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Abstract: Cow’s milk allergy is a common food allergy in infants, and is associated with an increased
risk of developing other allergic diseases. Dietary selenium (Se), one of the essential micronutrients
for humans and animals, is an important bioelement which can influence both innate and adaptive
immune responses. However, the effects of Se on food allergy are still largely unknown. In the
current study it was investigated whether dietary Se supplementation can inhibit whey-induced food
allergy in an animal research model. Three-week-old female C3H/HeOuJ mice were intragastrically
sensitized with whey protein and cholera toxin and randomly assigned to receive a control, low,
medium or high Se diet. Acute allergic symptoms, allergen specific immunoglobulin (Ig) E levels and
mast cell degranulation were determined upon whey challenge. Body temperature was significantly
higher in mice that received the medium Se diet 60 min after the oral challenge with whey compared
to the positive control group, which is indicative of impaired anaphylaxis. This was accompanied by
reductions in antigen-specific immunoglobulins and reduced levels of mouse mast cell protease-1
(mMCP-1). This study demonstrates that oral Se supplementation may modulate allergic responses
to whey by decreasing specific antibody responses and mMCP-1 release.

Keywords: seleno-l-methionine; selenium; cow’s milk allergy; mouse model; dendritic cells;
T cells; mMCP-1

1. Introduction

Cow’s milk allergy (CMA) is one of the most common food allergies, affecting 2–3% of
all infants [1]. In IgE-mediated CMA, about 85% of patients mostly experience mild symp-
toms, while 15% can develop severe allergic responses and about 9% develop anaphylaxis
within minutes to hours after ingestion of cow’s milk [2,3]. Although 60–75% of children
with IgE-mediated CMA spontaneously develop tolerance to cow’s milk before their fifth
year of life, the risk of developing other atopic disorders later in life, such as asthma, is
increased [4]. At the moment, no curative treatment is available for CMA and the only way
to prevent allergic reactions is to avoid the intake of cow’s milk proteins. Therefore, novel
approaches to prevent or treat CMA are urgently needed.

CMA is defined as an immunologically mediated adverse reaction to cow’s milk
protein [5,6], which can result from a breakdown or a delay in the development of oral tol-
erance [7]. The major allergens in cow’s milk are αS1-casein from casein, and α-lactalbumin
and β-lactoglobulin from whey. These proteins can be degraded in the intestines and pass
through the epithelial barrier, after which they are presented to naïve T-cells by antigen-
presenting cells such as dendritic cells (DC). In CMA, these T-cells differentiate into T
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helper 2 cells (Th2) which can drive allergic immune responses, including the expansion of
eosinophils and mast cells, as well as isotype switch in B cells towards IgE production [8].

A number of food allergen immunotherapies are under investigation; however, these
are limited in their ability to restore immune tolerance to food allergens, and often result
in high rates of allergic side effects [9]. Nutritional interventions including omega-3
polyunsaturated fatty acids, prebiotics, probiotics, and symbiotic supplementation as well
as Vitamin D have gathered more interest in the prevention, secondary prevention and
treatment of food allergies [10,11]. With the accumulating knowledge of the involvement of
micronutrients in immunological processes, there is increasing interest in the relationship
between minerals and the development of immune responses. It is known that deficiencies
in several minerals such as iron, zinc, copper and selenium (Se) may result in impaired
and/or less efficient immune function but little is known about their specific role in food
allergy development [6,12,13].

Se is a metalloid mineral which is considered to have significant potential to influence
the immune system. For example, Se supplementation reduced inflammation in a Staphylo-
coccus aureus-infected mouse mastitis model [14,15], and an increase in Se intake improved
antigen-responsiveness in immune cells from adults [16]. Se has been demonstrated to
improve the activation of chicken DCs in vitro [17], and dietary Se supplementation has
been shown to favor differentiation of naive cluster of differentiation (CD)4+ T lympho-
cytes towards T helper 1 cells (Th1) [18,19], supporting the acute cellular immune response.
In addition, dietary Se increased the percentage of splenic regulatory T cells (Treg) [20].
Furthermore, in a mouse model for systemic lupus erythematosus, Se supplementation
inhibited activation, differentiation and maturation of B cells and macrophages [21]. Lower
serum levels of selenium have also been associated with several skin diseases including
atopic dermatitis [22]. People suffering from allergic asthma have significantly lower Se
concentrations in their blood than healthy individuals [23].

Se status is known to affect the function of the immune cells and their ability to respond
to antigens [24], which suggests that Se may affect allergic disease. Selenomethionine
(SeMet) is an organic form of Se, an essential trace element that functions in the regulation
of the immune response [25,26]. Oral SeMet administration suppressed ovalbumin-induced
allergic sensitization in a mouse model for active cutaneous anaphylaxis by lowering Th2
cytokine production and augmenting Th1 cytokine production [27]. However, it is not
known how SeMet affects CMA. Since evidence indicates that organic Se, SeMet, is better
absorbed by humans and animals and has a higher bioavailability than inorganic forms of
Se [28], it was investigated how CMA is modulated by SeMet-enriched diets.

2. Materials and Methods
2.1. Mice

Four-week-old, specific-pathogen-free female C3H/HeOuJ mice weaned at the age
of 3 weeks were purchased from Charles River laboratory (Sulzfeld, Germany). The an-
imals had been bred for 2 generations on a cow’s milk-free diet. Animals were housed
in an individually ventilated cage (n = 3–6 mice/cage) at the animal facility of Utrecht
University (Utrecht, The Netherlands), with a 12 h dark/12 h light cycle and ad libitum
access to food and sterile water. Upon arrival, mice were randomly allocated to a neg-
ative control group (n = 4, the PBS group), a tolerance group (n = 6), a positive control
group or one of the 3 Se intervention groups (n = 10/group). In the medium Se interven-
tion group one mice unexpectedly died, which was not due to experimental procedures.
All experiments were approved by the Animal Ethics Committee of Utrecht University
(approval AVD225002016521).
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2.2. Experimental Design

Figure 1 shows a schematic representation of the experimental design. Depending on
the experimental group, upon arriving in our animal facility mice received the control diet
or the diet supplemented with different concentrations of Se. The PBS group, tolerance
group and positive control group were fed the cow’s milk protein-free control diet (AIN93G,
obtained from sniff Spezialdiäten GmbH, Soest, Germany) which contained 0.025 mg/kg
Se. SeMet (Sigma-Aldrich, St. Louis, MO, USA) was added during the manufacturing of
the experimental AIN93G-based diets to obtain the following concentrations: 0.033 mg/kg
Se (low Se), 0.066 mg/kg Se (medium Se) and 0.1 mg/kg Se (high Se).
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During the tolerance induction phase (day −7 to −2), mice in the tolerance group were 
administered 50 mg whey (aWPC60, Milei, Friesland Campina, Zaltbommel, 
Netherlands) in 0.5 mL phosphate buffered saline (PBS) by daily gavage dosing six times. 
All the other experimental groups were administered 0.5 mL PBS as a control.  

In the sensitization phase (day 0–28), mice in the PBS group were administered 10 µg 
of cholera toxin as an adjuvant (CT; List Biological Laboratories, Campbell, CA, USA) in 
0.5 mL PBS via oral gavage. Mice in the other experimental groups were administered 20 
mg whey together with 10 µg CT/0.5 mL PBS.  

On day 35, the acute allergic skin response was measured. Isoflurane-anesthetized 
mice received an intradermal (i.d.) injection of 10 µg homogenized whey in 20 µL PBS in 
the pinnae of both ears. Ear thickness was measured in duplicate for each ear after i.d. 
injection with whey, using a digital micrometer (Mitutoyo, Kanagawa, Japan). Whey-in-
duced ear swelling, expressed as delta (Δ) µm, was calculated by subtracting the mean 
basal ear thickness before i.d. challenge from the ear thickness measured at 1 h after i.d. 
injection. Anaphylactic shock was monitored 15, 30 and 60 min after i.d. challenge. Ana-
phylactic shock symptoms were scored using a validated, previously described 0- to 4-
point scoring system [29]. The body temperature was monitored at 30 and 60 min, after 
the i.d. challenge using a rectal thermometer. On the same day, the mice were orally chal-
lenged by gavage with 50 mg whey dissolved in 0.5 mL PBS. Eighteen hours after the oral 
challenge (Day 36), the mice were bled by orbital extraction under isoflurane anesthesia, 
followed by cervical dislocation and sectioning. All measurements were performed in a 
blinded manner. 

  

Figure 1. Schematic representation of the experimental model and the experimental groups. Challenge at day 35 was given
i.d. but also intragastrically by gavage dosing. At day 36, upon sacrifice of the mice, blood, spleen and mesenteric lymph
nodes (MLN) were collected for further analysis. CT: cholera toxin; PBS: phosphate buffered saline.

During the tolerance induction phase (day −7 to −2), mice in the tolerance group
were administered 50 mg whey (aWPC60, Milei, Friesland Campina, Zaltbommel, The
Netherlands) in 0.5 mL phosphate buffered saline (PBS) by daily gavage dosing six times.
All the other experimental groups were administered 0.5 mL PBS as a control.

In the sensitization phase (day 0–28), mice in the PBS group were administered 10 µg
of cholera toxin as an adjuvant (CT; List Biological Laboratories, Campbell, CA, USA) in
0.5 mL PBS via oral gavage. Mice in the other experimental groups were administered
20 mg whey together with 10 µg CT/0.5 mL PBS.

On day 35, the acute allergic skin response was measured. Isoflurane-anesthetized
mice received an intradermal (i.d.) injection of 10µg homogenized whey in 20µL PBS in the
pinnae of both ears. Ear thickness was measured in duplicate for each ear after i.d. injection
with whey, using a digital micrometer (Mitutoyo, Kanagawa, Japan). Whey-induced ear
swelling, expressed as delta (∆) µm, was calculated by subtracting the mean basal ear
thickness before i.d. challenge from the ear thickness measured at 1 h after i.d. injection.
Anaphylactic shock was monitored 15, 30 and 60 min after i.d. challenge. Anaphylactic
shock symptoms were scored using a validated, previously described 0- to 4-point scoring
system [29]. The body temperature was monitored at 30 and 60 min, after the i.d. challenge
using a rectal thermometer. On the same day, the mice were orally challenged by gavage
with 50 mg whey dissolved in 0.5 mL PBS. Eighteen hours after the oral challenge (Day 36),
the mice were bled by orbital extraction under isoflurane anesthesia, followed by cervical
dislocation and sectioning. All measurements were performed in a blinded manner.



Nutrients 2021, 13, 2479 4 of 14

2.3. Measurement of Allergen-Specific Immunoglobulins and Mouse Mast Cell Proteases-1
(mMCP-1) in Serum

Whey- and β-lactoglobulin (BLAC)-specific immunoglobulins (Ig) were measured
in serum as described previously [30]. Briefly, high-binding Costar 9018 plates were
coated with 20 µg/mL whey in a carbonate buffer or 20 µg/mL BLAC (Sigma-Aldrich,
St. Louis, MO, USA) in a bicarbonate buffer and incubated overnight at 4 ◦C. Plates
were then washed and blocked with PBS/1%BSA for 1 h. Hereafter, serum samples were
incubated for 2 h at room temperature, washed, and incubated for 1 h with biotinylated
rat anti-mouse IgE, IgG1 or IgG2a detection antibody (1 µg/mL; BD Biosciences, San
Jose, CA, USA). The plates were subsequently washed and incubated in the dark for
45 min with streptavidin–horseradish peroxidase (HRP) (0.5 µg/mL; Sanquin, Amsterdam,
The Netherlands), washed, and developed using tetramethylbenzidine (Sigma-Aldrich,
St. Luis, MO, USA). The reaction was stopped with 1 M H2SO4 and absorbance was
measured at 450 nm using a GloMax® Discover microplate reader (GloMax, Veenendaal,
The Netherlands). Whey- and BLAC-specific IgE, IgG1 or IgG2a levels are expressed in
arbitrary units, which were calculated based on a titration curve of pooled sera serving as
an internal standard.

Concentrations of mMCP-1 in serum were measured using a MCPT-1 (mMCP-1) Elisa
kit (eBioscience, Breda, The Netherlands) according to the manufacturer’s instructions.

2.4. Flow Cytometric Analysis of Immune Cells

Freshly isolated single cells were obtained from spleen and mesenteric lymph nodes
(MLN). Briefly, single-cell splenocyte suspensions were obtained by passing spleen sam-
ples through a 70 µm nylon cell strainer using a syringe. The splenocyte suspension was
rinsed with a RPMI 1640 medium (Lonza, Basel, Switzerland) and incubated with a ly-
sis buffer (eBioscience, Thermo Fisher Scientific, CA, USA) to remove red blood cells.
The reaction was stopped by adding a RPMI 1640 medium supplemented with 10%
heat-inactivated fetal bovine serum (FBS; Bodinco, Alkmaar, The Netherlands), peni-
cillin (100 U/mL)/streptomycin (100 µg/mL; Sigma-Aldrich) and β-mercaptoethanol
(20 µmol/L; Thermo Fisher Scientific, Waltham, MA, USA). Splenocytes were subsequently
resuspended in this culture medium. MLN single cells were obtained by passing spleen
samples through a 70 µm nylon cell strainer using a syringe and subsequently resuspended
in this culture medium. Cells were counted by Coulter counter (Beckman Coulter, Beckman
Coulter Life Sciences, Brea, CA, USA).

Spleen- and MLN-derived single-cell suspensions were incubated with anti-mouse
CD16/CD32 (Mouse BD Fc Block; BD Pharmingen, San Jose, CA, USA) for 15 min on
ice to block non-specific binding sites. Subsequently, cells were extracellularly stained
with DC markers CD11c-PerCp-Cy5.5, Major Histocompatibility Complex (MHC)II-APC,
CD40-FITC and CD86-PE-cy7; Th1 markers CD4- BV510, CD69-PE and CXCR3-PE-cyc7;
Th2 markers CD4-BV510, CD69-PE and T1/ST2-FITC; Treg markers CD4-BV510, CD25-
PerCp-Cy5.5 and CD127-PE-cyc7; and Th17 markers CD4-BV510 and CD196-PE for 45 min
at 4 ◦C, and Treg-Foxp3-FITC and Th17-RorgT-Alexa Fluor647 (eBioscience, Thermo Fisher
Scientific, CA, USA) were used for intracellular staining. Viable cells were distinguished
by a fixable viability dye eFluor® 780 (eBioscience, Thermo Fisher Scientific, CA, USA)
and measured using a BD FACSCanto II flow cytometer (Becton Dickinson, Franklin
Lakes, NJ, USA) and analyzed with FlowLogic software (Inivai Technologies, Mentone,
VIC, Australia).

2.5. Cytokine Measurement after Ex Vivo Antigen-Specific Stimulation of Splenocytes

For the ex vivo antigen-specific restimulation assay, spleen- and MLN-derived single-
cell suspensions (5 × 105 cells/well) were cultured in U-bottom culture plates (Greiner,
Frickenhausen, Germany) with either medium, whey (500 µg/mL) or anti-CD3 (1 µg/mL)
at 37 ◦C, 5% CO2. Culture supernatants of anti-CD3 stimulated cells were collected after
48 h, and supernatants of whey-stimulated cells after 5 days. Samples were stored at
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−20 ◦C until further analysis. Levels of IL-10, IL-17A, IL-13, IL-4, IFN-γ and TNF-αwere
analyzed using a customized Luminex kit, according to manufacturer’s instructions.

2.6. Statistical Analysis

Data are presented as mean ± standard error of the mean (SEM), including individual
data points. Data between groups were compared using parametric one-way analysis of
variance (ANOVA) with nonparametric Kruskal–Wallis test with Dunn’s post hoc test. All
statistical analyses were performed using GraphPad Prism software (version 7.03; Graph-
Pad Software, San Diego, CA, USA) and results were considered statistically significant
when p < 0.05.

3. Results
3.1. Acute Allergic Skin Response and Body Temperature after Challenge

To assess the effect of dietary Se supplementation on the clinical response in the
allergic animals, the mice were challenged i.d. with whey protein after which the acute
allergic skin response (ASR), shock score and body temperature were measured. No
significant difference was observed in shock score (Figure S1). Although the ear swelling in
the medium Se-supplemented animals (∆ ear swelling 102 ± 22 µm) was not significantly
different from the mice in the tolerance group, no significant effects of Se supplementation
could be observed when these groups were compared to the positive control (∆ ear swelling
122.8 ± 25µm) (Figure 2A).

Similarly, 30 and 60 min after the i.d. challenge in both ears, a drop in mean body
temperature was observed in the sensitized animals that had not received whey in the
tolerance induction phase, but only the mice in the positive control group had a significantly
lower body temperature when compared to the PBS and the tolerance group (Figure 2C,D).
At 30 min after the i.d. challenge, no significant effects of Se supplementation on body
temperature could be observed when these groups were compared to the positive control
(Figure 2C). Interestingly, 60 min after the i.d. challenge mean body temperatures in the low
and high Se groups (36.8 ± 12.5 ◦C and 36.7 ± 2.0 ◦C, respectively) were not significantly
different when compared to the positive control group (35.6 ± 2.9 ◦C). In contrast, the
mean body temperature in the medium Se intervention group was significantly higher
(37.7 ± 0.6 ◦C) than the allergic positive control group (Figure 2C), indicating a protective
effect of Se, although not in a dose-dependent fashion.

3.2. Dietary Se Supplementation Downregulates Whey- and BLAC-Specific
Immunoglobulin Levels

To assess whether Se influences allergic sensitization, whey- and BLAC-specific IgE,
IgG1 and IgG2a were measured in serum. Whey- and BLAC-specific IgE and IgG subclasses
were significantly increased in the positive control group compared to the PBS group
(Figure 3). A clear suppression of the specific antibody responses was observed in the
tolerance group, as none of the allergen-specific immunoglobulin levels were found to
differ from those measured in the PBS control group. Whey-specific IgE was significantly
lower in the medium Se group compared to the positive control group (Figure 3A), and
BLAC-specific IgE was significantly lower in the high Se group compared to the positive
control group (Figure 3D). Whey- and BLAC-specific-IgG1 levels were not significantly
affected by dietary Se supplementation (Figure 3B,E). However, significantly lower levels
of whey- and BLAC-specific-IgG2a were observed in all Se intervention groups when
compared to the positive control group (Figure 3C,F).
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fed the control diet and those fed the Se diets are indicated by # p < 0 .05. Differences are analyzed with a one-way analysis
of variance (ANOVA) followed by a Kruskal–Wallis non-parametric test. i.d.: intradermal.

3.3. Dietary Se Supplementation Reduces mMCP-1 Production

To assess the influence of dietary Se supplementation on mast cell degranulation,
the concentrations of serum mMCP-1 were measured (Figure 4). Compared to the toler-
ance group, the mean serum concentration of mMCP-1 was significantly higher in the
positive control group. In Se-supplemented groups, mMCP-1 levels appeared to follow a
concentration-dependent downward trend, although this only reached significance in the
highest Se group.
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Figure 3. Serum levels of whey-specific immunoglobulins (Ig) after the oral challenge with whey in control and whey-
sensitized mice fed the control or Se-based diets. Serum (PBS group n = 4, tolerance group n = 6, positive control
group or low and high Se intervention groups n = 10/group, medium Se intervention group n = 9) was harvested 18 h
after the oral challenge with whey. Serum levels (day 36) are shown in arbitrary units (AU) for (A) whey-specific IgE,
(B) whey-specific IgG1, (C) whey-specific IgG2a, (D) BLAC-specific IgE, (E) BLAC-specific IgG1 and (F) BLAC-specific IgG2a.
Values are expressed as mean ± SEM including individual data points. Significant differences between PBS, tolerance and
whey-sensitized mice are indicated by * p < 0 .05, ** p < 0.01 and *** p < 0.001. Differences between whey-sensitized mice fed
the control diet and those fed the Se diets are indicated by # p < 0 .05, ## p < 0 .01 and ### p < 0.001. Differences are analyzed
with a one-way analysis of variance (ANOVA) followed by a Kruskal–Wallis non-parametric test. Ig: immunoglobulins,
BLAC: β-lactoglobulin.

3.4. Dietary Se Supplementation Affects Dendritic Cell Activation

The effect of Se supplementation on the activation status of splenic DCs was assessed
in freshly isolated splenocytes by means of flow cytometry, the gating strategy of splenic DC
is shown in Figure S2. The percentage of CD11c+MHCII+DCs was significantly higher in
the positive control group compared to the PBS and tolerance group (Figure 5A). However,
Se supplementation did not significantly affect the percentage of CD11c+MHCII+DCs when
compared to the positive control group. Similarly, CD11c+MHCII+DCs in the positive
control group were found to have a significantly higher expression of CD40 and CD86
when compared to the PBS group, but no significant differences in CD40 expression were
observed when the Se-supplemented groups were compared to the positive control group
(Figure 5B,C). However, the expression of CD86 in CD11c+MHCII+DCs was significantly
lower in the medium Se group when compared to positive control group (Figure 5C).



Nutrients 2021, 13, 2479 8 of 14
Nutrients 2021, 13, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 4. Serum levels (day 36) of mouse mast cell protease-1 (mMCP-1) after the oral challenge 
with whey in control and whey-sensitized mice fed the control diet or Se-based diets (PBS group 
n = 4, tolerance group n = 6, positive control group n = 9, low Se intervention group n = 10, 
medium and high Se intervention groups n = 7/group. We were unable to collect enough serum from 
one mouse in the positive control group and two mice in the medium and high Se intervention groups). 
Data are expressed as pg/mL including individual data points. Significant differences between PBS, 
tolerance and whey-sensitized mice are indicated by ** p < 0.01. Differences between whey-sensitized 
mice fed the control diet and those fed the Se diets are indicated by # p < 0 .05. Differences are analyzed 
with a one-way analysis of variance (ANOVA) followed by a Kruskal–Wallis non-parametric test. 

3.4. Dietary Se Supplementation Affects Dendritic Cell Activation  
The effect of Se supplementation on the activation status of splenic DCs was assessed 

in freshly isolated splenocytes by means of flow cytometry, the gating strategy of splenic 
DC is shown in Figure S2. The percentage of CD11c+MHCII+DCs was significantly higher 
in the positive control group compared to the PBS and tolerance group (Figure 5A). How-
ever, Se supplementation did not significantly affect the percentage of 
CD11c+MHCII+DCs when compared to the positive control group. Similarly, 
CD11c+MHCII+DCs in the positive control group were found to have a significantly 
higher expression of CD40 and CD86 when compared to the PBS group, but no significant 
differences in CD40 expression were observed when the Se-supplemented groups were 
compared to the positive control group (Figure 5B,C). However, the expression of CD86 
in CD11c+MHCII+DCs was significantly lower in the medium Se group when compared 
to positive control group (Figure 5C). 

Figure 4. Serum levels (day 36) of mouse mast cell protease-1 (mMCP-1) after the oral challenge with
whey in control and whey-sensitized mice fed the control diet or Se-based diets (PBS group n = 4,
tolerance group n = 6, positive control group n = 9, low Se intervention group n = 10, medium and
high Se intervention groups n = 7/group. We were unable to collect enough serum from one mouse
in the positive control group and two mice in the medium and high Se intervention groups). Data are
expressed as pg/mL including individual data points. Significant differences between PBS, tolerance
and whey-sensitized mice are indicated by ** p < 0.01. Differences between whey-sensitized mice fed
the control diet and those fed the Se diets are indicated by # p < 0 .05. Differences are analyzed with a
one-way analysis of variance (ANOVA) followed by a Kruskal–Wallis non-parametric test.

3.5. Dietary Se Only Modestly Affects T Cell Differentiation

To determine whether specific differentiation of T-cell subsets was modulated by Se,
freshly isolated splenocytes and MLNs were analyzed by flow cytometry (Figure 6). In the
spleens of animals in the positive control group, the percentage of Th2 was significantly
higher when compared to the PBS group, but no significant effect of Se supplementation
was observed (Figure 6A). In the MLN, although the percentage of Th2 cells was higher
in the medium Se group compared to the low Se group, no difference was detected when
the positive control group was compared to the PBS and the tolerance group (Figure 6B).
In addition, we also investigated percentages of activated Th2 cells, activated Th1 cells,
Tregs and Th17 cells. However, because in many cases outcomes in the negative control
group did not significantly differ from the positive control group, it was not possible to
assess the influence of dietary Se supplementation on the cell populations (data shown in
Supplementary Data, Figures S3 and S4).
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Figure 6. Flow cytometric analysis of T helper (Th) 2 in Spleen and mesenteric lymph nodes (MLN) at day 36. Th2 cells were
defined as T1/ST2+ of CD4+ cells. Percentages of splenic Th2-cells (A), percentages of MLN Th2-cells (B). Data are presented
as mean ± SEM of PBS group n = 4, tolerance group n = 6, positive control group or low and high Se intervention groups
n = 10/group and medium Se intervention group n = 9 including individual data points; significant differences between
PBS, tolerance and whey-sensitized mice are indicated by * p < 0.05 and ** p < 0 .01. Differences between whey-sensitized
mice fed with the control diet and those fed with the Se diets are indicated by # p < 0 .05 and ## p < 0.01. Differences are
analyzed with a one-way analysis of variance (ANOVA) followed by a Kruskal–Wallis non-parametric test.
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3.6. Cytokine Production after Ex Vivo Stimulation with Whey

Cytokine production was measured to determine the effect of dietary Se supplementa-
tion on functional responses of splenocytes and MLN cells upon ex vivo exposure to whey
and anti-CD3. Overall, no differences in IL-17A, IL-13, IFN-gamma or TNF-alpha in Se
intervention groups were observed compared with the positive control group (Figure S5).
However, whey-specific IL-4 production was significantly higher in the positive control
group compared to the PBS and tolerance groups, and it was significantly lower in the
medium Se intervention group when compared to the positive control group (Figure 7A).
Similarly, a significantly higher whey-specific production of IL-10 was observed in the
positive control group when compared to the PBS group (Figure 7B). Interestingly, when
compared to the positive control group, whey-specific IL-10 production was significantly
higher in the medium Se group. In anti-CD3 stimulated cells, Se supplementation did not
affect IL-4 and IL-10 production when compared to the positive control group (Figure S5).
Ex vivo stimulation of MLN cells with either whey or anti-CD3 did not induce detectable
cytokine production (data not shown).
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followed by a Kruskal–Wallis non-parametric test.

4. Discussion

The present study demonstrates that Se supplementation can affect various immune
parameters in a murine model for whey-induced food allergy. Although most clinical
outcomes appeared to be unaffected, a significant effect on body temperature (anaphy-
laxis readout) was observed in the mice receiving the medium Se diet. These results
may be partially explained by and associated with the effects of Se supplementation on
antibody responses.

An increase in allergen-specific IgE, IgG1 and IgG2a, such as those observed in the
current study, is typical for IgE-mediated CMA [30,31]. Dietary supplementation with
Se led to lower serum levels of whey- and BLAC-specific IgG2a, which appeared to
be independent of the concentration of Se. Concentrations of BLAC-specific IgE were
significantly affected only in the high Se group, and whey-specific IgE levels were observed
to be significantly lower in the medium Se group. In a murine model for systemic lupus
erythematosus, oral administration of Se reduced the production of disease-associated
autoantibodies [18]. Moreover, the latter study demonstrated that Se treatment of activated
B-cells led to a concentration-dependent decrease in the expression of CD69, CD80 and
CD86 on B cells. In the current study, we did not include the measurement of B-cell
activation markers, but we were able to detect a modest but significant reduction in the
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expression of the costimulatory molecule CD86 in DCs isolated from mice in the medium
Se group. Se has previously been reported to enhance surface molecule expression of
DCs and accelerate their differentiation and maturation [17,32], but as those observations
were shown in in vitro studies it is not clear what could account for these conflicting data.
DCs can take up, transport, process and present antigens to T cells [33], and interaction
with highly activated DCs will favor priming of the T-cells, whereas low activated DCs
will induce tolerance [34]. CD86 expression is reportedly upregulated in food allergy in
mice [35], and lowering the expression of this molecule in DCs may thus affect allergen
specific T-cell activation. In turn, this could impair the ability of the T-cells to activate
B-cells, leading to lower allergen-specific antibodies. However, this remains speculative as
we did not measure B-cell activation markers. In a murine model for atopic dermatitis, oral
administration of Se suppressed the development of atopic dermatitis-like skin lesions,
lowered total IgE levels, reduced skin expression of IL-4 and led to a lower number
of mast cells in the skin [36]. In our current study, we observed a significantly lower
expression of serum mMCP-1 in mice that were fed the high Se diet, suggesting that mast
cells may be affected also by this dietary intervention with Se. In line with this result,
it has previously been shown that mast cell degranulation was significantly decreased
by exposure of MC/9 cells, a mast cell line, to Se in vitro [37]. In the latter study, it was
found that β-hexosaminidase and histamine release were reduced, which is in line with our
in vivo observation of reduced mMCP-1 levels. In addition, IL-4 expression by splenocytes
derived from mice in the medium Se group was significantly lower. IL-4 plays a critical
role in the development of Th2 cells and subsequent allergic reactions. IL-4 drives the
differentiation of Th2 cells, which also secret IL-4, thereby inducing a positive feedback to
reinforce Th2 differentiation [38]. Although we did not observe any prominent effects of
dietary Se supplementation on Th2 cell populations, the difference in IL-4 expression might
also be linked to mast cells which can also produce IL-4 upon IgE-mediated stimulation [39].
A reduction in the expression of IL-4 could potentially reinforce anti-allergic effects of Se
supplementation, as degranulation of mast cells which have been shown to develop from
progenitor cells present in spleen during an antigen-specific T-cell response [40] may be
enhanced by IL-4.

A decline in IL-4 expression levels may signal an increase in mast cell differentiation, as
IL-4 is known to induce apoptosis in developing mast cells [41]. However, we demonstrated
that allergen specific IL-10 expression was enhanced in the splenocytes derived from
mice in the low and medium Se groups. IL-10 can potentially inhibit cell survival of
developing mast cells [42] and has pleiotropic anti-inflammatory effects [43], such as the
downregulation of IL-4 production by Th2 cells [44]. The exact source of the IL-10 in our
in vivo culture is not clear, but it could potentially be derived from CD5+ B cells, which
have been shown to inhibit antigen-mediated activation of mast cells in vitro as well as
allergic responses in mice in an IL-10-dependent manner [45]. Whether specific subsets of
B-cells are differentially affected by Se remains to be investigated.

During oral sensitization and challenge with the allergen, the intestinal immune cells
are the first line to encounter the administered antigen. Food allergy may already be initi-
ated in the MLN, as removal of these lymph nodes prior to sensitization results in reduced
food allergic reactions [46]. In contrast to those observations, we observed significantly
lower percentages of Th1 cells in the MLN of the positive control mice, but percentages
of Th2 cells did not differ from those found in the PBS group. Although we did find
several modest but significant effects (e.g., a higher Th1/Th2 ratio and a lower percentage
of activated Th2 cells) when the positive control group was compared to the medium Se
group, we cannot draw definite conclusions from these findings with regards to the role
of Se in food allergy. Similarly, the T-cell populations in the spleens of positive control
mice were mostly similar to those of the PBS group, the only exception being a significantly
lower percentage of Th1 cells. Previous studies on mice have reported that a high Se diet
skewed the Th1/Th2 balance towards a Th1 phenotype in the spleen [18], but compared to
the positive control group in our study, Se supplementation appeared to have the opposite
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effect. Furthermore, Treg cells are known to play important roles in modulating immune re-
sponses, exerting anti-inflammatory effects and inducing oral tolerance [47]. Se suppressed
inflammation in chronic colitis mice by upregulating CD4+CD25+ Treg cells [48]. However,
in our experiment there were no differences to be detected in Treg cell populations, which
might be due to the dose of Se intake as well as Se form. Taken together, our data suggest
that within the current experiment splenic and MLN-derived T-cell populations remained
mostly unaffected by Se intervention in allergic sensitization. Whereas in other studies
decreasing Th1, Th17 and increasing CD4+CD25+Treg cell responses were found [20,48,49].

In summary, this current study shows that Se supplementation can affect some clinical
aspects associated with food allergy. Clear effects on T cell populations were not detectable.
It might be that Se supplementation modulates allergic responses to whey by decreas-
ing the specific antibody responses and mMCP-1 release. In addition, according to the
result of mMCP-1, Se may affect allergic responses by affecting mast cell activation and
degranulation in a direct way. Understanding how Se specifically affects the immune
system may lead to better use and understanding of Se-containing supplements aimed at
allergy management.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nu13082479/s1, Figure S1: The acute allergic anaphylactic shock score of mice fed the control
or the Se diets, Figure S2: Gating strategy of splenic dendritic cells (DC), Figure S3: Flow cytometric
analysis of T helper in Spleen and MLN at day 36, Figure S4: Flow cytometric analysis of regulatory T
cell (Tregs) populations and T helper (Th) 17 populations in the spleen and MLN at day 36, Figure S5:
Cytokines concentrations were measured in supernatant of ex vivo stimulated splenocytes with whey
or antiCD3.
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