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Abstract 

Many variables that are analyzed by social scientists are nominal in nature. When missing 

data occur on these variables, optimal recovery of the analysis model’s parameters is a 

challenging endeavor. One of the most popular methods to deal with missing nominal data is 

multiple imputation (MI). This study uses a Monte Carlo simulation study and a real-data 

resampling study to evaluate the capabilities of five MI methods that are often recommended for 

treating incomplete nominal variables. Practical recommendations are provided based on the 

findings. 

Keywords: Missing data, Nominal variables, Multiple imputation, General location 

model, Multiple imputation with chained equations 
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A Comparison of Methods for Creating Multiple Imputations of Nominal Variables 

Incomplete categorical variables present an intriguing challenge for missing data analysts, 

because much of the theory underpinning modern missing data analysis assumes continuously 

distributed data. As a result, missing data methods that work well for normally distributed 

variables can produce nonsensical results, or entirely break down, when naively applied to 

categorically distributed missing data (Enders, 2010; Little & Rubin, 2002; Schafer, 1997). 

Unfortunately, many interesting phenomena in social and behavioral research are best 

represented via discrete variables. For example, choice of political candidate, the number of 

cigarettes smoked in a day, and responses to Likert-type items all represent categorical variables. 

Therefore, missing data researchers have long sought principled methods to treat categorical 

nonresponse (i.e., methods that model the nonresponse via appropriate, discrete distributions).  

The majority of the solutions presented in the literature pertain to the treatment of binary 

or ordinal variables. In the case of ordinal variables, it can often suffice to naively impute the 

missing data under the assumption of normality, if the discrete nature of the measurement is 

unimportant (e.g., when the variables will be averaged into a scale score; Wu, Jia, & Enders, in 

press). When the discrete measurement level must be maintained, there are powerful solutions 

based on thresholding the latent variable produced by a probit regression model (Enders & 

Keller, 2014). Monte Carlo simulations suggest that imputation methods based on logistic or 

probit regression equations perform well when imputing binary data (Brand, 1999; Enders & 

Keller, 2014). However, treating incomplete nominal variables (i.e., unordered categorical 

variables) with more than two response levels (e.g., race/ethnicity, political affiliation) has 

received relatively little attention in the missing data literature. Treatments for such incomplete 

nominal variables are the focus of this study. Although binary variables are also nominal, we will 

hereafter use the terms “nominal variables” and “unordered factors” to refer to unordered 
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categorical variables with three or more possible response levels. 

Unique Challenges of Nominal Missing Data 

Nominal-level responses can be modeled as realizations of a multinomial trial. Thus, 

missing data on these variables follows a convenient functional form, namely the multinomial 

distribution. However, the way that these variables are represented in data leads to inherent 

difficulties with treatment of their missing values. Nominal variables can either be represented 

by a set of K – 1 dummy codes (where K is the number of response categories) or as a single 

unordered factor with K levels. Data analysts must be wary of naively treating either of these 

representations with imputation methods that were not designed for nominal data. 

The chance of falling into any one of a nominal variable’s K response categories, versus 

the reference category, is given by a binomial probability. Yet, simply imputing each nominal 

variable’s dummy-coded representation as though each code is an independent binary item can 

lead to impossible results (i.e., subjects endorsing multiple response categories; Allison, 2002). 

Likewise, if the nominal variable is represented as an unordered factor, applying normal-theory 

imputation models will produce quantitative, decimal-valued imputations for variables that 

contain only qualitative, integer-valued labels. Thus, a more nuanced approach is needed. 

Because nominal variables are distributed in the same way as a series of binary variables, 

a natural approach to treating missingness on nominal variables is to extend methods designed 

for binary variables. However, the increased computational burden induced by the exponential 

growth of the contingency table that occurs when adding response levels can cause methods that 

work well for binary missing data to fail when applied to nominal missing data. Although some 

authors have acknowledge the additional computation burden inherent in treating nominal 

variables (e.g., Belin, Hu, Young, & Grusky, 1999; Schafer, 1997), we were unable to locate any 

systematic examination of missing data methods specifically targeting incomplete nominal 
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variables. To address this gap in the literature, the study reported here compares several 

recommended methods for creating multiple imputations (MIs) of incomplete nominal variables. 

Extant Approaches 

Imputation methods that are tailored for nominal data can be generally classified into one 

of three types: (a) ad hoc, rounding-based techniques, (b) principled, parametric methods that 

model the missing data with generalized linear models (GLMs), and (c) methods based on 

nonparametric predictive algorithms. A short overview of these approaches is given below. 

Ad hoc approaches. The most convenient approach entails transforming the nominal 

variables into dummy codes and naively imputing these codes under the multivariate normal 

model. In the case of nominal variables (as opposed to certain instances of ordinal variables), 

these decimal-valued imputations cannot be left unaltered because the numeric values of the 

original dummy codes merely represent qualitative labels. Thus, the imputed values must be 

rounded back to meaningful, integer-valued labels. Several different rounding schemes have 

been proposed to transform normal-theory imputations into binary values (e.g., Bernaards, Belin, 

& Schafer, 2007; Yucel, He, & Zaslavsky, 2008, 2011). The most natural approach prescribes 

naively assigning a label of 1 to imputed values greater than or equal to .5 and assigning a label 

of 0 to imputed values less than .5 (Allison, 2002; Honaker & King, 2010; Schafer, 1997).  

When treating dummy-coded nominal variables, as opposed to binary variables, this 

naïve rounding procedure also requires modification. Simply rounding the imputations for each 

dummy code, independently, can lead to impossible solutions (e.g., participants endorsing more 

than one response category). To circumvent such possibilities, Allison (2002) suggested a 

ranking-based method (hereafter RANK) that extends the idea of naïve rounding to the 

multinomial context. RANK is implemented by first imputing all K – 1 dummy codes under a 

normal-theory imputation model. The reference group’s imputation is then computed as one 
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minus the sum of these K – 1 normal-theory imputations. These steps produce K decimal-valued 

imputations, one for each possible response level of the incomplete nominal variable. Finally, an 

imputed set of dummy codes is constructed by assigning a value of 1 to the response level with 

the largest imputation and assigning a value of 0 to all other response levels. In the case of 

incomplete binary variables, this process reduces to naïve rounding of the decimal-valued 

imputations. Allison (2002) offered an intuitive justification for this approach but did not present 

any empirical evidence of its performance.  

Principled approaches. The most expedient principled approach is multiple imputation 

with chained equations (MICE; also known as sequential regression imputation or fully 

conditional specification) employing multinomial logistic regression (MNR) as the elementary 

imputation method (hereafter MICE-MNR). The MICE approach entails creating the MIs by 

sequentially imputing each incomplete variable with a univariate predictive model (in this case, a 

multinomial logistic regression). Brand (1999) developed one such approach that is now 

employed as the default method for imputing unordered factors in the R package mice (van 

Buuren & Groothuis-Oudshoorn, 2011). Two joint modeling approaches can also be applied in 

certain circumstances. If all of the incomplete variables are categorical, and all predictors of the 

nonresponse mechanism are also categorical (so that all variables related to the missing data 

process can be collapsed into a contingency table), the missing data can be imputed via a fully 

saturated multinomial model or a simpler loglinear model in which certain marginal associations 

are not modeled (Schafer, 1997). Yet, when the data analyst has continuous covariate data 

available, imputing under the saturated multinomial model or loglinear model can exclude useful 

auxiliary information because these models cannot incorporate continuous variables. The R 

package mix (Schafer, 2013) can produce MIs from multinomial and loglinear models. 

When the incomplete data set contains both categorical and continuous variables, 
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imputations can be created with a joint modeling approach based on the general location model 

(GLOC). GLOC was originally developed by Olkin and Tate (1961) for inferential modeling of 

mixed categorical and continuous items. In this original implementation, the categorical data 

were quantified by a marginal, saturated multinomial model and the continuous variables were 

assigned a conditional multivariate normal model. Under GLOC, the means of each conditional 

multivariate normal model is given by the expected proportion of their respective cell in the 

contingency table, but each normal model shares a common covariance matrix. In the case of 

binary incomplete variables, GLOC reduces to simple linear discriminant analysis.  

Little and Schluchter (1985) extended the original Olkin and Tate (1961) formulation of 

GLOC by using a loglinear model to describe the categorical data. The Little and Schluchter 

(1985) GLOC allowed for structural models of the nominal variables. They also developed 

methods for applying GLOC to the task of missing data imputation. A Gibbs sampling scheme 

for creating MIs from the Little and Schluchter (1985) GLOC was described by Schafer (1997). 

Although MI under GLOC is mathematically appealing due to its reliance on a joint probability 

model to describe the missing data, high computational cost limits its applicability (Allison, 

2002; Little & Rubin, 2002; Schafer, 1997). Belin et al. (1999) employed GLOC-based MI to 

treat the missing data in a typical cancer study and showed that GLOC can be computationally 

infeasible and breaks down with real-world-sized problems. 

Nonparametric approaches. Because they are not subject to any distributional 

assumption, nonparametric approaches are conceptually well-suited to imputing nominal missing 

data. Many nonparametric methods are donor-based techniques in which the missing data are 

replaced by observed data from a matched donor case. Predictive mean matching (PMM) is a 

popular donor-based method that has been advocated for possible use with nominal variables 

(van Buuren, 2012). In PMM the donor and recipient cases are matched based on their respective 
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predicted outcome values (i.e., their ˆ
iY  values) from a univariate regression equation in which 

the incomplete variable acts as the dependent variable. Marshall, Altman, and Holder (2010) and 

Marshall, Altman, Royston, and Holder (2010) both suggested that MICE with PMM as the 

elementary imputation method (hereafter MICE-PMM) can outperform rounded normal-theory 

MI when imputing nominal data in prognostic modeling applications. However, they noted that 

researchers should be wary of applying PMM with small sample sizes due to the possibly 

restricted size of the donor pool. Andridge and Little (2010) also raised this point by noting that 

the validity of PMM (or any donor-based imputation method) is reliant upon the existence of an 

adequate number of matched respondents to replace the missing data of the nonresponents. In the 

case of incomplete nominal variables, this limitation is exacerbated by the exponential growth of 

the contingency table’s size as the number of response categories increases (Agresti, 2007).  

Decision tree modeling is another nonparametric method that can be used to create 

imputations that automatically preserve the distributional properties of the incomplete data 

(Borgoni & Berrington, 2013). The flexibility and simplicity of decision tree models has led 

some authors to highlight them as ideal candidates for imputation engines (e.g., Harrell, 2001; 

Hastie, Tibshirani, & Friedman, 2009). Burgette and Reiter (2010), Drechsler and Reiter (2011), 

Reiter (2005), and Wallace, Anderson, and Mazumdar (2010) all explored the capability of MICE 

with classification and regression trees (CART) as the elementary imputation method (hereafter 

MICE-CART). Their applications were able to naturally accommodate mixed continuous and 

categorical missing data, and they all found that MICE-CART led to mostly unbiased estimates 

of parameters but tended to induce under-coverage for the associated CIs. 

The Current Project  

This project compares several currently advocated methods for imputing nominal missing 



INCOMPLETE NOMINAL VARIABLES                                                                                    9 

 

data to offer guidance to researchers faced with nominal incomplete data. Practicality in 

substantive research domains was a paramount concern in choosing the imputation methods to 

examine in this study. Therefore, the methods were chosen to satisfy two requirements: (1) Each 

method needed to simultaneously treat mixed variable types (i.e., both continuous and 

categorical data), and (2) each method needed to produce legal imputations for the nominal 

variables (i.e., qualitative, integer-valued labels rather than quantitative, real-valued numbers). 

Based on these considerations, five MI approaches were selected for comparison: three MICE 

approaches (MICE-MNR, MICE-CART, and MICE-PMM), and two joint modeling approaches 

(GLOC and RANK). Each of these five techniques were used for the imputation phase of a 

standard MI analysis (see Enders, 2010, Chapters 7 & 8 for a detailed introduction to the three 

phases of MI-based analyses). These five techniques were compared based on their ability to 

recover the population-level regression coefficients of MNR and multiple linear regression 

(MLR) models in which the imputed variables are included as outcomes and predictors, 

respectively. A Monte Carlo simulation study was used to assess each method’s performance 

under well-controlled conditions with simple data-generating models. A real-data resampling 

study was also conducted to further elucidate the imputation methods’ strengths and weaknesses 

in a more ecologically valid situation with more complex population-level models. 

In this context, the following hypotheses are posed: 

1) Because MICE-MNR employs the correct distribution for the missing data, we expect 

it to produce the most accurate results—especially when imputing outcome variables. 

2) Consistent with previous findings regarding the performance of naïve rounding 

approaches, we expect RANK to produce the least accurate results. 

3) Due to its high degree of flexibility and the strong prediction performance of its 

underlying algorithm, we expect that MICE-CART will produce generally accurate 
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results but will not perform as well as MICE-MNR. 

4) Because the imputation models employed in the simulation study will be small, the 

computational limitations of GLOC should not be an issue. Thus, GLOC is expected 

to perform well in the simulation study due to its use of a saturated joint model for the 

nonresponse. 

5) Because PMM can only perform optimally with large donor pools, we expect MICE-

PMM to perform disproportionately worse (relative to the other techniques studied) 

with smaller sample sizes and larger proportions of missing data. 

6) Because we have employed discriminative analysis models, we expect the choice of 

imputation method to have a greater impact when imputing outcomes than when 

imputing predictors. 

Monte Carlo Simulation Study 

Methods 

 The Monte Carlo simulation study was used to assess the performance of the different 

imputation methods under well-controlled conditions. The techniques were evaluated based on 

how well they facilitate recovery of the true values of the regression coefficients in MNR and 

MLR models. 

Simulation parameters. Three simulation parameters were varied: total sample size (N = 

{250, 500, 1000}), proportion of missing data (PM = {0.1, 0.2, 0.3, 0.4, 0.5}), and the number of 

nominal response levels (K = {3, 5, 7, 10}). We did not consider sample sizes lower than N = 

250 because categorical data analyses tend to require large samples (Agresti, 2007). These 

factors were fully crossed with the five MI methods to produce a full-factorial design with 3(N) × 

5(PM) × 4(K) × 5(MI Method) = 300 crossed conditions.  
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Software. All of the MICE-based imputations were created with the R package mice 

(van Buuren & Groothuis-Oudshoorn, 2011). The MICE-based conditions each employed 10 

rounds of fully conditional updates. For MICE-PMM and MICE-CART, both the continuous and 

nominal missing data were imputed with the same elementary imputation method. For MICE-

MNR, however, the continuous missing data were imputed with normal-theory Bayesian 

regression. RANK was implemented with the R package Amelia II (Honaker, King, & 

Blackwell, 2011), and an adaptive ridge prior, with a maximum value of N/10, was used to 

stabilize the fitted imputation models. This prior was imposed by setting autopri = 0.1 in 

the Amelia II software (see, Honaker et al., 2011 for more details of this feature). GLOC was 

implemented with the R package mix (Schafer, 2010). For GLOC, estimates from the 

expectation-maximization algorithm were used as the starting values for the data augmentation 

algorithm. Each imputation was generated from its own Markov Chain that was run for 1000 

iterations before drawing the imputations (see Schafer, 1997, Chapter 9 for details on 

parameterizing the GLOC algorithm).  

Data generation. The population values employed in the Monte Carlo simulation were 

chosen arbitrarily. Three analysis variables were simulated for the current study: a nominal 

outcome variable Y with K response levels, a normally distributed predictor variable X ~ N(0.25, 

1.0), and a normally distributed outcome variable Z ~ N(Yζ, 1.0). These three analysis variables 

were related via two different population models that were used for data generation: 

 ( )logit ,nY X= +1 α β   (1) 

 ,Z Y= +ζ ε   (2) 

where 1n is an N-dimensional column vector of ones, α is an K-dimensional row vector of 

intercept terms, β is a K-dimensional row vector of multinomial regression coefficients, Y is an 
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N × (K – 1) matrix containing the dummy-coded representation of Y, ζ  is a (K – 1)-dimensional 

column vector of linear regression coefficients, and ε ~ N(0, 1) is an N-dimensional column 

vector of residual error terms. Each multinomial regression coefficient was set to βk = ln(2) so 

that the population-level odds of endorsing the kth level of Y, versus the reference level, doubled 

for every unit increase in X. The linear regression coefficients were specified according to the 

rule: ( / 2)k k K = −  for k = 1, 2,…, K – 1 (e.g., taking K = 5 would produce ζ = {-2, -1, 1, 2}T). 

The multinomial intercept terms were specified as an exponentially decreasing function of the 

number of response categories according to the rule: ( 1)ln(3)(1/ 2) k

k

− =  for k = 1, 2,…, K (e.g., 

taking K = 5 would produce α {1.1, 0.55, 0.27, 0.14, 0.07}). This rule was chosen to reflect a 

situation in which most participants endorse one of the initial response categories and few 

participants endorsed the higher response levels (e.g., in many elections, most people will vote 

for one of a few front-running candidates but a small subset of voters will endorse several 

additional “fringe” candidates). Given these population models, the data were simulated in a 

multi-stage process. First, the normally distributed predictor values X were used to compute the 

probabilities of each observation falling into category k as follows:     

 
( )

( )
( 1)

1

exp
| ) .

1 exp

(
k k n

n n K

k k n

k

P
x

k

x

y x
−

=

 +
= =

+  +
  (3) 

This process produced an N × K matrix P of model-implied probabilities. The nominal outcomes 

in Y were simulated by looping over the rows of P and submitted the elements of each row as a 

vector of success probabilities to the R function rmultinom. The continuous outcome Z was 

simulated by dummy coding Y to produce Y which was then plugged into Equation 2. 

 The simulated data needed to include an incomplete continuous variable in addition to the 

incomplete nominal response Y, because the ability to simultaneously treat mixed variable types 
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was a critical characteristic of the imputation methods examined in this study. We simulated a 

nuisance covariate Xcov ~ N(0, 1) to include an incomplete continuous variable during the 

missing data imputation. In order to maintain adequate experimental control, the continuous 

variables that entered the analysis models (i.e., X and Z) were left complete so that any 

contamination of the fitted model parameters could be linked directly to the imputation methods’ 

treatments of the nominal data. We also simulated a continuous auxiliary variable Xaux ~ N(0, 1) 

to act as a predictor of the nonresponse process. Each simulated dataset, therefore, contained one 

nominal variable (Y) and four continuous variables (X, Z, Xcov, Xaux). 

Missing data imposition. Missing data were imposed on Y and Xcov according to a 

missing at random (MAR) mechanism. The MAR missingness on both variables was predicted 

by Xaux according to an ordinary probit regression model by applying the following formulas 

variable-wise: 

 
( )

( ) ( )

(1)

,

(2)

,

I ;   ,   ,

I ;   ,   1 ,

aux

aux

n aux n aux x

n aux n aux x

R x x PM

x PMR x

 =   
 

 =    −
 

  (4) 

where (1)

nR  and (2)

nR  are nonresponse indicator variables that take a value of 1 when an 

observation is missing and 0 otherwise, (  ;   ,   )
auxaux XX    is the normal cumulative distribution 

function with mean 
auxX  and standard deviation 

auxX , I[ ]  is an indicator function that returns a 

1 when its argument is true and 0 otherwise, and PM is the proportion of nonresponse to 

introduce. Once (1)

nR  and (2)

nR  had been created as above, the elements of the Y for which (1)

nR = 1 

were set to missing data and elements of Xcov were set to missing where (2)

nR = 1. Thus, 

observations with low values of Xaux were missing Y data, and observations with high values of 

Xaux were missing Xcov data. 
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Outcome measures. The relative performance of the different imputation methods was 

assessed by how well they could facilitate recovering the true regression coefficients of the MNR 

model given by Equation 1 and the MLR model given by Equation 2. To quantify how well these 

regression coefficients were recovered, we employed two outcome measures: percentage relative 

bias (PRB) and confidence interval coverage (CIC): 

 

( )
1

ˆ
PRB ,

CIC ,

100

I
R

r

r

CI
=

  −
 
 
 

= 

=



   

where R indexes Monte Carlo replications,   is the true value of the parameter, ̂  is the mean of 

the estimated parameter’s R Monte Carlo replicates, and rCI  is the estimated confidence interval 

for the rth replication. For the current study, conditions with |PRB| > 10 were considered to have 

unacceptably large degrees of bias.  

Procedure. This study employed R = 500 Monte Carlo replications. Within each of these 

replications, for each number of nominal response levels K   {3, 5, 7, 10}, a complete data set 

of size N  {250, 500, 1000} was simulated. The procedure described above was then used to 

impose MAR missingness at rates of PM   {0.1, 0.2, 0.3, 0.4, 0.5}. These missing data were 

then imputed 100 times with each of the five imputation methods described above. These sets of 

imputed data were then analyzed via the models given by Equations 1 and 2, and their fitted 

regression coefficients were pooled via Rubin’s Rules (Rubin, 1987). Finally, after completing all 

500 replications, PRB and CIC values were computed for the fitted regression coefficients.    

Results 

MNR analysis models. Table 1 contains the average PRB values for the slope 

coefficients of the MNR analysis models in which the imputed factors were predicted by the 
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normally distributed predictor variable X (see Equation 2). Table 2 contains the average CIC 

rates of these coefficients. These models each produced K – 1 estimated regression slopes, so the 

values reported in Tables 1 and 2 are averages taken over these K – 1 coefficients.  

MICE-MNR, MICE-CART, RANK, and GLOC all led to models with bias levels that 

stayed mostly within the acceptable range. The only violations of this pattern occurred for PM = 

0.5 where MICE-CART tended to exhibit an unacceptably large negative bias and RANK 

exhibited a problematic degree of negative bias in conditions with many nominal response 

categories (i.e., K = 10) or with large sample sizes (i.e., N = 1000). MICE-MNR only strayed into 

the realm of unacceptable bias when N = 250, K = 10, and PM = 0.5 (i.e., the most degenerate 

condition tested). MICE-PMM stood apart as exhibiting much larger biases than the other four 

imputation methods with bias levels entering the unacceptable range in most of the conditions. 

 In terms of CIC rates, only GLOC produced CIs with coverage rates that were 

consistently close to nominal. The remaining four methods generally exhibited a trend of 

decreasing coverage rates as nonresponse rates increased. MICE-CART, MICE-PMM, and 

RANK also tended to produce lower coverage rates with increasing sample sizes. This sample 

size dependence was most pronounced for MICE-PMM which exhibited approximately nominal 

coverage rates at N = 250, but extremely underestimated coverage rates for N = 1000. After 

GLOC, RANK produced the second most stable, and appropriate, CI coverage rates.  

MLR analysis models. Table 3 contains the average PRB values for the slope 

coefficients of the MLR analysis models in which the imputed factors were dummy-coded and 

used to predict the normally distributed outcome variable Z (see Equation 3). Table 4 contains 

the average CIC rates of these coefficients. These models also produced K – 1 estimated 

regression slopes (i.e., one slope for each dummy code), so the values reported in Tables 3 and 4 

are averages taken over these K – 1 coefficients.  
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When the imputed factors entered the analysis models as dummy coded predictors, rather 

than outcomes, the patterns of bias changed considerably from those reported above. MICE-

MNR and GLOC both exhibited negligible degrees of bias across all conditions. MICE-CART 

and MICE-PMM exhibited satisfactory bias levels for K ≥ 5. MICE-CART induced less bias than 

MICE-PMM did. For K = 3 MICE-PMM led to unacceptably large levels of bias for PM ≥ 0.3 as 

did MICE-CART for PM = 0.5. Unlike its strong performance for the MNR analysis models, 

RANK was clearly the weakest method, in terms of coefficient bias, when applied in the context 

of MLR models. Although RANK led to lower bias rates than MICE-PMM for K = 3, when K ≥ 

5, RANK frequently led to unacceptably large negative biases, and the degree of this bias 

increased with rising rates of nonresponse and increasing numbers of response categories. 

In terms of CI coverage rates, GLOC again provided the strongest results, producing 

coverage rates that were near nominal for all conditions. MICE-PMM produced good coverage 

rates for N = 250, but it led to considerably deflated coverage rates when N ≥ 500 and K = 3 as 

well as when N = 1000 and PM ≥ 0.4. MICE-CART and RANK both produced unstable 

coverage rates. The coverage rates of MICE-CART presented as a nonlinear function of the 

nonresponse rate whereby increasing rates of missingness led to decreasing coverage rates up to 

PM = 0.4 with a sudden jump in coverage rates for PM = 0.5. At lower sample sizes (i.e., N ≤ 

500) RANK tended to produce CIs with inflated coverage rates, and the degree of this inflation 

became worse as the number of nominal response categories increased. Yet, for N = 1000 RANK 

produced deflated coverage rates for K ≥ 5 and PM ≥ 0.4. After GLOC, MICE-MNR produced 

the second most stable coverage rates for the MLR analysis models. MICE-MNR did lead to 

decreasing coverage rates as nonresponse rates increased, but the degree of this deflation was 

minor except under high missing data rates (i.e., PM ≥ 0.4) and many nominal response 

categories (i.e., K ≥ 7). 
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Real-Data Resampling Experiment 

Methods 

 The Monte Carlo simulation study reported above offered compelling insight into the 

relative performance of the MI methods examined in this study, but it prioritized strong 

experimental control over ecological validity. This focus on experimental control somewhat 

limits the practical generalizability of the simulation study’s findings. To address this limitation, 

we also performed a real-data resampling experiment in which a more realistic set of analysis 

models were fit to data originally collected by Wehmeyer, Palmer, Lee, Williams-Diehm, and 

Shogren (2011) and Wehmeyer, Palmer, Shogren, Williams-Diehm, and Soukup (2013) to 

evaluate the efficacy of several self-determination interventions. 

 Population data. The original data set contain data from N = 782 participants collected 

over three waves of measurement. Items collected included the Arc’s Self Determination Scale 

(Wehmeyer & Kelchner, 1995), information on post-high school employment and academic 

outcomes, and a large battery of demographic information. Full details of the original data set 

can be found in Shogren, Wehmeyer, Palmer, Rifenbark, and Little (2015). For the current study, 

five Wave 1 variables were examined: Student gender (Gender, binary), Student primary 

disability label (Disability, nominal), Student primary course of study (Course, nominal), 

Student age (Age, continuous), and Student mean self-determination score (SDS, continuous). 

This restricted data set was further subset by excluding any incomplete cases as well as factor 

levels with very low endorsement rates. This process produced a final, population data set with N 

= 535 observations of the five previously described variables. Table 5 contains the summary 

statistics of these population data. 

 Analysis models. To parallel the structure of the Monte Carlo simulation study, two 

analysis models were employed, a MNR model and a MLR model: 
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 ( ) 1 2 3 4 5 6logit SDSCour Age Autism BD LD ADHDse + + + + += +α β β β β β β , (5) 

 
1 2 3 4 5 6Gender Age Autism BD LD ADD HDS S = + + + + ++      . (6) 

Table 6 contains the parameter estimates produced by fitting these models to the full, population 

data set. 

Outcome measures. The resampling study had two limitations that drove our choice of 

outcome measure. (1) Bootstrapped estimates are correlated, so they violate the independence of 

replications assumption required to make valid Monte Carlo inferences about parameter 

variability. (2) The small “population” sample size (i.e., N = 535) limited our ability to interpret 

the absolute bias in parameter estimates, because the population estimates themselves were 

subject to large amounts of sampling error. Limitation 1 narrowed the universe of useful outcome 

measures to different types of parameter bias. Limitation 2 led us to focus our discussion on the 

relative performance of the imputation methods in lieu of scrutinizing their absolute 

performance. We, therefore, chose the raw bias in the analysis models’ regression coefficients as 

the outcome measure in the resampling study. The “population” values used to calculate bias 

were taken to be the coefficients estimated from the full, cleaned sample described above. 

 Procedure. After subsetting and cleaning the data as described above, the cleaned 

population data were resampled with replacement (i.e., bootstrapped) 500 times. Each of these 

subsamples contained Nrs = 300 observations. For each subsample, 20% MAR missingness was 

imposed using the same procedure employed in the Monte Carlo simulation study. Age acted as 

the nonresponse predictor such that younger participants were missing SDS and Disability while 

older participants were missing Gender and Course. These missing data were imputed 100 times 

with each of the five MI methods employed in the Monte Carlo simulation study.  

All software settings were equivalent between the studies with two exceptions. First, the 
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MICE-based conditions used 20 rounds of fully conditional updates in the resampling study to 

facilitate imputation model convergence with the noisy, real data. Second, due to the size of the 

contingency table and sparse cells therein, the GLOC model had to be restricted to achieve 

reliable convergence. This restricted GLOC modeled the categorical variables with a loglinear 

model that forced marginal independence between Gender, Course, and Disability and only 

allowed two-way interactions between these variables when modeling Age and SDS (see Schafer, 

1997, Chapter 9 for details on restricting GLOC). After the missing data were imputed, the 

analysis models described by Equations 5 and 6 were fit to the imputed data sets and their 

coefficients were pooled with Rubin’s Rules. 

Results 

 Figure 1 contains bar plots of the raw bias in the regression coefficients associated with 

Disability in the MNR analysis model. Figure 2 shows analogous barplots of the predictors in the 

MLR analysis model as well as Age and SDS in the MNR analysis model. These figures show 

that the patterns of performance were largely similar between the resampling and simulation 

studies. The GLOC remained a strong performer across conditions, despite the considerable 

restrictions placed on the model to facilitate convergence. When imputing the predictors of the 

MLR analysis models, MICE-MNR was also a consistently strong performer while RANK and 

MICE-PMM led to the largest biases in this context (though not every coefficient was biased). 

 When imputing the outcome of the MNR analysis models, the performance picture was 

not as clear. The coefficients associated with continuous predictors (i.e., SDS and Age) were 

sporadically biased. Each imputation method performed well for some of effects and performed 

poorly for others. No definitive pattern was discernable for the continuous predictors of the 

MNR analysis models. For the nominal predictors of the MNR analysis models (i.e., Disability), 

the GLOC was again a consistently strong performer, and MICE-MNR showed the most 
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consistently biased results. The remaining imputation methods performed similarly to one 

another, tended to produce somewhat more bias than GLOC but less than MICE-MNR, overall. 

The poor performance of MICE-MNR represented a clear difference from the results of the 

simulation study wherein MICE-MNR produced consistently unbiased results. The simulation 

study did not, however, include any categorical predictors in the MNR analysis models. So, the 

simulation study contained no condition that was directly analogous to the Disability coefficients 

in the resampling study. Future work should extend the simple models used in our simulation to 

include both continuous and categorical predictor variables to elucidate potential limitations of 

MICE-MNR with categorical predictors. 

 The large biases seen for the “BD:Life Skills” and “ADHD:Life Skills” coefficients in 

Figure 1 were caused by low cell counts (i.e., the BD × Life Skills and ADHD × Life Skills cells 

contained only one observation in the population contingency table because life skills training is 

only provided to students with significant intellectual disabilities). There is very little, if any, 

information in the observed data to suggesting plausible values for these effects, so the estimates 

are expected to be biased. MICE-MNR appears to be especially sensitive to low cell counts. This 

pattern highlights an inherent difficulty of missing data analysis with categorical data. Low 

observed cell counts are already a difficult problem for researchers who wish to employ 

categorical data analytic methods (Agresti, 2007), but compounding this sparsity with additional 

nonresponse makes the challenge substantially worse. Thus, initial data screening is that much 

more important when attempting to impute missing nominal variables. 

General Discussion 

 The results of this study make one point clear: there is no “magic bullet” technique for 

imputing incomplete nominal variables. None of the methods examined here will outperform the 

others in all circumstances, and the preferred method will differ depending on whether the 
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incomplete nominal variables enter the analysis model as outcomes or as predictors and on how 

many nominal variables enter the imputation model. Thus, few of our original hypotheses were 

unambiguously resolved. Hypothesis 1 was partially supported in that MICE-MNR consistently 

produced unbiased point estimates of regression coefficients for both MNR and MLR analysis 

models. In the simulation study, it was the second best all-around performer (after GLOC) for 

imputing nominal predictors in MLR models. Yet, MICE-MNR tended to produce substantially 

shrunken CI coverage rates when imputing the outcomes of MNR models and the resampling 

study suggested the possibility of issues when using MICE-MNR to impute categorical 

predictors of nominal outcomes. So, Hypothesis 1 was not fully supported, but MICE-MNR was 

one of the strongest performers for the MLR analysis models in the resampling study. 

 Hypothesis 2 was clearly supported for the case of imputing nominal predictors in MLR 

models where RANK led to very poor results, but the exact opposite of the hypothesized pattern 

was observed when imputing the outcomes of MNR models where RANK was the second most 

preferred method (after GLOC). An intuitive explanation of this disparity is difficult to construct, 

so future research should work to elucidate those conditions under which RANK will perform 

well and those in which it will fail.  

 Hypothesis 3 was not supported by this study. MICE-CART was one of the weakest 

performers for both MNR and MLR analysis models. Although it did produce unbiased point 

estimates of regression coefficients for most conditions, it produced very unstable confidence 

intervals with a strong tendency to undercover the true parameter values. This result is consistent 

with previous findings (e.g., Drechsler & Reiter, 2011; Reiter, 2005). 

 Hypothesis 4 was resoundingly supported, at least in terms of the simulation study’s 

results. For the simulation study, GLOC was the universally strongest performer; it produced 

unbiased regression coefficients with nominal confidence interval coverage rates in every 
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simulation condition. The GLOC was also the strongest, relative, performer in the resampling 

study. Yet, the simplistic structure of the models employed in the simulation study could be 

hiding a fatal flaw in GLOC. Previous work (e.g., Belin et al., 1999) has shown that GLOC will 

produce poor results except with very small models (i.e., those with few incomplete categorical 

variable). To achieve convergence in the resampling study, the GLOC model had to be 

substantially restricted. The data set used for the resampling study was not particularly complex 

and the contingency table describing its categorical variables was not very large. So, it seems 

likely that the types of missing data problems that applied researchers will face in their day-to-

day work could require so many restrictions on the GLOC model that the strong performance 

seen in this study is completely negated. 

 Surprisingly, Hypothesis 5 was not supported by this study. Although MICE-PMM did 

perform quite poorly for the MNR analysis models and for MLR analysis models with small 

numbers of nominal response categories, this poor performance was not differentially 

exacerbated by small samples or high nonresponse rates. Counter-intuitively, MICE-PMM was 

actually one of the strongest performers when imputing the nominal predictors of MLR models 

under small samples with high nonresponse rates. This performance could be driven by the 

simplicity of the matching algorithm PMM uses to find donor observations. This simplicity may 

mitigate the sensitivity to deflated sample sizes, especially when considering that even at the 

highest nonresponse rate and lower samples size tested here, MICE-PMM would still have a pool 

of at least N = 125 relatively homogeneous observations from which to draw donor cases. 

 Finally, Hypothesis 6 was supported. With the notable exception of RANK, all of the 

tested imputation methods had a general tendency toward stronger performance when imputing 

the predictors of MLR models than they did when imputing the outcomes of MNR models. This 

pattern was evident in both the simulation and resampling studies. 
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Practical Guidance for Applied Researchers 

 Methods that do not work. For models with simple, linear systematic components like 

the analysis models employed in this study, MICE-CART should be generally avoided. Although 

MICE-CART did lead to minimal bias, it never outperformed MICE-MNR. MICE-CART also 

produced unstable confidence interval coverage rates, particularly for MLR models. These two 

limitations suggest that MICE-MNR would be preferred to MICE-CART in any of the scenarios 

examined here. The CART algorithm is a very flexible, nonparametric modeling scheme, so 

MICE-CART might perform better in situations where its “automatic interaction detection” could 

come into play (see Borgoni & Berrington, 2013, for details on CART’s merits in this context).  

MICE-PMM should not be used to impute the outcomes of MNR models or the 

predictors of MLR models when those predictors have few nominal response levels (i.e., K < 4 

or 5). Applying MICE-PMM to either of these cases is expected to introduce large amounts of 

bias into the fitted regression coefficients and to seriously deflate confidence interval coverage 

rates. Likewise, RANK should not be used to impute the nominal predictors in MLR models, 

under any circumstances. Doing so is expected to introduce considerable bias into the fitted 

regression coefficients and to lead to very unstable CI coverage. If accurate standard errors are 

important, MICE-MNR should not be used to impute the outcomes of MNR models, but it can be 

used for this purpose when unbiased estimates of the regression coefficients are the primary 

concern and deflated standard errors are not problematic.  

 Methods that work well. GLOC was clearly the strongest performer in the simulation 

and resampling studies. It led to unbiased fitted regression coefficients whose CIs consistently 

achieved nominal coverage rates for both MNR and MLR analysis models. Even though GLOC 

is known to be highly sensitive to imputation model complexity, the very strong performance in 

our studies suggests that it may be worth considering if convergence can be achieved without 
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placing unrealistic constraints on the model. 

MICE-MNR led to unbiased regression coefficients in both MNR and MLR analysis 

models. Due to this lack of bias and the good CI coverage rates for low to moderate missing data 

rates (i.e., PM < 0.4), MICE-MNR is generally recommended for use when imputing the nominal 

predictors of MLR models. MICE-MNR can also be recommended when the incomplete nominal 

variables enter the analysis model as outcomes and deflated standard errors are not a concern 

(e.g., when hypothesis test are conducted via nested model Δχ2 tests).  The resampling study did 

suggest the possibility of issues when using MICE-MNR to imputed nominal predictors in MNR 

analysis models. Our results do not provide enough information to make firm recommendations 

in this context, but researchers are encouraged to proceed with caution until future studies can 

more fully elucidate these potential problems.  

When fitting such MNR models in situations where accurate standard error estimates are 

required, RANK is recommended over MICE-MNR. RANK induced minimal bias in the 

regression coefficients of the MNR analysis models, and it produced the second best confidence 

interval coverage rates after GLOC. Although RANK may lead to shrunken confidence intervals 

with large sample sizes (i.e., N ≥ 1000), it still represents the best all-around performer when 

imputing the outcome of a MNR model. 

 Finally, MICE-PMM can fill a niche role when imputing the nominal predictors of a 

MLR model. When the predictors had a relatively large number of categories (i.e., K ≥ 5) MICE-

PMM performed well, and it maintained better confidence interval coverage rates than MICE-

MNR under high missing data rates, particularly when sample sizes were small to moderate (i.e., 

N ≤ 500). Thus, MICE-PMM may be preferred to MICE-MNR when the number of nominal 

response levels is large and the proportion of missing data is high. This finding is comforting 

because such circumstances will often cause convergence difficulties for MICE-MNR. 
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Limitations & Future Directions 

 The results of this study offer clear practical guidance, but this guidance must be 

interpreted in light of certain study limitations. From the standpoint of advising applied 

researchers, the largest limitation of the simulation study was the small number of variables 

included in the analysis models. By including the real-data resampling experiment, we have 

made progress towards addressing this shortcoming in the simulation study, but the results of the 

resampling study are not as generalizable as those from a full-fledged Monte Carlo simulation 

would be. Without independent replications and the ability to control the population 

characteristics, the resampling study can only offer supporting evidence to reinforce the findings 

of the simulation study (which it clearly did), but future work would benefit from exploring more 

complex data structures within a proper Monte Carlo simulation framework. Some key 

complications that should be included in future Monte Carlo simulations include: (1) 

incorporating categorical predictors in the analysis models, (2) examining mixes of continuous, 

nominal, and ordinal variables, (3) including more variables in the imputation and analysis 

models, and (4) examining a wider range of sample sizes. 
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Table 1 

Percentage Relative Bias for the Multinomial Logistic Regression Slope Coefficients (Averaged 

Over K – 1 Coefficients) 

K PM 

N = 250 N = 500 N = 1000 

MNR CART PMM RANK GLOC MNR CART PMM RANK GLOC MNR CART PMM RANK GLOC 

3 0.1 0.56 -0.54 -2.12 -0.95 0.42 0.30 -0.60 -2.63 -1.42 0.16 -0.10 -0.70 -3.05 -1.87 -0.21 

3 0.2 0.39 -1.63 -4.55 -2.51 0.15 -0.07 -1.80 -5.35 -3.27 -0.33 -0.24 -1.94 -5.76 -3.62 -0.42 

3 0.3 0.35 -3.03 -6.60 -3.43 0.25 0.01 -2.72 -7.55 -4.49 -0.29 -0.33 -2.71 -8.10 -5.21 -0.54 

3 0.4 0.29 -3.74 -8.20 -3.95 0.78 -0.09 -3.26 -9.43 -5.54 -0.18 -0.46 -3.71 -10.19 -6.48 -0.58 

3 0.5 -3.56 -9.84 -11.78 -6.02 -1.68 -2.14 -11.54 -11.99 -7.37 -1.88 -1.41 -13.45 -12.20 -8.12 -1.77 

5 0.1 2.65 0.07 -3.14 0.00 2.02 1.24 -0.60 -4.29 -1.23 0.88 0.67 -1.01 -4.84 -1.78 0.49 

5 0.2 2.02 -2.74 -8.69 -3.03 0.64 1.19 -2.47 -9.36 -3.67 0.45 0.81 -2.17 -9.64 -3.99 0.32 

5 0.3 2.34 -5.75 -12.91 -4.97 0.27 1.49 -4.19 -13.68 -5.72 0.24 0.81 -3.99 -14.08 -6.26 -0.03 

5 0.4 2.12 -9.74 -16.83 -7.42 -0.90 1.36 -7.38 -17.65 -8.00 -0.31 0.74 -6.32 -18.05 -8.42 -0.23 

5 0.5 2.87 -13.70 -19.73 -8.88 -1.36 1.48 -14.01 -20.79 -9.82 -1.09 0.89 -15.02 -21.56 -10.30 -0.66 

7 0.1 2.17 -0.32 -3.95 -0.52 1.35 1.37 -0.75 -4.76 -1.41 0.84 0.75 -0.66 -5.21 -1.94 0.50 

7 0.2 2.98 -2.33 -9.08 -2.32 1.33 2.08 -2.13 -9.78 -3.42 1.10 1.11 -2.14 -10.28 -4.24 0.62 

7 0.3 4.06 -4.17 -13.91 -4.48 1.22 2.80 -3.55 -14.26 -5.44 1.28 1.34 -3.73 -15.04 -6.66 0.51 

7 0.4 5.14 -7.22 -18.23 -6.18 1.16 3.11 -6.27 -18.87 -7.69 0.83 1.56 -5.84 -19.46 -8.99 0.28 

7 0.5 6.84 -11.97 -22.58 -8.17 1.74 3.58 -12.43 -22.97 -9.77 0.63 1.40 -13.16 -23.63 -11.31 -0.26 

10 0.1 5.07 2.59 -1.80 1.65 4.18 2.42 0.25 -3.81 -0.71 1.92 1.78 0.23 -4.41 -1.37 1.46 

10 0.2 6.51 1.29 -7.14 -0.62 4.42 3.15 -1.04 -9.08 -3.00 2.03 2.30 -0.96 -9.54 -3.72 1.71 

10 0.3 8.01 -1.19 -12.10 -2.94 4.58 3.46 -2.95 -14.29 -5.87 1.79 2.64 -2.80 -14.71 -6.41 1.61 

10 0.4 8.74 -4.39 -17.74 -4.79 3.61 3.54 -6.65 -19.30 -8.60 1.04 2.62 -4.57 -19.40 -9.26 1.12 

10 0.5 10.28 -10.90 -22.90 -7.89 1.85 3.58 -11.69 -23.86 -11.49 -0.15 2.44 -11.33 -23.93 -12.24 0.27 

Note: K = Number of multinomial response categories, PM = proportion of missing data, MNR = 

MICE-MNR imputation, CART = MICE-CART imputation, PMM = MICE-PMM imputation, 

RANK = Allison (2002) ranking approach, GLOC = general location model imputation. Bold-

faced entries exceed the threshold of unacceptably large bias (i.e.,| PRB| > 10). 
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Table 2 

Confidence Interval Coverage for the Multinomial Logistic Regression Slope Coefficients 

(Averaged Over K – 1 Coefficients) 

K PM 

N = 250 N = 500 N = 1000 

MNR CART PMM RANK GLOC MNR CART PMM RANK GLOC MNR CART PMM RANK GLOC 

3 0.1 0.945 0.935 0.948 0.949 0.951 0.939 0.926 0.933 0.945 0.943 0.941 0.920 0.928 0.937 0.945 

3 0.2 0.933 0.921 0.940 0.953 0.949 0.941 0.927 0.911 0.948 0.951 0.937 0.911 0.884 0.935 0.951 

3 0.3 0.931 0.913 0.936 0.955 0.957 0.923 0.903 0.885 0.949 0.958 0.917 0.881 0.808 0.914 0.953 

3 0.4 0.891 0.901 0.925 0.946 0.951 0.905 0.907 0.874 0.936 0.961 0.890 0.891 0.747 0.909 0.950 

3 0.5 0.873 0.926 0.923 0.944 0.939 0.859 0.919 0.849 0.921 0.950 0.855 0.909 0.706 0.869 0.947 

5 0.1 0.952 0.957 0.965 0.957 0.953 0.948 0.946 0.953 0.955 0.950 0.949 0.941 0.942 0.953 0.951 

5 0.2 0.947 0.945 0.956 0.958 0.955 0.940 0.937 0.934 0.956 0.953 0.936 0.917 0.878 0.944 0.946 

5 0.3 0.924 0.932 0.948 0.956 0.951 0.923 0.924 0.898 0.945 0.952 0.924 0.907 0.779 0.933 0.944 

5 0.4 0.910 0.926 0.936 0.957 0.955 0.909 0.910 0.838 0.945 0.953 0.898 0.892 0.637 0.914 0.948 

5 0.5 0.905 0.939 0.928 0.956 0.950 0.895 0.916 0.779 0.939 0.952 0.876 0.880 0.512 0.886 0.945 

7 0.1 0.945 0.947 0.955 0.954 0.949 0.944 0.945 0.956 0.957 0.948 0.952 0.953 0.953 0.961 0.957 

7 0.2 0.936 0.942 0.955 0.953 0.947 0.938 0.935 0.941 0.955 0.947 0.943 0.937 0.915 0.953 0.948 

7 0.3 0.929 0.935 0.952 0.957 0.949 0.931 0.931 0.927 0.955 0.949 0.931 0.917 0.846 0.946 0.952 

7 0.4 0.922 0.933 0.949 0.958 0.951 0.913 0.923 0.901 0.951 0.952 0.921 0.915 0.723 0.931 0.951 

7 0.5 0.902 0.938 0.940 0.957 0.939 0.901 0.930 0.854 0.949 0.955 0.898 0.909 0.584 0.912 0.949 

10 0.1 0.935 0.941 0.958 0.949 0.939 0.944 0.941 0.959 0.955 0.947 0.945 0.947 0.958 0.955 0.950 

10 0.2 0.929 0.938 0.963 0.956 0.944 0.940 0.945 0.960 0.959 0.949 0.940 0.941 0.946 0.960 0.951 

10 0.3 0.918 0.940 0.966 0.959 0.943 0.932 0.943 0.949 0.964 0.952 0.932 0.933 0.895 0.954 0.951 

10 0.4 0.911 0.941 0.965 0.964 0.946 0.919 0.936 0.932 0.962 0.951 0.922 0.931 0.835 0.945 0.952 

10 0.5 0.908 0.949 0.959 0.965 0.940 0.908 0.948 0.909 0.955 0.949 0.912 0.943 0.731 0.936 0.953 

Note: K = Number of multinomial response categories, PM = proportion of missing data, MNR = 

MICE-MNR imputation, CART = MICE-CART imputation, PMM = MICE-PMM imputation, 

RANK = Allison (2002) ranking approach, GLOC = general location model imputation. Bold-

faced entries have CI coverage rates lower than 92%. 
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Table 3 

Percentage Relative Bias for the Multiple Linear Regression Slope Coefficients (Averaged Over 

K – 1 Coefficients) 

K PM 

N = 250 N = 500 N = 1000 

MNR CART PMM RANK GLOC MNR CART PMM RANK GLOC MNR CART PMM RANK GLOC 

3 0.1 0.33 -0.42 -3.69 -1.99 -0.09 -0.56 -1.08 -4.28 -2.90 -0.78 -0.33 -1.03 -3.95 -2.67 -0.43 

3 0.2 0.47 -0.53 -7.63 -4.25 -0.36 -0.47 -1.38 -7.82 -5.05 -0.91 -0.23 -1.62 -7.48 -4.90 -0.49 

3 0.3 -0.02 -2.57 -12.31 -6.91 -1.45 -0.61 -2.29 -11.89 -7.49 -1.40 -0.35 -2.55 -11.35 -7.31 -0.79 

3 0.4 0.37 -2.61 -16.92 -8.83 -1.75 -0.68 -4.43 -16.26 -9.88 -1.83 -0.25 -3.74 -15.27 -9.49 -0.90 

3 0.5 -0.26 -13.22 -25.59 -10.66 -3.93 -1.09 -14.67 -24.31 -12.00 -3.21 -0.32 -15.74 -22.57 -11.57 -1.51 

5 0.1 -0.89 -1.00 -1.67 -3.91 -0.92 -0.51 -0.55 -1.17 -3.65 -0.53 -0.26 -0.23 -0.81 -3.51 -0.27 

5 0.2 -0.63 -0.83 -2.33 -6.75 -0.71 -0.43 -0.32 -1.71 -6.77 -0.40 -0.05 0.25 -1.19 -6.57 -0.03 

5 0.3 -0.87 -0.93 -3.53 -9.83 -0.83 -0.60 -0.19 -2.58 -9.94 -0.52 -0.20 -0.06 -2.00 -9.95 -0.14 

5 0.4 -1.44 -2.22 -5.28 -12.98 -1.14 -0.94 -1.23 -3.79 -13.22 -0.69 -0.34 -0.56 -2.88 -13.19 -0.25 

5 0.5 -2.39 -5.90 -9.19 -15.95 -1.00 -1.32 -4.31 -6.66 -16.27 -0.21 -0.47 -3.49 -5.11 -16.34 0.07 

7 0.1 0.36 0.52 0.13 -2.88 0.52 -0.15 -0.10 -0.33 -3.55 -0.06 -0.21 -0.13 -0.44 -3.73 -0.19 

7 0.2 0.31 0.70 -0.08 -6.06 0.75 -0.10 0.07 -0.52 -6.83 0.08 -0.19 -0.13 -0.67 -7.18 -0.10 

7 0.3 -0.34 0.31 -0.91 -9.63 0.53 -0.36 -0.03 -0.93 -10.34 0.08 -0.42 -0.20 -1.04 -10.80 -0.21 

7 0.4 -1.00 0.30 -1.68 -12.62 0.67 -0.42 0.35 -1.24 -13.56 0.37 -0.55 -0.17 -1.34 -14.32 -0.19 

7 0.5 -2.77 -1.79 -4.04 -16.16 0.66 -1.17 -0.96 -2.47 -16.98 0.50 -0.90 -0.31 -2.15 -17.89 -0.04 

10 0.1 -0.09 0.00 -0.01 -3.51 0.18 0.05 0.11 0.05 -3.61 0.18 0.03 0.09 0.00 -3.76 0.10 

10 0.2 -0.47 0.06 -0.14 -7.02 0.22 -0.12 0.13 0.02 -7.28 0.22 -0.05 0.09 -0.05 -7.55 0.14 

10 0.3 -1.04 -0.20 -0.36 -10.46 0.19 -0.45 0.02 -0.16 -11.00 0.19 -0.29 -0.02 -0.17 -11.42 0.10 

10 0.4 -2.21 -0.57 -0.79 -13.78 0.20 -0.91 -0.12 -0.41 -14.64 0.21 -0.44 0.07 -0.25 -15.13 0.18 

10 0.5 -4.48 -1.19 -1.21 -16.89 0.09 -2.05 -0.80 -0.64 -18.12 0.32 -1.03 -0.36 -0.37 -18.91 0.23 

Note: K = Number of multinomial response categories, PM = proportion of missing data, MNR = 

MICE-MNR imputation, CART = MICE-CART imputation, PMM = MICE-PMM imputation, 

RANK = Allison (2002) ranking approach, GLOC = general location model imputation. Bold-

faced entries exceed the threshold of unacceptably large bias (i.e., |PRB| > 10). 
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Table 4 

Confidence Interval Coverage for the Multiple Linear Regression Slope Coefficients (Averaged 

Over K – 1 Coefficients) 

K PM 

N = 250 N = 500 N = 1000 

MNR CART PMM RANK GLOC MNR CART PMM RANK GLOC MNR CART PMM RANK GLOC 

3 0.1 0.952 0.958 0.962 0.968 0.957 0.952 0.944 0.955 0.962 0.953 0.938 0.933 0.935 0.950 0.938 

3 0.2 0.952 0.952 0.952 0.972 0.961 0.954 0.937 0.947 0.970 0.958 0.938 0.901 0.896 0.957 0.946 

3 0.3 0.937 0.924 0.940 0.961 0.950 0.941 0.916 0.916 0.969 0.947 0.926 0.891 0.856 0.961 0.939 

3 0.4 0.924 0.919 0.923 0.975 0.956 0.938 0.913 0.864 0.972 0.958 0.926 0.895 0.767 0.958 0.948 

3 0.5 0.930 0.969 0.931 0.979 0.960 0.939 0.977 0.850 0.977 0.961 0.926 0.980 0.709 0.952 0.956 

5 0.1 0.951 0.954 0.954 0.971 0.954 0.950 0.950 0.953 0.963 0.953 0.950 0.945 0.951 0.960 0.952 

5 0.2 0.948 0.941 0.954 0.977 0.958 0.952 0.946 0.948 0.967 0.959 0.942 0.929 0.942 0.951 0.952 

5 0.3 0.940 0.938 0.947 0.975 0.956 0.948 0.932 0.940 0.963 0.959 0.939 0.917 0.926 0.939 0.954 

5 0.4 0.930 0.920 0.942 0.977 0.959 0.926 0.918 0.924 0.951 0.955 0.934 0.911 0.903 0.923 0.954 

5 0.5 0.923 0.947 0.946 0.979 0.961 0.920 0.971 0.913 0.945 0.957 0.926 0.984 0.895 0.895 0.964 

7 0.1 0.949 0.947 0.957 0.975 0.950 0.936 0.936 0.941 0.965 0.938 0.953 0.947 0.951 0.962 0.956 

7 0.2 0.946 0.943 0.954 0.982 0.951 0.928 0.922 0.936 0.969 0.940 0.945 0.933 0.936 0.952 0.950 

7 0.3 0.933 0.929 0.947 0.984 0.952 0.927 0.917 0.932 0.967 0.940 0.933 0.915 0.923 0.924 0.949 

7 0.4 0.918 0.909 0.939 0.980 0.948 0.917 0.915 0.928 0.956 0.941 0.922 0.911 0.907 0.889 0.953 

7 0.5 0.915 0.934 0.943 0.978 0.948 0.897 0.948 0.922 0.945 0.948 0.907 0.970 0.896 0.849 0.942 

10 0.1 0.957 0.949 0.958 0.991 0.957 0.947 0.945 0.951 0.987 0.949 0.952 0.941 0.950 0.982 0.951 

10 0.2 0.949 0.940 0.952 0.997 0.953 0.949 0.940 0.956 0.989 0.956 0.947 0.933 0.949 0.966 0.954 

10 0.3 0.945 0.938 0.949 0.997 0.952 0.943 0.931 0.945 0.983 0.957 0.944 0.918 0.945 0.935 0.955 

10 0.4 0.931 0.916 0.939 0.990 0.949 0.929 0.929 0.938 0.975 0.954 0.928 0.914 0.929 0.894 0.954 

10 0.5 0.942 0.936 0.942 0.993 0.949 0.921 0.960 0.934 0.963 0.956 0.915 0.975 0.919 0.857 0.953 

Note: K = Number of multinomial response categories, PM = proportion of missing data, MNR = 

MICE-MNR imputation, CART = MICE-CART imputation, PMM = MICE-PMM imputation, 

RANK = Allison (2002) ranking approach, GLOC = general location model imputation. Bold-

faced entries have CI coverage rates lower than 92%, and shaded entries have CI coverage rates 

higher than 98%. 
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Table 5 

Summary Statistics of Population Data for Real-Data Resampling Experiment 

Categorical Variables 

Variable Level Count Proportion 

Gender 
Male 324 0.61 

Female 211 0.39 

Disability 

ID 185 0.35 

Autism 35 0.07 

BD 56 0.10 

LD 229 0.43 

ADHD 30 0.06 

Course 

Vocational 221 0.41 

College Prep 119 0.22 

Life Skills 109 0.20 

General Diploma 86 0.16 

Continuous Variables 

Variable Mean SD 

SDS 2.64 0.55 

Age 16.98 1.41 

Note: ID = Intellectual disability, BD = Behavioral disturbance, LD = Learning disability, ADHD 

= Attention deficit hyperactivity disorder, SDS = Self-determination scale 
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Table 6 

Parameter estimates produced by fitting the real-data resampling study’s analysis models to the 

population data 

Effect Coefficient SE 

Multiple Linear Regression 

Intercept 2.1 0.32 

Autism -0.16 0.1 

BD 0.21 0.08 

LD 0.25 0.06 

ADHD 0.33 0.11 

Gender 0.12 0.05 

Age 0.02 0.02 

Multinomial Logistic Regression 

Intercept: Vocational -0.1 1.92 

Intercept: College Prep 10.93 2.61 

Intercept: Life Skills -4.02 2.19 

SDS: Vocational -0.32 0.25 

SDS: College Prep 0.23 0.3 

SDS: Life Skills -0.74 0.3 

Age: Vocational 0.1 0.11 

Age: College Prep -0.76 0.15 

Age: Life Skills 0.4 0.12 

Autism: Vocational -0.25 0.53 

Autism: College Prep 1.38 0.68 

Autism: Life Skills -1.43 0.6 

BD: Vocational 0.3 0.45 

BD: College Prep 1.42 0.56 

BD: Life Skills -2.99 1.08 

LD: Vocational 0.54 0.31 

LD: College Prep 1.42 0.45 

LD: Life Skills -1.74 0.42 

ADHD: Vocational -0.34 0.6 

ADHD: College Prep 1.62 0.64 

ADHD: Life Skills -2.41 1.12 
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Figure 1 

Bias in Disability coefficients in the real-data resampling experiment’s multinomial logistic 

regression model 
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Figure 2 

Bias in the coefficients of SDS and Age in the real-data resampling experiment’s multinomial 

logistic regression model and in all predictors of the multiple linear regression analysis model 

 


