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Abstract 

We present a new paradigm that allows simplified testing of multiparameter hypotheses 

in the presence of incomplete data. The proposed technique is a straight-forward procedure that 

combines the benefits of two powerful data analytic tools: multiple imputation and nested-model 

2  difference testing. A Monte Carlo simulation study was conducted to assess the performance 

of the proposed technique. Full information maximum likelihood (FIML) and single regression 

imputation were included as comparison conditions against which the performance of the 

suggested technique was judged. The imputation-based conditions demonstrated much higher 

convergence rates than the FIML conditions. 
2  statistics derived from the proposed technique 

were more accurate than such statistics derived from both the FIML conditions and the 

regression imputation conditions. Limitations of the current work and suggestions for future 

directions are also addressed. 

 

Keywords: missing data, hypothesis testing, multiple imputation, full information 
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The Supermatrix Technique: A Simple Framework for Hypothesis Testing with Missing Data 

Several recent papers offer convincing evidence for the utility of planned missing data 

designs (e.g., Garnier-Villarreal, Rhemtulla, & Little, 2013; Rhemtulla, Jia, Wu, & Little, 2013). 

We seek to further motivate the use of these powerful tools by proposing a simple framework for 

conducting multiparameter hypothesis tests in the presence of incomplete data. The issue of 

accurately testing hypotheses when faced with missing data is certainly not a trivial concern, and 

single parameter hypothesis tests are not always adequate. Consider a hypothetical two-group 

panel model that tests for gender differences in how attachment style mediates the relationship 

between aggression and positive affect among elementary school students (i.e., a test of 

moderated mediation). Such a question can only be fully elucidated via a model comparison 

approach.  To streamline these model comparison tests, we introduce a new approach (the 

“supermatrix” technique) to build upon and expand the extant hypothesis testing framework of 

modern missing data analysis. 

The veracity of MI-based and FIML-based parameter estimation has been well 

established (Enders & Bandalos, 2001; Schafer & Graham, 2002), but these tools are still limited 

when it comes to hypothesis testing. When using FIML estimation, both single parameter and 

multiparameter hypothesis tests are easily conducted. However, there are a number of situations 

in which MI may be preferred over FIML. MI can easily accommodate a large number of 

auxiliary variables, for example, but FIML is not as flexible. Because FIML can only use 

auxiliary variables that are included in the analysis model, it will tend to exhibit convergence 

problems when a large number of auxiliary variables are introduced (Enders, 2010). MI also has 

the advantage when calculating scale scores or parcels from incomplete data. In these 

circumstances, MI can simply impute the item-level data before any composite scores are 
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calculated. FIML, on the other hand, never “fills in” the missing data points. So, there is no way 

to sum or average these incomplete variables without losing the partial item-level information 

(Enders, 2010). 

While they may have certain advantages over FIML, traditional implementations of MI 

come with their own set of limitations. MI-based single parameter hypothesis tests are easily 

conducted by using Rubin’s Rules (Rubin, 1987) to construct corrected Wald statistics or 

confidence intervals. Rubin’s Rules, however, are not applicable to aggregating the likelihood 

ratio statistics (
2 ) required for nested model 

2  tests, and they still rely on standard errors 

that can be influenced by the method of scale setting (Gonzalez & Griffin, 2001). This is a 

nontrivial limitation when testing hypotheses that compare two different, model-based, 

understandings of a psychological phenomenon. Rhemtulla, et al (2013), for example, show how 

planned missing data designs can be used to improve statistical inference in growth curve 

modeling. However, testing the shape of the population change trajectory in a growth curve 

modeling framework requires a model comparison approach. In the supermatrix technique, we 

seek to develop a tool which can address the limitations described above by offering a straight-

forward method for conducting 
2 -based model comparison tests with multiply imputed data. 

Previous work has developed 
2 -distributed statistics that can be calculated in the 

context of multiply imputed data structures (e.g., Browne, 1984; Meng & Rubin, 1992). 

Unfortunately, these statistics entail complicated calculations that can make them difficult to 

implement, and they have yet to be widely incorporated into statistical analysis software. Others 

have sought simpler solutions by focusing on pooling the multiple 
2  replicates, or pooling the 

multiple imputed data sets prior to the analysis phase of a study. Unfortunately, the simplest 

implementation of this strategy has been shown to provide suboptimal results. Naively averaging 
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the 
2  replicates derived from the analysis phase of ordinary MI will lead to biased assessments 

of model fit (Asparouhov & Muthén, 2010; Lang, 2013).  

Lee and Cai (2012) develop a principled pooling approach based on averaging the 

multiple covariance matrices produced by a Bayesian multiple imputation. After applying a post 

hoc correction adapted from Browne (1984), their approach produces an accurate 
2 -distributed 

model fit statistic, but they did not explicitly examined their approach as a hypothesis testing 

tool. So, it is unclear whether or not the post hoc correction is necessary to conduct accurate 

hypothesis tests. The rational of the supermatrix technique is very similar to the rational of the 

Lee and Cai (2012) method, but its development has focused on conducting accurate 
2 -based 

hypothesis tests without the need to appeal to a two-stage estimator. 

Wood, White, and Royston (2008) have suggested a “stacked data” approach that is 

particularly germane to the current work. Their approach aggregates the m imputed data sets by 

stacking them one atop the other into a mN × p data frame where N is the original sample size 

and p is the number of variables. When this stacked data frame was analyzed with a series of 

weighted linear regression models, the resulting Type I error rates and power were comparable to 

the Rubin’s Rules pooled estimates, even with simple weighting schemes. 

The current work develops a technique that is mathematically equivalent to the W1 

technique from Wood et al. (2008). The W1 weights (i.e., W = m-1) correct for the redundancy 

introduced by stacking the m imputed data sets. The supermatrix technique applies an equivalent 

correction that is tailored to covariance structure modeling. Our approach is designed to 

aggregate the multiply imputed data sets in a way that will allow researchers to use a principled 

tool to treat their missing data (i.e., multiple imputation), yet still maintain the simplicity of 

estimating a single analysis model. 



SIMPLE HYPOTHESIS TESTING WITH MISSING DATA  6 

 

The Proposed Technique 

The first step in the supermatrix approach is creating some number of plausible 

imputations. Once some number (m > 1) of imputations have been created, the m imputed data 

sets are “stacked” one atop the other to create a single data frame whose number of rows is equal 

to the number of observations in the original data set times the number of imputations. For 

example, consider a data set that contains N = 250 observations of p = 25 variables. If you create 

m = 20 imputations, the final dimensions of this combined data frame will be mN × p = 20(250) 

× 25 = 5000 × 25. A single covariance matrix is then calculated to summarize all mN 

observations of this aggregate data frame. This covariance matrix (i.e., the supermatrix) then 

contains the sufficient statistics to which the analysis models are fit. In the example above, the 

supermatrix technique would produce a 25 × 25 covariance matrix that that summarize the 20 

imputed data sets. Figure 1 gives a graphical representation of the supermatrix process. 

<Include Figure 1 about here> 

Because the aggregate covariance matrix produced by the supermatrix technique is 

envisioned as a proxy for the complete data, the number of observations ascribed to the 

underlying data set is explicitly set to the original sample size N. This constraint adjusts the 

likelihood ratio statistics to correct for the spurious inflation of sample size entailed in treating 

the stacked m imputed data sets as a single data frame. 

Van Buuren (2012) suggests that stacking approaches like the supermatrix technique will 

produce unbiased point estimates of model parameters, but may lead to negatively biased 

standard errors for those estimates. Likewise, the supermatrix technique is expected to produce 

unbiased point estimates of model parameters, but we do not have confidence that it will produce 

accurate standard errors (see Wood et al., 2008, Appendix A, for justification of this claim). 
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Fortunately, significance tests that are based on nested model 
2  statistics are not directly 

affected by the tested parameters’ standard errors. Such tests conducted with the supermatrix 

technique will not be affected by bias in these standard errors. So, we expect the supermatrix 

technique to produce accurate tests of hypotheses, provide they are based on the
2 . 

A Monte Carlo simulation study was conducted to assess the performance of the 

supermatrix technique at varying levels of sample size and percent missing.  Of greatest interest 

are the convergence rates of the analysis models and the accuracy of nested model 
2  

statistics. Specifically, it is hypothesized that: 

1) The supermatrix technique will produce higher convergence rates than FIML estimation. 

2) Supermatrix-based 
2  statistics will be negligibly different from complete data-based 

2  statistics. 

3) Supermatrix-based 
2  statistics will outperform 

2  statistics derived from data 

treated with single regression imputation. 

Methods 

Data Simulation 

The data for the Monte Carlo study were simulated using R 2.15 (R Development Core 

Team, 2011). The simulated data were generated according to the multi-trait multi-method 

(MTMM) factor analytic model shown in Plate 1 of Figure 2. An MTMM structure was chosen 

for the data generation model to more accurately represent the nuanced process by which 

psychological phenomena arise in reality. The data generating model employed two “common” 

factors and two “covariate” factors to simulated two “scales” of ten items each. Each of the 

common factors uniquely predicted the ten items of one of the scales, while the covariate factors 

were allowed predict all twenty simulated items. 
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All common factor loadings were specified to be equal in the population with a value of 

 =.6. The covariate factors were each allowed to have their own, small association with the 

items of the two scales. That is, the items of the first scale loaded onto the first covariate factor at 

 =.2, while the second scale’s variables loaded onto the first covariate factor at  =.1. Likewise, 

the first scale’s variables loaded onto the second covariate factor at  =.05, while the second 

scale’s items did so at  =.1. Common factors had variances fixed to 
1,1 = 

2,2 = 1.0 and 

covaried with one another at 
2,1 = .5. The two covariate factors were specified to be independent 

of one another and the common factors (i.e., 
4,3 = 

4,2 = 
4,1 = 

3,2 = 
3,1 = 0). They had 

variances of 
3,3 = 1.0 and 

4,4 = 3.0. Variances of all unique factors were specified to be a 

constant   = .64. This model structure was chosen to simulate items arising from two strongly 

correlated hypothetical constructs (e.g., empathy and prosocial attitudes) that are also subject the 

lesser influence of two uncorrelated covariates (e.g., mindfulness and extraversion).  

After populating the parameter matrices with the values described above, the R function 

rmvtnorm (Genz et al., 2012) was used to simulate multivariate normal factor scores and error 

terms. The final simulated data sets were derived by including these factor scores and error terms 

in the factor analytic data model represented by Equation 1. 

 T =  +Y   (1) 

Where Y is an N × 20 matrix of simulated data,   is an N × 4 matrix of factor scores,   is a 20 

× 4 matrix of factor loadings and   is an N × 20 matrix of residual error components. Finally, 

the two columns of covariate factor scores where merged with Y. Thus, the final simulated data 

set was an N × 22 matrix consisting of the twenty scale variables to which the analysis models 

would be fit (i.e., empathy and prosocial attitudes items, from the example above) and the two 
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auxiliary variables that would be used as predictors of the missing data process (i.e., mindfulness 

and extraversion, from the example above). 

<Include Figure 2 about here> 

Parsimony Error 

To further improve the ecological validity of the current work, the data were generated 

according to a model that was more complex than the subsequently specified analysis models. 

This “hidden” simplification is analogous to the parsimony error introduced by researchers 

attempting to portray highly complex psychological phenomena with simplified mathematical 

models. To implement this misspecification, several off-diagonal elements of the residual 

covariance matrix described above were set to small, non-zero values (  = .03). This alteration 

introduced a small residual covariance between every fifth unique factor. When these residual 

covariances were not included in the analysis models, the result was a mild degree of model 

misspecification present in all conditions. 

Missing Data Imposition 

Missing data were imposed according to a missing at random (MAR) process as defined 

by Rubin (1976). A function was written in R 2.15 that ran iteratively through all twenty of the 

simulated scale variables. Equation 2 quantifies the decision rule by which the missing values 

were imposed on each variable. 
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Where Ri is the ith entry in an N × 1 pattern matrix that equals 1 when the ith observation of the 

focal scale variable is missing and 0 when it is observed, X is an exogenous missing data 

predictor (i.e., auxiliary variable), 
1( )−   represents the inverse normal cumulative distribution 
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function, PM is the proportion of missing data,   is a small disturbance factor that ensures no 

row in the treated data frame is entirely empty, and N is the total sample size. For half of the 

items, X was specified to be the N × 1 matrix of factor scores from the first covariate factor in the 

data generating model. For the other half of the items, X was specified to be the analogous matrix 

of factor scores from the second covariate factor. 

In terms of our running example, this function recreates a scenario in which the chance 

that some of a subject’s empathy or prosocial attitudes items are missing is determined by their 

levels of mindfulness and extraversion. Because this function imposes the missing data 

according to a simple probit regression model, the Rubin (1976) definition of a MAR process is 

replicated as closely as possible. That is, the missingness can be considered a pure random 

sample of the complete data, after conditioning on the predictor of missingness. 

Comparison Conditions 

Three comparison conditions were included against which the performance of the 

supermatrix technique was judged. As an optimal, control condition, the analysis models were fit 

to the complete data. Because the supermatrix technique is being developed as a practical 

hypothesis testing tool, we are not principally concerned with ensuring that the estimates it 

produces are penalized for the missing data. Rather, the current work presupposes that an optimal 

missing data analysis should produce results that are equivalent to those derived from fully 

observed data, all validity issue being equal. Thus, we set the complete data-based 
2  values as 

the ideal to be reproduced by the supermatrix. 

For the second comparison condition, FIML estimation was used to fit the analysis 

models directly to the incomplete data. FIML was chosen because it has been shown to 

demonstrate optimal statistical properties for a wide range of missing data problems (Enders, 
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2010; Enders & Bandalos, 2001). To ensure that the FIML conditions were optimally 

implemented, the predictors used to impose the missing data (i.e., mindfulness and extraversion, 

in our running example) were included in the analysis models via the saturated correlates 

approach (Graham, 2003) to fully satisfy the MAR assumption. 

Finally, the missing data were treated with a single regression imputation. This technique 

was chosen because it could be argued that aggregating the multiple imputations with the 

supermatrix approach may be “washing out” the between imputation variance that is the 

foundation of the unique benefits of MI. If this is true, the supermatrix technique may reduce to a 

needlessly complex single regression imputation. 

Simulation Parameters 

There were two simulation parameters varied in this study: sample size (N) and percent 

missing (PM). Because considering only a small discrete set of simulation parameters can lead to 

a considerable loss of interesting detail, the current study varied the simulation parameters in 

small steps (i.e., N = {100, 120,…, 980, 1000}, PM = {2, 4, . . . , 48, 50}). Thus, for every 

replication there were 1150 crossed levels of N and PM. Such fine-grained specification of 

percentages missing may seem unnecessary since missingness imposed intentionally via planned 

missing data designs will occur as relatively large fixed percentages (e.g., PM=25% for a classic 

three-form design). However, the inevitable addition of unplanned missingness to this planned 

missingness means that, even in a planned missing data design, the observed rates of 

nonresponse can vary arbitrarily. 

Within each of these 1150 cells, eight analysis models were estimated using the R 

package lavaan (Rosseel, 2012). “Full” and “restricted” confirmatory factor analysis (CFA) 

models were fit to the complete data with ordinary maximum likelihood (ML) estimation, to the 
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incomplete data using FIML estimation, and to the imputed data produced by the supermatrix 

technique or regression imputation. The full model was a two factor CFA in which each factor 

predicted one of the two simulated scales, and the factors were allowed to freely covary. 

The restricted model was identical to the full model except that the latent covariance was 

fixed to 
2,1  = 0. This constraint offered the means to assess Hypotheses 2 and 3 by facilitating 

significance tests of the latent covariance via nested model 
2  tests. The analysis models 

associated with the FIML conditions were identical to those described above except that they 

also incorporated the predictors of the missing data process via the saturated correlates technique 

(see Plate 2 of Figure 2). 

In terms of our running example, the full model was a CFA with correlated empathy and 

prosocial attitudes factors, while the restricted model forced empathy and prosocial attitudes to 

be independent. Thus, the 
2  tests discussed below would be testing the significance of the 

correlation between empathy and prosocial attitudes. 

Test Statistics 

Two test statistics were employed in this study: percentage relative bias (PRB) and root 

mean square error (RMSE). PRB was chosen because its interpretation makes it well suited to 

the a priori explication of thresholds by which to judge performance. PRB is simply the average 

bias in the estimated statistic rescaled as a percentage of the true statistic’s magnitude. The 

formula for PRB is quite simple: 
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Where T is the true value of the statistic, ˆ
iT  is the estimated statistic for the ith replication, and K 

is the number of replications. It should be noted that the fit statistics derived from the complete 
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data conditions were treated as the ideal, so the complete data-based values were considered the 

“true” values. The “bias” discussed throughout this paper, therefore, is not bias in the usual sense 

because the observed statistics are not compared back to any true population values. 

The RMSE was chosen because it combines information on both bias and variability into 

a well-rounded measure of overall accuracy (Burton, Altman, Royston, & Holder, 2006). 

Because the formulation of these two statistics is somewhat, but not entirely, redundant (i.e., 

both PRB and RMSE contain a term quantifying bias but PRB ignores variability) the two in 

combination offer a picture of performance that is more nuanced than the sum of its parts. The 

formula for RMSE is also quite simple: 

 ( ) ( ) ( )
22 2
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i T
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Where T is the true value of the statistic, ˆ
iT  is the estimated statistic from the ith replication, T̂   

is the mean of the estimated statistic, 
T̂

SE  is the empirical standard deviation of the estimated 

statistic, and K is number of replications. 

In this study, PRB > 5 was considered to be an excessive degree of bias. In other words, 

if the estimated value of a missing data-based 
2  statistic deviated from the complete data-

based value by more than 5% of complete data value’s magnitude, that missing data technique 

was considered to perform unacceptably in that condition. 

Procedure 

For every replication a single data set was simulated according to the process described 

above. This data set was then used to fit the complete data control models. Next, missing data 

were imposed, and the FIML conditions were fit to this incomplete data. In the supermatrix 

conditions, these same incomplete data were imputed 100 times using the R package Amelia II 
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(Honaker, King, & Blackwell, 2011). These 100 imputed data sets were then submitted to the 

supermatrix treatment and analyzed via the models described above. Finally, the missing data 

were imputed once via regression imputation using the mice.impute.norm.predict function from 

the R package MICE (van Buuren & Groothuis-Oudshoorn, 2011). These data were then 

analyzed with the same models fit to the supermatrix covariance matrices. 

Once all eight models were estimated, their 
2  statistics were used to calculate the 

2  

between the respective full and restricted models. Finally, the PRB and RMSE of these 
2  

values were calculated for the supermatrix, regression imputation, and FIML conditions (i.e., 

using the complete data 
2  statistics as the true values). This process was repeated 500 times 

for every one of the 1150 crossed levels of percent missing and sample size. This resulted in a 

total of 3(missing data treatments) × 2(model constraints) × 46(N) × 25(PM) = 6900 total crossed 

conditions within each of the 500 replications. 

Results 

Convergence Rates 

Hypothesis 1 was fully supported. All of the imputation-based models demonstrated 

perfect convergence. However, some FIML models had very low convergence rates, particularly 

in conditions with small N and high PM. Figure 3 shows the convergence rates for FIML-based 

models plotted by N and PM, while Table 1 shows the convergence rates for the FIML 

conditions with less than 80% convergence. 

An obvious pattern emerges when considering these results. Convergence rates for 

FIML-based conditions were perfect for larger N and lower PM, but there is a distinct point 

where convergence rates begin to rapidly decrease as N decreases and PM increases. The 
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precipitous drop-off in Figure 3 and corresponding entries in Table 1 show that sample sizes 

lower than 200 tend to produce very low convergence rates, particularly when PM exceeds 30%. 

<Include Figure 3 about here> 

<Include Table 1 about here> 

Significance Testing with the 
2  

The most important finding of this study is the support of Hypothesis 2. Tables 2 and 3 

show the 
2  values from a representative subset of sample sizes and percents missing. Table 2 

only reports the results from replications in which the FIML models converged, while Table 3 

reports all of the available results. It is apparent that the supermatrix-based 
2  values were 

quite accurate across all conditions tested (although they did tend to demonstrate a small degree 

of positive bias when PM > 40 and N < 300). However, the FIML-based 
2  tests performed 

poorly across a large proportion of the tested conditions. In stark contrast to the supermatrix-

based 
2  values, the FIML-based 

2  tests demonstrate a consistent and appreciable negative 

bias. In fact, for all the tested levels of N, the FIML-based 
2  values reached an unacceptable 

degree of negative bias once PM exceeds 10%. Plate 1 of Figure 4 shows that, on average, the 

supermatrix-based 
2  values track the complete data versions almost perfectly. Plate 2 of 

Figure 4, on the other hand, shows the considerable discrepancy between the average FIML-

based 
2  values and the complete data versions. 

<Include Figure 4 about here> 

The RMSE values associated with the FIML-based 
2  statistics also indicate poor 

performance. Two problematic patterns are apparent when referring to Table 2. First, in the same 

way that the FIML-based PRB values are larger in absolute magnitude than their supermatrix-
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based counterparts, the FIML-based RMSE values are also universally larger than the analogous 

supermatrix-based values. Second, the PRB of both methods demonstrates a monotonic inflation 

as PM increases, independent of N, but the RMSE values associated with the FIML-based 
2  

increase with both rising PM and increasing N. Since the RMSE accounts for not only bias, but 

also efficiency, this discrepancy suggests that the variation of the FIML-based 
2  values 

increases as N increases. When looking at the supermatrix-based 
2  values, we see that 

changing N does not have such an influence. 

<Include Table 2 about here> 

Hypothesis 3 was also supported. Although, Table 3 shows that regression imputation 

demonstrated negligible bias across all tested conditions, the RMSE values tell a different story. 

Across most conditions, the regression imputation-based RMSE values were nearly twice as 

large as the supermatrix-based values. This inversion in the patterns of PRB and RMSE implies 

much higher variability across replications (and thus lower anticipated efficiency) for regression 

imputation than the supermatrix technique. 

<Include Table 3 about here> 

Discussion 

This study demonstrates the utility of the supermatrix technique as a parsimonious 

framework for hypothesis testing with missing data. The supermatrix approach showed high 

rates of convergence and a consistent ability to produce 
2  statistics that reflect the complete 

data standard, both in terms of bias and efficiency. By way of comparison, the performance of 

the supermatrix technique was contrasted with two other common missing data tools: FIML 

estimation and single regression imputation. The former was chosen because it is the current 
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gold standard in missing data analysis, and the latter was chosen because it may fill a similar role 

to the supermatrix technique. 

When compared to FIML estimation, the performance of the supermatrix technique was 

quite good. The supermatrix technique exhibited much higher rates of convergence. In fact, all of 

the supermatrix conditions achieved 100% convergence, but the FIML conditions had 

considerable issues with convergence. Once sample sizes dropped below 200 and rates of 

missing increased much beyond 30%, the FIML models began to exhibit very low convergence 

rates. This finding is not terribly surprising given that FIML estimates are based on only the 

observed responses. This means that mixing such high percents missing with small sample sizes 

essentially decreases the sample size below what is required to satisfy the large sample 

assumption of ML. Because imputation techniques (including the supermatrix technique) operate 

by “filling in” the holes in the incomplete data set, they circumvent this issue. 

This is a nontrivial finding. Higher convergence rates in a Monte Carlo simulation 

directly translate to higher probabilities of model convergence in substantive studies. Thus, the 

poor convergence rates observed for the FIML conditions have meaningful implications. 

Namely, researchers can anticipate a higher probability of achieving convergence if they treat 

their missing data with the supermatrix technique rather than employing FIML estimation, 

especially when faced with small sample sizes and high rates of nonresponse. 

The performance of the supermatrix technique as a tool for conducting 
2  tests was 

also very promising. In all conditions tested (except for a few conditions with very high rates of 

missing and small sample sizes), the supermatrix-based 
2  values showed negligible bias. This 

finding suggests that the supermatrix technique can produce unbiased assessments of parameter 

significance under a paradigm that allows hypotheses to be represented as competing models. 
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Additionally, assessing parameter significance with 
2  tests, rather than Wald statistics, allows 

for statistical inference without the need to appeal to standard errors which are easily biased by 

missing data and sensitive to model parameterization. 

While unbiased supermatrix-based 
2  statistics were expected, an unanticipated result 

was the poor performance of the FIML-based 
2  statistics. In all but those conditions with the 

lowest percents missing (i.e., PM < 10%), the FIML-based 
2  values were unacceptably 

negatively biased. Although the effect size associated with this test (i.e., 
2,1  = r = .5) was too 

large to assess rejection rates, the substantial degree of negative bias suggests that researchers 

seeking to capture a small effect with FIML-based 
2  tests would likely face considerably 

inflated Type II error rates. 

To compound this poor performance, the FIML-based 
2  values were additionally 

sensitive to sample size. The PRB of both supermatrix-based and FIML-based 
2  statistics 

demonstrated a monotonic increase as a function of the increasing rates of missingness, but 

neither was sensitive to changes in sample size. While the RMSE of the supermatrix-based 
2  

statistics followed a similar pattern, the RMSE of the FIML-based values also increased along 

with increasing sample size. Because the RMSE captures efficiency as well as bias, and the bias 

of the FIML-based 
2  values was independent of sample size, this inflation of the RMSE 

implies increasing variation in the estimated 
2  values as sample size increases. The absence of 

such a relationship for the supermatrix-based values suggests that the supermatrix-based 
2  

statistics will remain much more stable with changing sample size. Thus, in addition to having 



SIMPLE HYPOTHESIS TESTING WITH MISSING DATA  19 

 

less overall bias, the supermatrix-based 
2  statistics can be expected to demonstrate greater 

stability than their FIML-based counterparts. 

The supermatrix technique was also compared to single regression imputation. 

Regression imputation was unbiased, but the RMSE values associated with it were nearly twice 

as large as those derived from the supermatrix technique.  This finding shifts the performance 

balance in favor of the supermatrix technique, because neither the supermatrix technique nor 

regression imputation was unacceptably biased, but regression imputation demonstrated 

considerably lower efficiency. 

Limitations and Future Directions 

The scope of this study was limited and represented only a subset of situations where 

researchers may consider using the supermatrix technique. All simulated data were multivariate 

normally distributed, and only simple, cross-sectional, single group models were considered. We 

acknowledge that the reality experienced by applied researchers is likely to be more complex. 

We have no reason, however, to expect the results would not hold over a wide array of modeling 

situations. 

Future extensions of this work should address some specific issues. Model complexity 

should be varied to represent more of the situations encountered by applied researchers. This 

should include variation in the pattern of constraints used to produce the 
2  statistics, since all 

of the 
2  values in this study were derived by constraining single parameters. We have no 

reason to suspect that these results do not generalize to tests of multiple parameters, but future 

work should confirm this. Also, future work should be optimized to scrutinize rejection rates, 

because the data generation model chosen for this study disallowed testing power and Type I 

error rates. Finally, the current study was not designed to assess the accuracy of the model 
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parameters themselves. The work of previous authors (e.g., Rubin, 1987; Satorra & Bentler, 

1994; van Buuren, 2012; Wood et al., 2008) and the principles of point estimation that motivate 

Rubin’s Rules suggest that the supermatrix technique should produce unbiased point estimates of 

model parameters, but this should be confirmed. 

Conclusion 

In summary, the supermatrix technique shows great promise. When compared to FIML 

estimation, the supermatrix technique demonstrated far higher convergence rates, lower bias, and 

higher efficiency. The supermatrix technique also outperformed regression imputation, at least in 

terms of efficiency. These two findings in concert suggest that, of the three techniques examined 

in this study, the supermatrix technique should produce the most accurate and consistent nested 

model comparison tests, in practice. In the end, the results of this study suggest that the 

supermatrix technique is a useful tool for researchers seeking to test model-based hypotheses in 

the presence of incomplete data.  
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Figures & Tables 

 

 

 

Figure 1: A graphic representation of the supermatrix technique as applied to a data set with 4 

observations of 3 variables 

 

 

 

 



SIMPLE HYPOTHESIS TESTING WITH MISSING DATA  25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Path diagrams for selected models used in the simulation study 

Note: Mean Structures are not shown 

 

Plate 1: Data Generating Model 

Plate 2: Analysis Model for the FIML Conditions 
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Figure 3: Convergence rates for FIML models plotted by sample size and percent missing 
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Figure 4: 
2  values for complete data, supermatrix & FIML conditions plotted by sample size 

and percent missing 

Plate 1: Upper surface=Supermatrix conditions, Lower surface=Complete data conditions 

Plate 2: Upper surface=Complete data conditions, Lower surface=FIML conditions 
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Table 1: Convergence rates for FIML conditions with convergence lower than 80% 

Note: N=sample size, PM=percent missing 
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Table 2: Percentage Relative Bias and Root Mean Square Error of the 
2  from replications in 

which FIML models converged 

Note: N=sample size, PM=percent missing, SM=supermatrix, RI=regression imputation 
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Table 3: Percentage Relative Bias and Root Mean Square Error of the
2  from selected 

conditions 

Note: N=sample size, PM=percent missing, SM=supermatrix, RI=regression imputation 

 

 


