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Abstract
One of the most effective strategies to reduce the impacts of drought is by issuing a timely and
targeted warning from month to seasons ahead to end users. Yet to accurately forecast the drought
hazard on a sub-seasonal to seasonal time scale remains a challenge, and usually, meteorological
drought is forecasted instead of hydrological drought, although the latter is more relevant for
several impacted sectors. Therefore, we evaluate the hydro-meteorological drought forecast skill for
the pan-European region using categorical drought classification method. The results show that
the hydrological drought forecasts outperform the meteorological drought forecasts. Hydrological
drought forecasts even show predictive power (area with perfect prediction > 50%) beyond two
months ahead. Our study also concludes that dynamical forecasts, derived from seasonal forecasts,
have higher predictability than ensemble streamflow predictions. The results suggest that further
development of seasonal hydrological drought forecasting systems are beneficial, particularly
important in the context of global warming, where drought hazard will become more frequent and
severe in multiple regions in the world.

1. Introduction

Drought is one of the most severe weather-related
natural hazards, which causes damage and losses
comparable to other destructive hazards, such as
floods, landslides, and earthquakes [1]. To reduce
impacts of weather-related drought hazards, the
development of drought Early Warning System
(EWS) is of utmost important. However, drought
EWS, or drought modules within a multi-hazard
EWS, which typically have a sub-seasonal to sea-
sonal forecast time scale because of the creeping
nature of this hazard, are still less developed than
many other EWS modules of short time-scale haz-
ards. Weather forecasts as the main component of
the warning system have in the past lacked the skill
to produce reliable forecasts for longer periods than
days and weeks [2, 3]. In the last decade, dynam-
ical seasonal forecast systems based on numerical
prediction models have become more skillful. These
models generally have shown greater skill than stat-
istical models [4]. Improvement of the probabilistic

seasonal forecasts, therefore, has great potential for
seasonal drought forecasts. As a result, drought EWS
modules, including a seasonal forecasting compon-
ent, have been developed in some regions, such as the
US, Europe, and Africa [5–9].

Following the improvement of the dynamical sea-
sonal forecasts, many studies have been conducted
to assess the skill of the hydro-meteorological fore-
casts, which are e.g. precipitation, soil moisture, and
streamflow forecasts [10–14]. Please keep in mind
that generation of hydrological time series cannot be
classified as drought forecasts in the narrower sense.
These are known as hydro-meteorological forecasts.
Hydrological drought forecasts require, similar to
hydro-meteorological forecasts as a starting point of
the chain, a state-of-the-art large-scale hydrological
model fed by a probabilistic or deterministic forecast
[15]. However, an additional step in the chain, which
is applying a drought identification method using
the forecasted time series of hydro-meteorological
variables, must be carried out [9]. The skill of the
drought prediction is therefore highly reliant on the
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reliability of the meteorological forecast, the hydro-
logical model to realistically simulate the water cycle
over a large-scale region [16], and the drought iden-
tification method (either standardized or threshold-
based approaches, [17]). In terms of seasonal hydro-
logical drought forecasts, there are only few stud-
ies that assessed the skill of the forecasts and com-
pared them with meteorological drought forecasts
[18–22]. However, they do not include all neces-
sary hydrological variables. For example, reference
[18] compared the forecastedmeteorological drought
(i.e. the Standardized Precipitation Index, SPI) with
the forecasted soil moisture derived from the Vari-
able InfiltrationCapacity (VIC)model, reference [19]
assessed the skill of precipitation and soil moisture
forecasts derived from the VIC model, and reference
[22] compared the forecasted SPI with the Standard-
ized Streamflow Index (SSI) that was calculated using
the VIC model. Moreover the spatial resolutions of
0.25

◦
(~30 km) used in the previous studies is too

coarse for most of the impacted sectors.
This study aims to overcome these critical issues.

In a comprehensive manner, we investigated drought
severity classes for hydrological variables runoff and
groundwater for different seasons, and at a detailed
spatial scale (5 km) coming closer to the needs
for impact assessment by end-users [23]. Providing
drought forecasting scores in a full set of hydro-
meteorological variables, e.g. precipitation, precip-
itation minus evaporation, runoff, and groundwa-
ter, which are derived from the recently established
ANYWHERE Drought EWS (AD-EWS, [9]), is a step
forward of this study compared to aforementioned
studies that mainly focus on meteorological drought
forecasts, hydrological forecasts, and/or hydrolo-
gical drought forecasts for only one variable. This
allowed us to assess whether hydrological drought
forecasts perform better than meteorological ones,
which is the main focus and novelty of this study.
Moreover, we investigated if drought forecast scores
obtained from the dynamical forecast have more skill
than those derived from the Ensemble Streamflow
Prediction (ESP).

2. Data andmethods

2.1. Data
All the hydrological variables used in this pan-
European study were simulated using the LISFLOOD
hydrological model [24, 25] fed by: 1) the ECMWF
SEAS re-forecast S4 downscaled to 5 × 5 km (680
× 810 grid cells, longitude × latitude with in total
259,023 land cells), 2) 20 years of resampled his-
torical meteorological observations interpolated to
5 × 5 km grid cells, and 3) gridded meteorolo-
gical observations, precipitation and evapotranspir-
ation from 1990 to 2017, interpolated to 5 × 5
km grid cells. Potential evaporation and evapora-
tion rates (including transpiration) are calculated

through the offline LISVAP pre-processor based on
the Penman-Monteith equation [26]. The model was
calibrated using time series of observed river dis-
charge from over 200 catchments across Europe. A
number of parameters were tuned that control snow-
melt, overland flow, river flow, infiltration, resid-
ence times in the soil and subsurface [27, 28]. LIS-
FLOOD obtained a median NSE of 0.57 over the val-
idation period. Moreover, their studies have demon-
strated that LISFLOOD is able to simulate streamflow
drought.

The LISFLOOD output using the re-forecasted
ECMWFSEAS4 (number 1) is known as hindcast and
resample historical meteorological data (number 2) is
referred as the Ensemble StreamflowPrediction (ESP)
[29]. The ESP was included in this study to explore
if dynamical seasonal forecast provides added value.
The model outputs run using the gridded meteorolo-
gical observations (known as LISFLOOD-Simulation
Forced with Observations, SFO) (number 3) were
used as a proxy for observed hydrological variables.
These variables are total runoff, which consists of sur-
face and sub-surface runoff, and groundwater at the
upper layer. The variables obtained from the LIS-
FLOOD seasonal re-forecast, ESP, and LISFLOOD-
SFO simulation from 2002 to 2008 were used to
identify the drought events for re-forecast, ESP, and
proxy observed time series, respectively. We used
the median of 15 and 20 ensemble members of re-
forecast and ESP data, respectively, with a lead-time
of 5 months. We had to use the proxy hydrological
data because the in situ observational data for run-
off and groundwater at the pan-European level are
not available. However, the use of SFO data as ref-
erence for observed is acceptable as a common prac-
tice in the forecast evaluation studies [4, 14, 18,
20, 22, 30–33]. Detailed information about ECMWF
re-forecasts, ESP, and the LISFLOOD hydrological
model can be found in references [9, 33, 34]. The
flowchart that summarizes the data andmethods sec-
tion is presented in figure S1 in the supplementary
material (stacks.iop.org/ERL/15/084010/mmedia).

2.2. Meteorological and hydrological drought
indices
In this study, we applied the standardized approaches
for the assessment of hydro-meteorological droughts.
The Standardized Precipitation Index (SPI, [35]) and
the Standardized Precipitation Evaporation Index
(SPEI, [36]) were used to represent meteorological
drought, while the Standardized Runoff Index (SRI,
[37]) and the Standardized Groundwater Index (SGI,
[38]) were used to represent hydrological drought.
Here we explain the SPI concept only because the
SPEI, SRI, and SGI were calculated using the same
concept as SPI. The SPI is designed to quantify a
precipitation anomaly (for both dry and wet condi-
tions) at different time scales (e.g. accumulation from
1 month up to 12 months, SPI-x, x = 1, 2, ..., 12) for
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any grid-cell or site [35]. The SPI calculation for any
grid cell is based on a long-term observed precipita-
tion record that is fitted to a probability distribution
(e.g. Gamma), which is then transformed into a nor-
mal distribution. Thus, the median SPI for the grid
cell and the selected accumulation period is zero. Pos-
itive SPI values indicate greater than median precip-
itation and negative values indicate less than median
precipitation. A drought event is assumed to occur
when the SPI is below zero and ends when the SPI
becomes positive. In this study, we determined the
SPI using accumulation periods of 1, 3, 6, and 12
months (i.e. SPI-1, SPI-3,…, SPI-12).

We used the gamma distributions obtained from
the proxy observed data for each index (except SPEI),
month, and grid cell (input dataset 3, see above)
to calculate the re-forecasted drought indices (SPI,
SRI, and SGI) (3 indices, 12 months, 259,023 land
cells). The three-parameter log-logistic distribution
was used to calculate the re-forecasted SPEI (1 index,
12 months, 259,023 land cells). The gamma distri-
bution has quite a flexible shape parameter, which is
applicable to the wide range of accumulated precip-
itation in Europe [39]. A study by reference [40] also
shows that the gamma distribution can be used for
hydrological forecasting of both high and low flows.
The SPI-x for the re-forecasts (up to 7 months ahead)
was calculated by considering data from monthly re-
forecasts and observational data from the preceding
months if needed for shorter lead-times [41]. For
example, to calculate the SPI-6 for the first month,
5 months of observed data are accumulated with the
first month of forecasted data. To calculate the SPI-
6 for the second month, 4 months of observed data
are accumulated with the first 2 months of forecasted
data and so on up to seventh month of the forecast
lead-times [9, 18, 41]. This implies that shorter lead-
times and longer accumulation periods have a higher
proportion of observed data.

2.3. Drought class and forecasting score
In this paper, we introduce a new technique, i.e.
a categorical drought classification, to analyze the
score of the forecasts by comparing the re-forecasts or
ESP with the proxy observed. This simple technique
provides drought forecasting scores based on differ-
ences in drought classes that are familiar and widely
used by end users [42], including water managers
and politicians. The scores are easy to understand
by end-users [23, 43]. We calculated the scores for
each of the forecasted hydro-meteorological drought
(precipitation, precipitationminus evaporation, run-
off, and groundwater). We used drought classes to
describe the severity of drought in the various hydro-
meteorological variables and to determine the fore-
casting score. The SPI drought severity classes are
as follows: mild drought for 0> SPI≥ –0.99, moder-
ate drought for 1.00≥ SPI≥–1.49, severe drought for

–1.5≥ SPI≥ –1.99, and extreme drought for SPI≤
–2.00 [35]. For the SPEI, SRI, and SGI, we used
identical classes [36–38].

We assigned a number to each drought severity
class, as follows: 1: no drought, 2: mild drought, 3:
moderate drought, 4: severe drought, and 5: extreme
drought. The drought forecast score was determ-
ined by computing the difference of drought class
derived from the median of the ensemble of re-
forecasted data and the number obtained from the
proxy observed data. A similar procedure was fol-
lowed for the ESP forecast score. A perfect fore-
cast is achieved if the score is zero (white color),
meaning that there is no difference between both
drought classes. A positive score (bluish colors e.g.
in figures 1(c) and (e)) indicates over-forecasting and
a negative score (reddish colors e.g. in figures 1(c)
and (e)) denotes under-forecasting. We applied blu-
ish color for over-forecasting and reddish color for
under-forecasting because the latter involves more
risk for water manager dealing with drought plan-
ning than over-forecasting the hazard. The percent-
age area of each drought forecast score was calcu-
lated by summing up all land cells which have the
same class difference divided by the total number
of land grid cells, multiplied by 100 percent. We
averaged the three monthly percentages of drought
forecast scores for winter (DJF), spring (MAM),
summer (JJA), and autumn (SON) for seasonal
analysis.

Three different color scales (figures 2 and 4),
green, brown, and red, were applied to classify the
percentage of Europe (% of cells) in a certain drought
forecast class, or group of drought forecast classes for
a particular accumulation period (e.g. SRI-1). The
25th, 50th and 75th percentile were used as class lim-
its. These were applied for all forecast scores (class
difference: none, plus, and minus) derived from all
seasons (n = 4) and lead-times (n = 5). For per-
fect forecasts (class difference: none), the 25% largest
European areas (above 75th percentile), with a per-
fect forecast across the 20 cases (4 seasons × 5
months lead-times), have assigned the green color,
whereas the 25% smallest areas obtained the red
color (below 25th percentile). The two intermedi-
ate classes have gradient colors from green to brown
(from 75th to 50th percentile) and from brown to
red colors (from 50th to 2th percentile). The col-
ors are reversed for the group with forecast scores
+4 to –4, reflecting that small areas with certain
drought class differences represent a higher predict-
ive power than large areas. Furthermore, we calcu-
lated the percentiles from the percentage of areas (n
= 20), which have the same absolute class (e.g. class –
1 is grouped with +1, class –2 is grouped with +2,
and onwards). Please see reference [9] for detailed
information on the drought forecast score and
color coding.
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Figure 1. Drought in runoff for the pan-European region in August 2003 expressed as drought severity classes using the SRI-1: (a)
forecasted drought done on 2 August 2003 (median of 15 ensembles), (b) drought obtained from SFO runoff for August 2003, (c)
drought forecast score expressed as difference in drought classes between the forecasts and the SFO, (d) same as (a) but for
forecast based upon ESP, and (e) same as (c) but for ESP. Reddish color in figures 1(c) and (e) indicates that the forecast
underestimates the drought class and vice versa for bluish color. White color in figures 1(c) and (e) shows a perfect forecast.

3. Results

3.1. Hydrological drought forecasting scores
An example of forecasted drought in runoff in the
summer of August 2003 is presented in figure 1. The
2003 drought was selected because it is known as
one of themost recent severe pan-European droughts
[44]. The forecasted drought in the pan European
region for 1-month lead-time (LT), in general, is in
good agreement with the SFO (figures 1(a) and (b)).
Both the forecast and SFO runoff show in a large area
mild drought and in small area moderate droughts
in central Europe. North UK and Ireland were fore-
casted to have mild drought, however, moderate and
extreme drought were observed. The comparison
between forecasted drought and SFO shows that the
forecast over-estimates the drought class in northeast
Europe and Portugal, and vice versa for a large part of
central Europe and the UK (figures 1(c)). The fore-
casts using ESP also produces a similar drought class
and area than the forecast, with a higher drought class
in east Europe and east Russian Federation (figure
1(d)). Moreover, drought severity prediction done by
the ESP has higher (lower) drought classes indicated
bymore dark bluish (reddish) colors than the forecast
(figures 1(c),(e)), i.e. over-estimation.

A comprehensive comparison of hydrological
drought forecasting scores in runoff and groundwater
is presented in figure 2 and S2, respectively. Figure 2
shows that forecasting of hydrological droughts one

month ahead (LT = 1) attains high scores, with val-
ues of perfect prediction (none: no class difference
between SFO and forecast) in general around 70%
for SRI-1 and close to 90% for SRI-6 and above.
For longer lead-times this percentage is around 50%
for SRI-1 and SRI-3 (for SRI-6 and SRI-12 percent-
ages are higher). SGI shows similar scores as SRI-
1 (figure S2). During spring, the score of hydrolo-
gical drought forecasts is lower than in other seasons;
it goes down close to 60% (SRI-1 and SGI-1, LT =
1). The performance of the forecasts improves with
accumulation periods. The SRI-12 (LT = 1) has the
highest performancewith perfect forecasts above 90%
for all seasons. This is plausible since the observa-
tional data (i.e. SFO) were added in the drought ana-
lysis for higher accumulation periods (see Data and
Method section).

Figure 2 also shows that the hydrological drought
forecasts generally over-estimate the drought severity,
but mainly by not more than 2 classes, indicated by
higher percentage of mismatch between forecast and
SFO for class differences+1 and+2 (green dominant
in –1 and –2) relative to negative ones (red domin-
ant in +1 and +2). For example, for runoff drought
(SRI-1) with LT = 1 month in the summer season,
11.5–14.6% of the pan-European area has a forecas-
ted drought class that is 1–2 classes higher (more
severe) than SFO, whereas in 0.1–0.2% of the area
the forecasted drought class is one to two levels lower
(less severe) than derived from the SFO. The general
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Figure 2. Runoff forecasts, SRI-x forecasting scores for pan-European 2002–2008 droughts, with x= 1, 3, 6, and 12 months:
difference between the drought classes derived from the median of 15 ensemble forecasts and the SFO. Predictive power, i.e. % of
cells that agree (none; no class difference), and disagree (–4 to+4 class differences) are provided for the four seasons as the
starting forecasted months, with different LTs (1–5 months). Green color indicates high forecasting predictive power, brown color
indicates medium forecasting predictive power, red color indicates low forecasting predictive power, and white color indicates
zero % of area (see Data and Method section for the explanation of the color coding).

slight over-estimation of hydrological drought fore-
casts may be caused by precipitation and temperat-
ure biases produced by the forecasts rather than by
the hydrological model since we have used the same
model for forecasts and proxy for observations.

Hydrological drought prediction using ESP shows
slightly lower drought forecasting scores, with the
SRI-1 showing around 2–3% smaller areas with per-
fect forecasts than the probabilistic dynamical fore-
casts for LT = 1 (figure S3 and S4 for SRI and SGI,
respectively). This does not apply to forecasts issued
in spring since, in this season, the ESP has a slightly
larger area with a perfect score. For higher accumula-
tion periods than 1 month (e.g. SRI-3), the difference
in areas with 1-month accumulation period becomes
smaller due to an integration of proxy observational
data in both forecasts.

The relatively lower predictive power of hydro-
logical drought forecasts issued in spring may relate
to the timing of snow melting associated with biases
in temperature prediction [45]. Forecasting of too
early snowmelting generates more runoff in the early
spring resulting in a lower runoff, and hence a more

severe drought by the end of the spring season (i.e.
warm snow season drought). On the contrary, fore-
casting of too late snowmelt leads to a drought in
the early spring since less runoff is generated due to
frost conditions during winter and early spring (cold
snow season drought) [46]. Themismatch on the pre-
diction of too early or late snow melting in spring
(especially in March) may be due to an oversimpli-
fication of the snowmelt module and coarse elevation
data used in the LISFLOODmodel, resulting in a bias
in the temperature-dependent simulation of snowfall
and snowmelt [45]. The hydrological drought fore-
casts for March 2003 with LT 1-month show mild
to moderate drought for almost all regions in north
Europe, while the SFO only shows mild drought in a
small part of north Europe (not shown).

3.2. Meteorological drought forecasting scores
Meteorological drought forecasting represented by
drought in precipitation using the SPI-1 in August
2003 is given in figure 3. Both the probabilistic
dynamical forecast and the ESP produce different
pattern of drought-affected regions for the summer
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Figure 3.Meteorological drought for the pan-European region in August 2003 expressed as drought severity classes using the
SPI-1: (a) forecasted drought done on 2 August 2003 (median of 15 ensembles), (b) drought obtained from observed precipitation
for August 2003, (c) drought forecast score expressed as difference in drought classes between the forecasts and the observed, (d)
same as (a) but for ESP, and (e) same as (c) but for ESP. Reddish color in figures 3(c) and (e) indicates that the forecast
underestimates the drought class and vice versa for bluish color. White color in figures 3(c) and (e) shows a perfect forecast.

season and for LT 1-month compared to observed
SPI-1 (figures 3(a), (b) and (d)). The probabilistic
dynamical drought forecast tends to produce lesser
severe droughts (lower drought classes shown by
more reddish colors) in most of European regions
than the observed (figure 3(c)). The deficiency of the
dynamical forecast model to produce more extreme
droughts can be recognized particularly in the UK,
west EU, central EU, and east EU, with class differ-
ences up to –4 (reddish colors, figure 1(e)). This defi-
ciency is then translated to hydrological drought since
we used the forecasted meteorological data to run
the LISFLOOD model as shown by the correspond-
ing locations of lower and higher forecasted drought
classes in Europe for the two forecasts (figures 1(c)
and 3(c)). The forecast based upon the ESP also pro-
duces drought class lower than the observed up to -
4 (figure 3(e)). The drought forecasts for northern
European regions mostly overestimate the drought
class, indicated by bluish colors in figures 3(c) and (e).
The ESP forecasts even show more widespread bluish
color in north EU up to west Russian Federation.

Figure 4 clearly shows the inadequacy of the
probabilistic dynamical meteorological forecasts to
produce the same drought classes as derived from
observed precipitation. This is indicated by rather
small pan-European areas with percentages of per-
fect predictions, e.g. 45–70% for SPI-1 and SPI-3, as
well as for SPEI-1 and SPEI-3 (figure S5). Compared

to hydrological drought forecasts (figure 2), meteor-
ological drought forecasts produce higher class dif-
ferences up to +4, meaning lower predictive power,
except for higher accumulation periods, such as SPI-6
and SPI-12. SPI-6 can forecast the drought area reas-
onably well (over 60%) with an LT up to 2-month
in all seasons. However, a lot of observational data
are included in the SPI-6 with lead-times of 1 and 2
months (see the Data and Method section). Clearly,
SPI-12, which has the longest accumulation period,
produces the highest forecasting score with drought
class mismatch only up to 2-class difference. How-
ever, at least 5 months of observations are included
in the SPI-12 (LT= 7 months).

The highest forecasting score of meteorological
drought for long accumulation periods (e.g. SPI-
6 and SPI-12), as expected, is achieved for winter,
followed by autumn and spring (figure 4) [32,
33]. Summer is the season that has the lowest
score compared to others for accumulation periods
longer than 1 month. The higher score of meteor-
ological drought forecasting for winter than sum-
mer could be due to better precipitation predic-
tions with the forecast model, in particular, as a
response to the North Atlantic Oscillation (NAO),
as one of the strongest predictors in seasonal fore-
casts in Europe [47, 48]. The low skill for meteoro-
logical drought forecasts in the summermight be due
to the intense precipitation events (more convective
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Figure 4.Meteorological drought (SPI) forecasting scores for pan-European 2002–2008 droughts: difference between the drought
classes derived from the median of 15 ensemble forecasts and the observed. Predictive power, i.e. % of cells that agree (none; no
class difference), and disagree (–4 to+4 class differences) are provided for the four seasons as the starting forecasted months, with
different LTs (1–5 months). Green color indicates high forecasting predictive power, brown color indicates medium forecasting
predictive power, red color indicates low forecasting predictive power, and white color indicates zero % of area (see Data and
Method section for the explanation of the color coding).

type) and evapotranspiration, which challenge accur-
ate weather prediction in summer [33, 49–51].

SPI drought prediction using ESP shows even
lower scores than using the dynamical forecasts (fig-
ure S6). For SPI-1 with a lead-time of 1 month,
the ESP only yields perfect prediction in less than
40% of the pan-European area, which is >10%
lower than the probabilistic dynamical forecast. As
expected, the difference between ESP and dynam-
ical forecasts becomes less for higher accumulation
periods.

3.3. The effect of memory on the forecasting score
The comparison between hydrological and meteor-
ological drought forecasts clearly shows the higher
predictive power of hydrological drought forecasts,
even beyond 2 months (area with perfect predic-
tion >50%). This is plausible since hydrological vari-
ables used here are affected by land surface water
storage (e.g. soils, groundwater) that pools, attenu-
ates, lengthens and delays the effect of the driving
forces (i.e. precipitation) as reported in several studies
[17, 52–55]). Some previous studies confirmed that

catchment control could be as important as climate
control [56, 57]. The skill of SRI and SGI is quite com-
parable because we used the total runoff data, which
includes both the surface and sub-surface runoff. Sub
surface runoff has more catchment memory reflect-
ing storage processes in soil and groundwater than
the surface runoff, which is not strongly related to
precipitation. Groundwater data used in this study is
groundwater storage from the upper domain (Data
section).

Meteorological drought forecasts for longer accu-
mulation periods than 1 month and short lead-times
also contain memory in the sense that these contain
observed meteorological data. However, even when
monthly meteorological data are accumulated over
periods of several months (e.g. SPI-3 and SPEI-3),
the predictive power of hydrological drought forecasts
is higher due to catchment memory (figure S7). The
score of meteorological drought forecasts improves
with the increase of the accumulation periods of
the SPI and SPEI [41] because of a higher propor-
tion of observed data, which artificially inflates fore-
cast scores. Clearly, SPI-12 and SPEI-12 with an LT
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of 1 month, which include 11 months of observed
data, produce the highest score (> 80%, figures 4
and S5, respectively). The score for meteorological
drought indices for longer accumulation periods
should not be misinterpreted. Our findings show that
meteorological drought forecasts taking account of
memory through inclusion of past observational data
(accumulation periods) might be an alternative for
hydrological drought forecast if hydrological drought
forecasts are not available. For instance, the forecast
score of SPI-3 and SPEI-3 are marginally comparable
to forecasted drought in runoff and groundwater with
1-month LT (SRI-1 and SGI-1, respectively), which
contain no preceding SFO data (figure S7).

4. Conclusions and future improvement

This research shows the strengths of hydrological
drought forecasts to predict drought in runoff and
groundwater from one month up to several months
ahead, which outperforms meteorological drought
forecast, and complements conventional hydrological
forecasts (e.g. streamflow). This opens an opportun-
ity for water managers and stakeholders dependent
on water resources planning and management to rely
more on hydrological drought forecasts than solely on
meteorological forecasts. Our findings also highlight
the importance of memory in hydro-meteorological
drought forecasts, e.g. land surface water storage. The
highest score can be achieved using hydrological vari-
ables, such as runoff and groundwater, or alternat-
ively if no hydrological data are available, using met-
eorological variables (e.g. precipitation, precipitation
minus evaporation) for longer accumulation periods
that include observed data.

In this research, we used the LISFLOOD hydrolo-
gicalmodel fed by the ECMWF forecast system SEAS-
4 to produce seasonal hydrological drought forecasts.
The use of multi-model ensemble seasonal forecast-
ing system (climatic and hydrological) may increase
the skill of drought forecasts [14, 58] although the
improvement may not be very significant compared
to a singlemodel that has high predictive skill [31, 59].
The LISFLOODmodel that we used in our study was
selected for operational flood and drought forecasting
by Joint Research Center (JRC) by considering many
factors in the model selection, including e.g. model’s
uncertainty, cost of implementation, and feasibility of
technical implementation [60, 61].

We compared our drought index forecasts derived
from the LISFLOOD model fed by the probabil-
istic ECMWF SEAS-4 with forecasts based upon the
Ensemble Streamflow Prediction (ESP). We found
that in most cases the hydrological drought forecasts
by the ECMWF SEAS-4 are slightly better than the
ESP. However, the ESP shows a big deficiency in pre-
dicting meteorological drought for an LT of 1 month.
Previous studies using the ECMWF SEAS-4 to feed
hydrological models also conclude that the ECMWF

SEAS-4 is, in general, more skillful than the ESP
for certain seasons and lead-times [20, 33]. There-
fore we conclude that the ESP could be used to fore-
cast hydrological droughts, if dynamical forecasts are
not available.

The skill of hydrological drought forecasts may
even improve with the replacement of the ECMWF
SEAS-4 with the newest forecasting system SEAS-5
and the improvement of the LISFLOOD model that
started in 2019 [62]. We also note that the evalu-
ation of drought forecasts was performed against SFO
data as a benchmark for observed, because gridded
hydrological variables across Europe are not avail-
able. The skill of hydrological drought forecastsmight
decrease if we replace the SFO data with in-situ obser-
vation due to e.g. model uncertainty. This experi-
ment was discussed in reference [34] in which they
used re-forecasted river discharge that was compared
with discharge derived from SFO and gauged data.
They concluded that the skill of hydrological drought
forecasts is still higher than the SPI obtained from
3 months accumulated precipitation in the Guar-
diola catchment. Thus, changing the SRI derived from
the SFO data with the SRI obtained from in-situ
observed data will not change our conclusion that
hydrological drought forecasts outperform meteoro-
logical ones. If drought events will become more fre-
quent and severe in the twenty-first century due to
global warming [63, 64], the development of skillful
hydrological drought forecasting systemwill be of the
utmost importance.
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