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A B S T R A C T

Simulation studies have shown the three-form planned missing data design efficiently collects high quality data
while reducing participant burden. This methodology is rarely used in sport and exercise psychology. Therefore,
we conducted a re-sampling study with existing sport and exercise psychology survey data to test how three-form
planned missing data survey design implemented with different item distribution approaches effect constructs’
internal measurement structure and validity. Results supported the efficacy of the three-form planned missing
data survey design for cross-sectional data collection. Sample sizes of at least 300 (i.e., 100 per form) are re-
commended for having unbiased parameter estimates. It is also recommended items be distributed across survey
forms to have representation of each facet of a construct on every form, and that a select few of these items be
included across all survey forms. Further guidelines for three-form surveys based upon the results of this re-
sampling study are provided.

1. Introduction

Maximizing data collection quality while reducing participant
burden can improve research quality (Graham, Hofer, & MacKinnon,
1996; Graham, Taylor, Olchowski, & Cumsille, 2006). Although over
two decades of methodological research supports the use of planned
missing data designs (PMDDs), such designs are rarely utilized within
the exercise and sport sciences. Using a PMDD does not mean that the
researcher plans or expects that there will be missingness or attrition
that will have to be dealt with at some point. Rather, a PMDD is an
anticipatory approach to reduce the likelihood of missing data from
participants. The researcher does this by randomly assigning partici-
pants to complete a subset of all the survey items. Both simulation
studies and illustrative examples of how to implement PMDD surveys
have supported the ability to produce the same results as complete data
while asking participants no more than 75% of the total survey items
(Graham, Hofer, & Piccinin, 1994; Little, Jorgensen, Lang, & Moore,
2014). As a result of fewer items being displayed to each participant,
less unplanned missing data is expected and typically seen (Graham,
Taylor, Olchoweski, & Cumsille, 2006; Moore & Fry, 2017b). Rather
than researchers implementing a reactionary approach that views
missing data as a problem, researchers implementing PMDD surveys
actively design their surveys to reduce participant burden, fatigue, and

motivation lapses (Graham, et al., 2006; Little, et al., 2014).

1.1. PMDD surveys

Researchers can use what is known about missing data mechanisms
and the modern treatments of missing data (See Sections below) to their
advantage when they use PMDDs (Graham, Cumsille, & Elek-Fisk, 2003;
Graham, et al, 2006). PMDDs randomly assign participants to condi-
tions where they respond to a subset of items, which results in data
missing completely at random (MCAR). Therefore, the data relation-
ships can be completely and unbiasedly recaptured (Enders, 2010).
There are a number of PMDDs possible. Below we explain the flexible
three-form survey PMDD used in the current study. It is worth noting
that researchers with longer surveys may benefit by further reducing
the number of items distributed to each participant by using a PMDD
with more forms. Additional versions of PMDD, such as the seven-form
design, are available and have been discussed elsewhere (Enders &
Baraldi, 2018). Interested readers are also directed to Enders (2010)
and Little (2013, chap. 2) for additional designs.

PMDDs assist researchers in maximizing the quality of their data by
developing surveys that are shorter (less burden on the participant) and
more likely to have any missing data due to the researcher randomly
assigning which survey items each participant saw (i.e., MCAR). The
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most straightforward PMDD is the three-form survey design. In this
design, researchers assign their survey items into one of the following
blocks: X-block, A-block, B-block, or C-block (', et al., 2006). The X-
block, also called the common block, is comprised of items that are
presented to all participants, which include demographic items, as well
as a selection of items from the different scales of the survey. The rest of
the scale items are evenly distributed across the A-, B-, and C-blocks, so
that there are items from every scale in each of these three blocks. Fi-
nally, three versions of the survey are produced by removing one block
of items (i.e., A-, B-, or C-block) from each survey. The resulting three
survey forms would be: survey form 1 does not include items from the
A-block, survey form 2 does not include items from the B-block, and
survey form 3 does not include items from the C-block (See Figure 1).
This formation of items allows for overlap between items (coverage)
and the estimation of their covariance. This proportion of data available
to estimate these relationships is called covariance coverage. De-
pending on the size (i.e., number of items) of the X-block, the study
participants will only see 66–75% of the total possible survey items. As
long as the survey form the participant completes is randomly assigned
to the participant, the data missing due to the participant not being
shown a block of items is MCAR (See Missing Data Mechanisms for
further explanation). With sufficient covariance coverage, missing data
can be recovered using modern technique for handling missing data:
multiple imputation (MI) or full-information maximum likelihood
(FIML; See Section Modern Techniques for Handling Missing Data for
more detail).

Graham and colleagues work (1996; 2006) showed that researchers
could successfully recapture the sample statistics (i.e., means, standard
deviations, and correlations) by implementing a three-form PMDD
survey with the scale items distributed across the different blocks (i.e.,
between-block item assignment). However, both illustrative examples
of PMDDs included three of four scales per survey form, and in the 2006
article, this approach (i.e., assigning the same scale items to one block
or within-block assignment) was recommended for use by researchers
due to the capabilities of methods for handling missing data at the time

of publication. More recent simulation studies have continued to sup-
port the between-block item assignment for PMDDs with both cross-
sectional (Huff, Anderson, & Tambling, 2015; Little, et al., 2014; Smits
& Vorst, 2007) and longitudinal study designs (Jia et al., 2014;
Jorgensen et al., 2014). Between-block assignment entails splitting the
items of a scale across the A-, B-, and C-Blocks. These studies showed
with simulated data and data collected in the real world that para-
meters could be estimated without bias by handling the missing data
from a PMDD with either MI or FIML. Despite the support for the be-
tween-block item assignment, the description of PMDD surveys using
within-block item assignment continues to permeate the literature
(Enders & Baraldi, 2018; Kaplan & Su, 2018).

Given the inconsistent information in the literature about how to
assign survey items when implementing PMDD surveys, it is not sur-
prising that applied researchers may be concerned over properly im-
plementing the methodology to ensure the data collected have appro-
priate reliability and validity. As highlighted above, Graham et al.
(2006) recommended assigning all items of a scale or facet of a large
scale to the same A-, B-, or C-block to maximize reliability, whereas
Little (2013) recommended spreading scale items across these blocks to
maximize validity (i.e., unbiased parameter estimates between con-
structs). Therefore, this article has two purposes. First, to help address
such confusion in the literature by testing these different ways of
creating a three-form PMDD survey in order to provide empirical-based
recommendations for how items should be distributed across blocks to
retain reliability and validity. Second, this study utilized a sport and
exercise psychology dataset to illustrate the ability of PMDD surveys to
produce results equivalent to the results from data collected without
utilizing a three-form PMDD survey approach (i.e., produce unbiased
parameter estimates).

1.2. Missing data mechanisms

The missing data mechanisms classify the patterns of association
between the observed and missing parts of a dataset. Conceptually,

Figure 1. Visual representations of two ways the 3-form survey planned missing data designs (PMDD) have been described in the literature
Note. The survey forms from the Trivial X-block, Within-Block Scale Assignment would be Survey 1 (Demographics, PMCEQ-E, & CCS), Survey 2 (Demographics,
PMCEQ-T, & CCS), and Survey 3 (Demographics, PMCEQ-T & PMCEQ-E). The Informative X-Block with Between-Block Scale Assignment includes three items for
each variable plus demographics in the X-block. The remaining items of each scale are distributed across A-, B-, and C-Blocks to then make the three survey forms on
the right. Forms 1 and 2 present 76% of the original items. Form 3 presents 74% of the original items.
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missing data mechanisms describe reasons why data are missing. These
reasons for missingness can affect the ease of recovering the relations
among variables and the extent to which results will be biased. One
missing data mechanism is missing completely at random (MCAR). The
reason(s) the data are missing have no association with either the ob-
served or missing values in the dataset. Since the cause of missingness
has nothing to do with any of the variables in the study, the missing
data appear as a random subsample of the observed data (Enders,
2010). MCAR is the best situation to be in because the missing data do
not introduce bias into the analysis, estimated parameters, or general-
ization of the results—so long as deterministic imputation (i.e., mean
substitution, last observation carried forward, regression substitution)
is not used. An example of MCAR would be missing data on a particular
item because the researcher did not realize the last item on a survey
page did not fully print onto the page, so the participant could not
respond to the item. The reason the participant has missing data cannot
be predicted by any other observed or missing values, which makes the
missing data MCAR.

A second missing data mechanism is missing at random (MAR).
MAR assumes no association between the unobserved values and the
chances of responding after controlling for the observed values (Enders,
2010). In other words, the reason the data are missing may be related to
the observed variables in the study. This type of missing is predictable
using the other items in the study. For example, if you are measuring
depression and males are less likely to respond than females, then the
missing responses are MAR, so long as sex is measured in the dataset.
Finally, the missing not a random (MNAR) mechanism may be seen as
the worst type of missing data since the information needed to recover
the missing values is itself missing (Enders, 2010). This means the
reason for the missing may be associated not only with observed, but
also unobserved values. In other words, after controlling for the relation
between missingness and all observed values there remains a depen-
dence between the missingness and the unobserved values.

A general recommendation is to determine items to include that
correlate with items participants are likely to not answer. For example,
researchers have found that individuals, particularly men, at higher
levels of income are more likely to skip questions related to annual
income (Little, 2013). Since this pattern is known, other variables can
be included in the study to recover or predict this missingness. For
income, examples of such items include the type of car they own,
number of televisions in the home, size of the home, number of bed-
rooms and bathrooms in the home, and hobbies. The addition of these
variables can convert the MNAR income values to MAR due to the re-
lationships of the missingness with the other, related variables in the
study. Although there are specialized methods for MNAR data (e.g.,
pattern mixture models and selection models), these methods rely on
strong, untestable assumptions, so they tend to be of little use in
practice (Enders, 2010). For detailed discussions of MNAR-specific
methods see Enders (2010; 2011), Li, Chen, Ciu, and Liu (2017), and
Little (1995).

In summary, MCAR data is the best situation for researchers, be-
cause the missing data is fully recoverable since the reason for missing
is completely random. Therefore, the results will not be biased due to
the missing data (Enders, 2010). The second-best situation is MAR be-
cause other variables in the data can be used to recover the data that are
missing. Lastly, missing data due to MNAR is not recoverable and will
result in biased estimates.

1.3. Modern techniques for handling missing data

Traditional methods of handling missing data include listwise or
pairwise deletion, mean substitution, last observation carried forward,
and regression substitution; all of which result in documented bias
under MAR and reduced power even under MCAR (Enders, 2010; Little,
2013; Little & Rubin, 2019). Currently, MI and FIML are two modern
approaches to handling missing data in order to recover relationships.

The two methods have the same primary assumption (MAR data). As
the name suggests, MI generates multiple imputed data sets and is an
alternative to FIML. Numerous studies have shown when the same
variables (auxiliary and analysis variables) are used, the results from
FIML are asymptotically equivalent to MI as the number of imputations
go to infinity (Enders, 2010). Despite this asymptotic equivalence, FIML
and MI operate in fundamentally different ways which may influence
which approach is utilized for a particular study design (see Enders
(2010) for examples). MI works by replacing the missing values with a
set of plausible estimates (usually the predicted values from a special
type of regression equation). FIML does not replace the missing values
at all. With FIML missing data and model estimation are handled si-
multaneously using the ML iterative process. For an intuitive explana-
tion of MI, FIML, and the differences between them see Little, et al.
(2014).

MI was originally developed to handle missing data present in large
datasets that were collected to answer multiple research questions
(Rubin, 1987). MI is a data pre-processing step that occurs before any of
the substantive data analyses to produce a specified number of imputed
datasets. So, every analysis based upon the imputed datasets is using
the same data. When FIML is used to fit different models to the same
data and only some of the variables overlap in those analysis models,
then the parameter estimates for the variables common to each model
can vary slightly. These differences arise because FIML uses only the
information contained in the variables included in the model (including
auxiliary variables). MI, on the other hand, can incorporate information
from all the variables in a dataset—as well as transformations of the
observed variables (e.g., interactions, polynomial terms)—during the
imputation process (Howard, Rhemtulla, & Little, 2015).

In certain circumstances, MI is more appropriate than FIML. For
example, when researchers need to include a large number of auxiliary
variables or when the analysis model cannot be estimated with ML. MI
was the only option for the current study because we needed to average
the items to create parceled indicators of the latent constructs. As the
MI datasets are created as a step separate from the modeling/analysis
step, the parcels were calculated with the imputed datasets; thus, not
averaging across any missing data. In contrast, with FIML, the parcels
would be calculated by averaging across items with missingness, be-
cause the parcels are calculated before FIML is used in the model
analysis step. The exception to this is the within-block case, because
items are averaged by block assignment. Although the use of parcels is
still debated (Little, Rhemtulla, Gibson, & Schoemann, 2013; Marsh,
Lüdtke, Nagengast, Morin, & von Davier, 2013), parceling was em-
ployed to improve the generalizability of our resampling study. Any
scale with more than three items can be condensed into a set of three
parcels, but only scales with a modest number of items can be analyzed
at the item level. By parceling, our results are applicable to scales of any
size. Analyzing our scales at the item level, although possible, would
have limited the generalizability of our results to scales with approxi-
mately 5 to 10 items.

The drawback of MI for some is that it is not built into the mod-
eling/analysis process automatically, but rather must be done sepa-
rately before conducting analyses. The three main steps typically dis-
cussed when using MI are the imputation step, analysis step, and
pooling step. During the imputation step, the researcher generates a
number of imputed datasets; see Graham, Olchowski, and Gilreath
(2007) for recommendations. Next, the researcher uses their statistical
software of choice to fit the analysis model to each imputed dataset
separately. Finally, the results of these analyses are combined (pooled
according to Rubin’s Rules: Rubin, 1987) to produce a single set of
results (point estimates and standard errors). For many common types
of analysis (e.g., linear regression), the second and third step can be
automatically completed by many statistical software packages once
the data is identified as MI, however, not all software complete both
steps for all analyses (e.g., SPSS).
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1.4. Current study

The current study sought to examine how item distribution in three-
form survey PMDDs affects both construct reliability and validity (i.e.,
point estimates of the means and relationships) of constructs that are
commonly used in sport and exercise psychology research. To address
this question, we conducted a resampling study with an existing dataset
(see Methods for details) used as the ‘population’ dataset. This contrasts
with a simulation study; when the researcher generates the population
dataset based upon a specific set of parameter criteria. We conducted a
resampling study to increase the ecological validity of our results. As
seen in the many sources cited above, the statistical performance of
PMDDs has been repeatedly supported via simulation studies, but si-
mulated data are rarely as intricate and nuanced as real data. We
wanted to assess the performance of PMDDs in real data while retaining
the ability to draw conclusions based on empirical, repeated sampling
(as in a simulation study); thus, the resampling study approach.

To address our purpose, we compared three-form designs with three
different X-Block compositions (without scale items, informed scale item
assignment, and random scale item assignment), and three options for
item distribution across the A-, B-, and C-Blocks (within-block, between-
block, and random between-block assignment). Within-block assignment
refers to assigning whole scales, subscales, facets, or similar items from a
scale to the same block (Rhemtulla & Hancock, 2016). Between-block
assignment refers to assigning items to blocks so that there are items from
each scale, subscale, or facet present in each block. Finally, random as-
signment refers to randomly assigning items to each block. These three
approaches have been proposed by other researchers but to our knowledge
the performance of all these proposed approaches have not been compared
to each other (Rhemtulla & Hancock, 2016; Rutkowski, 2017). We as-
sessed the effect of these three-form survey PMDD options on the quality
of the estimated factor loadings, item intercepts, residual variances, latent
correlations, and reliabilities with sample sizes of 100, 200, 300, 400, and
500. These sample sizes were selected for two related reasons. First, results
from prior simulation studies with sample sizes above 500 in the PMDD
simulation characteristics have found trivial changes in results for samples
sizes of 500 and greater (Lang & Little, 2014; Rhemtulla, Jia, Wu, & Little,
2014). Second, focusing on the lower sample size range (100 to 500) was
reflective of the field, which met this resampling study purpose to assess
PMDDwith sample sizes often seen in actual sport and exercise psychology
data collections. This sample size range also includes the sample sizes
recommended from prior simulation studies for cross-sectional and long-
itudinal three-form PMDD (Graham, et al., 1996; Graham, et al., 2006; Jia,
et al., 2014; Jorgensen, et al., 2014; Rhemtulla, et al., 2014).

2. Methods

2.1. Original data

These data come from a published manuscript (Moore & Fry, 2017a)
by the first author. The data were collected from members of a national
exercise franchise who completed an online survey; the invitation to
complete the survey was sent by the national franchise. The original
survey did not use any type of planned missing data design. The study
participants (N = 5763) predominantly identified as female (91.2%,
8.0% missing) and white (90.2%, 1.7% missing) with an average ob-
served age of 49.30 years (SD = 11.09, 8.9% missing). These demo-
graphics were consistent with the overall membership of the franchise
nationally. Three of the constructs from the original study were utilized
in this resampling study.

2.2. Measures

Perceived Motivational Climate in Exercise Questionnaire
(PMCEQ). The PMCEQ (Huddleston, Fry, & Brown, 2012) measures
exercise participants’ perceptions of the motivational climate as ego-

involving (13-items) and task-involving (14-items). An ego-involving
climate is one in which participants perceive the leader as promoting
rivalry by having favorites, embarrassing individuals who make mis-
takes or ask questions, and praising individuals’ performances relative
to others in the group or normative standards. On the other hand, a
task-involving climate is one in which the participants perceive the
leader to praise effort and improvement thereby promoting cooperative
learning. Given each construct had three theoretically meaningful
subscales, the items for these constructs were parceled using the facet-
representative approach (Little et al., 2013; Moore, 2012). That is, the
items from each facet were averaged—after missing data im-
putation—to create three facet indicators for use in the analysis. Task-
and ego-involving motivational climates have consistently demon-
strated good reliability and validity in the exercise domain (Huddleston
et al., 2012; Brown & Fry, 2013; Moore & Fry, 2014; 2017a).

Caring Climate Scale (CCS). The CCS (Newton, et al, 2007) is a 13-
item scale that measures the extent participants perceive the psycho-
social climate of physical activity settings to be one where they feel
safe, welcomed, valued, and respected. As the CCS was not con-
ceptualized to have facets, the “item-to-construct balance” approach to
creating parcels was utilized. This approach averages empirically de-
fined subsets of items to create parcels that are as close as possible to
tau-equivalent (Little et al., 2013; Moore, 2012). The composition of
the three parcels was based upon the factor loadings from a con-
firmatory factor analysis (CFA) that was previously run on these data
(Moore & Fry, 2017a).

2.3. Resampling study procedure

Data preparation. The dataset described above acted as the “po-
pulation” data from which we drew random samples for the resampling
study. The data were first cleaned according to the procedures de-
scribed in Lang, Moore, and Grandfield (under review). After cleaning,
the data contained 5244 observations with between 0.03% and 1.47%
naturally occurring, unplanned, missing data per variable. These
missing data were retained in the resampling processes. Within each
replication of the resampling study, we randomly sampled a new
working dataset from the original data. We also ran the study using only
complete cases as the population data, but the results did not differ
from those presented here in any meaningful way. The “complete case”
results are available as online supplementary material.

Imposing planned missing data. After each working dataset was
sampled as described above, planned missing data were imposed ac-
cording to different versions of the three-form design. These versions
differed in terms of two crossed factors: which items were assigned to
the X-Block and how the items within parcels were distributed across
the A-, B-, and C-Blocks. The X-Block factor had three levels: a trivial X-
Block that contained only sex and race, an informed X-Block that
contained items chosen with the help of previous CFA models
(Huddleston et al., 2012; Moore & Fry, 2014), and a random X-Block
that contained randomly selected items from each scale. The items in-
cluded in the informed X-block were those deemed to be closest to the
construct centroid based upon theory and the factor loadings from prior
CFA results (Huddleston, et al., 2012; Moore & Fry, 2014). See Moore
(2012) and Moore and Fry (2017b) for more information regarding the
development of the informed X-Block and the parceling scheme. As
with the trivial X-Block, the informed and random X-Blocks also con-
tained sex and race.

The parcel factor also contained three levels: a within-block con-
dition wherein all the items of a parcel were assigned to one of the A-,
B-, or C-Blocks, a between-block condition wherein the items of a parcel
were distributed across the A-, B-, and C-Blocks, and a random-block
condition wherein the assignment to A-, B-, and C-Blocks was rando-
mized. For the two PMCEQ constructs, the parcels were facet re-
presentative. Therefore, the within-block condition put all items from a
facet into the same block, so each block comprised items from one of
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the three facets of the overall construct. The Between condition dis-
tributed the items from each of the facets across the blocks, such that
there were items from each facet in each block. For both the random X-
Block and the random parcel conditions, a new random assignment was
generated for every replication of the resampling study.

Analysis model. The analysis model was a three-construct CFA
with the scale of the latent constructs set by the fixed factor method
(i.e., setting latent variances to 1 and latent means to 0), which converts
the latent covariances to correlations. Each latent factor was indicated
by three parcels, which were calculated after the data were imputed.
We analyzed the planned missing data designs’ effects on the following
parameter estimates: latent correlations, factor loadings, item inter-
cepts, and residual variances.

Outcome measures. Our analysis focused on bias and efficiency of
the parameter estimates noted above and on the latent reliability. Each
of these outcome measures is described briefly below. The accom-
panying MethodsX article (Lang, Moore, & Grandfield, under review)
contains the technical definitions and equations for these measures.
Latent reliability, similar to Cronbach’s alpha coefficient, can be viewed
as the squared correlation between an observed scale score (i.e., the
sum of the item scores) and that scale’s true score (Bollen, 1989;
Raykov, 2004). Unlike Cronbach’s alpha, the values used to estimate
latent reliability are derived from a CFA model. Thus, the latent relia-
bility represents the proportion of a scale’s observed variability that is
attributable to the latent true score on the underlying construct
(Raykov, 2004).

Percent Relative Bias (PRB). PRB was calculated for each estimated
parameter and each latent reliability to quantify the bias in an easily
interpretable way. PRB scales the expected difference between an es-
timated parameter and the true value of that parameter (i.e., the bias)
as a percentage of the true parameter’s magnitude (Muthen, Kaplan, &
Hollis, 1987). Parameter estimates with absolute PRB values larger than
10 (i.e., estimated parameters that deviate from the true value, on
average, by more than 10% of the true parameter’s magnitude) are
generally viewed as “unacceptably” biased (Muthen, Kaplan, & Hollis,
1987). For the purposes of this study, the true value of a parameter was
defined as the average of that parameter’s estimates from the models fit
to data without planned missing data.

Relative Efficiency (RE). We calculated the RE of each estimated
parameter. In this study, RE quantifies the loss of efficiency (i.e., the
increase in sampling variability) introduced by the planned missing
data (Wu, Jia, Rhemtulla, & Little, 2016). A value of RE = 1.0 would
indicate no loss of efficiency, and a value of RE < 1.0 indicates some
loss of efficiency with smaller values indicating greater losses. For ex-
ample, assume we estimate a parameter using a PMDD with N= 100. If
the RE of this parameter estimate is 0.80, then we could have estimated
that parameter just as efficiently (i.e., with the same standard error)
using a sample of complete data with N = 80.

Convergence Failures. In addition to evaluating bias and efficiency,
we also tracked four distinct types of convergence failures: complete
failures of an entire study replication, failures of the imputation

process, non-convergent CFA models, and CFA models that converged
to inadmissible solutions (i.e., Heywood cases).

Software. All analyses were done using the R program (R Core
Team, 2019). To handle the planned and existing missing data, we used
the mice package (van Buuren & Groothuis-Oudshoorn, 2011) to gen-
erate 100 imputed datasets. The CFA models were estimated in the
lavaan package (Rosseel, 2012), and the parameter estimates were
pooled in the mitools package (Lumley, 2019). For a review of analysis
and pooling procedures for multiple imputed data see Enders (2010).
See Lang, Moore, and Grandfield (under review) for the R scripts used
for this study.

Procedure. Our final design comprised 45 fully crossed conditions
comparing the effect of the three different X-Block (Trivial, Informed,
Random) and Parcel (Within, Between, Random) combinations (9 total)
across five sample sizes (N = 100, 200, 300, 400, 500). Within each
condition, we ran 495 replications. Each replication began by randomly
sampling 500 observations from the “population” data. To make the
400 sample size, each randomly drawn sample of 500 was subsequently
“trimmed down” by removing 100 observations. This process was re-
peated to make each of the smaller sample sizes (i.e., N = 300, 200,
100) for analysis. At each level of N, before imposing the planned
missing, we fit the analysis model to the full data to estimate the
parameters that would be used to define the “true” population values
(as described above).

3. Results

The following are the results from comparing the performance of
the PMDD to the data containing naturalistic missing values as the
population dataset. The results from the complete-case population were
only trivially different from those presented below, so we have pro-
vided the complete-case results as online supplementary material.

3.1. Convergence

In the N = 100 and N = 200 conditions, respectively, 144 (29.1%)
and 1 (0.2%) of the replications failed completely. Additionally, the
CFA model failed to converge for two replications of the N = 100, X-
Block = Trivial, Parcel = Within condition. Two of the replications
also failed at the imputation stage: one replication for the N = 400, X-
Block = Random, Parcel = Random condition and one replication for
the N = 500, X-Block = Random, Parcel = Within condition. See
Table 1 for the number of inadmissible solutions (i.e., Heywood cases).
Sample size was the largest determinant of non-convergence. Most
convergence failures and inadmissible solutions occurred when
N = 100.

3.2. Parameter estimates

The left columns in Figures 2–4 contain plots of the PRB for the
residual variances, factor loadings, and latent correlations, respectively.

Table 1
Counts of inadmissible solutions.

X-Block Assignment Parcel Assignment N = 100 N = 200 N = 300 N = 400 N = 500

Trivial Random 26 17 4 3 1
Within 104 15 3 3 3
Between 8 5 2 0 0

Informed Random 15 6 3 1 0
Within 39 3 0 0 0
Between 9 4 1 0 0

Random Random 16 4 2 0 0
Within 35 6 0 0 0
Between 10 1 2 0 0

No PMD 8 0 0 0 0

Note. The No PMD condition is the comparison condition with no planned missing data.

E.W.G. Moore, et al. Psychology of Sport & Exercise 51 (2020) 101701

5



The type of parameter being estimated had a substantial impact on the
levels of bias. The residual variances were the most biased parameter
estimates. Sample sizes of N = 400 were required to estimate the re-
sidual variances with approximately acceptable levels of bias (i.e.,
|PRB| < 10). Since the item intercept estimates were essentially un-
biased for all conditions, the bias and efficiency plots for the item in-
tercepts are provided in the online supplementary material. Factor
loadings and latent correlations were unacceptably biased at sample
sizes of 100, but this bias dissipated rapidly as sample sizes increased to
200 and above.

The contents of the X-Block also had a notable impact on parameter
estimate bias. Specifically, the random and informed X-Block assign-
ment outperformed the trivial X-Block in all parcel allocation and
sample size conditions. Parcel allocation had the least impact on
parameter estimate bias. The random- and between-block parcel allo-
cation methods produced approximately equivalent, unbiased results.
However, the within-block parcel allocation method demonstrated
poor, unstable performance. The biases produced by the within-block
parcel allocation differed in valence across individual parameter esti-
mates, so this method tended to produce the most extreme biases in

both positive and negative directions for any given combination of
sample size and X-Block assignment. These unstable biases are evident
from the large spread for the square points in Figures 2–4.

The right columns in Figures 2–4 contain plots of the REs of the
parameter estimates from our analysis model. The patterns of RE mir-
rored those of the PRB values. The residual variances were estimated
with the lowest efficiency and the item intercepts were estimated with
the highest efficiency. Increasing sample size was the most substantial
cause of increasing efficiency. A trivial X-Block produced notably lower
efficiency than either a random or informed X-Block. The type of parcel
allocation had only a minimal impact on parameter estimate efficiency,
but the within-block parcel allocation method tended to produce
somewhat lower efficiencies than the between- or random-block parcel
allocation methods.

3.3. Latent reliability

Table 2 shows the average latent reliabilities and 95% CIs for each
construct when estimated with the full data containing no planned
missing and across all PMDD conditions for sample sizes 100–400. The

Figure 2. Percent relative bias and relative efficiency for residual variances (N = 100–400)
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online supplementary material contains tables of the PRB for the
average latent reliabilities across all conditions and sample sizes. As
with the parameter estimate bias discussed above, larger samples pro-
duced less bias in the latent reliability estimates. Furthermore, only the
trivial X-Block assignment produced noticeably poorer results. The
random and informed X-Block assignment methods produced approxi-
mately equal levels of bias. Unlike the parameter estimates, however,
there was some evidence that the method of parcel allocation impacted
bias in the latent reliability estimates. Specifically, the within-block
parcel allocation method tended to produce larger biases when com-
bined with the trivial X-Block assignment. This effect was most pro-
nounced at sample sizes of 200 or less.

4. Discussion

The purpose of this resampling study was to use an existing, large
exercise psychology dataset to examine the effect on construct relia-
bility and validity of different item distribution schemes that have been
recommended by different researchers within the PMDD literature.
Overall, the results support informed or random item assignment to the

X-Block and either assigning items to the A-, B-, and C-Blocks randomly
or splitting scales across the A-, B-, and C-Blocks as the best item dis-
tribution schemes for producing the least biased parameters estimates
at the measurement and structural model level with a three-formed
survey PMDD. In addition, with this study’s cross-sectional design with
three latent constructs, high model convergence rates and unbiased
parameter estimates were attained with sample sizes of at least 300.
With a sample size of 400 or more, and three-form PMDD utilizing ei-
ther the informed or random item assignment approach for X-Block and
Parcels resulted in no model convergence issues and unbiased para-
meter estimates. The item intercepts were recaptured with minimal bias
across all PMDD item assignment schemes and sample sizes. That re-
searchers can utilize a random item assignment approach increases
three-form survey PMDD feasibility, particularly with online survey
software programs incorporating more randomization options.

Sample size had a critical effect on both model convergence and
parameter estimate bias. The item distribution approach did not matter
with a sample size of 100, because all methods had convergence issues
at this sample size and biased parameter estimates. This is not sur-
prising, since a total sample size of 100 means having barely more than

Figure 3. Percent relative bias and relative efficiency for factor loadings (N = 100–400)
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30 individuals’ information for each survey form with the three-form
survey PMDD. With a sample size of 200, and ignoring the trivial X-
block conditions, the factor loadings and latent correlations had ac-
ceptably biased parameter estimates and had improved model con-
vergence rates compared to the sample size of 100. With a sample size
of 300 few to no models had convergence issues, and all the parameters
estimates were unbiased, even the indicator residual variances were
mostly unbiased. Thus, when planning to conduct a CFA having 100
individuals complete each survey version when using a three-form
survey PMDD cross-sectionally seems to be a minimum sample size
necessary to attain quality parameter estimates when the model con-
structs have historically had moderate to high reliability and latent
correlations. Prior, longitudinal (i.e., repeated measures over three
timepoints) simulation research on the performance of the three-form
survey PMDD recommended a minimum sample size of 120 partici-
pants—or 40 individuals responding to each survey form—over all
three timepoints (Jia et al., 2014). While we did not expect a sample
size of 100 to be sufficient, it was important to confirm this and provide
evidence for applied researchers regarding more appropriate sample
sizes for cross-sectional data collections utilizing a three-form PMDD.

The larger number of participants necessary for this cross-sectional
method compared to that found by Jia et al. (2014) with longitudinal
data also makes sense, as the repeated measures methodology of
longitudinal data collection increases the information available to in-
form the imputation process. Indeed, our results align with Graham
et al. (1996) recommendation of a total sample size of 300 with three-
form survey PMDD.

X-Block assignment only had a substantial impact when using a
trivial X-Block (i.e., assigning only demographics to the X-Block). In
general, a trivial X-Block lead to higher levels of bias and lower levels of
relative efficiency across conditions. The informed X-Block and random
X-Block assignments performed similarly in terms of PRB and RE, with
the random X-Block being slightly superior in all conditions. Overall,
the results support the importance of including an X-Block that includes
items from each of the scales on the survey. Previously, it has been
recommended that the X-Block contain the most important variables,
such as the dependent variables (Graham, et al., 1996; Graham, et al.,
2006), or that an informed X-Block assignment approach be utilized
(Enders & Baraldi, 2018; Graham, et al., 2006). The informed X-Block
approach has been viewed as a challenge of PMDDs by some applied

Figure 4. Percent relative bias and relative efficiency for latent correlations (N = 100–400)
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researchers (Harrison, Griffin, Gagne, & Andrei, 2018) when the in-
clusion of new(er) scales is desired as there is not enough prior research
to inform which items should be assigned to the X-Block. The current
finding that items can be randomly assigned to the X-Block as well as
the parcels hopefully reduces this barrier to PMDD survey use.

Parcel assignment had a limited effect on our results. No assignment
scheme systematically biased the estimates more than another.
Compared to the random and between-block parcel assignments, the
within-block assignment produced more variable outcomes (i.e., larger
positive and negative biases within the same design cell). The within-
block assignment scheme also produced the lowest relative efficiencies.
Graham et al. (1996) also found that the between-block item assign-
ment outperformed the within-block assignment. However, many
practitioners seem to have implemented PMDDs utilizing the within-
block approach based upon Graham et al. (2006) recommending the
within-block item distribution option due to limitations of MI and FIML
when analyzing datasets with a large number of variables. To our
knowledge, Graham and colleagues’ 1996 simulation study testing how
to distribute 9 items across the A-, B-, and C-Blocks had not been re-
examined until now. Therefore, our resampling study with 40 items for
three constructs extended upon Graham et al, ’s 1996 work by in-
creasing the number of items used, differing X-block item assignment,
and testing a random item assignment approach. Our results clearly
support utilizing either the between-block or random assignment ap-
proach to achieve the least biased measurement model parameter es-
timates (reliability and content validity) and structural model para-
meter estimates (criterion validity). Between-block and random-block
assignment schemes performed equally well. Given the cautions pre-
viously published about needing to create highly informed-blocks
(Enders & Baraldi, 2018) the quality performance of the random-block
assignment in this study will hopefully start to increase researchers
comfort and confidence implementing PMDDs.

The presence of minimal, naturalistic missing data had essentially
no effect (Enders, 2010). The patterns and magnitudes of biases, effi-
ciencies, and reliabilities were basically equivalent for the different
PMDDs when compared to both the All Cases and Complete Cases
conditions. It is important to note, however, that less unplanned
missing is expected to occur when PMDD surveys are utilized as in-
dividuals are responding to a shorter survey (i.e., reduce nonresponse
due to fatigue). Furthermore, well-designed PMDD surveys should in-
clude theoretically justified auxiliary variables. That is, the survey
should include items that are likely to predict unplanned missing.
Measuring these auxiliary variables increases the chances of unplanned
missing data being MAR instead of MNAR. To maximize the efficacy of
the auxiliary variables, they should always be included in the X-Block.

4.1. Practical implications for utilizing PMDD

Properly implementing PMDDs can minimize participant burden,
increase the quality of the data collected, and extend the complexity of
the research questions we can answer. These all impact the data quality
and power of our study. By utilizing the three-form survey PMDD ap-
proach, we reduce the number of items participants are shown overall;
we also reduce participants’ perception that they are answering the
same items multiple times as similarly worded items from the same
scale can be distributed across the different survey forms. Rather than
using single item measures of variables to reduce participant burden,
we can spread the items from existing scales across the survey versions
so that the final, imputed dataset contains information for multiple
items measuring the same variable (Harrison, et al., 2018). This allows
the variables to be appropriately modeled as latent constructs, and
measurement error kept in the residual error variances of the individual
indicators. By having latent constructs, our research is strengthened by

having estimates of relationships between constructs at the structural
level. Latent parameter estimates have the measurement error removed,
thus providing more accurate representations of the relationships be-
tween constructs (Cole & Preacher, 2014). By not having the relation-
ships between the variables attenuated by measurement error, we have
more power to detect significant relationships (Wolf, Harrington, Clark,
& Miller, 2013).

Furthermore, utilizing a PMDD methodology maximizes our power
by maintaining or maximizing our sample size. As participants have
fewer items to answer, the quality of their responses is better (Graham,
et al, 2007), and since the items the participants did not answer was
randomly assigned by the researcher, those missing responses are
MCAR, by definition, so the relations can be recovered without bias.
Thus, maintaining our sample size and standard errors compared to
other, non-modern approaches to handling missing data (e.g., listwise
deletion, pairwise deletion, mean substitution). In addition, by asking
all the items of a scale across the PMDD survey versions rather than
utilizing fewer items or a single item for a variable, we also improve the
imputation process (Gottschall, West, & Enders, 2012). In fact,
Gottschall et al. (2012) found that the more items in a scale, the worse
scale-level imputation (i.e., imputing the scale score rather than the
constituent items) performs. They also found a larger sample size was
needed for scale-level imputation to attain the same power as item-level
imputation. Using PMDD surveys enables researchers to include all the
items of a scale for item-level imputation, increases the data quality
collected for a given sample, and makes structural equation modeling
with MI or FIML possible to estimate unbiased latent construct para-
meter estimates, and maximizes the power to detect effects.

The following recommendations summarize the results of the cur-
rent resampling study together with the results of prior simulation
PMDD and imputation research:

➢ Items can be allocated to the PMDD survey blocks randomly or by
construct facets

➢ For small, cross-sectional CFA studies, there is continued support for
each survey form being randomly assigned to 100 participants for
completion.

➢ PMDD maintains power by maintaining or maximizing sample size
and standard errors

➢ PMDD enables the use of multiple items to measure constructs,
which maintains nomological network representation of constructs
without participants seeing all items

➢ Measuring constructs with multiple items per construct can be
analyzed with SEM to account for measurement error and test
complex relationships (e.g., indirect effects)

4.2. Limitations & future directions

The current study utilized an exercise psychology survey dataset
with a large sample as the “population” from which the resampling was
conducted. Using this existing dataset allowed for naturally occurring
missing data and the imperfection of real data collected with actual
measures to be present. However, it also limits generalizability.
Additional studies with less reliably measured variables and/or shorter
scales should be examined to determine if there are additional re-
commendations based on these characteristics. The data used was from
a cross-sectional data collection. Given results of longitudinal simula-
tion studies, it is hypothesized that the item-distribution results would
generally hold for longitudinal applications; however, the re-
commended sample size would likely decrease. Although the current
study utilized more items per construct than are typically seen in si-
mulation research, there were still only three constructs in this study.
Often, applied researchers’ questions include more than three

E.W.G. Moore, et al. Psychology of Sport & Exercise 51 (2020) 101701

10



constructs, so future research with more constructs in the survey and
analysis model would provide additional evidence-based, practical re-
commendations for researchers who want to implement PMDDs. Future
studies should also examine the effect of the between- and random-
block item assignment on six- and ten-form survey PMDD suggested in
the literature (Little, 2013).

5. Conclusion

This is the first study, to our knowledge, to build upon Graham and
colleagues’ (1996) cross-sectional, item distribution comparison results
in over 20 years. The PMDD item assignment aspects of our study that
overlap with Graham et al. (1996) was replicated: a) between-block
parcel item assignment outperformed within-block parcel assignment;
b) an X-block with more than demographics reduced parameter esti-
mation bias; and c) a sample size of 300 was sufficient to efficiently
recapture unbiased parameter estimates. However, our addition of the
random-block item assignment performed better than the informed-
block item assignment conditions. This is an important finding that can
make it easier to implement PMDD surveys with the randomization
approaches now available through online survey platforms. The
random-block item assignment approach also makes it easier to include
new(er) scales into PMDD surveys without needing prior research to
inform item distribution. These are exciting extensions built upon prior,
predominantly simulation study, results. More research is needed to
continue pushing the boundaries of PMDD implementation to inform
recommendations for researchers in sport and exercise psychology, as
well as other fields.
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