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Climate change in high-mountain Asia (HMA) has been con-
siderable over the last decades, with significant warming and 
large areas experiencing wetting or drying (Extended Data 

Fig. 1). Impacts of climate change on the cryosphere1 strongly affect 
the amount and timing of fresh water supplied by the region’s natural 
water towers. This fresh water is used directly and indirectly by mil-
lions of people downstream for irrigation, hydroelectric power and 
consumption2–5. Glaciers have responded by generally losing mass6,7 
and as a result have received considerable attention associated with 
their importance as a water supply3,5,8 and future changes therein9–11. 
In contrast, past and future relevance of snow to the region’s hydrol-
ogy has been marginally addressed at the scale of HMA, since 
research has predominantly focused on smaller subregions3,5,12,13 or 
on snow properties that provide limited hydrological context such 
as snow cover14 or depth15. Accurate and detailed information about 
the amount of water stored in HMA’s snowpacks (that is, their snow 
water equivalent (SWE)) is largely absent or inaccurate at large 
scale because SWE is notoriously difficult to monitor using remote 
sensing16–20. Nonetheless, to unravel many of the societal and envi-
ronmental processes that occur in HMA, an improved understand-
ing of the influence of snow on the region’s (future) water balance  
is essential21–23.

Here we quantify SWE and snowmelt at high spatial resolution 
in all major river basins24 of HMA (Fig. 1) and present past and 
potential future changes in SWE across the entire region in detail 
by a combining a regional scale snow model with gridded cli-
mate data, satellite snow cover observations, a bottom-up elastic-
ity approach and general circulation model (GCM) projections. In 
the snow model, which operates at 0.05° resolution (~5.7 km), snow 
accumulation is determined by (a fraction of) precipitation when 
temperatures are below 2 °C, and snowmelt is parameterized using 
a positive degree-day approach25, which is based on air temperature 
only. Since snowmelt is also controlled by incoming radiation and 
snowpack thinning can be caused by other processes such as sub-
limation and wind redistribution26,27, the melt parameterization is 
an incomplete representation of the entire snow ablation process. 
However, given the spatial and temporal scale of this study and the 
lack of spatially representative input data in HMA to calibrate and 

validate snow models, it provides the optimal approach. To ensure 
the most realistic snowmelt given the limitations imposed by data 
scarcity, we implemented a temporally variable melt rate based on 
snow albedo28 and added refreezing and rain-on-snow components. 
In addition, to account for diurnal and altitudinal variability of 
snow in the high-mountain regions of HMA, we ran the model at 
a three-hourly time step and implemented a subgrid routine, which 
ensures a better representation of the shoulder seasons (that is, 
the onsets of the snow season and the melting season). We ran the 
model for the period 1979–2019 and forced it by air temperature 
and precipitation data from the state-of-the-art European Centre 
for Medium-Range Weather Forecasts ReAnalysis 5 (ERA5) grid-
ded climate reanalysis29. The model was calibrated using 2000–2019 
snow cover from Moderate Resolution Imaging Spectroradiometer 
(MODIS) satellite imagery30 to correct biases in the reanalysis data 
(Methods). To account for spatiotemporal uncertainty that is due 
to the limitations imposed by the model concept and uncertainties 
in the input forcing, we performed a first-order second-moment 
uncertainty analysis (Supplementary Methods).

Modelled SWE was validated using in situ measurements of 
SWE in the Nepalese Himalaya31,32 and daily snow-depth maps 
derived from spaceborne Sentinel-1 radar data15. Despite—and con-
sidering—the obvious scale differences and lack of representation of 
spatially variable mountainous snowpacks by individual point mea-
surements33, the in situ measurements are largely in agreement with 
modelled SWE in both magnitude and timing (Supplementary Fig. 1).  
The remotely sensed snow-depth observations further endorse 
model performance, as modelled snow depths are generally in good 
agreement (Supplementary Fig. 2) as indicated by several model 
performance metrics (Supplementary Methods).

Distribution and importance of snow
The spatial and temporal distribution of modelled SWE and snow-
melt varies considerably over HMA’s river basins (Figs. 1 and 2). 
The basins in the northwest (that is, Syr Darya and Lake Balkash) 
have a short snow season with most SWE accumulated at the low 
plains, where snow meltwater is rapidly released in March (Fig. 3). 
In the lower-latitude basins (that is, Indus, Ganges, Brahmaputra, 

Climate change decisive for Asia’s snow 
meltwater supply
Philip D. A. Kraaijenbrink   1 ✉, Emmy E. Stigter   1, Tandong Yao   2 and Walter W. Immerzeel   1

Streamflow in high-mountain Asia is influenced by meltwater from snow and glaciers, and determining impacts of climate 
change on the region’s cryosphere is essential to understand future water supply. Past and future changes in seasonal snow are 
of particular interest, as specifics at the scale of the full region are largely unknown. Here we combine models with observations 
to show that regional snowmelt is a more important contributor to streamflow than glacier melt, that snowmelt magnitude and 
timing changed considerably during 1979–2019 and that future snow meltwater supply may decrease drastically. The expected 
changes are strongly dependent on the degree of climate change, however, and large variations exist among river basins. The 
projected response of snowmelt to climate change indicates that to sustain the important seasonal buffering role of the snow-
packs in high-mountain Asia, it is imperative to limit future climate change.

NATurE ClImATE ChANgE | VOL 11 | JULy 2021 | 591–597 | www.nature.com/natureclimatechange 591

mailto:p.d.a.kraaijenbrink@uu.nl
http://orcid.org/0000-0002-0126-8602
http://orcid.org/0000-0001-8569-0159
http://orcid.org/0000-0002-9979-9849
http://orcid.org/0000-0002-2010-9543
http://crossmark.crossref.org/dialog/?doi=10.1038/s41558-021-01074-x&domain=pdf
http://www.nature.com/natureclimatechange


Articles NATurE ClimATE CHANgE

Irrawaddy, Salween and Mekong) temperatures are higher 
(Extended Data Fig. 1); hence, snow is mostly present at high eleva-
tions (>3,000 m) and melts gradually from low to high elevation 
(Fig. 3 and Extended Data Fig. 2). Although the Indian monsoon 
provides copious amounts of moisture to the source areas of the 
lower-latitude river basins in summer34, seasonal snowpacks accu-
mulate primarily through winter disturbances12,35–37. The Yellow 
River and Yangtze basins have SWE clustered over multiple eleva-
tion ranges and a relatively short snow season of two to three months 
with an early snowmelt onset in February (Fig. 2). The endorheic 
basins of Tarim Interior and Tibetan Plateau have snow only at high 
elevations, with gradual snow meltwater release over a long melt 
season (Fig. 2). However, these basins have relatively little precipita-
tion and thus comparatively little snowfall. The Amu Darya basin 
reveals a similar snowmelt season to the basins of Tarim Interior 
and Tibetan Plateau, but this is mainly caused by the heterogeneous 
climatic and geographic zones of this river basin.

For the upper basins, defined as the area of a river basin that is 
above 2,000 m elevation, we find that snowmelt is consistently a 
more important contributor to basin hydrology than glacier melt 
(Figs. 2 and 4) (Methods), which is in agreement with recent find-
ings13. Although annual glacier melt contribution in the upper basin 
is respectable in river basins that have large glacierized areas in their 
source areas (for example, Indus (13.4 ± 1.8%) and Amu Darya 
(10.0 ± 1.5%)) (Fig. 4), the snowmelt contribution is generally three 

to five times larger than the glacier melt contribution (Fig. 2) and 
can even be an order of magnitude larger (for example, in Helmand, 
Syr Darya and Yellow River). In the southeastern and eastern basins, 
characterized by summer monsoon precipitation and warmer cli-
mates (Extended Data Fig. 1), total meltwater contributions to over-
all streamflow are limited with upper basin contributions ranging 
from 28.9 ± 2.0% for Ganges to 7.6 ± 0.6% for Yangtze (Fig. 4). In the 
more arid west, snow and glacier meltwater are key components of 
the annual streamflow; for example, in the Indus, Amu Darya and Syr 
Darya, the combined contributions of snow and glacier meltwater 
to annual streamflow are 69.1 ± 1.7%, 84.5 ± 1.3% and 59.6 ± 2.2%, 
respectively (the specific contributions of snowmelt are 55.4 ± 2.4%, 
74.5 ± 1.9% and 55.9 ± 2.3%, respectively). This east–west variabil-
ity in glacier and snowmelt contribution agrees with previous stud-
ies3,38,39, although there are also reports of unusually high snowmelt 
contributions in the monsoon-dominated upper basins of Ganges 
(43%) and Brahmaputra (66%) (ref. 13). It should be noted that gla-
cier melt usually lags snowmelt and continues through summer 
when the snow storage has been largely depleted. Therefore, glacier 
melt can be dominant for brief periods during the late melt season13. 
However, rainfall runoff has generally become an important part of 
the streamflow by that time, reducing the overall importance of snow 
and glacier meltwater for the water supply39,40. Nevertheless, glaciers 
may become critically important in periods of drought when snow-
packs have already melted and rainfall runoff is absent41.
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Fig. 1 | SWE and historical absolute and relative trends. a, Overview map of HMA annotated with major rivers and basins24 and simulated mean annual 
peak SWE over the period 1979–2019. w.e., water equivalent. b,c, Absolute (b) and relative (c) trends in the annual peak SWE over the same period.  
d, Model uncertainty in mean annual peak SWE expressed as coefficient of variation (CV). e, Trend uncertainty expressed as CV, with areas of statistically 
insignificant trends (P > 0.05) masked out. f, Basin-wide aggregated relative trends in mean annual SWE for snow years (September–August), with trend 
uncertainty indicated by the error bars (standard deviation) and trend significance denoted by the asterisks (*P ≤ 0.05; ***P ≤ 0.001). HEL, Helmand; AMU, 
Amu Darya; SyR, Syr Darya; BAL, Lake Balkash; TAR, Tarim Interior; TIB, Tibetan Plateau; IND, Indus; GAN, Ganges; BRA, Brahmaputra; ISM, Irrawaddy, 
Salween and Mekong combined; yEL, yellow River; yAN, yangtze.
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Past changes in snow and snowmelt
Over the period 1979–2019, we estimate significant negative changes 
in the maximum annual amount of water stored as snow (that is, 
peak SWE) for large regions in HMA (Fig. 1b,c). Most affected are 
the northern plains of Syr Darya, Helmand and Indus as well as large 
parts of central and eastern HMA. Although absolute changes in 
peak SWE are small for the eastern parts of the arid interior region, 
such as the Tibetan Plateau and upstream parts of the Brahmaputra, 
relative changes in peak SWE are largest there, with annual reduc-
tions of over 6.0 ± 1.8% for the period 1979–2019. Despite receiv-
ing additional precipitation over the last decades, large temperature 
increases have resulted in significant relative decreases of SWE, in 
particular on the eastern Tibetan Plateau (Extended Data Fig. 1). 
Looking at the endorheic Tibetan Plateau Basin as a whole, there 
has not been a significant reduction of the mean annual snowpack  
(Fig. 1f). The connected and monsoon-dominated region of the 
upper Brahmaputra, Irrawaddy, Salween, Mekong and Yangtze 
Basins, however, is characterized by significant snowpack reduc-
tions. From a basin perspective, the strongest relative snowpack 
change is found in Helmand (−1.9 ± 0.3% yr−1), but due to the 

limited snowfall in the basin this represents only a relatively small 
absolute change (−0.02 mm w.e. yr−1). From a seasonal and altitudi-
nal perspective, relative changes are often strongest in the shoulder 
seasons and at the lower elevations (Supplementary Fig. 3), since 
the effects of climate change on the shallow snowpacks at these 
fringes can be relatively immediate. Eventually, these reductions 
in snow may translate to shorter snow seasons and a rapid associ-
ated decrease in albedo, which contributes to elevation-dependent 
warming feedbacks42,43. In some basins, SWE shows significant 
increases in the upper 1,000 m of the basin because of increased 
winter precipitation (Supplementary Fig. 3), such as in the Lake 
Balkash and Tarim Interior basins, but these trends are relatively 
small (<0.1% yr−1).

There has been substantial shortening of the snowmelt season 
and changes in timing of the snow meltwater peak between the peri-
ods 1979–1999 and 1999–2019 (Fig. 3 and Extended Data Fig. 2). 
For instance, in the region for which we classify the climatological 
snowmelt hydrograph as Short Season (Helmand, Syr Darya and 
Lake Balkash; Fig. 3) the average snowmelt peak for 1999–2019 
occurs ~5 days earlier than for 1979–1999, comprises 87.2 ± 8.3% 
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of the original volume and reverts to lower snowmelt rates more 
quickly. In the region that is characterized by an Early Peak hydro-
graph (Yellow River and Yangtze; Fig. 3), a considerable shortening 
of the melt season by almost a month is observed, caused by both 
a delayed onset and early snowpack depletion. Interestingly, the 
largely monsoon-dominated region classified as Late Peak (Indus, 
Ganges, Brahmaputra, Irrawaddy, Salween and Mekong; Fig. 3) 
shows a delay of the snow meltwater peak, albeit one that is small 
and coincident with an uncertain peak reduction of 17.8 ± 20.7%. 
All regions have experienced a clear decline in terms of total 
annual snow meltwater (14.7 ± 6.2%, 11.0 ± 7.4%, 18.1 ± 8.3% and 
20.8 ± 11.1% for the Short Season, Long Season, Late Peak and 
Early Peak regions, respectively; Fig. 3). This is mainly explained by 
a change in snow–rain partitioning and increased snowmelt rates 
due to increasing temperatures together with a decrease in overall 
precipitation in most regions (Extended Data Fig. 1).

Sensitivity and future projections
The sensitivity of annual mean snowmelt to changes in tempera-
ture and precipitation shows large variations across HMA (Fig. 
5). The eastern basins of Yellow River and Yangtze are most sen-
sitive and lose 17 ± 4% °C−1 on average. Moreover, the tempera-
ture dependency of snowmelt here is non-linear and considerably 
stronger initially (Extended Data Fig. 3). By contrast, the Indus and 
Ganges basins are comparatively insensitive to changes in tempera-
ture with 7 ± 1% °C−1 on average and show an approximately linear  

relation between changes in temperature and snowmelt. However, 
the Indus basin in particular has a total volume of snow that is much 
larger than in Yellow River and Yangtze (Fig. 2). Despite the relative 
insensitivity of Indus’s snowpacks to temperature change, absolute 
decreases in annual snowmelt volume are therefore still substan-
tial at 8.5 ± 1.1 km3 °C−1. Differences in sensitivity of annual mean 
snowmelt, annual mean SWE and annual peak SWE can be dis-
tinct and vary considerably among the basins (Fig. 5 and Extended  
Data Fig. 3), which can be attributed mainly to spatio-climatic and 
hypsometric differences.

GCM ensemble mean future temperature and precipitation 
changes for the EOC (2071–2100), as determined for seven experi-
ments of CMIP6 (Supplementary Table 1) defined by combinations 
of SSPs and RCPs44, show that most parts of HMA, with the excep-
tion of Helmand basin, are projected to have increases in precipita-
tion (Fig. 5). The SSP–RCP ensemble standard deviations are large, 
however, particularly for precipitation, as there are considerable dif-
ferences between the projections of the individual GCMs in this cli-
matologically complex region45. The increases in precipitation may 
partly counteract reduced snowfall due to rising temperatures and 
could have considerable effect in basins that show a relatively low 
sensitivity of their snowpacks to changes in temperature (Extended 
Data Fig. 3) and for which substantial increases in precipitation are 
projected, such as the Ganges basin (Fig. 5). The snow season may 
both shorten and intensify in such cases, with potential implications 
for avalanche risks, for example. However, the specific future snow 
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climatology will also depend on how synoptic weather patterns may 
shift, on changes in the relative strength of westerly disturbances46 
and monsoon systems47, and on how these effects conspire to change 
the seasonality of future precipitation12.

Model runs forced by SSP–RCP ensemble mean monthly tem-
perature and precipitation for the EOC (Methods) reveal that the 
magnitude and timing of snow meltwater release will continue to 
change in the future. Further attenuation of the snowmelt hydro-
graph, shortening of the snowmelt season and shifts in the timing of 
the snowmelt peak are projected (Fig. 3). The optimistic SSP1–2.6 
scenario reveals relatively modest changes compared to the pres-
ent day (1999–2019), with reductions in annual snow meltwater of 
12.7 ± 7.9% (Short Season), 6.7 ± 9.8% (Long Season), 7.6 ± 10.7% 
(Late Peak), 30.4 ± 16.9% (Early Peak) and 11.1 ± 5.4% (entire 
HMA). Of all basins, the snow-dominated Indus basin shows the 
least change in snowmelt under this scenario with a loss of only 
2.6 ± 10.6% (Extended Data Fig. 4). Differences to the SSP5–8.5 sce-
nario are distinct, as a region-wide loss in annual snow meltwater 
of 40.5 ± 6.5% is projected under this extreme ‘worst-case’ scenario. 
Moreover, under SSP5–8.5, disappearance of snow on the northern 
plains of the Short Season region will result in large reductions in the 
snowmelt peak (61.2 ± 13.1%) and annual snowmelt (46.1 ± 11.4%) 
with respect to present day (Fig. 3). In the Long Season and Late 
Peak regions, annual snowmelt is expected to be reduced by 
30.1 ± 12.1% and 34.6 ± 12.4%, and in the Early Peak region, by as 
much as 72.5 ± 11.9%. The other SSP–RCP scenarios fall between 
the extremes (Fig. 3 and Extended Data Fig. 4), with the excep-
tion of the highly optimistic SSP1–1.9, which is intended to limit 
warming by 2100 to 1.5 °C above pre-industrial conditions48 and 
exhibits the smallest reductions of snow meltwater. Achievement of 
the 1.5 °C or 2.0 °C targets set by the 2015 Paris agreement, which 
have received considerable societal and scientific attention in recent 
years49, would clearly benefit snow meltwater supply compared to 
more extreme scenarios, as only moderate region-wide losses of 
5.6 ± 3.4% and 11.2 ± 5.1%, respectively, would be expected by the 
EOC (Fig. 5, Supplementary Table 2 and Extended Data Fig. 3).

The projected future snowmelt shows distinctly negative trends 
with increasing radiative forcing for all river basins (Extended 
Data Fig. 4), with reductions ranging from 8.2 ± 3.8% (SSP1–1.9) 
to 41.5 ± 3.6% (SSP5–8.5) on average by the EOC. Losses of gla-
cier melt (Methods), on the other hand, are stronger (ranging from 
31.8 ± 7.0% to 41.2 ± 9.4% on average) and are often relatively con-
stant or even decrease with an increase in forcing (Extended Data 
Fig. 4). This is caused by differences in the timing of increased gla-
cial meltwater release9,10,50 caused by (1) stabilizing temperatures 
and small precipitation increases under low forcing (that is, reduced 
excess melt due to stabilizing glacier mass balances and only small 
mass turnover increases) and (2) continued temperature rise and 
strong precipitation increases under stronger forcing (that is, sus-
tained excess melt and increased mass turnover despite decreasing 
glacier surface areas). Henceforth, from both a cryospheric and 
hydrologic perspective the relative importance of snow for HMA’s 
rivers will increase. Absolute drops in snowmelt volume generally 
exceed those of glacier melt, as there is more snowmelt than glacier 
melt (Figs. 2 and 4), and the decline of snowmelt therefore has con-
siderably larger impacts on downstream meltwater supply than that 
of glaciers for most future scenarios (Extended Data Fig. 4).

Conclusions
Snowmelt is important in many parts of HMA, much more so 
than glacier melt, and the supply of snow meltwater to many of 
the region’s large rivers has reduced over the last four decades 
because of climate change. Snowmelt contributions to streamflow 
will continue to fall irrespective of future climate scenario, but pro-
jected magnitudes are strongly related to the degree of warming, 
drying or wetting. Under an optimistic scenario such as limiting 

temperature rise above pre-industrial conditions to 2.0 °C, only a 
moderate 11.2 ± 5.1% of snow meltwater would be lost with respect 
to present day. More realistic (SSP2–4.5) or worst-case scenarios 
(SSP5–8.5) may prove to be decisive for downstream snow melt-
water availability, with region-wide reductions of 21.9 ± 4.5% and 
40.5 ± 3.6%, respectively, and up to 51.3 ± 11.8% and 74.4 ± 9.4% 
respectively for specific basins. Limiting the degree of climate 
change in this century will undoubtedly provide decisive benefits 
in terms of future water supply in HMA’s snow-dominated river 
basins but will require immediate societal and political action.
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methods
Snow model. Model concept. In this study, snowmelt is parameterized using a 
temperature index (TI) melt model25, which is based on the well-established, high 
correlation between air temperature (T) and snowmelt. In general, TI models have 
been shown to perform well in large-scale analyses and outperform simplified 
energy balance models51,52. Physically based multi-layer models that solve the full 
energy balance of the snowpack and account for snow metamorphism can be more 
accurate at small spatial and temporal scale when sufficient and accurate input 
data are available53, but at the scale of the entire HMA, the necessary input data 
are unavailable or inaccurate. Moreover, increased model complexity does not 
guarantee high model performance54–56. Increasing the number of snow processes 
in a model leads to an increased number of parameterizations and, hence, 
increases of free parameters and required meteorological variables. This results in 
problematic model calibration as well as increased input uncertainty due to high 
spatial variability of meteorological variables in complex terrain. As the TI model 
is based on T only, which is widely available and relatively easily downscaled and/
or interpolated spatially25, it is particularly suited to modelling snowmelt across 
HMA. Extensions of the TI model exist that include, for example, incoming 
shortwave radiation to better incorporate changes in albedo57,58. However, these 
approaches also require data that are unavailable or inaccurate at regional scale, 
similarly to full energy balance models, with negative impacts on the accuracy of 
snow simulations59–61.

We extended the standard daily TI model with a number of important 
improvements: (1) the use of a three-hourly time step, (2) mixed precipitation 
phase based on two temperature thresholds, (3) time-variable melt factor as a 
function of number of days without snow, (4) inclusion of water storage and 
refreezing in the snowpack and (5) accounting for subgrid variability using 100 m 
elevation bands within a 0.05° model grid cell.

To distinguish between solid and liquid precipitation, we use threshold 
temperatures. When T is subzero (Tsolid = 0 °C), all precipitation is assumed  
to be solid, and when T is greater than 2 °C (Tliquid), all precipitation is liquid.  
In between these thresholds, we linearly interpolate to determine the fraction  
of P that is Psolid (ref. 62):

Psolid,t =



















Pt if Tt < Tsolid,t ,

0 if Tt > Tliquid,t ,

(1 −
Tt

Tliquid,t−Tsolid,t
)Pt if Tsolid,t ≤ Tt ≤ Tliquid,t



















(1)

When T ≥ 0 °C, we use T (in °C) for time step (t) in conjunction with a 
melt rate given by a degree-day melt factor (DDFM) to determine potential 
snowmelt25. Additionally, to account for accelerated melt caused by rain-on-snow 
events63 that can occur in the shoulder seasons, the melt energy of the rainfall is 
added to the potential melt, for which we assume an isothermal 0 °C snowpack. 
Actual snowmelt in mm (MS) is limited by the amount of snow present as snow 
storage (SS):

MS,t =







min
(

SS,t−1, TtDDFMΔt + TtCp(Pt−Psolid,t)
Lf

)

if T ≥ 0

0 if T < 0







(2)

where Δt is the length of a time step in days, Cp the specific heat capacity 
(4.18 J g−1 °C−1) and Lf the latent heat of fusion (333.55 J g−1) of water. The snow 
storage at time step t is then given by:

SS,t = SS,t−1 + Psolid,t − MS,t (3)

DDFM for snow can vary over time and seasons64, which is primarily caused 
by a decline in snow albedo (α) as the snowpack ages, for example due to snow 
metamorphism-induced changes in grain size and deposition of light-absorbing 
impurities65–67. Since snow metamorphism is a main driver in albedo change 
and metamorphism rates vary spatially and temporally for different climates, 
determining snowpack albedo from time or season alone is not accurate28,64. 
To allow for a dependency of the albedo decay on the variable rate of change in 
snowpack characteristics across HMA, we parameterize snow albedo using the 
positive degree-day sum (PDD) since last snowfall28 (that is, the accumulated  
daily maximum temperatures above 0 °C):

αt = 0.713 − 0.112 log10 PDDt (4)

To translate α into DDFM, it is inversely scaled to melt rates of 4 (α = 0.85) and 
9 (α = 0.40) mm °C–1 d–1 for fresh and aged snow68,69, respectively.

Most snowmelt percolates the snowpack and runs off or infiltrates the soil 
underneath, but part of the meltwater is stored in the snowpack itself. When 
temperatures fall below 0 °C, this meltwater may refreeze and form ice layers in or 
at the base of the snowpack70. The magnitude of refreezing in HMA’s catchments 
can be considerable71,72, and it can delay meltwater release73. To account for 
refreezing, we accumulate snow meltwater in a snow water storage (SW). The 
capacity is limited to 10% of the snowpack mass, which is equivalent to 1.4–4.6% of 

the snowpack volume for a bulk snow density ranging between 150 and 550 kg m−3 
and is representative for alpine snowpacks73–75:

SW,t = min (0.1SS,t , SW,t−1 + MS,t) (5)

When T < 0 °C, liquid water present in the snowpack can refreeze following 
a negative degree-day approach and using a rate of 1 mm °C–1 d–1 (DDFR) (ref. 76). 
Refrozen meltwater is defined as ice storage (SI):

SI,t = SI,t−1 + min (SW,t−1, − TT<0,tDDFRΔt) (6)

Melt of the snowpack (MS) and related reduction in meltwater storage capacity 
results in the discharge of both snow meltwater and any overcapacity of the water 
storage (QS) when T > 0 °C. Any existing ice storage is set to melt (MI), similarly to 
the snow storage (equation (2)), after the snow has fully melted:

QS,t =















MS,t − ΔSW if SS,t > 0

MI,t if SS,t = 0 and SS,t−1 = 0

MS,t − ΔSW + min
(

SI,t−1, TT≥0,tDDFMΔt − MS,t
)

if SS,t = 0 and SS,t−1 > 0















(7)

Domain. To study seasonal snow across HMA, we apply the model in a domain 
bounded by all 14 major river basins in the region (Fig. 1), which were derived 
from the HydroSHEDS dataset24. For the basin-scale analyses in this study, we 
group the southeastern basins of Irrawaddy, Salween and Mekong into one unit, 
since the upstream areas of these basins with snowfall are comparatively small and 
have similar climates and responses.

Although the model can run at any spatial and temporal resolution, we apply 
it at 0.05° (~5.7 km) with a three-hourly time step. By running at a sub-daily 
timescale, we account for diurnal variations in melt and snowfall, which are, for 
most regions, particularly in effect during initial and final (that is, melt) stages 
of the snow season when daily average T is close to 0 °C and daily maximum 
temperature exceeds 0 °C. Diurnal cycles of snowfall, melt and refreezing can play 
an important role in the timing of snow meltwater release and are important to 
include to accurately model snow71,73,76.

We limit our analysis to model grid cells that have at least four days of snow 
cover per year on average for the time period 2000–2019 to reduce noise and to 
limit computation time. Snow cover days were determined using the cloud-masked 
500 m resolution daily snow cover product of MODIS Terra77 (MOD10A1 v6) 
in Google Earth Engine78 (GEE) for September 2000 to August 2019 (that is, the 
reference period, which here is considered present day). To construct daily binary 
snow cover maps, we apply a Normalized Difference Snow Index threshold of 0.1 
instead of the global reference value77 of 0.4, since this value has been shown to 
be more accurate for the large arid (interior) regions of our domain and does not 
significantly negatively influence results elsewhere79. For the entire analysis, water 
bodies were masked out using the MOD44W v6 water mask dataset80.

Subgrid routine. A model grid of 0.05° is too coarse to capture altitudinal variation 
in the snowpack in the high relief areas of HMA. We therefore implemented a 
subgrid routine in which for each model grid cell the TI model is run separately 
for 100 m elevation bands (z) determined from Shuttle Radar Topography Mission 
(SRTM) elevation data81. The subgrid routine is performed at the resolution of 
MODIS snow cover product (500 m) using spatially aggregated SRTM elevation. 
Although the vertical accuracy of SRTM data are reduced in very steep areas due 
to the presence of large outliers and voids82, this has limited effects on the results of 
our model because of the use of aggregated elevation data and the relatively small 
planimetric surface area represented by those areas. Furthermore, output at the 
grid level is determined by weighted aggregation of the results for the elevation 
bands, which further reduces the effects of potential errors in individual elevation 
bands. Tz is lapsed with respect to the input T series using dynamic monthly 
temperature lapse rates calculated from climatological land surface temperatures 
for the reference period, which were calculated in GEE using the 1 km resolution 
MODIS eight-day land surface temperature product83 (MOD11A2 v6) after cloud 
masking. For each model grid cell, the lapse rates are calculated using linear 
regression between SRTM elevation and land surface temperature for a 0.25° 
window centred around the cell. We constrain lapse rates to the range −0.0120 to 
−0.0020 °C m–1, use regression results only when they are significant (P ≤ 0.05) and 
fall back to a default lapse rate of −0.0065 °C m–1 otherwise.

For some subgrid elevations, Tz is (almost) always negative. These bands 
occur at very high elevation, where perennial snow is present and snowmelt is 
not the dominant ablation type. At these high-elevation sites, snowpack evolution 
is likely dominated by (wind-blown) sublimation, wind redistribution and 
avalanching26,84,85. As the TI model depends on positive T to parameterize melt,  
it cannot operate accurately in these cases, as snow would continue to accumulate 
unrealistically. Since this negatively affects the output aggregated to the model 
grid, we force a long-term stable snowpack in these elevation bands by using a 
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high-pass filter with a one-year window on SS,z and add a baseline SS,z of half the 
grid cell’s annual precipitation. This approach retains temporally dynamic snow, as 
snow accumulates naturally and a constant snow removal by the aforementioned 
processes is simulated. We allow filtered SS,z to contribute to SS as normal,  
but removal of snow by this procedure does not contribute to snowmelt (QS). 
Overall, this procedure affects only 1.1% of the model domain and 3.1% of  
the model grid cells.

Forcing. To force the snow model, we use T and P data from the state-of-the-art 
31 km resolution ERA5 gridded climate reanalysis29, aggregated to three-hourly 
input from the original hourly resolution to reduce the computational 
requirements of the snow model. The currently available ERA5 data span the 
period 1979–2019 and thus allow for analysis of changes over recent decades. 
Previous studies have indicated that ERA-Interim (ref. 86), which is ERA5’s 
predecessor and used an older version of the same assimilation scheme, better 
represents high-altitude precipitation than other large-scale reanalysis products87,88. 
ERA5 has improved spatial resolution and uses additional input datasets and 
instruments that were not ingested before, resulting in reduced biases compared 
to ERA-Interim (ref. 89), and thus presumably provides better representation and 
definition of (mountain) precipitation. ERA5 has been shown to improve land 
surface analyses90, improve surface radiation budgets91,92 and provide better wind 
and temperature over sea93 compared to ERA-Interim. A comparative study of 26 
precipitation products for the conterminous United States94 showed that ERA5 
is the most accurate of the reanalysis products, although not without biases. 
Moreover, it provided a marked improvement over ERA-Interim, particularly in 
the mountainous west. ERA5-based hydrological modelling performance was 
therefore found to be largely equivalent to using observations over most of North 
America89. Although there are not yet any explicit studies of ERA5 performance 
over the larger HMA, it has been shown that ERA5 has mean monthly precipitation 
represented better than ERA-Interim on the eastern Tibetan Plateau95 but that there 
are still considerable biases, particularly in the wet season96,97. To assess the impacts 
of using different forcing datasets on the results of the snow model, we performed a 
comparison of five gridded climate products (Supplementary Methods).

Calibration. T biases often exist in reanalysis data, including ERA589,95,98,99. As T 
is a key component of the TI model, it is important to bias-correct the input T 
fields using independent data. We perform this in a model calibration procedure 
in which we minimize the difference between modelled and observed snow 
persistence (that is, the fraction of time a location is snow-covered). We obtained 
observed snow persistence from monthly snow cover climatology derived from 
cloud-masked MOD10A1 data for the reference period. T bias is determined at 
the model grid by a numerical non-linear least squares minimization between 
the modelled and observed snow persistence of the subgrid elevation bands. This 
calibration approach (1) reduces remaining spatial and altitudinal discrepancies 
between the 0.05° model and the 31 km ERA5 grids and (2) improves upon the 
limited capability of the TI approach to properly model spatial variability in snow 
that results from topographic effects25, as it aids to partially embed other processes 
that affect evolution of the snowpack, such as sublimation and wind redistribution, 
in the temperature signal. The calibrated temperature fields show that 60% of 
absolute biases are lower than 5 °C and 80% are lower than 10 °C. High biases 
are mostly found in the arid interior areas such as the Tibetan Plateau and Tarim 
Interior where (wind-blown) sublimation is likely to play a large role. Since these 
snow loss processes are not explicitly modelled in the TI approach, temperature 
must be raised to simulate snow seasons with lengths similar to those observed. 
This does mean that the accuracy of the seasonal dynamics of snow in these areas 
may be reduced. We note, however, that actual biases between ERA5 T and station 
data on the Tibetan Plateau were reported to reach up to 8 °C in winter months95, 
and that it is therefore likely that only a fraction of the bias stems from limitations 
of the snow model itself.

Elasticity and future projections. The sensitivity of SWE and snowmelt to changes 
in T and P was estimated by superimposing combinations of changes (deltas) in 
these two variables to the (calibrated) ERA5 time series for the reference period 
2000–2019. For each combination of ΔT (°C) and ΔP (%), we performed a separate 
model run and calculated change statistics with respect to the reference run 
(ΔT = 0 °C and ΔP = 0%). Combinations were constructed using a ΔT sequence 
from −1 °C to 6 °C with steps of 1 °C and a ΔP sequence from −40% to +40% with 
steps of 10%. SWE and snowmelt responses that fall in between these deltas were 
calculated using bilinear interpolation.

To put the sensitivity of future changes in SWE and snowmelt in perspective, 
we compared the results with GCM ensemble T and P changes for the EOC (2071–
2100). These were determined from GCM runs (n = 143) for seven experiments 
of CMIP644 (Supplementary Table 1), which are defined by combinations of SSPs 
and RCPs. To obtain the ensemble T and P changes for the EOC, we calculated, 
for all GCMs separately, monthly climatological ΔT and ΔP between the reference 
period (2000–2019) and the EOC to account for biases among the different 
GCMs. Statistics per SSP–RCP ensemble then provided ensemble mean monthly 
ΔT and ΔP and their standard deviations. Separate model runs in which for each 
SSP–RCP experiment the monthly spatial fields of climatological ensemble mean 

ΔT and ΔP were superimposed on the reference climatology were performed to 
determine the state of snowmelt in the EOC and differences with the present day. 
A comparison of the snow model output as forced with CMIP6 with model output 
from initial runs that were forced using CMIP5 (ref. 100) RCP ensembles9 is shown 
in Supplementary Fig. 4.

Non-linear changes in the processes and feedbacks related to the snowpack 
energy balance due to climate change can affect the translation of degree days 
to snowmelt using a DDF (refs. 25,64). To assess the impacts of this uncertainty 
in DDFM on future projections, we performed a DDF sensitivity analysis 
(Supplementary Methods).

Melt contributions. Contributions of snow, glaciers and rain. To estimate relative 
annual contributions of snowmelt to river runoff in HMA with respect to 
glacier melt, we calculated absolute contributions of glacier melt, snowmelt and 
rainfall runoff for every model grid cell. Since the aim of this comparison was to 
compare relative contributions of snow and glacier melt, we did not employ a full 
hydrological model and disregarded hydrological processes such as infiltration, 
groundwater storage, relative contributions to river baseflow, transition times, 
anthropogenic water usage and so on.

We estimated glacier melt contribution by calculating the two main 
components of glacier melt discharge (QG): melt related to mass turnover in 
equilibrium state (QG,eq) and the excess that is due to glacier imbalance (QG,ex). 
ERA5 precipitation (P) and glacier data from the Randolph Glacier Inventory 
version 5 (RGI5; ref. 101) were combined to determine QG,eq. We consider all 
precipitation that falls on the glacierized area (AG) (that is, both the accumulation 
and ablation zone) to contribute to the glacier melt discharge. QG,ex is calculated 
using glacier area and individual glacier mass balances (BG) derived from stereo 
satellite imagery over the period 2000–2018 (ref. 7). Although glaciers can extend 
beyond a single model pixel, we set discharge to occur in the cell of the glacier 
terminus, determined from RGI5 glacier outlines101 and SRTM elevation81. Total 
glacier melt is then calculated by:

QG = QG,eq + QG,ex = AGP + AGBG (8)

To calculate annual snowmelt discharge (QS) for this comparison of 
contributions, we used Psolid as reported by our model. Since all on-glacier 
precipitation is included as glacier discharge, we corrected the snowfall in a grid 
cell by the fraction of glacierized area to obtain snowmelt discharge:

QS = Psolid
(

1 −
AG
A

)

(9)

where A is the total area of a grid cell.
Rainfall runoff is determined using P by correcting for ERA5 evaporation (E), 

rainfall on glaciers and snowfall:

QR = (P − E) ×
(

1 −
AG
A

)

− QS (10)

Although sublimation constitutes a loss term in a basin’s water balance, 
similarly to included evaporation, we do not specifically account for it because it is 
difficult to quantify accurately for such a large region and requires multi-parameter 
parameterizations or energy balance models that, for reasons discussed above, 
are infeasible at the scale of this study and impossible to validate with currently 
available data. We acknowledge that sublimation may play an important role26 
and that snowmelt contribution with respect to rainfall could decrease if it were 
included. With respect to glacier melt, however, differences will be small, as 
on-glacier snow experiences largely the same processes as off-glacier snow.

Future glacier melt. Future projections of glacier mass and area loss in HMA were 
performed for all glaciers larger than 0.4 km2 using a mass-balance gradient glacier 
model9 to determine the relative change in glacier meltwater contribution for 
the EOC (2071–2100) compared to the present day (2000–2019). After running 
the model for each of the 143 CMIP6 runs (Supplementary Table 1) separately, 
we determined SSP–RCP ensemble mean changes by the EOC for each glacier 
(n = 33,587) individually for (1) the average remaining glacier area, (2) the change 
in glacier mass over 2071–2100, which together with area provides the mean glacier 
mass balance and (3) the change in precipitation with respect to the reference 
period. Using equation (8), we then calculated SSP–RCP ensemble mean EOC 
glacier melt discharge and its differences compared to the reference period and 
aggregated results to the river basin scale. For the glacier model runs performed 
here, the initial glacier boundary conditions and reference P and T used originally9 
were updated to match the reference period and data used in this study (2000–2019 
and ERA5, respectively). The starting year of the glacier model runs was adapted 
accordingly to 2010. Combined model and climate projection uncertainty was 
determined using a Monte Carlo approach, as in the original study9.

Data availability
Data generated by this study are available online for download at https://doi.
org/10.5281/zenodo.4715786. This includes daily 0.05° grids for 1979–2019, EOC 
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projections and the bottom-up elasticity output for both SWE and snowmelt. 
Additional model outputs and derivatives are available from the authors upon 
request. Pre-processed input data to run the snow model are available at https://
doi.org/10.5281/zenodo.4715955. Precipitation and temperature fields from ERA5 
reanalysis data29 used in this study are available from the Copernicus Climate Data 
Store at https://cds.climate.copernicus.eu/. CMIP6 data44 used in this study are 
available at https://pcmdi.llnl.gov/CMIP6/. MODIS snow cover data77 are available 
at https://nsidc.org/data/MOD10A1/versions/6, land surface temperature data83 
at https://doi.org/10.5067/MODIS/MOD11A2.006 and water mask80 at https://
doi.org/10.5067/MODIS/MOD44W.006. SRTM elevation data81 are available at 
https://srtm.csi.cgiar.org/. HydroSHEDS basin outlines24 are available from https://
www.hydrosheds.org/. Glacier outlines from the Randolph Glacier Invertory101 are 
available at https://www.glims.org/RGI/.

Code availability
Code for the snow model presented in this study is available at https://doi.
org/10.5281/zenodo.4715953. Code for the glacier model9 is available at  
https://doi.org/10.5281/zenodo.2548689. Other code is available from the  
authors upon request.
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Extended Data Fig. 1 | ErA5 temperature and precipitation. 2-m temperature climatology (a), trends in annual mean 2-metre temperature (a), and trends 
in basin-averaged annual 2-m temperature (c). Annual cumulative precipitation (d), trends in annual precipitation (e), and trends in basin-averaged annual 
precipitation (f). The dot overlay in the trend maps (b, e) indicates areas where trends are significant (p ≤ 0.05). The colours in the bar plots (c, f) indicate 
basin-average temperature and precipitation climatology, and correspond to the colour scales of panel a and d, respectively. The climatologies and trends 
of all panels are determined for the period 1979–2019 from the ERA5 gridded reanalysis dataset29.
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Extended Data Fig. 2 | Snowmelt hydrographs for all river basins. Snowmelt hydrographs for the historical (1979–1999) and present day (1999–2019) 
periods for individual river basins (a-l). Shading indicates the 95% confidence interval for the present-day hydrograph. The colour of the shading 
indicates one of four identified melt season types (Fig. 3). The dashed lines are hydrographs associated with model runs forced with ensemble mean 
climate projections for the SSP-RCP experiments within CMIP644 for the end of century (2071–2100). All hydrographs are based on average five-day-sum 
climatologies.
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Extended Data Fig. 3 | Sensitivity of snow water equivalent and snowmelt to temperature change. Relative change in the basin-wide mean annual 
snowmelt, mean annual SWE and peak SWE under changing temperatures with respect to the reference period (2000–2019) for all basins (a-l). The 
dashed vertical lines indicate the relative position of 1.5 °C and 2.0 °C temperature rise scenarios1 with respect to pre-industrial climate (1851–1880), 
determined per basin from entire CMIP6 ensemble (Supplementary Table 1).
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Extended Data Fig. 4 | Projected losses in snow and glacier meltwater by the EOC. Simulated loss of annual snow (left column) and glacier (right 
column) meltwater by the end of century (2071–2100) for the SSP-RCP ensembles (Supplementary Table 1) with respect to present day (2000–2019) for 
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