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A B S T R A C T   

The origin and evolution of the Yangtze River drainage system play a crucial role in the palaeogeographic and 
palaeoenvironmental evolution of East Asia. The source-to-sink history of this major Chinese river provides 
information on the initiation of a topographic gradient in East Asia driven by far-field and near-field effects of 
plate tectonics and elucidates the subsidence and depositional history of the depocenter in the East China Sea 
Shelf Basin (ECSSB). Unraveling age constraints on Yangtze provenance, however, remains a big challenge. Here, 
we review U–Pb ages of detrital zircon grains from the Oligocene-Miocene successions of the north ECSSB and 
perform several statistical tests to quantify mixing proportions of different potential source areas that reveal 
similar age patterns as the modern Yangtze River. We conclude that the initiation of a modern-type Yangtze 
drainage was established before ~34 Ma, and confirm that in the Oligocene an eastward drainage system was in 
place from the Yangtze Craton to the ECSSB where huge depositional systems developed on the Chinese conti-
nental margin. Monte Carlo models imply that the Oligocene and Miocene sediments of the north ECSSB were 
mainly supplied by the Yangtze River and the North China Craton - South Korean rivers, and that during the 
Miocene (< 23 Ma) the Yangtze drainage system extended further southward, reaching the marginal basins of 
modern Taiwan.   

1. Introduction 

The continental collision between India and Eurasia played an 
important role in influencing Asian tectonics, landforms, and drainage 
systems (Clark et al., 2004; Wang, 2004; Clift et al., 2008b). Responding 
to the uplift of the Tibetan Plateau and the changing topography and 
climate of eastern Asia, the Yangtze River evolved as the largest river 
with a length of ~6300 km and a catchment area of 1.8 million km2 

(Zheng, 2015; Yang et al., 2019). It originates from the Qiangtang Block 
on the Tibetan Plateau and drains eastwards into the East China Sea 
Shelf Basin (ECSSB) (Fig. 1). The evolution of the Yangtze River is 
characterized by multiple river capture events (e.g., the First Bend and 
the Three Gorges; Yang et al., 2019), marking the development of a 
regional topographic gradient (e.g., Cenozoic Topographic Reversal, 

Wang, 2004). Its large drainage system transports an enormous amount 
of sediment from the India-Asia collision zone to the marginal seas of 
eastern China (Métivier et al., 1999; Clark et al., 2004), which act as 
major depositional sinks (Milliman and Farnsworth, 2013). 

The development of the Yangtze River has been the focus of several 
recent studies, but the age of the initiation of the modern Yangtze 
drainage system remains unclear, with age estimates ranging from 
Paleogene (45–40 Ma or 36.5–23 Ma) to Quaternary (2.6–1.7 Ma) (e.g., 
Li et al., 2001; Xiang et al., 2007; Richardson et al., 2010; Wang et al., 
2010; Zheng et al., 2013a; Yue et al., 2016; Wang et al., 2018; Fu et al., 
2020). Compared to the wavering location of the ancient Yangtze River 
delta, resulting from a constantly shifting coastline (Ren et al., 2002), 
the sedimentary successions of the depositional sinks are more stable 
(Yan et al., 2011; Shao et al., 2016). The ECSSB is therefore one of the 
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best repositories to obtain insights on the evolution of the Yangtze River 
system. Provenance analysis of its sedimentary record may provide 
important constraints on the origin and development of the Yangtze 
drainage diversion. 

Recent studies focusing on detrital zircon U–Pb ages from sand-
stones of the ECSSB resulted in two different hypotheses. Wang et al. 
(2018) indicate a high degree of similarity between the zircon age 
spectra of the upper Oligocene Huagang Formation of the ECSSB and the 
modern Yangtze sediments, suggesting a pre-Miocene initiation of the 
Yangtze River. Fu et al. (2020), however, observe different age spectra in 
Cenozoic sediments of the southern and northern ECSSB and subse-
quently infer that the Yangtze River drainage system was established in 
the late Miocene. Here, we re-analyse the detrital zircon ages from the 
Xihu Depression of the ECSSB (Zhang et al., 2018), that includes the 
Huagang Formation, the underlying lower Oligocene Pinghu Formation, 
and the overlying lower Miocene Longjing Formation, to verify and 
better date the Yangtze provenance. We quantitatively determine the 
potential link between the Yangtze River and the North ECSSB and 
provide new evidence in the debate on the formation and evolution of 
the modern Yangtze River drainage system. 

2. Geological setting 

The ECSSB is located on the eastern margin of the Asian continental 
plate (Fig. 1), and is one of the major offshore Cenozoic basins in eastern 
Asia. It is situated at the convergence of the Eurasian Plate, the Pacific 
Plate, and the Philippine Plate. The Xihu Depression, renowned for its 
rich hydrocarbon resources, developed during the late Cretaceous to 
middle Eocene in the northeastern part of the ECSSB (Yang et al., 2010). 

Its total Paleogene to Quaternary sedimentary succession is approxi-
mately 10,000 m thick (Su et al., 2020) and is mainly composed of 
sandstone and mudstone interbedded with coal seam and limestone 
(Yang et al., 2010). 

The complex tectonic setting of East Asia implies that different 
source areas could have provided sediments to the ECSSB through 
multiple drainage systems (e.g., Wang et al., 2018; Fu et al., 2020). In 
the north, the North China Craton and South Korea form a fundamental 
part of the Sino-Korean Platform (Huang et al., 1977; Zhao et al., 1993). 
The North China Craton contains an Archean to Paleoproterozoic 
metamorphosed basement, which is covered with Mesoproterozoic to 
Phanerozoic unmetamorphosed rock (Zhai et al., 2005; Zhao et al., 
2005; Zhai and Santosh, 2011). South Korean rivers mainly source 
Cretaceous and Jurassic granite and Precambrian gneiss with minor 
limestone, schist, volcanic rock, and phyllite (Lee et al., 1988; Chough 
et al., 2000). The South China Block to the west can be divided into the 
Yangtze Craton and the Cathaysia Foldbelt (Zheng et al., 2013b). The 
Yangtze Craton comprises Archean–Paleoproterozoic crystalline base-
ment (Zheng et al., 2006; Zhao and Cawood, 2012), surrounded by late 
Mesoproterozoic to early Neoproterozoic orogens (Zheng et al., 2013b). 
The Cathaysia Foldbelt predominantly comprises Neoproterozoic base-
ment rocks with minor occurrences of Paleoproterozoic rock in its 
eastern part (Yu et al., 2010; Xia et al., 2012; Zhao and Cawood, 2012). 
The Songpan-Ganzi Terrane and Qiangtang Block, located in the Upper 
Yangtze River region, are also potential source areas. The Songpan- 
Ganzi was intruded by Triassic and Cenozoic magmatic rock (Sun 
et al., 2018), characterized by a folded Triassic flysch complex (Wei-
slogel et al., 2010; He et al., 2013). The Qiangtang Block is mostly 
covered by Triassic sediments and intruded by Cenozoic magmatic rock 

Fig. 1. Geographical map of present-day East Asia. The blue lines are major river systems in East Asia, the dark blue line shows the mainstream of the Yangtze River 
(modified from Zheng et al., 2013a; Zhang et al., 2017). ECSSB: East China Sea Shelf Basin; XH: Xihu Depression; JHB: Jianghan Basin; TG: Three Gorges; SB: Sichuan 
Basin; FB: First Bend; QB: Qingtang Block. Numbers 1–13 denote the location of our studied boreholes. Potential sources (red): Yangtze Craton (YC), North China 
Craton (NCC), South Korea (SK), and East Cathaysia Foldbelt (ECF). The Qinling-Dabie Belt is the boundary between the North China Craton and Yangtze Craton 
(Zhang et al., 2017). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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(Van Hoang et al., 2009). The Diaoyu Islands Folded-Uplift Belt to the 
east mainly comprises Paleozoic metamorphic strata (Yang et al., 2010). 

This paper focuses on the Oligocene Pinghu and Huagang, and the 
Miocene Longjing formations of the Xihu Depression (Fig. 2). The 
Pinghu Formation mainly consists of sandstone, silty mudstone, and 
mudstone with coal seam, interpreted as tidal-deltaic and tidal-flat de-
posits (Zhao et al., 2008; Zhu et al., 2012; Wu, 2016; Abbas et al., 2018; 
Li et al., 2018). The Pinghu sediments are considered to be the primary 
hydrocarbon source rock of the Xihu Depression (Zhu et al., 2012). A 
recent cyclostratigraphic analysis, combined with U–Pb dating, indi-
cated that the sequence stratigraphic framework of the Pinghu Forma-
tion is best constrained to the early Oligocene (Zhang et al., 2020). The 
overlying Huagang Formation comprises an alternation of sandstone 
and mudstone and is interpreted to have been deposited in fluvial to 
deltaic environments (Hao et al., 2018a). The Huagang Formation is the 
main hydrocarbon reservoir in the Xihu Depression and its depositional 
environment shows a complex provenance pattern with sedimentary 
transport paths from the west, north, and east (Zhang et al., 2018). The 
Huagang Fm. is generally attributed to the Oligocene based on 
biostratigraphic constraints (Ye et al., 2007; Suo et al., 2015). According 
to Zhang et al. (2020), the Huagang Formation correlates best to the late 
Oligocene. The Miocene Longjing Formation overlies the Huagang 
Formation and was deposited in fluvial and lacustrine environments 

(Zhu et al., 2010; Zhang et al., 2012). 

3. Sampling and methods 

Eighteen samples were used for detrital zircon U–Pb geochronology 
analysis from thirteen petroleum exploration wells in the Xihu Depres-
sion at 124◦27′–127◦00′E and 27◦30′–30◦59′N (Fig. 1), as previously 
reported by Zhang et al. (2018). Two samples were collected from the 
Pinghu Formation, thirteen samples from the Huagang Formation, and 
another three from the Longjing Formation (Fig. 2). Analytical work on 
U–Pb dating was conducted by Laser Ablation Inductively Coupled 
Plasma Mass Spectroscopy (LA-ICP-MS) and was done at the State Key 
Laboratory of Geological Processes and Mineral Resources, China Uni-
versity of Geosciences (Wuhan). Laser Ablation analysis was performed 
on a GeoLas 2005, and the ICP-MS measurements were done on an 
Agilent 7500a. Each study included a 20-s gas blank followed by a 50-s 
data acquisition period. Zircon 91,500 with an age of 1065.4 ± 0.6 Ma 
(Wiedenbeck et al., 1995), used as an external standard for U–Pb 
dating, was evaluated twice every six analyses (Ding et al., 2017). The 
spot diameter was 32 μm at 1σ level of age uncertainties. The ICPMS-
Datacal method was used to quantify the U–Th–Pb isotopic ratios (e.g., 
Liu et al., 2008). The 206Pb/238U age is used for young (< 1000 Ma) 
zircon crystals, whereas older zircon (> 1000 Ma) crystals are expected 
to have relatively stable 207Pb/206Pb ratios (Compston et al., 1992). We 
only used valid grains with <10% age discordance. 

The three-dimensional multidimensional scalar (MDS) in DZmds 
software of Saylor et al. (2018) was used to study the relationship be-
tween the different samples and their putative source areas. The MDS 
plots usually group the samples with similar age spectra and separate 
those with different spectra (Cao et al., 2020). In addition, Monte Carlo- 
based methods for detrital geochronological data were performed to 
quantify mixing proportions of different potential provenances using 
DZmix software of Sundell and Saylor (2017). We implemented the 
cross-correlation coefficient (R2) and K–S test statistic (D) in the 
modeling to avoid overreliance of any single goodness-of-fit metric. Ten- 
thousand trials are run to reproduce a particular detrital age spectrum 
by changing contributions from different sources to match the age 
spectrum of mixed samples. The results of the mixing analysis are shown 
graphically in cumulative probability plots. 

4. Results 

Detrital zircon age distributions are here visualized as kernel density 
estimates (KDE) by the DensityPlotter program (Vermeesch, 2013), 
using a 50 Ma adaptive bandwidth (Fig. 3). The detrital zircon U–Pb 
ages from the Pinghu Formation in the ECSSB yield a wide age range 
from Archean to early Cenozoic, with two main peaks of 224 Ma and 
1845 Ma, and two minor peaks at 793 Ma and 2480 Ma (Fig. 3F). Our 
results of detrital zircon U–Pb ages from the Huagang Formation show 
major peaks at 230 Ma and 1844 Ma, and minor peaks at 435 Ma, 773 
Ma, and 2485 Ma (Fig. 3E; Zhang et al., 2018). These results are similar 
to the other age spectra reported from the Huagang Formation that show 
similar major peaks at 201 Ma and 1850 Ma with minor peaks at 794 Ma, 
and 2480 Ma (Fig. 3D; Yang et al., 2006; Wang et al., 2018). The age 
distribution of the zircon grains from the Longjing Formation also shows 
similar peaks at 225 Ma and 1848 Ma with minor peaks at 441 Ma, 786 
Ma, and 2471 Ma (Fig. 3C). 

Most sediments in the northeastern ECSSB show five different peaks 
at ~2470 Ma, ~1850 Ma, ~790 Ma, ~440 Ma, and ~ 220 Ma, similar to 
the five peaks in the age spectra of the modern Yangtze River (Fig. 3). A 
key issue here is the relative heights of the ~790 Ma Paleozoic and the 
two ~2470 and ~ 1850 Ma Precambrium source peaks. We use the same 
method as Fu et al. (2020) to estimate the proportion of zircons for a 
more accurate comparison (Table S1). The KDEs of the north ECSSB 
sediments show a relatively stable contribution of the ~790 Ma 
component (500 Ma–1000 Ma) in the Pinghu (~10%), Huagang 

Fig. 2. Simplified lithostratigraphy of the Xihu Depression in the ECSSB where 
the Oligocene-Miocene deposits are subdivided into Pinghu, Huagang, and 
Longjing formations (modified from Su et al., 2020). The chronostratigraphy 
(Abbas et al., 2018) is updated from Zhang et al. (2020), the depositional en-
vironments are from Abbas et al. (2018), Li et al. (2018), and Su et al. (2020). 
Red, black, and blue stars correspond to borehole samples in Zhang et al. 
(2018), Wang et al. (2018), and Fu et al. (2020), respectively. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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(~12%), and Longjing (~14%) formations (Fig. 3, Table S1). 
In the MDS plots (Fig. 4A), two groups can be identified. The Eocene- 

Oligocene Taiwan sample links best with the Min River and (roughly) 
Ou River samples. The Pinghu, Huagang, Longjing, and Miocene Taiwan 
samples cluster with the Yangtze River, North China Craton rivers, and 
South Korean rivers samples. The two modeled mixture results are 
largely similar, with the average contribution of Pinghu, Huagang, and 
Longjing formations from the Yangtze River provenances showing a 
range from ~21.9% to ~31.3% to ~45.4% in the R2-based model and 
from ~18.7% to ~30% to ~43.4% in the D-based model (Fig. 4B). The 
mixed results also show an appreciable contribution from the North 
China Craton rivers (average ~ 38.8% and ~32.6%) and South Korean 
rivers (average ~ 16.9% and ~20.3%) and a low contribution from the 
Min River (average ~ 6.9% and ~10.5%) and Ou River (average ~ 4.4% 
and ~ 5.8%) in the R2-based and D-based models. 

5. Discussion 

5.1. The age of the modern Yangtze drainage system 

The distribution patterns of detrital zircon U–Pb ages in the Xihu 
Depression can be compared to the zircon age spectra of other parts of 
the ECSSB and to the modern river sands of the Yangtze River and the 
other major East Asian rivers to investigate sediment distribution pat-
terns and the arrival of the Yangtze drainage in the ECSSB. The KDE 
diagrams from the Pinghu, Huagang, and Longjing formations are all 
rather similar as indicated by their proximity in the MDS plots, implying 
stability of the sediment supply during the Oligocene to Miocene in the 
Xihu Depression (Figs. 3, 4). 

In the MDS plots (Fig. 4A), the closest provenance neighbour of the 
Pinghu, Huagang, and Longjing formations is the Yangtze River, indi-
cating a potential source-to-sink relationship. The KDE of the present- 
day Yangtze River is, however, characterized by a much higher pro-
portion (20–48%) of the ~790 Ma component (He et al., 2013; He et al., 
2014). The Yangtze River is the only East Asian river with a significant 
proportion of Paleozoic components (Fig. 3). Other major rivers show 
zero proportions of the ~790 Ma component (South Korean rivers, Ou 
River; Figs. 3J, L), and/or have much higher additional proportions of 
the ~420 Ma component (North China Craton rivers, Min River; Fig. 3I, 
K). The Yangtze is thus the only possible East Asian river drainage 
explaining the peak at ~790 Ma in the ECSSB. The fact that this peak 
only contributes to 10–14% of the total age spectrum requires the 
presence of additional sources with high proportions of ~2470 Ma, 
~1850 Ma, and 220 Ma components. Given the overall southward tilt of 
the ECSSB, this basically excludes provenance from southern sources 
and these additional components were therefore most likely derived 
from the north and/or west. The North China Craton and South Korea 
rivers that drain the northwestern hinterland of the ECSSB are enriched 
in both Precambrium and Mesozoic components (Figs. 3I, J) and can 
explain, together with the Yangtze, all the KDE patterns in the Oligocene 
to Miocene deposits of the Xihu Depression. 

Sediment supply in the ECSSB may also have been partly derived 
from its neighbouring margins. The borderlands in the north comprise 
Precambrium rocks (e.g. Hupijiao Uplift with Proterozoic metamorphic 
rocks superimposed on Yanshanian igneous rocks) (Liang et al., 2006; 
Yang et al., 2010), while Mesozoic components may be derived from the 
west (e.g. Haijiao Uplift) where Jurassic-middle Cretaceous rocks are 
available (Yang et al., 2010). The only alternative source of Paleozoic 

components is the Diaoyu Islands Folded-Uplift Belt to the east of the 
Xihu Depression, where Paleozoic metamorphic strata form the key 
bedrock (Yang et al., 2010; Zhang et al., 2018). It is, however, difficult to 
quantify the relative contribution of these local source regions. 

We conclude that the Yangtze River has been an important prove-
nance source for the zircon age spectra of the Oligocene to Miocene 
sediments in the northern ECSSB. This is in agreement with the inter-
pretation of Wang et al. (2018) who already concluded that the U–Pb 
age spectra of the Huagang Formation show a high degree of similarity 
with the spectra of modern sediment from the Yangtze River. Our data 
show that comparable age spectra were obtained by the older Pinghu 
Formation (Fig. 3F), indicating that a major Yangtze supply to the ECSSB 
was already present during the early Oligocene. 

5.2. Miocene expansion of the Yangtze drainage system? 

Fu et al. (2020) recently concluded, based on age spectra from zircon 
dating, that the arrival of the Yangtze drainage in the ECSSB was post- 
early Miocene. They base this on the fact that a dominant peak 
(25–33%) in the ~790 Ma component (500 Ma–1000 Ma) is only pre-
sent in the upper Miocene to Pliocene strata of the ECSSB. In their an-
alyses, however, they combined results from two study areas, one in the 
northern and one in the southwestern part of the ECSSB. It must be noted 
that a major uplift belt (e.g., Hao et al., 2018b; Feng et al., 2019) is 
present between these two regions and that Oligocene deposits are 
lacking in the southwestern part of the ECSSB (Fu et al., 2020). 

The contribution of the ~130 Ma component (potential contribution 
of the Min and Ou Rivers) in the southwestern ECSSB is significantly 
higher than in the northern basin (Table S1). We speculate that these 
two regions had different provenance areas and thus represent different 
branches of the Yangtze drainage. This implies that changes in age 
spectra must be discussed independently. If we only regard the Fu et al. 
(2020) results of the northern region (e.g. their N1 well), the age dis-
tribution of the ~790 Ma component is rather similar in the Oligocene 
(~ 8%, ~14%), lower Miocene (~13%), middle Miocene (~15%), and 
upper Miocene (~22%), and in excellent agreement with our results. 
Regarding the age spectra of the southwestern region (excluding the 
anomalous L1 well), the proportion of the ~790 Ma component (J1 and 
Z1 wells, Table S1) increases from the middle Eocene (14% and 18%) 
and early Miocene (8% and 17%) to the late Miocene (25%) (Fu et al., 
2020). 

A change in Yangtze provenance is also suggested from the sedi-
mentary successions of the Taiwan region. The U–Pb age distributions 
of the ECSSB deposits agree very well with the KDE plots of the Miocene 
deposits of Taiwan (Fig. 3G) as indicated by their proximity in the MDS 
plots (Fig. 4A). The Oligocene deposits of Taiwan show significantly 
different spectra, mainly reflecting the Min River KDE (Fig. 3H; Wang 
et al., 2018). Some studies (e.g., Lan et al., 2016; Xu, 2017) suggested 
that these different age spectra are mainly the result of an evolving Min 
River. However, the increase of ~790 Ma, ~1780 Ma, and ~2420 Ma 
components is then hard to explain (Fig. 3), and the MDS results indicate 
that Miocene sediments of the Taiwan region are not dominated by Min 
River sources. 

This similarity between the Miocene Taiwan and Oligocene ECSSB 
sediments is explained by Wang et al. (2018) through reworking of 
Huagang or younger successions. These authors also discussed the 
tectono-sedimentary evolution of the ECSSB and the possibility of a 
viable dispersal path for sediment towards the Taiwan region. Inversion 

Fig. 3. Kernel density estimation (KDE) plots (Vermeesch, 2013) for the zircon U–Pb ages. The dark blue and light blue labels represent data from the Yangtze River 
and other major SE Asian rivers, respectively. The yellow label denotes the plots with our own data, and the gray label represents data from literature. A and B) 
modern river sands from the Yangtze River, C) sedimentary strata of the Longjing, D and E) Huagang, and F) Pinghu Formation in the Xihu Depression of the East 
China Sea Shelf Basin. G and H) represent Eocene to Miocene strata of the Taiwanese margin, respectively. Other major rivers in East Asia: I) North China Craton 
rivers, J) South Korea rivers, K) Min River, and L) Ou River (see Fig. 1 for their location). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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Fig. 4. A) Three-dimension multidi-
mensional scaling (MDS) for detrital 
zircon ages of target formations and po-
tential provenances. The intersample 
dissimilarity is calculated as the cross- 
correlation coefficient of KDE spectra 
with a bandwidth of 50 Ma. The stress 
value is 0.062, indicating the desirable 
goodness-of-fit of MDS statistics. B) 
Mixture combinations of defined poten-
tial provenances for the Pinghu, Hua-
gang, and Longjing formations in the 
Xihu Depression, generated by the Monte 
Carlo model (Sundell and Saylor, 2017). 
Left panel: Cumulative probability plots 
showing the best fits between the K-S- 
derived forward models (green) and the 
observed (black) age spectra in this 
study. Right panel: Calculated contribu-
tions based on the cross-correlation co-
efficient (R2) (gray) and the K–S test 
statistic (D) (black). The mean R2 and D 
values are: (a) 0.78 and 0.065, (b) 0.855 
and 0.04, (c) 0.843 and 0.055, respec-
tively, generally indicating a high level 
of confidence. Error bars display 1σ un-
certainty. (For interpretation of the ref-
erences to colour in this figure legend, 
the reader is referred to the web version 
of this article.)   
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Fig. 5. Schematic maps showing the develop-
ment of the Yangtze River (modified from 
Zheng et al., 2013a; Zhang et al., 2017; Wang 
et al., 2018), based on the tectonic framework 
of China (Zheng et al., 2013b; Zheng, 2015). A) 
Eocene; B) Oligocene; C) Miocene. ECSSB: East 
China Sea Shelf Basin; XH: Xihu Depression; 
JHB: Jianghan Basin; TG: Three Gorge; SB: 
Sichuan Basin; FB: First Bend; QB: Qingtang 
Block; SGT: Songpan-Garze Terrane. The green 
shade denotes the area of Yangtze River 
drainage. (For interpretation of the references to 
colour in this figure legend, the reader is 
referred to the web version of this article.)   
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of earlier rift-related structures is well-documented on the East China 
shelf, which may provide favorable conditions for sediment recircula-
tion and transport. The inversion began in the Oligocene and was 
centered predominantly on the eastern part of the ECSSB, along the 
Diaoyu Islands Folded-Uplift Belt (Taiwan-Sinzi belt) (Wang et al., 
2018). In the Miocene, compression and inversion migrated to the Xihu 
Depression, and formed a series of NE-trending anticlines in the areas of 
former subsidence and sedimentation (Zhou et al., 2001; Guo et al., 
2015; Zhang et al., 2016). The ECSSB has the characteristics of a 
southward tilted terrain (Zhang et al., 2017) and the main sediment 
transport directions in the Oligocene deposits are directed southwards 
(Zhang et al., 2018). The structural highs in the Diaoyu Islands Folded- 
Uplift Belt to the east of the basin prevent eastward transport of sedi-
ment (Wang et al., 2018). Therefore, most of sediments delivered by the 
Yangtze River are thought to have drained southward and a sediment 
transport pathway may be formed between the ECSSB and proto- 
Taiwan. 

The depositional environment in the ECSSB has changed from tidal- 
deltaic deposits of the lower Oligocene Pinghu Formation to dominated 
fluvial deposits of the lower Miocene Longjing Formation, revealing the 
retreat of coastlines and the expansion of the drainage area. The 
Oligocene-Miocene strata in the offshore basins north of Taiwan are 
interpreted as fluvial to coastal deposits (Chou, 1970; Yu and Chow, 
1997; Huang et al., 2012), in agreement with an increased southward 
sediment transport (Zhang et al., 2017). Our Monte Carlo model results 
also indicate an increase in transport capacity and coverage of the 
Yangtze River drainage. Therefore, we consider it likely that the 
Oligocene Yangtze drainage area was restricted to the northern basins 
(e.g., Xihu Depression) of the ECSSB, and that this drainage area in the 
Miocene, under a stable supply of sediment sources, extended south-
wards to the Taiwanese margin (Fig. 5). 

5.3. Paleogeographic and paleoclimatic constraints 

The two river capture points along the Yangtze River provide further 
constraints on the initiation of its modern flow system: the First Bend 
and the Three Gorges (Xiang et al., 2007) (FB and TG in Fig. 5). A 
connection between the Yangtze drainage and the ECSSB implies that 
the First Bend was formed and the Three Gorges was channelized. The 
formation of the First Bend was recently dated to the late Eocene, based 
on U–Pb dating of detrital zircons from the Jianchuan Basin and its 
adjacent region (Fig. 5A; Zheng et al., 2020). Surface uplift and inver-
sion of the Jianchuan Basin, established at ca. 35 Ma, caused the paleo- 
Yangtze, until that time flowing southwards to the South China Sea, to 
be diverted towards the northeast in the direction of the modern Yangtze 
system, draining into the ECSSB. The formation time of the Three Gorges 
post-dates the late Eocene, based on the termination of evaporite 
deposition in the Jianghan Basin, downstream of the Three Gorges 
(Fig. 5B; Zheng et al., 2013a). Consequently, evaporite sedimentation 
must have precluded major river flow and that the Yangtze River was 
thus initiated after Jianghan evaporite formation, dated to the late 
Eocene (ca. 36.5 Ma). In addition, it was concluded that the Three 
Gorges must have originated before 23 Ma, based on 40Ar/39Ar ages and 
detrital zircon U–Pb ages from basalts and riverine sediments from the 
lower reaches of the Yangtze (Zheng et al., 2013a). These results are thus 
in good agreement with the presence of Yangtze River drainage in the 
Oligocene deposits of the ECSSB, 

Seasonal storms of the South and East Asian monsoons cause the 
majority of precipitation to continental interiors of India and China, 
hence regulating runoff (Clift et al., 2008a), which implies that sediment 
flux to the oceans surrounding Asia is mostly related to monsoon in-
tensity. High precipitation rates generally boost river transport capacity 
and promote soil erosion across the river basin (Zong et al., 2010), 
resulting in coarser-grained sediment being accessible for river transport 
(Nan et al., 2014). Sediment flow from Asia generally increased in the 
Oligocene (< 33 Ma) and peaked in the early–middle Miocene (24–11 

Ma), far before the onset of a glacial climate. This demonstrates that in 
east Asia rock uplift and particular precipitation are the primary con-
straints on erosion, at least over long geologic time scales (Clift, 2006, 
2010). The Miocene East Asian monsoon strengthening (e.g., Sun and 
Wang, 2005; Clift et al., 2008a; Guo et al., 2008), combined with the 
intensification of river flow, transport capacity, and erosion of the Three 
Gorges in the Yangtze River, all indicate that the east Asian rivers could 
probably carry more sediments and move further south (e.g., Zhang 
et al., 2017) (Fig. 5C). Under the Asian monsoon evolution setting, this 
continental-scale river should have been a perennial stream during the 
early to middle-Miocene (Zheng et al., 2013a). The increase in the 
contribution of the Yangtze River accordingly explains the increase in 
the proportions of ~790 Ma component in Miocene sediments 
(Table S1) and the Monte Carlo model results (Fig. 4B). We furthermore 
envisage that in the Oligocene a topographic barrier prevented the 
Yangtze River drainage to cover the southwestern ECSSB and Taiwan 
areas, but detailed information on basin evolution and transport path-
ways are still lacking. 

6. Conclusions 

The analysis of detrital zircon U–Pb ages of the Pinghu, Huagang, 
and Longjing formations in the Xihu Depression of ECSSB indicates 
similar age distributions as observed in modern Yangtze River sedi-
ments. We therefore conclude that the Yangtze River is one of the main 
sediment sources in the Xihu Depression since at least the early Oligo-
cene (Fig. 5). However, the supply of additional sources (e.g., South 
Korean rivers, North China Craton rivers, and neighbouring margins) is 
necessary to explain the relatively low proportion of ~790 Ma compo-
nents in the KDEs of the ECSSB. This implies that the modern Yangtze 
River was initiated before the Oligocene with a major drainage system 
towards the ECSSB. In agreement with recent chronological updates on 
the Pinghu Formation, the First Bend, and the Three Gorges, we 
conclude that a modern-type Yangtze drainage was established at an age 
of ca. 34 Ma. In the Miocene (< 23 Ma), the Yangtze drainage system 
extended further southwards to the southwestern ECSSB and the mar-
ginal basins of modern Taiwan, possibly related to stronger monsoons, 
increased sediment transport, and a southward tilting of the ECSSB. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.palaeo.2021.110548. 
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