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Abstract 

We review a number of issues regarding missing data treatments for intervention and prevention 

science researchers. Many of the common practices in prevention science research are, in fact, 

ill-advised. The principled missing data treatments that we discuss are couched in terms of how 

they improve causal and statistical inference in the prevention sciences. Our recommendations 

are firmly grounded in missing data theory and well-validated statistical principles for handling 

the missing data issues that are ubiquitous in biosocial and prevention science research. 
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Principled Missing Data Treatments 

Missing data are a common problem for prevention science research, and improperly 

handling missing data can severely compromise the validity of a study’s inferences. The 

situation, however, is not as bleak as it may seem at the outset. Though not trivial, the task of 

missing data analysis is a ubiquitous data pre-processing step for which many powerful methods 

have been developed (e.g., multiple imputation [MI] – Rubin, 1978, 1987; the expectation 

maximization [EM] algorithm – Dempster, Laird, & Rubin, 1977; full information maximum 

likelihood [FIML] – Anderson, 1957; and multiple imputation with chained equations [MICE] – 

Raghunathan, Lepkowski, Van Hoewyk, & Solenberger, 2001; van Buuren, Brand, Groothuis-

Oudshoorn, & Rubin, 2006). When applied correctly, these principled approaches to missing 

data treatment can help recover the underlying inferential model even in the presence of high 

rates of nonresponse (Little, Lang, Wu, & Rhemtulla, in press) and maximize a study’s validity. 

We review current best practice in missing data analysis, with a specific focus on 

applications in the prevention sciences. Treating missing data correctly is not only necessary to 

ensure the validity of scientific research but is also an ethical obligation of all research scientists. 

Improperly handling nonresponse can substantially compromise a study’s inferential 

conclusions, and we suggest that doing so is an egregious form of data misrepresentation. The 

methods we discuss below are easily implemented and well suited to the types of analysis that 

are common in prevention science research, and they perform very well in those circumstances 

(Enders, 2010; Graham, 2012). The techniques we recommend will optimize the veracity of 

inferences in terms of four important quantities: bias, efficiency, validity, and statistical power.  

In the following, we highlight some important characteristics of applied missing data 

problems and introduce the two flagship methods of modern missing data analysis, namely, 
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explicit model-based multiple imputation (MI) and full information maximum likelihood (FIML) 

estimation. We will emphasize the superiority of these modern methods by contrasting them with 

four less optimal (yet still commonly employed) approaches: deletion-based techniques, single 

imputation methods, last observation carried forward, and nonresponse weighting.  

Important Considerations for Missing Data Analyses 

There are several critical characteristics of a missing data problem that must be 

considered before the missing data themselves can be addressed. In order to ground our 

recommendations firmly in missing data theory, we will first discuss those problem components 

that will play the largest role in the design and execution of applied missing data analyses. 

Nonresponse Pattern. One of the most basic features of a missing data problem is its 

nonresponse pattern, which simply refers to the spatial arrangement of the empty cells in an 

incomplete data set. The simplest, and easiest to fix, of these patterns is univariate nonresponse 

in which missingness occurs on only one variable. A second nonresponse pattern is the so-called 

monotone nonresponse pattern, which is characterized by a monotonic decrease in the 

completeness of the variables when moving from one side of a rectangular data set to the other. 

Such patterns are common in longitudinal research where they arise from attrition (i.e., 

participants permanently dropping out of the study). The final, and most common, nonresponse 

pattern is arbitrary nonresponse, which occurs when cells of the data set go missing in arbitrary, 

apparently random, arrangements—though this evident randomness is rarely truly random, as we 

discuss below. In our experience, this pattern is, by far, the most common in real-world missing 

data problems, where it can be readily treated with modern, principled missing data tools. 

There is an alternative, binary, classification of nonresponse that can also help guide the 

decisions underlying a missing data analysis. This classification, which originated in the 
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literature on sample surveys, differentiates between item nonresponse and unit nonresponse. Unit 

nonresponse occurs when an entire observational unit (e.g., a patient in a clinical trial, a 

designated respondent in a sample survey study) fails to give any data. Thus, unit nonresponse 

leads to entire rows of rectangular data sets being missing. Item nonresponse, on the other hand, 

occurs when individual cells in a data set are empty, but each row contains at least one observed 

data element. Unit nonresponse is actually a degenerate special case of monotone missingness, 

while item nonresponse subsumes the typical presentations of univariate, monotone, and 

arbitrary missingness. Item nonresponse is much more common than unit nonresponse in the 

experimental and quasi-experimental designs that are typical for prevention science research. 

Nonresponse Mechanism. One of the most important issues to consider when planning a 

missing data analysis is the underlying reason that the data are incomplete, that is, the 

nonresponse mechanism. In the real world, nothing happens without a cause, and missing data 

are no exception. Every missing datum is unobserved for a specific reason, and the nonresponse 

mechanism is a model of this reason. There are three such mechanisms: missing at random 

(MAR), missing completely at random (MCAR), and missing not at random (MNAR). Each 

mechanism is defined according to a specific pattern of predictive relationships between the 

observed data and the probability of nonresponse.  

MAR is the most general (and probably most common) nonresponse mechanism. Missing 

data that arise via a MAR process are predictable from other variables on the data set. Thus, for 

MAR missingness, the probability of nonresponse can be modeled by a standard logistic 

regression. MCAR missingness is actually a special case of MAR missingness that occurs when 

the nonresponse is a purely random sample of the complete data. In this sense, the probability 

that an individual cell in the complete data set is missing can be modeled as an independent 
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Bernoulli trial. The final nonresponse mechanism, MNAR, is the least desirable situation to 

encounter in practice. MNAR missingness occurs when the probability of nonresponse is 

predictable only by the incomplete variable itself. This case is nearly impossible to treat well 

because the missing values have no observed predictors on the data set, so the observed data 

cannot provide any information about the characteristics of the missing data’s distribution. If the 

researchers plan for the inevitable missing data, however, correlates of the missingness 

mechanism can be proactively included in a study protocol. These correlates can often bring an 

otherwise MNAR mechanism back into the realm of a MAR mechanism. 

Neither MCAR nor MNAR missing data have any observed predictors on the data set, so 

it is impossible to distinguish between the two mechanisms analytically. This similarity between 

the MNAR and MCAR mechanisms motivates a further refinement of the MNAR case. Enders 

(2010) distinguishes between direct and indirect MNAR mechanisms. Direct MNAR occurs as 

described above: the participants’ levels of the incomplete variable are directly keeping them 

from responding. The indirect MNAR case, on the other hand, is actually a corrupted MCAR 

mechanism that arises from the proverbial third variable problem. Under indirect MNAR, there 

is no true relationship between the incomplete variable and the propensity to respond, but both of 

these are related to an unmeasured third variable that induces a spurious association that 

manifests as an MNAR process. 

Although various inferential tests are available and can be easily implemented to examine 

the missing-data mechanisms, we strongly caution against placing too much trust in them. The 

very nature of the three different nonresponse mechanisms makes it impossible to isolate a single 

causal agent for any given missing data problem. One strategy that is often recommended entails 

using logistic regression to predict each binary nonresponse indicator from all of the observed 
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variables. One might naively conclude that finding any significant predictive relationships would 

indicate a MAR mechanism while finding none would indicate an MCAR mechanism, but this 

conclusion would be erroneous. While finding significant predictors does rule out a totally 

MCAR process, it does not fully support a conclusion of MAR because one can never be sure 

that all (or even the most important subset) of the predictors of nonresponse have been measured. 

Therefore, this approach can never fully differentiate between MAR and MNAR. If this test finds 

no significant predictors, the conclusions are no more certain. Although the MAR case is now 

ruled out (assuming adequate power for the logistic regression), there is no way to differentiate 

between MCAR and MNAR. The only way to achieve a definitive test of the nonresponse 

mechanism would be to know the true distribution of the complete data (both the missing and 

observed components) which can never occur in practice.  

MCAR and MAR are ignorable mechanisms because their effects on bias, validity, 

precision, and power can be mitigated by techniques that do not require an explicit model for the 

nonresponse process (i.e., properly employed MI or FIML). MNAR, on the other hand, is 

nonignorable because it will lead to biased results unless the missing data analysis incorporates 

an explicit, and correct, model for the nonresponse process or additional variables are introduced 

that correlate strongly enough with the MNAR process to transform it into a MAR process. Here, 

planning for missing data would involve measuring potential correlates of MNAR missingness to 

approximate the MAR process and thereby reduce bias and increase validity. 

Nonresponse Rate and Fraction of Missing Information. Another characteristic that 

must be accounted for when planning a missing data analysis is the actual nonresponse rate. That 

is, exactly how much of the anticipated sample size has been lost to missing data? There are 

several ways to quantify the nonresponse rate for any given missing data problem. The simplest 
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of these measures is the percentage of missing data (or percent missing), which is the percentage 

of the total cells in a data set that are missing. Percent missing is an important early screening 

measure that gives a rough idea of the severity of the missing data problem and is critical to 

approximating the expected fraction of missing information. Thus, it is always one of the first 

quantities to be calculated during a missing data analysis. Yet, percent missing, alone, gives little 

information on how well the missing data treatment will perform or how the missing data model 

should be parameterized, because the raw percent missing does not take into account how well 

the observed data can help recover the missing values. Another simple measure of nonresponse 

rate is the so-called covariance coverage. The covariance coverage simply gives the proportion 

of observations that are available to estimate each pairwise relationship. Scrutinizing the 

covariance coverage is important because low coverage values indicate that the observed data 

offer little information to help the estimation process. So, relationships with low coverage values 

will tend to be poorly recovered by most missing data treatments. 

The most important measure of nonresponse rate is the fraction of missing information 

(FMI). The FMI quantifies the amount of a parameter’s information that is lost to nonresponse. 

Because information and variance are inversely proportional quantities, the FMI also quantifies 

the increase in a parameter’s sampling variability due to the missing data (Rubin, 1987). In this 

sense, the FMI can be viewed as analogous to an R2 statistic for the missing data (Enders, 2010). 

The FMI underlies many important components of a missing data analysis, including statistical 

power lost to nonresponse (Savalei & Rhemtulla, 2012), the convergence rates of missing data 

algorithms (Schafer, 1997), and the number of imputations required when using multiple 

imputation (Graham, Olchowski, & Gilreath, 2007). 

Although the FMI can be readily estimated as a byproduct of both MI- and FIML-based 
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missing data analyses, it can only be approximated before the analysis is complete. The 

maximum value for the FMI of univariate quantities (e.g., means and variances of incomplete 

variables) is the proportion of missing data (i.e., percent missing/100). The FMI will achieve this 

upper bound only when the missing data follow an MCAR or MNAR mechanism (so that the 

propensity to respond has no measured predictors) and the incomplete variables themselves have 

no correlations with other variables on the data set (so that they cannot borrow proxy information 

from these covariates). To the extent that either the response propensity or the incomplete 

variables themselves are predictable from other measured variables, the FMI will be lower than 

the proportion of missing data. Likewise, the maximum value for the FMI of bivariate quantities 

(i.e., covariances between two incomplete variables) is two times the proportion of missing data. 

Although it is possible for the FMI to be higher than the percent missing, in real-world missing 

data problems it is common for the FMI to be equal to or less that the percent missing, especially 

when the missing data follow a well predicted MAR process (Enders, 2010). 

There are two commonly reported measures of nonresponse rate that we feel are 

misapplied so often that they tend to do more harm than good: proportion of complete cases and 

attrition rate. These metrics are problematic because they encourage researchers and research 

consumers to view missing data problems (and missing data treatments) from an inappropriate 

perspective. Of these two metrics, the attrition rate is the more useful measure. The attrition rate 

only applies to longitudinal data and simply quantifies the proportion of participants who 

permanently “drop out” of the study at each measurement wave. Reporting attrition rates is a 

necessary part of conducting transparent science, but the raw attrition rate should play almost no 

part in the data analytic decisions. Studies suffering from attrition will also tend to have low 

coverage values and high percent missing and FMI values; these latter quantities should be 



PRINCIPLED MISSING DATA TREATMENTS                                                                       10 

consulted when designing the missing data treatment. 

The proportion of complete cases is an insidious measure that we strongly recommend 

against using. It simply gives the proportion of observations that contain no missing data. This 

measure is problematic for a number of reasons, not the least of which is that it makes nearly all 

missing data problems appear much more severe than necessary. We have encountered a number 

of real-world missing data problems where the proportions of complete cases were nearly zero, 

but the final, principled, missing data treatments were entirely successful. Another major reason 

to avoid this measure is that the information it offers is only applicable to listwise deletion, 

which should never be used in practice.  

Antiquated Missing Data Treatments 

In order to highlight the relative strengths of modern missing data treatments, we describe 

several antiquated ad hoc approaches that, unfortunately, remain common in the literature. 

Deletion-Based Techniques. Missing data theorists have long decried deletion-based 

techniques as some of the worst options for treating missing data (Wilkenson & Task Force on 

Statistical Inference, 1999). Unfortunately, they still remain common in many scientific studies 

(Bodner, 2006; Little, Jorgenson, Lang, & Moore, 2013). Deletion-based techniques come in two 

flavors, listwise deletion (or complete case analysis) and pairwise deletion (or available case 

analysis). Listwise deletion is the more insidious of the two since it (1) leaves nonresponse bias 

unaddressed and thus leads to biased statistical inferences unless the data are MCAR (Little & 

Rubin, 2002), and (2) can lead to a substantial loss of power since a large proportion of the 

sampled units will tend to be discarded (Enders, 2010). Pairwise deletion will not necessarily 

increase bias in inferences, but it can lead to sufficient statistics with inconsistent degrees of 

freedom. This inconsistency can produce estimated correlations outside of the interval [-1, 1] and 
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sample covariance matrices that are not positive definite (Little & Rubin, 2002). Neither deletion 

approach attempts to remedy a MAR process.  

Single Imputation Techniques. Single imputation techniques will usually lead to very 

poor results, and they are not candidates for general-purpose missing data treatments. There are 

three commonly employed types of single imputation: unconditional mean substitution, 

conditional mean substitution (i.e., deterministic regression imputation), and stochastic 

regression imputation. Unconditional mean substitution can introduce high levels of bias in the 

final parameter estimates by pulling the distribution of the imputed data toward the mean of the 

observed data (van Buuren, 2012). Deterministic regression imputation will underestimate the 

variance of the imputed items and inflate linear associations involving imputed variables because 

the imputed values fall directly on the regression surface (Enders, 2010). Finally, stochastic 

regression imputation can lead to inflated Type I error rates because it does not adequately 

quantify the uncertainty introduced by the missing data (Rubin, 1987). Stochastic regression 

imputation does incorporate random error into the imputed values themselves, but it treats the 

imputation model as fixed. To achieve proper imputations in the sense of Rubin (1987), the 

uncertainty in the imputation model itself must also be modeled, either via Bayesian simulation 

or bootstrapping (Allison, 2002; van Buuren, 2012). 

Last Observation Carried Forward. LOCF is a deterministic single imputation 

technique that has long been a popular method for treating attrition in longitudinal studies. It 

simply entails filling in all of an observation’s post drop-out missing values with its last observed 

value. This method represents disastrously bad practice that can seriously compromise a study’s 

inferences and lead to highly invalid conclusions (Enders, 2010; Little & Yau, 1996, van Buuren, 

2011). The implicit assumption underlying LOCF is that participants who drop out of a study 
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would have maintained their last observed levels on all variables. This limitation is often 

acknowledged and cited as leading to conservative conclusions, but it is trivial to construct 

circumstances where LOCF will lead to liberal bias. One only needs to consider a treatment for a 

degenerative condition. If all participants with the condition are expected to demonstrate a 

monotonic decrease in some outcome measure over the course of the study (e.g., cognitive 

functioning in people with Alzheimer’s), and the effect of the treatment is simply to slow this 

degeneration, then freezing drop-outs’ responses at an early measured level will spuriously 

inflate the treatment’s measured effect. Little and Yau (1996) described a randomized controlled 

trial of an Alzheimer’s drug that demonstrated exactly this pattern. LOCF should be universally 

rejected as a missing data treatment simply because its underlying premise is so blatantly 

incongruent with the reality of longitudinal processes. 

Nonresponse Weighting Approaches. Weighting techniques were primarily developed 

to address unit nonresponse (Little & Rubin, 2002). When a sampled unit gives no data (i.e., the 

whole row of data is missing), weighting can be a viable option. Weighting shares one of the end 

goals of MI, namely, correcting the unit nonresponse bias. So, it is useful to consider the specific 

sets of circumstances that would lead one technique to outperform the other.  

When can nonresponse weighting outperform MI? First, if there are no auxiliary data 

available for the missing unit, then MI is intractable. If this unit is missing from an MCAR 

process, however, then there is no nonresponse bias to correct, and the weights are unnecessary. 

Yet, if the unit is missing from a MAR process, then weighting does nothing to correct for the 

nonresponse bias because it also relies on auxiliary variables for this purpose. So, both weighting 

and MI require a good set of auxiliary data to effectively correct the nonresponse bias. The one 

circumstance in which weighting may outperform MI arises if the auxiliaries are predictive of the 
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nonresponse mechanism but uncorrelated with the incomplete variables (though we question 

how often such a premise would arise in practice). In such cases, MI can only replace the 

missingness with simulated values from the sampling distribution of the incomplete variable’s 

mean, and well-constructed weights might do a better job of correcting for the nonresponse bias; 

however, Little and Vartivarian (2005) demonstrate that weights constructed from auxiliary 

variables of this type (i.e., that are uncorrelated with the incomplete variables) will lead to over-

estimated variances for the incomplete items. So, for weighting to perform optimally, it needs a 

good set of auxiliaries that predict both the nonresponse mechanism and the incomplete items. 

Yet, with such a set of auxiliary data, MI will also perform optimally.  

When can MI outperform nonresponse weighting? There are several common 

characteristics of real-world missing data problems that will cause MI to outperform nonresponse 

weighting. First, nonresponse weighting can only be expected to perform equally to or better 

than MI under unit nonresponse. Unit nonresponse is quite rare outside of randomization-based 

survey research, and most missing data problems are subject to some degree of arbitrary 

nonresponse—even when the majority of the nonresponse arises due to attrition or unit 

nonresponse. Because this type of item nonresponse is exactly what MI was designed to address, 

MI will be preferred to weighting for prevention science research. Because real-world 

nonresponse is usually peppered throughout an entire data set, the number of complete cases is 

often quite small relative to the proportion of observed cells in the data. This final point is 

important because it highlights a significant limitation of weighting-based approaches, namely, 

these methods are really just small modifications of listwise deletion.  

A good set of auxiliaries can support a weighting-based treatment that corrects for the 

nonresponse bias and produces reasonable estimates of the variance (Little & Vartivarian, 2005), 
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but such an analysis would still suffer from two fatal flaws. First, nonresponse weighting-based 

analyses, just like those employing listwise deletion, can lead to a substantial loss of power. If 

the weights are adjusted to reflect the final number of complete cases (as is common practice), 

then nonresponse weighting suffers from the same degree of power loss as listwise deletion and 

can restrict detectable findings to only large effects. Because MI builds the incomplete data back 

up to the same dimensions as the anticipated sample, it does not suffer from this same loss of 

power. When MI is used with a large enough number of imputations (we recommend m = 100), 

power can be maintained at near optimal levels (Graham, et al., 2007).  

A second limitation of weighting comes from the implicit restriction on the size and 

number of the adjustment classes that any weighting scheme can produce. Nonresponse 

weighting can only correct for the nonresponse bias when the number of adjustment cells 

estimated makes the probability of nonresponse approximately constant within each cell (Little 

& Rubin, 2002). In data sets with high nonresponse rates, the small number of complete 

observations can support only a few adjustment cells. We urge caution when considering the 

ability of a small number of adjustment cells to adequately satisfy the MAR assumption. 

Finally, because missing data patterns are often arbitrary, weighting schemes can get 

quite complex. Researchers who still wish to (mis-)apply weighting as the primary missing data 

treatment in these cases may consider ad hoc solutions. For example, a unique set of weights 

could be estimated for each pattern of missingness, or some of the missingness could be imputed 

so that the nonresponse pattern is monotone, and the weighting could then be applied more 

efficiently. These approaches would accommodate the weighting strategy, but we feel that the 

more parsimonious solution is simply to employ MI directly. After all, arbitrary nonresponse 

patterns are exactly the sort that MI was designed to address. 
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Recommended Missing Data Treatments 

As intimated throughout, there are two flagship techniques in modern missing data 

analysis: multiple imputation (MI) and full information maximum likelihood (FIML). These 

methods provide optimal results in nearly all missing data problems, and we emphatically 

advocate their use whenever missing data occur in applied research. FIML is very easily 

implemented and is particularly well suited to latent variable modeling. MI is slightly more labor 

intensive than FIML, but this additional effort is paid back with extreme flexibility. A MI routine 

can be tailored to address essentially any missing data problem one could encounter.  

Multiple Imputation. MI was originally introduced by Rubin (1978) and later refined by 

Rubin (1987). It is an incredibly powerful missing data tool that originates from the Bayesian 

analysis of large-scale sample surveys (e.g., national censes). This pedigree is one of MI’s 

greatest strengths. Because it was developed from a Bayesian perspective for use within a 

randomization-based framework, the conclusions drawn from a well-implemented MI analysis 

are valid from both Bayesian and Frequentist perspectives and lead to valid model-based or 

randomization-based inferences (Little & Rubin, 2002).  

MI analyses can be broken into three steps: the imputation phase, the analysis phase, and 

the pooling phase. The imputation phase entails create m > 1 replacements for the missing data 

by taking m random draws from their posterior predictive distribution. These m replacements are 

then used to fill in the missing data to create m imputed data sets. The analysis phase consists of 

fitting m replicates of the analysis model to these m imputed data sets. Finally, the pooling phase 

employs Rubin’s Rules (Rubin, 1987, pp. 76–77) to aggregate the m sets of estimates into the 

final pooled point estimates and standard errors that are used for inference. 

Full Information Maximum Likelihood. FIML (Anderson, 1957; also known as Direct 
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Maximum Likelihood) is a maximum likelihood estimator that is robust to nonresponse. It is a 

clever extension of ordinary maximum likelihood estimation that modifies the sample 

loglikelihood function to consider only the observed elements of the data matrix. In this way 

FIML can leverage all of the available information when fitting a statistical model (Savalei & 

Rhemtulla, 2012). In practice, FIML has been shown to perform very well (Arbuckle, 1996; 

Enders, 2001a; 2001b; Enders & Bandalos, 2001). Under a MAR response mechanism, when a 

good set of auxiliary variables are included in the model (e.g., via the saturated correlates 

technique, Graham, 2003), FIML will produce optimal estimates that are asymptotically 

equivalent to those derived from MI (Enders, 2008; Savalei & Rhemtulla, 2012).  

Choosing between FIML and MI. FIML performs very well when its assumptions are 

met, but there are circumstances where MI is preferred. Because the underlying FIML objective 

function is derived from the multivariate normal distribution, FIML requires normally distributed 

variables to operate at full capacity. Although FIML will be robust to moderate violations of 

normality in the form of skewed or kurtotic data (Enders, 2001a), its standard implementation 

cannot be used when the data are categorical and modeled as such. The capabilities of FIML 

estimation can be extended to categorical data if one is able to manually program the likelihood 

function, but doing so can be very challenging for complicated models. This difficulty limits 

many researchers’ abilities to apply FIML to non-normal data, whereas MI, especially when 

conducted within the MICE framework, easily accommodates categorical distributions for the 

missing data (van Buuren, 2012). FIML is also limited when the raw, incomplete, data must be 

aggregated into composite items (e.g., scale scores, parcels) before the analysis. FIML simply 

partitions the missingness out of the likelihood function while estimating the analysis model, but 

it never “fills in” any of the missing cells. Thus, there is no readily apparent way to aggregate the 
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incomplete items (e.g., how does one compute a sum when a subset of the summands does not 

exist?). When employing MI, however, the data can simply be imputed at their lowest level of 

granularity and pooled to whatever level of abstraction is convenient for the final data analysis. 

Finally, because FIML is a maximum likelihood procedure, it cannot be applied to any modeling 

enterprise where maximum likelihood estimation is inapplicable (e.g., ordinary least squares 

regression, decision tree modeling, back-propagated neural networks). 

Choice of Imputation Model: Normal, Categorical, or Implicit? When using ordinary 

FIML, the missing data must be modeled by a multivariate normal distribution. MI, on the other 

hand, is much more flexible in readily available implementations. Some of the earliest MI 

approaches employed the multivariate normal distribution (Rubin, 1987). Creating imputations 

under the multivariate normal model is the most computationally expedient approach due to the 

convenient mathematical properties of the normal distribution. Unfortunately, much of the 

incomplete data in prevention science research are not continuous or normally distributed (e.g., 

Likert-type items, gender, patient survival). Normal-theory imputation can still be employed in 

many of these circumstances, but one must be cognizant of the violated assumptions and actively 

scrutinize the appropriateness of a normal-theory approach. 

There is ample evidence for imputing under the normal model when the discrete 

measurement level of the items is not meaningful or when the final analysis model will treat the 

items as continuous, anyway. Enders (2010), Honaker and King (2010), and Schafer (1997) all 

suggested that imputing under the multivariate normal model can lead to accurate statistical 

inference when the final analysis model is naïve to the true (discrete) measurement level of the 

incomplete values. Wu, Enders, and Jia (2013) conducted a study examining how different 

imputation models affected the performance of MI for ordinal items that were aggregated to 
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mean scores for analysis. They found that imputing under the multivariate normal model led to 

unbiased and efficient parameter estimates and outperformed imputation methods that overtly 

employed discrete distributions for the missing data (e.g., multinomial logistic regression). 

When the categorical measurement level of the nonresponse must be preserved (e.g., 

when the imputed variable will be the outcome in a logistic regression model), the MICE 

framework can be tailored to use different distributions for the missing data on a variable-by-

variable basis. By employing an appropriate generalized linear model as the elementary 

imputation method within the MICE framework, very good, principled imputations of 

categorical items can be created (van Buuren, 2012; van Buuren et al., 2006). 

Implicit, donor-based imputation methods (e.g., Hotdeck Imputation, Predictive Mean 

Matching, K-Nearest Neighbors Imputation) are intuitively appealing, but we advise against 

relying on donor-based methods as general missing data treatments. Donor-based methods can 

only perform at their optimum when they have a reasonable pool of donor cases from which they 

can sample to create the imputations (Andridge & Little, 2010). In many missing data problems, 

such a representative pool is not possible because the nonresponse can shrink the observed 

sample size considerably—thereby producing a donor pool that is too homogenous. In such 

circumstances, donor-based methods will end up re-using many donor observations, and the 

standard errors of the analysis model parameters will be attenuated (van Buuren, 2012). 

Addressing Temporal Dependence among the Missing Data. When the incomplete 

data are longitudinal in nature, additional care must be taken to preserve the temporal 

dependence of the imputed values. The most principled approach to this problem entails 

explicitly modeling time as part of the imputation model. The MI framework can employ 

essentially any predictive model to create imputations of the missing data, and this flexibility 
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allows one to impute longitudinal missing data according to a model that incorporates whatever 

function of time is deemed appropriate. To fully capture this capability, however, requires that 

the data analyst program their own implementation. Fortunately, there are also several solutions 

available in common MI software packages.  

The R package Amelia II (Honaker, King, & Blackwell, 2011) implements a rather 

general approach by offering the ability to include a polynomial or spline function of time into 

the imputation model. Cross-sectional grouping variables can also be interacted with this 

temporal component, so the imputations are created according to a model that allows each group 

its own trend. Honaker and King (2010) demonstrated the effectiveness of this approach for 

normally distributed missing data.  

Because longitudinal data can be viewed as repeated measures nested within individual, 

another convenient class of imputation model is multilevel regression models (also known as 

mixed effects models, hierarchical linear models, and growth curve models). Goldstein, 

Carpenter, and Browne (2014), Goldstein, Carpenter, Kenward, and Levin (2009), Liu, Taylor, 

and Belin (2000), Yucel (2008), and Schafer and Yucel (2002) all developed multiple imputation 

methods based on multilevel regression models that can be applied to longitudinal nonresponse. 

The R packages mice (van Buuren & Groothuis-Oudshoorn, 2011) and pan (Zhao & Schafer, 

2013) as well as the stand-alone package REALCOM-IMPUTE (Carpenter, Goldstein, & 

Kenward, 2011) are all capable of creating multiple imputations from multilevel regression 

models. Imputing from a multilevel regression model generally produces satisfactory results that 

are more accurate than imputation ignoring the nested data structure and deletion based 

techniques (Black, Harel, & McCoach, 2010; van Buuren, 2011; Zhao & Yucel, 2009). 

Another approach entails converting the incomplete data into wide format (i.e., where 
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rows represent participants and columns represent repeated measures), and simply applying MI 

or FIML as usual (Allison, 2002). This method implicitly models time by imposing a panel 

structure on the data. Thus, imputations derived from this approach can be considered to arise 

from a cross-lagged panel model. In most applications, this approach will produce unbiased 

imputations because the wide formatting of the data allows the imputation model to leverage past 

and future information when filling-in the missing data. Because this approach can employ any 

available MI scheme, it also easily accommodates non-normally distributed missing data (e.g., 

by treating the wide formatted data with MICE). Naively imputing data in the tall format (i.e., 

where rows represent participant by time intersections) is not generally appropriate because such 

disaggregated models totally ignore the additional temporal dependence in the data. This 

disregard will contribute to imputations with inaccurate variance estimates that will, in turn, lead 

to bias in the standard errors of the analysis model (van Buuren, 2011). 

The Inclusive PCA Auxiliary Approach. Both MI and FIML can struggle when there 

are a high number of variables relative to the number of observations. This problem is made 

worse by the fact that missing data analyses are only optimal when all important interaction and 

polynomial terms are included in the missing data model (Graham, 2012; von Hippel, 2009). If 

the number of variables is already relatively large, expanding the data set to include important 

nonlinearities can lead to an unmanageable number of variables, but Howard, Rhemtulla, and 

Little (in press) have proposed a very powerful solution to this problem. Once the data set has 

been augmented by including all the necessary interaction and polynomial terms, its principle 

components are extracted. Provided the number of components is taken to be large enough to 

capture the majority of the shared information in the items (empirical evidence suggests that ten 

component is usually sufficient), the raw auxiliaries can be discarded and the principle 
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components can act as the sole predictors in the imputation model or the sole auxiliary variables 

in the FIML model. This approach can be particularly effective when the high dimensionality of 

the data is induced by (1) scales with many highly correlated items that can be mostly described 

by a small number of principle components or (2) a large pool of potential auxiliary variables for 

which capturing all of the information is not of paramount importance. Fortunately, these two 

characteristics describe many of the practical missing data problems encountered in prevention 

science research, and the inclusive PCA auxiliary approach offers a promising solution to a very 

difficult problem in applied missing data analysis. 

Addressing Nonignorable Missingness. When missingness arises from an MNAR 

mechanism, it is said to be nonignorable in the sense of Rubin (1976), because the nonresponse 

mechanism must be overtly modeled as part of the missing data analysis in order to accurately 

recover the missing values (i.e., the nonresponse mechanism cannot be ignored). When 

missingness is nonignorable, only a limited set of options are available. If the data analyst 

possesses reasonable knowledge of the content area to guide their decisions, plausible values can 

be manual substituted for the MNAR missingness. Alternatively, the nonresponse mechanism 

can be included as part of the imputation model through selection modeling or pattern mixture 

modeling. These methods can be difficult to apply in practice, however, because they are very 

sensitive to strong and untestable assumptions (Enders, 2010; Little, 1995; Little & Rubin, 

2002). Yet, even when the data appear to follow an MNAR mechanism, special imputation 

schemes may not be necessary. Collins, Schafer, and Kam (2001) showed that a MNAR 

mechanism can be effectively transformed into a MAR mechanism if good “proxy indicators” of 

the nonresponse mechanism are included as auxiliary variables during the missing data analysis. 

This last point again highlights the importance of planning for missing data when designing 
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scientific studies. Researchers can “stack the deck” toward an easily treated missing data 

problem by considering plausible predictors of the nonresponse during the research design phase 

and proactively including these variables in the data collection. 

Multiple Imputation for Intent-to-Treat Analysis. In addition to salvaging inferences 

when faced with arbitrary nonresponse, MI can also be used to facilitate valid intent-to-treat 

analyses. To implement such an analysis, the outcome data for those participants who dropped 

out of the study must be approximated or implied. This task is one that modern missing data 

treatments are ideally suited to perform and antiquated ad hoc missing data methods (e.g., 

LOCF) are woefully ill-equipped to address. The simplest way to conduct MI-based intent-to-

treat analyses is to impute the additional missing data that arise from attrition along with the 

arbitrary nonresponse that occurs elsewhere on the data set. In studies affected by random drop-

out (i.e., a MAR process in which the attrition is not directly caused by the treatment or 

complications thereof), employing a principled missing data method and incorporating correlates 

of the attrition into the imputation model will ensure optimal intent-to-treat inferences (Diggle & 

Kenward, 1994; Little & Yau, 1996).  

When faced with informative dropout (an MNAR process in which dropout is directly 

related to the treatment), simply including treatment as randomized can bias the final intent-to-

treat inferences if the drop-outs end up receiving a different treatment after they leave the study. 

For example, participants in a drug trial who experience severe side-effects may leave the study 

and stop taking the drug that they were assigned (or simply reduce the dosage). If the intent-to-

treat analysis only includes dosage information as randomized, then the imputed outcome data 

for these participants will be associated with the wrong dosage group, and the validity of the 

inferences will be compromised. When such informative dropout presents, the possible change in 
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the treatment levels for the drop-outs must be overtly incorporated into the imputation model. 

Although explicit models for MNAR missingness (e.g., pattern mixture models) can be applied 

to informative drop-out problems (Little, 1995), these techniques are very sensitive to violations 

of their assumptions (Enders, 2010; Little, 1995). Fortunately, the research team will often have 

expert knowledge to suggest likely values for unobserved predictors (e.g., in a drug trial, it may 

be possible to bound the dosages that noncompliant participants would maintain). Little & Yau 

(1996) suggest deterministically introducing this auxiliary information into the imputation model 

in order to increase the plausibility of the intent-to-treat inferences. The sensitivity of the final 

result can be elucidated by repeating the analysis with different extrapolated treatment levels.  

Multiple Imputation with Outcomes and Mediators. One of the greatest flexibilities of 

MI is that it is implemented entirely during data pre-processing. This means that the data analyst 

can specify an imputation model that is much more complicated than the final inferential model. 

Imputing under a complex model allows the complete-data sufficient statistics to be reproduced 

as faithfully as possible, independent of the choice of analysis model (Rubin, 1996). Also, as 

Honaker and King (2010) discuss, MI is based on systems of predictive, rather than causal, 

equations. This makes MI agnostic with regard to whether a variable is a predictor, mediator, or 

outcome, so it is perfectly acceptable to impute variables that will enter the final analysis model 

as outcome variables or as mediators.  

How should outcome variables enter the imputation model? It is worth discussing the 

apparently “unfair” advantage that may be induced by imputing outcome variables as linear 

combinations of their hypothesized predictors. This concern is valid with single regression-based 

imputation strategies that will tend to inflate linear association between the imputed variables 

and those that were used as predictors in the imputation model (Enders, 2010; van Buuren, 
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2012). For well implemented MI, however, this spurious inflation is not a problem. First, by 

including a large pool of auxiliary variables, the imputed values will reflect, as generally as 

possible, the true pattern of interrelationships in the data, rather than spuriously amplifying the 

hypothesized associations. Second, because MI quantifies all sources of uncertainty introduced 

by the missing data, it can be thought of as employing an implicit “self-correction” that 

effectively mitigates spurious inflation of the linear associations (Allison, 2002). 

The current consensus among missing data researchers is to impute incomplete outcome 

variables (Allison, 2002; Enders, 2010; Little, 1982; von Hippel, 2007), but some work has 

suggested that participants with imputed outcomes should be subsequently excluded from the 

analysis models (von Hippel, 2007). This argument is based on two premises. (1) Observations 

with missing outcomes contribute no information to the estimation of regression coefficients, and 

(2) including these observations will increase the uncertainty in the final estimates. For congenial 

imputation and analysis models (i.e., those that contain exactly the same variables) we do not 

question this reasoning. Yet, we suggest that most applied missing data problems do not conform 

to these conditions. Real-world missing data problems lend themselves to uncongenial 

imputation and analysis models wherein the imputation models have the possibility of employing 

considerably more variables than the analysis models. These situations admit the possibility of 

superefficient imputations in the sense of Rubin (1996). Such overspecified imputation models 

can leverage the proxy information contained in the auxiliary data to “recover” some of the 

missing outcome information, above and beyond what is implied by the congenial predictor set. 

von Hippel (2007) provides a small simulation to show that the intuition given above does hold. 

He shows that including just a single strongly predictive auxiliary variable can lead to a situation 

in which a traditionally implemented MI outperforms the method based on deleting participants 
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with imputed outcome data. Thus, we suggest that incomplete outcomes should always be 

included in the imputation model and retained for the final analysis. 

Limitations of Modern Missing Data Methods. The primary limitation of modern 

missing data methods is computational effort. Because MI is a highly iterative algorithm, it will 

be more demanding than alternative approaches that require minimal iteration. This limitation, 

however, does not outweigh the overwhelming benefits that come with modern, principled 

missing data methods. Moreover, FIML estimation does not entail substantially more 

computation than other ML-based analyses, so this limitation does not apply with FIML. 

Conclusion 

We have delved deeply into the many issues that surround missing data problems in 

prevention science research and have emerged with a singular recommendation. Prevention 

science research will elevate the quality of its evidence base for guiding practice and policy if 

modern, principled treatments for missing data are routinely utilized. Thus, for the sake of the 

stake-holders, we recommend that all future publications in journals such as Prevention Science 

should be required to implement one of the principled approaches we have outlined herein. 
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