have different masses. The

mass fraction of the total H sector is denoted as ϕH.

Together with the sum rule, the presence of the H-sector has important consequences for

the distribution of GCCs: because some proteins have negative GCCs, others must have a posi-

tive GCC.

Optimal growth. Thirdly, natural selection tends to favour populations of cells that, on

average, grow faster. This drives the (mean) expression levels of many proteins to be (near)-

optimal for growth [24, 25]. We here show that this also affects their GCCs by considering the

extreme case of a cell in which the expression levels of all proteins (except for those in the H
sector) are fully optimised for growth.

To do so, evolution is treated mathematically as a constrained optimisation problem, where

the mean growth rate, E½m�, is optimised under two constraints. First, the cell’s protein density

is kept constant. Second, only a fixed fraction of the proteome (1 − ϕH) can be allocated

towards proteins related to growth. To maximise the growth rate, only the (mean) protein

abundances inside this fraction can be tuned by evolution while the total abundance must stay

the same.

Formally, the optimisation can be done using Lagrange multipliers on a linearisation of μ
(see S1 Appendix). For all proteins that are not in the H sector, the result is the following

important expression for the GCCs in the optimal state:

Cm� ¼
�H

1 � �H

� �

�
�

i : ð5Þ

Here, the asterisk indicates that the equation is only valid under optimality. Intuitively, the

result can be understood as follows. In the optimal state, all partial derivatives of the growth

rate must be equal: if the growth rate would increase more upon increasing E½Xi� than upon
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increasing E½Xj�, increasing the expression of i at the expense of j would increase the growth

rate, and hence the growth rate would not be optimal [37, 38].

Eq 5 reveals two important properties for cells optimised for growth. First, growth control

is shared between all metabolic proteins: there is no single growth-limiting protein. Secondly,

and most importantly, enzymes with a higher mean expression level have a proportionally

larger control on the growth rate.

Combining all factors

The distribution of the GCCs in optimally growing cells (Eq 5) can be combined with the

experimentally observed scaling of coefficients of variations to predict the contribution of each

protein species i to the noise in the growth rate. We write kP
i for this contribution, which is

defined as the protein’s relative contribution to the CV of μ as expressed in Eq 2:

kP
i :¼
ðCm

i Þ
2CV2

i

CV2

m

�
ðCm

i Þ
2CV2

i
P

jðC
m
j Þ

2CV2

j

: ð6Þ

Inspired by experimental data [16, 22], the intrinsic noise component is assumed to be

inversely proportional to mean abundance:

CV2

i ¼ F=E½Xi�; ð7Þ

with a fixed Fano Factor F. If we ignore the noise plateau caused by extrinsic noise sources, Eq

7 sets the noise levels of all protein species. Note that for the highly expressed proteins, noise

levels are thus deliberately underestimated, resulting in a conservative estimate for their contri-

bution to noise in the growth rate.

To now analyse noise propagation in optimally growing cells, Eqs 4, 5 and 7 are inserted in

Eq 6. This results in:

kP�
i ¼

�H

1 � �H
�
�

i for i not in H;

1 � �H

�H
�i for i in H:

8
>>><

>>>:

ð8Þ

This equation is the pivotal finding of this study. It states that, in cells whose expression lev-

els are optimised for growth, kP
i is proportional to ϕi, that is, proteins with a high mean expres-

sion contribute most strongly to fluctuations in the growth rate.

The implications of the above equations become clear when applied to a data set of mea-

sured protein abundances and protein noise levels in the model bacterium E. coli [16, 39].

Under the assumptions of Eqs 2 and 5, the top 5% most abundant protein species are estimated

to contribute over 90% of the noise in the growth rate (Fig 1, red dots). This contribution is

significantly larger than might have been expected a priori: If all GCCs are assumed equal (Fig

1, purple dots) these abundant proteins contribute only 40%, and if the GCCs of the optimal

state are shuffled so that the correlation between a protein’s abundance and its GCC is broken

(Fig 1, black dots) their contribution becomes negligible (<2%). On the other hand, the 50%

least abundant proteins are estimated to contribute only 2% of the overall noise in the growth

rate (Fig 1, red curve), instead of 50–90%. For details of the analysis, see S2 Appendix and S1

Fig.
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Stochastic toy model

To examine if our results still hold for the large noise levels seen in living cells, we study noise

propagation in a stochastic toy model of a growing, and evolving, cell. Specifically, we test if a

positive scaling between ϕ and κ can still be observed for genotypes that have evolved by ran-

dom mutations, under realistic noise levels.

To do so, we defined a highly simplified model of a growing cell with stochastic protein

expression levels. To mimic the effects of evolution, we then employ random mutations to

search for the mean protein expression levels that optimise the mean growth rate of such cells.

Next, we characterised the noise propagation in such optimised cells to verify the predictions

of Eqs 5 and 8.

The model cell consists of a linear metabolic pathway consisting of five reactions that

import an external metabolite (m1) and convert it to biomass (Fig 2A). Each reaction is cata-

lysed by a single enzyme species and inhibited by its own product. Additionally, a sixth protein

species is expressed that is not metabolically active, representing the H-sector. Given the abun-

dances X of all proteins, the instantaneous growth rate μ is defined as the steady state flux

through the pathway divided by the total number of expressed proteins, including the H-sec-

tor. Note that the growth rate depends non-linearly on all protein abundances. (For more

details, see Methods).

The abundances X themselves are stochastic: each Xi is distributed in the population

according to a Gamma distribution [16, 20] characterised by mean E½Xi� and a Fano factor F.

The Fano factor is chosen the same for all proteins, consistent with Eq 7, and sets the overall

noise amplitude in the cell.

Fig 1. Cumulative noise contribution as a function of cumulative mass fraction, both calculated from protein

abundances and noise levels measured in E. coli [16]. Protein species were ordered by their mass fraction ϕi, and the

cumulative mass fractions and noise contributions subsequently calculated as
Pi

j¼1
�j and

Pi
j¼1
kj, respectively. GCCs

are either set by Eq 5 (red dots), all equal (purple dots), or a random permutation of the optimal GCCs (black dots).

https://doi.org/10.1371/journal.pcbi.1009208.g001
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It is useful to distinguish three levels of description of the model cells: their kinotype, geno-

type, and phenotype. We introduce the ‘kinotype’ as the set of reaction parameters that fully

characterise the enzymes in a cell’s metabolic network: kinetic rates, Michaelis–Menten con-

stants and inhibition parameters of the five reactions. We define a cell’s ‘genotype’ as the mean

abundances of all protein species. Lastly, a cell’s ‘phenotype’ is given by the vector of the cur-

rent protein abundances and the corresponding growth rate. The phenotype is therefore a

multi-dimensional stochastic variable whose probability distribution depends on the

genotype.

During an evolutionary trajectory, the genotype is repeatedly subjected to mutations that

are subsequently either rejected or accepted. Mutations increase or decrease the mean

abundance of one particular protein species, after which the mean expression of all other

metabolic proteins is adjusted such that the total (mean) protein abundance remains fixed

(
P

iE½Xi� ¼ O ¼ 104 in all simulations, for more details see Methods). Mutations thus affect

the protein copy number distributions across the population and therewith also the probability

distribution of the growth rate. A mutated genotype is accepted only if it increases the

Fig 2. (A) Representation of the stochastic toy model. A cell expresses five metabolic protein species, each catalysing a

single reaction in a linear reaction chain that imports and converts a fixed external metabolite, m1, into biomass. The

growth rate is defined as the steady state flux through the network, divided by the total number of expressed proteins,

including the H-sector protein. (B) Example trajectory of the GCCs of metabolic proteins during the optimisation of a

single kinotype (grey dotted lines). Grey dots are GCCs at an early stage of this process and the arrow indicates the

rate-limiting protein species. Red point are the values of the GCCs in the optimal genotype, matching the predicted

scaling for metabolic proteins (positive dashed line, negative dashed line is the prediction for H-proteins). See S1 Table

for parameters.

https://doi.org/10.1371/journal.pcbi.1009208.g002
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population mean growth rate, which is determined by sampling many phenotypes generated

by that genotype. The evolutionary algorithm is halted when 100 consecutive mutations

around a particular genotype are rejected. The resulting genotype is expected to be close to a

local optimum, although it is not guaranteed to be exactly the mathematical optimum due to

sampling error.

Using a method adopted from [33] the noise contribution of each protein species is then

measured by again sampling and analysing many phenotypes. These measured noise contribu-

tions were compared with our prediction, κP (Eq 8). Lastly, the whole process above was

repeated for many kinotypes (randomly generated; see Methods), resulting in different optimal

genotypes.

Low-noise regime. Before analysing the more realistic regime of high noise levels (large

variance of the protein copy numbers), we first study the model in a low-noise regime (using

F = 1,O = 104, resulting in small copy-number variance), where our results (Eqs 2 and 8) are

expected to hold well. When noise levels are this low, the mean growth rate E½m� is well approx-

imated by the growth rate in the vector of mean abundances, mðE½X�Þ. Instead of using the

undirected, slow stochastic evolutionary algorithm described above, the growth rate was there-

fore optimised using a deterministic gradient-based hill climb algorithm (for details see

Methods).

During each step of the optimisation process, we measured the GCCs of the metabolic pro-

teins to observe how they adjust during optimisation. A representative example of such a tra-

jectory is shown in Fig 2B (dotted grey lines). Early in the optimisation process, when

genotypes are still far from optimal (grey dots), often one particular protein species (shown in

the figure with an arrow) is strongly limiting growth (Cm
i � 1, indicating that the growth rate

could be improved by increasing this protein’s expression level). In contrast, the expression of

other metabolic proteins is too high; those proteins have a negative GCC similar to H-sector

proteins, indicating that almost all of their expression is a burden to the cell. Eventually, as fit-

ter genotypes are found, growth control becomes shared among all proteins (Fig 2B, dotted

grey lines). When the optimisation algorithm simulation has found the optimal genotype, the

predicted positive scaling between a protein’s GCC and its mean abundance is obtained (Fig

2B, red points, and Eq 5).

Repeating the same process for multiple kinotypes (n = 10) confirms the generality of the

positive scaling between Cμ and ϕ after optimisation (Fig 3A, red points). Again, note that in

an early stage of the optimisation process the distribution of the GCCs is markedly different:

Although only metabolic proteins are shown in the figure, some of them have negative GCCs

that resemble the GCCs of H-sector proteins (Fig 3A, grey dots).

Next, we measured for each kinotype the noise contributions of each protein in the optimal

genotype, and, for comparison, in a non-optimal genotype. For all kinotypes, the noise contri-

butions in the optimal genotypes neatly follow our prediction (Fig 3B, red points). In contrast,

for non-optimal genotypes, noise contributions are dominated by only a few lowly expressed

proteins (Fig 3B, grey dots). The mean abundance of these proteins is below the optimal value,

causing both their GCC and their CV to be large, resulting in a large noise contribution.

This analysis clearly highlights the fundamental role of evolution in shaping noise propaga-

tion properties: only in evolved cells that grow at an (almost) optimal rate a positive scaling

exist between κ and ϕ.

High-noise regime. Next we study the toy model in a high-noise regime, where copy

number variation matches observed variation in living bacteria more closely (F = 10, O = 104,

resulting in CVs up to 0.2, S5(C) Fig). In this regime, the non-linear dependence of the growth

rate on the protein abundances becomes important and might influence the mean growth rate.

That is, a genotype that was optimal in the low-noise regime, does not necessarily yield the
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highest mean growth rate in the high-noise regime. Below, we therefore distinguish two geno-

types for each kinotype: the ‘Low-Noise’ (LN) genotype, which is optimal in the low-noise

regime, and the ‘High-Noise’ (HN) genotype, which evolved in the high-noise regime by ran-

dom mutations. To efficiently find the HN genotype of each kinotype, we employed the evolu-

tionary algorithm described above, starting with the LN genotypes.

For some kinotypes, the resulting HN genotypes indeed differed significantly from the LN

ones. This can be understood as follows. In the LN genotype, when noise levels are low, control

over the growth rate is shared between the proteins. In the same LN genotype, higher noise lev-

els can increase the probability that in some sampled phenotypes a single protein species

becomes the sole rate-limiting step. Indeed, some genotypes that were optimal in the low-

noise regime generated many slow-growing phenotypes when noise levels were high (S2(B)

Fig). The low growth rates were often caused by a single protein species whose phenotypic

expression was too low (S2(A) Fig) and therefore became a bottle-neck.

From an allocation point of view, increasing the mean expression of lowly abundant, rate-

limiting proteins is cheap: little additional resources are needed to cause a relatively large

change in the protein’s expression level. Indeed, the mean expression of potential bottlenecks

increased during evolution, but mainly for lowly expressed protein species (S2 and S3 Figs).

The distribution of the GCCs is also different in the evolved HN genotypes compared to the

LN genotypes (Fig 4A, red points). GCCs are by definition linear measures and because in the

high-noise regime the non-linearity of the growth rate become relevant, Eq 5 is not expected

to hold exactly anymore. Interestingly, however, the positive scaling between ϕ and Cμ

Fig 3. Perfect prediction in the case of linear noise for 10 different kinotypes. (A) Grey dots are GCCs of metabolic

proteins in genotypes after 150 optimisation steps, which are not yet optimal. Red points are the GCCs in the optimal

genotypes. Dashed lines are predictions for the values of GCCs for metabolic (positive) or H-proteins (negative). (B)
Measured noise contributions compared to predicted noise contributions (dashed line). Red points are measured in

the optimal genotype, grey points in the non-optimal genotypes.

https://doi.org/10.1371/journal.pcbi.1009208.g003
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remains, and becomes, if anything, even steeper. Again, this makes sense: when noise levels

increase, lowly expressed proteins are, due to their larger CV, more likely to fluctuate down to

levels that strongly limit growth (S3(A) Fig). Increasing the mean expression of these proteins

will reduce their GCC (S3(B) and S3(C) Fig), while increasing the GCC of the other proteins

via the sum rule (Eq 3). The net result is an increase in the slope in Fig 4A.

Importantly, the positive scaling between κ and a protein’s mean expression was again

observed in the high-noise regime (Fig 4B, red points). This is remarkable, since the mathe-

matical prediction (Eq 8) was derived under the assumption of small noise amplitudes. To

understand why the positive scaling nonetheless persists in the high-noise regime, the same

reasoning as for the GCCs can be followed. At the start of the evolutionary trajectory, when

the genotype is still the LN genotype, some lowly abundant protein species are dominant noise

contributors (Fig 4B, grey points top-left corner). During evolution those proteins obtained a

slightly higher expression, reducing both their GCC and their noise contribution κ (Fig 4B,

red points, and S3(B) and S3(C) Fig), and at the same time increasing the contributions of the

other proteins species.

Discussion

In this article we argued that highly expressed proteins play an important role in system-level

noise properties despite their low noise levels. In summary, our argument is that, in cells opti-

mised for growth, abundant protein species have large Growth Control Coefficients (GCCs).

The product of a protein’s CV and GCC –an indicator for the protein’s noise contribution– is

then predicted to be proportional to the protein’s mean abundance. A crude estimate from an

Fig 4. For 100 kinotypes, low-noise genotypes (grey dots) compared with high-noise genotypes (red dots). Dashed

lines are theoretical predictions for metabolic proteins. (A) Growth Control Coefficients. (B) Measured noise

contributions.

https://doi.org/10.1371/journal.pcbi.1009208.g004
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E. coli data set suggests that the 50% least abundant protein species contribute only *2% of

the noise in the growth rate, instead of up to 90% as might have been expected a priori if the

scaling of the GCCs is ignored. In contrast, the top 5% most abundant species are estimated to

contribute well over 80% in optimised cells. In a simplistic toy model of cellular growth, we

then showed that the positive scaling between a protein’s mean abundance and its noise contri-

butions persist even when noise levels are considerable and the growth rate is a non-linear

function of protein abundances.

Of course, these results rely on the assumption of a perfect optimum. Experiments suggest,

however, that bacteria are not always in such an optimum [24]. In certain fixed environments,

adaptive mutants arise with higher growth rates, indicating that the wild-type growth rate is

not optimal yet [40]. Assuming those adaptive mutations did not take place in the H-sector, it

remains a question whether in wild-type cells abundant proteins also contribute most to noise

in the growth rate. However, in our simulations the positive scaling between ϕ and κ persists

even in the high noise regime, where genotypes were evolved by random mutations–and there-

fore are not necessarily perfectly optimal. Moreover, some mutants generated around the

evolved genotype still displayed the positive scaling even when growing, on average, signifi-

cantly slower (S6 Fig). Other generated mutants, however, did lose their positive scaling. It

would therefore be interesting to further investigate why some non-optimal mutants still dis-

play the predicted scaling, but others do not.

While the toy model assumed particular enzyme dynamics, all mathematical predictions

were derived without any assumptions concerning the underlying biochemistry. This implies

that the strong contribution of highly expressed proteins to the noise in the growth rate is a

general property of evolved biological systems as long as protein expression is in some way

constrained.

The presence of such cellular constraints is crucial for our results. In this study, a tight con-

straint was imposed by assuming that the H-sector is completely static. However, a small relax-

ation of this constraint -e.g., assuming that the allocation towards the H-sector has to be within

a certain range- should yield similar results. Also other allocation constraints, e.g. a fixed total

protein abundance allocated to a particular metabolic pathway, or a maximum density of

membrane proteins [41], will result in a similar positive scaling between ϕ and κ in all con-

strained proteins.

We point out that, besides the growth rate, other cellular traits, such as stress response or

antibiotic resistance, are important for bacterial fitness as well. Interestingly, noise in these

traits can be analysed in the same way as noise in the cellular growth rate. Therefore, the argu-

ment suggests that noise in any intensive trait that has been optimised during the bacteria’s

evolutionary history should be dominated by highly expressed proteins.

Throughout this paper, we ignored all correlations between protein species [42, 43], because

in the presence of such correlations, the contribution of noise in a particular protein to the

noise in cellular growth rate becomes ill defined. One way to circumvent this problem is to use

a fine-grained model description, e.g. at the level of individual chemical reactions, in which the

noise sources are inherently uncorrelated [6, 44], or to adopt a meta-modelling approach [34]

where highly correlated protein species (e.g., those coded in the same operon) are modelled as

single, noise contributing units. That said, the method presented here allows for a more intui-

tive interpretation of noise contributions, because it directly relates noise contributions to

observed protein abundances.

The results discussed above add to the realisation that global cellular constraints have intri-

cate consequences for the overall physiology of evolved cells, from noisy gene expression [32],

to metabolism [31, 41] and growth [45]. Our work highlights the holistic nature of noise prop-

agation via the sum rule for the GCCs (Eq 3). The sum rule specifically could have important
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consequences for biotechnology: tinkering with a specific part of the cell affects noise propaga-

tion properties of the entire system. For example, most synthetic proteins or pathways do not

contribute to growth, but instead create by-products. Such pathways will thus have a negative

GCC and hence increase the GCC -and therewith the propagation- of all metabolic proteins.

The stochastic toy model moreover revealed a trade-off between efficient resource alloca-

tion and the robustness of metabolism to expression noise [46]. Genotypes that are optimal in

the low-noise regime allocate resources efficiently, but lack metabolic robustness at higher

noise levels. Cells with different levels of expression noise therefore required different geno-

types to grow, on average, the fastest (Fig 4). Similar observations were also made in recent

experiments in yeast [14]. Together, these observations can have consequences for Flux Bal-

ance Analysis-like techniques [29], where optimal growth states have so far been calculated

mostly deterministically, i.e., optimising the growth rate in the mean expression levels.

We conclude that noise in gene expression –and its propagation towards the growth rate–

needs to be considered when discussing optimal growth, but also vice versa: when enzyme

expression is optimised, this affects noise propagation in such a way that abundant protein

species become most relevant for noise on a system level.

Methods

Here, we give detailed information about the toy model and the stochastic simulation.

Kinotype, genotype, phenotype and growth rate

In our toy model, we simulated a linear chain of 5 proteins, where the flux through each of the

first 4 steps is given by:

vi ¼
kcat;i Xi mi

km;i þmi þmiþ1=kinh;iþ1

: ð9Þ

Here, kcat is the reaction rate, km is the Michaelis-Menten constant, and kinh is the inhibition

constant, together called a kinotype. To define a kinotype, we sample kcat and km uniformly

from the interval [0.1, 6.1] and kinh from [1, 7]. The external metabolite, m1 is set to 10 and

kept constant, simulating a fixed environment. The fifth protein in the reaction chain creates

biomass and is not inhibited.

In a snapshot of a population of cells, the values of X are distributed according to some

probability distribution P(X), here assumed to be six independent Gamma distributions.

Because the variance in the expression of each protein species is tied to its mean (Eq 7), the

Gamma distribution for each protein species is completely specified by its mean copy number.

Together, the mean copy numbers are called a genotype and fully define the probability distri-

bution P(X). According to P(X), we can sample for each individual in a population a vector X.

This vector is referred to as the individual’s phenotype. Corresponding with the phenotype, an

individual’s growth rate can be calculated by integrating the system of ODEs for all metabolites

(for i 2 {2, 3, 4, 5}, _mi ¼ vi� 1 � vi ¼ 0 with each vi specified in Eq 9) until steady state (106

time steps in Matlab 2019b). The dynamics of the metabolites are assumed fast, such that they

are always in steady state relative to the sampled protein copy numbers. Moreover, stochasti-

city in the metabolic reactions is ignored for the same reason: metabolic fluctuations relax on

timescales much faster than growth (seconds rather than minutes or hours).
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The specific kinetics chosen (Eq 9) then enforce that for all possible phenotypes a steady

state flux exists. In the steady state, where all fluxes are equal, we define vi = vi−1 = J, and:

m≔ J=ð
X

i

XiÞ:

Evolution

To simulate evolution, we start with an initial genotype and measure its mean growth rate (by

sampling many phenotypes and calculating the corresponding growth rates), and subsequently

mutate the genotype to search for genotypes that result in higher mean growth rates.

The initial genotype is constructed by sampling 5 uniform numbers, x 2 [0, 1]5 and setting

E½X�initial ¼ x�H=
P

jxjO, with ϕH = 0.4 (the proteomic fraction allocated to the H-sector) and

O = 104, the (mean) total protein abundance, here assumed to be equal to cell size.

Genotypes were mutated in two different ways, depending on the noise amplitude chosen

(value of F) in the simulation. In the low noise regime (F = 1), the next genotype was deter-

mined with a gradient-based hill climbing algorithm that uses the current GCCs:

Xtþ1 ¼ Xt þ � dXt=jdXtj
2
; dXt ¼

O

5
Cm

t=�t �
X

j=2H

Cm

j;t=�j;t

 !

;

where � is small (0.0002). This algorithm changes the genotype in the direction of the steepest

growth rate increase.

In the high-noise regime (F = 10), changes in the genotype are due to random mutations,

where one of the metabolic proteins is chosen at random and its mean abundance is changed

according to a percentage drawn from a normal distribution (mean zero, variance 5%), after

which the entire genotype is renormalised to enforce a fixed mean cell size of O. A mutant

genotype is accepted only if it yields a higher mean growth rate (calculated over 2 � 104 sampled

phenotypes). The evolutionary process is terminated when 100 mutants have been rejected.

The full evolutionary process is repeated 15 times; from these 15 evolutionary trajectories, the

genotype with the highest mean growth rate is chosen to be the HN genotype. (The number 15

is arbitrary, but deemed enough to ensure the simulation did not get stuck in a local optimum,

while still being computationally feasible).

Calculating noise contributions

For a specific genotype, we measured noise contributions as follows. First, we sampled 2 � 104

phenotypes and calculated the corresponding growth rates. Then, we divided the distribution

for each protein in 100 bins, and calculated the mean growth rate in each bin (sampling extra

if less than 100 phenotypes fell in a particular bin). Afterwards, we calculated the weighted var-

iance between these growth rates. This is an approximation of a conceptual decomposition

method from Bowsher and Swain [33]:

ki ¼
Var½E½mjXi��

Var½m�
: ð10Þ

This method is a first order approximation of a full Global Sensitivity Analysis [34]. The

approximation is only valid if the sum of all contributions is close to unity. This is indeed the

case (see S5(A) Fig). Moreover, sampling errors in κ are small (S5(B) Fig). All Matlab and

Mathematica codes are available upon request.
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Supporting information

S1 Appendix. Derivation of Eqs 2–8.

(PDF)

S2 Appendix. Application to experimental data sets.

(PDF)

S1 Fig. Examination of the effect of the noise floor and application to a second experimen-

tal data set. (A) Data from Taniguchi et al., but variances were now assumed to solely scale

with mean protein abundance (CV2 ¼ 1=E½X�), ignoring the noise floor (nf = 0, see S2 Appen-

dix, black dots in the figure). (B) Effect of adding the noise floor on predicted noise contribu-

tions in an optimally growing E. coli cell. Adding a noise floor (in this case using measured

variances) increases the noise contribution of a few very abundant protein species (their noise

levels increase), but also causes many low copy number protein species to contribute relatively

less. (C) Cumulative noise contributions (∑κ) against cumulative mass fractions (∑ϕ) estimated

from the Schmidt et al. data set. GCCs were again set according to optimal growth (red dots),

equal (purple dots), or shuffled (black dots). Shaded areas indicate the 50% least abundant pro-

tein species (left) and the top 5% most abundant species (right).

(EPS)

S2 Fig. Example of highly skewed distributions in an optimised kinotype. (A) Distribution

of the efficiency of the fifth protein (Zi≔
kcat;i
m

XiP
j
Xj

). (B) Distribution of growth rates for the

optimal Low-Noise genotype in the high noise regime. Red areas in (A) and (B) correspond to

the same phenotypes. (C) The same as (A), but for the evolved High-Noise genotype. (D) the

same as (B), but for the evolved, High-Noise genotype. Grey distribution is the distribution in

the LN-genotype for comparison. (We picked this kinotype because it most clearly showed the

effect of evolution on the distributions).

(EPS)

S3 Fig. Relation between a protein’s efficiency and change in growth control. (A) Probabil-

ity a protein’s efficiency is very close to unity, calculated over 2 � 104 phenotypes. Although a

higher efficiency on first glance seems good, an efficiency close to unity indicates that this pro-

tein might be limiting growth. All proteins for with p(η> 0.99)>0 are marked with a red

cross. Two outliers (triangles) are protein species from the same kinotype. (B) Changes in

genotype when noise levels increase, as a function of the mean ϕ in the optimal genotype. Red

crosses are those proteins marked in panel A. Note that the highly expressed proteins with

p(η> 0.99)>0 are not increased, probably because this required the allocation of too much

additional resource. (C) Changes in mean genotype coincide with a change in Cμ.

(EPS)

S4 Fig. Example of the optimisation algorithm. (A) Growth rate increases each step due to

the gradient-based hill climb algorithm. (B) Correlation coefficient increases and switches sign

during optimisations. (C) Variance decreases during most parts of the optimisation process.

(D) CV2

m
decreases. Parameters of this example kinotype are equal to Fig 1B.

(EPS)

S5 Fig. Examination of the noise decomposition method and noise levels. (A) The sum of

all first order noise contributions is close to unity, indicating that a first order Global Sensitiv-

ity Analysis captures the variance contributions well. (B) Noise contributions for the example

kinotype in the LN genotype in the high noise regime. Error bars indicate 2 sd over 125
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repeated sampling of 2 � 104 phenotypes. Sampling errors in κ are within reasonable bounds.

(C) Distribution of CVs as encountered in HN genotypes.

(EPS)

S6 Fig. Examination of the sensitivity of the positive scaling. ϕ versus κ for kinotype 2

around the evolved genotype (black circle) in the high noise regime (F = 10). Grey dots denote

mutant genotypes, for which their mean growth rate (relative to the mean growth rate of the

evolved genotype) is plotted against the correlation coefficients of ϕ and κ for that particular

genotype. Mutants are created by three different methods: (1) mutation in a single protein

with a normally distributed step size with standard deviation 15% (40 genotypes, plus-sign

markers), (2) with 5% (30 genotypes, diamond-sign markers), and (3) mutations in all protein

species with standard deviation 5% (30 genotypes, square-sign markers). After the mutations,

genotypes were re-normalised to make sure total cell size, and ϕH remained constant.

(EPS)

S1 Table. Kinetic parameters of the example kinotype. Catabolic rate (kcat) and inhibition

constant (kinhi) for the five metabolic protein species in the kinotype used to create figure Figs

2 and S4. Additionally, the initially sampled (relative) protein abundances are given.

(PDF)

Author Contributions

Conceptualization: Laurens H. J. Krah, Rutger Hermsen.

Formal analysis: Laurens H. J. Krah, Rutger Hermsen.

Supervision: Rutger Hermsen.

Visualization: Laurens H. J. Krah.

Writing – original draft: Laurens H. J. Krah.

Writing – review & editing: Laurens H. J. Krah, Rutger Hermsen.

References
1. Thattai M, Oudenaarden Av. Stochastic Gene Expression in Fluctuating Environments. Genetics. 2004;

167(1):523–530. https://doi.org/10.1534/genetics.167.1.523 PMID: 15166174

2. Elowitz MB, Levine AJ, Siggia ED, Swain PS. Stochastic Gene Expression in a Single Cell. Science.

2002; 297(5584):1183–1186. https://doi.org/10.1126/science.1070919 PMID: 12183631

3. Raj A, van Oudenaarden A. Nature, Nurture, or Chance: Stochastic Gene Expression and Its Conse-

quences. Cell. 2008; 135(2):216–226. https://doi.org/10.1016/j.cell.2008.09.050 PMID: 18957198

4. Kærn M, Elston TC, Blake WJ, Collins JJ. Stochasticity in gene expression: from theories to pheno-

types. Nature Reviews Genetics. 2005; 6(6):451–464. https://doi.org/10.1038/nrg1615 PMID:

15883588

5. Shahrezaei V, Marguerat S. Connecting growth with gene expression: of noise and numbers. Current

Opinion in Microbiology. 2015; 25:127–135. https://doi.org/10.1016/j.mib.2015.05.012 PMID:

26093364

6. Thomas P, Terradot G, Danos V, Weiße AY. Sources, propagation and consequences of stochasticity

in cellular growth. Nature Communications. 2018; 9(1):1–11. https://doi.org/10.1038/s41467-018-

06912-9 PMID: 30375377

7. Eling N, Morgan MD, Marioni JC. Challenges in measuring and understanding biological noise. Nature

Reviews Genetics. 2019; 20(9):536–548. https://doi.org/10.1038/s41576-019-0130-6 PMID: 31114032

8. Vasdekis AE, Singh A. Microbial metabolic noise. WIREs Mechanisms of Disease. 2021; 13(3):e1512.

https://doi.org/10.1002/wsbm.1512

9. Raser JM, O’Shea EK. Noise in Gene Expression: Origins, Consequences, and Control. Science. 2005;

309(5743):2010–2013. https://doi.org/10.1126/science.1105891 PMID: 16179466

PLOS COMPUTATIONAL BIOLOGY Effect of natural selection on propagation of protein expression noise to growth

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009208 July 19, 2021 15 / 17

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009208.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009208.s009
https://doi.org/10.1534/genetics.167.1.523
http://www.ncbi.nlm.nih.gov/pubmed/15166174
https://doi.org/10.1126/science.1070919
http://www.ncbi.nlm.nih.gov/pubmed/12183631
https://doi.org/10.1016/j.cell.2008.09.050
http://www.ncbi.nlm.nih.gov/pubmed/18957198
https://doi.org/10.1038/nrg1615
http://www.ncbi.nlm.nih.gov/pubmed/15883588
https://doi.org/10.1016/j.mib.2015.05.012
http://www.ncbi.nlm.nih.gov/pubmed/26093364
https://doi.org/10.1038/s41467-018-06912-9
https://doi.org/10.1038/s41467-018-06912-9
http://www.ncbi.nlm.nih.gov/pubmed/30375377
https://doi.org/10.1038/s41576-019-0130-6
http://www.ncbi.nlm.nih.gov/pubmed/31114032
https://doi.org/10.1002/wsbm.1512
https://doi.org/10.1126/science.1105891
http://www.ncbi.nlm.nih.gov/pubmed/16179466
https://doi.org/10.1371/journal.pcbi.1009208


10. Taheri-Araghi S, Bradde S, Sauls JT, Hill NS, Levin PA, Paulsson J, et al. Cell-size control and homeo-

stasis in bacteria. Current biology: CB. 2015; 25(3):385–391. https://doi.org/10.1016/j.cub.2014.12.009

PMID: 25544609

11. Iyer-Biswas S, Wright CS, Henry JT, Lo K, Burov S, Lin Y, et al. Scaling laws governing stochastic

growth and division of single bacterial cells. Proceedings of the National Academy of Sciences. 2014;

111(45):15912–15917. https://doi.org/10.1073/pnas.1403232111 PMID: 25349411

12. Kennard AS, Osella M, Javer A, Grilli J, Nghe P, Tans SJ, et al. Individuality and universality in the

growth-division laws of single E. coli cells. Physical Review E. 2016; 93(1):012408. https://doi.org/10.

1103/PhysRevE.93.012408 PMID: 26871102

13. Hashimoto M, Nozoe T, Nakaoka H, Okura R, Akiyoshi S, Kaneko K, et al. Noise-driven growth

rate gain in clonal cellular populations. Proceedings of the National Academy of Sciences. 2016;

113(12):3251–3256. https://doi.org/10.1073/pnas.1519412113 PMID: 26951676

14. Schmiedel JM, Carey LB, Lehner B. Empirical mean-noise fitness landscapes reveal the fitness impact

of gene expression noise. Nature Communications. 2019; 10(1):1–12. https://doi.org/10.1038/s41467-

019-11116-w PMID: 31320634

15. Kiviet DJ, Nghe P, Walker N, Boulineau S, Sunderlikova V, Tans SJ. Stochasticity of metabolism and

growth at the single-cell level. Nature. 2014; 514(7522):376–379. https://doi.org/10.1038/nature13582

PMID: 25186725

16. Taniguchi Y, Choi PJ, Li GW, Chen H, Babu M, Hearn J, et al. Quantifying E. coli proteome and tran-

scriptome with single-molecule sensitivity in single cells. Science (New York, NY). 2010; 329

(5991):533–538. https://doi.org/10.1126/science.1188308 PMID: 20671182

17. Bar-Even A, Paulsson J, Maheshri N, Carmi M, O’Shea E, Pilpel Y, et al. Noise in protein expression

scales with natural protein abundance. Nature Genetics. 2006; 38(6):636–643. https://doi.org/10.1038/

ng1807 PMID: 16715097

18. Paulsson J. Summing up the noise in gene networks. Nature. 2004; 427(6973):415–418. https://doi.

org/10.1038/nature02257 PMID: 14749823

19. Swain PS, Elowitz MB, Siggia ED. Intrinsic and extrinsic contributions to stochasticity in gene expres-

sion. Proceedings of the National Academy of Sciences. 2002; 99(20):12795–12800. https://doi.org/10.

1073/pnas.162041399 PMID: 12237400

20. Friedman N, Cai L, Xie XS. Linking stochastic dynamics to population distribution: an analytical frame-

work of gene expression. Physical Review Letters. 2006; 97(16):168302. https://doi.org/10.1103/

PhysRevLett.97.168302 PMID: 17155441

21. Cai L, Friedman N, Xie XS. Stochastic protein expression in individual cells at the single molecule level.

Nature. 2006; 440(7082):358–362. https://doi.org/10.1038/nature04599 PMID: 16541077

22. Wolf L, Silander OK, van Nimwegen E. Expression noise facilitates the evolution of gene regulation.

eLife. 2015; 4:e05856. https://doi.org/10.7554/eLife.05856 PMID: 26080931

23. Bosdriesz E, Molenaar D, Teusink B, Bruggeman FJ. How fast-growing bacteria robustly tune their ribo-

some concentration to approximate growth-rate maximization. The FEBS Journal. 2015; 282

(10):2029–2044. https://doi.org/10.1111/febs.13258 PMID: 25754869

24. Towbin BD, Korem Y, Bren A, Doron S, Sorek R, Alon U. Optimality and sub-optimality in a bacterial

growth law. Nature Communications. 2017; 8(1):1–8. https://doi.org/10.1038/ncomms14123

25. Dekel E, Alon U. Optimality and evolutionary tuning of the expression level of a protein. Nature. 2005;

436(7050):588–592. https://doi.org/10.1038/nature03842 PMID: 16049495

26. Lewis NE, Hixson KK, Conrad TM, Lerman JA, Charusanti P, Polpitiya AD, et al. Omic data from

evolved E. coli are consistent with computed optimal growth from genome-scale models. Molecular

Systems Biology. 2010; 6:390. https://doi.org/10.1038/msb.2010.47 PMID: 20664636

27. Solem C, Petranovic D, Koebmann B, Mijakovic I, Jensen PR. Phosphoglycerate Mutase Is a Highly

Efficient Enzyme without Flux Control in Lactococcus lactis. Journal of Molecular Microbiology and Bio-

technology. 2010; 18(3):174–180. https://doi.org/10.1159/000315458 PMID: 20530968

28. Goelzer A, Fromion V, Scorletti G. Cell design in bacteria as a convex optimization problem. Automa-

tica. 2011; 47(6):1210–1218. https://doi.org/10.1016/j.automatica.2011.02.038

29. Mori M, Hwa T, Martin OC, De Martino A, Marinari E. Constrained Allocation Flux Balance Analysis.

PLoS computational biology. 2016; 12(6):e1004913. https://doi.org/10.1371/journal.pcbi.1004913

PMID: 27355325

30. de Jong H, Casagranda S, Giordano N, Cinquemani E, Ropers D, Geiselmann J, et al. Mathematical

modelling of microbes: metabolism, gene expression and growth. Journal of The Royal Society Inter-

face. 2017; 14(136):20170502. https://doi.org/10.1098/rsif.2017.0502

PLOS COMPUTATIONAL BIOLOGY Effect of natural selection on propagation of protein expression noise to growth

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009208 July 19, 2021 16 / 17

https://doi.org/10.1016/j.cub.2014.12.009
http://www.ncbi.nlm.nih.gov/pubmed/25544609
https://doi.org/10.1073/pnas.1403232111
http://www.ncbi.nlm.nih.gov/pubmed/25349411
https://doi.org/10.1103/PhysRevE.93.012408
https://doi.org/10.1103/PhysRevE.93.012408
http://www.ncbi.nlm.nih.gov/pubmed/26871102
https://doi.org/10.1073/pnas.1519412113
http://www.ncbi.nlm.nih.gov/pubmed/26951676
https://doi.org/10.1038/s41467-019-11116-w
https://doi.org/10.1038/s41467-019-11116-w
http://www.ncbi.nlm.nih.gov/pubmed/31320634
https://doi.org/10.1038/nature13582
http://www.ncbi.nlm.nih.gov/pubmed/25186725
https://doi.org/10.1126/science.1188308
http://www.ncbi.nlm.nih.gov/pubmed/20671182
https://doi.org/10.1038/ng1807
https://doi.org/10.1038/ng1807
http://www.ncbi.nlm.nih.gov/pubmed/16715097
https://doi.org/10.1038/nature02257
https://doi.org/10.1038/nature02257
http://www.ncbi.nlm.nih.gov/pubmed/14749823
https://doi.org/10.1073/pnas.162041399
https://doi.org/10.1073/pnas.162041399
http://www.ncbi.nlm.nih.gov/pubmed/12237400
https://doi.org/10.1103/PhysRevLett.97.168302
https://doi.org/10.1103/PhysRevLett.97.168302
http://www.ncbi.nlm.nih.gov/pubmed/17155441
https://doi.org/10.1038/nature04599
http://www.ncbi.nlm.nih.gov/pubmed/16541077
https://doi.org/10.7554/eLife.05856
http://www.ncbi.nlm.nih.gov/pubmed/26080931
https://doi.org/10.1111/febs.13258
http://www.ncbi.nlm.nih.gov/pubmed/25754869
https://doi.org/10.1038/ncomms14123
https://doi.org/10.1038/nature03842
http://www.ncbi.nlm.nih.gov/pubmed/16049495
https://doi.org/10.1038/msb.2010.47
http://www.ncbi.nlm.nih.gov/pubmed/20664636
https://doi.org/10.1159/000315458
http://www.ncbi.nlm.nih.gov/pubmed/20530968
https://doi.org/10.1016/j.automatica.2011.02.038
https://doi.org/10.1371/journal.pcbi.1004913
http://www.ncbi.nlm.nih.gov/pubmed/27355325
https://doi.org/10.1098/rsif.2017.0502
https://doi.org/10.1371/journal.pcbi.1009208
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