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2Nikhef, Science Park 105, 1098 XG Amsterdam, Netherlands

3Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University,
Princetonplein 1, 3584 CC Utrecht, Netherlands

(Received 2 April 2021; accepted 28 April 2021; published 18 May 2021)

GW170817 has led to the first example of multimessenger astronomy with observations from
gravitational wave interferometers and electromagnetic telescopes combined to characterize the source.
However, detections of the early inspiral phase by the gravitational wave detectors would allow the
observation of the earlier stages of the merger in the electromagnetic band, improving multimessenger
astronomy and giving access to new information. In this paper, we introduce a new machine-learning-based
approach to produce early-warning alerts for an inspiraling binary neutron star system, based only on the
early inspiral part of the signal. We give a proof of concept to show the possibility to use a combination of
small convolutional neural networks trained on the whitened detector strain in the time domain to detect
and classify early inspirals. Each of those is targeting a specific range of chirp masses dividing the binary
neutron star category into three subclasses: light, intermediate, and heavy. In this work, we focus on one
LIGO detector at design sensitivity and generate noise from the design power spectral density. We show
that within this setup it is possible to produce an early alert up to 100 seconds before the merger for the
best-case scenario. We also present some future upgrades that will enhance the detection capabilities of our
convolutional neural networks. Finally, we also show that the current number of detections for a realistic
binary neutron star population is comparable to that of matched filtering and that there is a high probability
to detect GW170817- and GW190425-like events at design sensitivity.

DOI: 10.1103/PhysRevD.103.102003

I. INTRODUCTION

On August 17, 2017 the first gravitational wave (GW)
from a binary neutron star (BNS) system was observed by
the Laser Interferometer Gravitational Wave Observatory
(LIGO) [1] and by the Virgo detector [2].
The Fermi Gamma-Ray-Burst Monitor (Fermi-GBM)

[3] and the INTEGRAL satellite [4] detected the associated
γ-ray signal 1.7 s after the coalescence. This event, called
GW170817, provided the first direct evidence of a link
between these mergers and short γ-ray bursts. In addition,
it gave an extra confirmation of the existence of GWs and
initiated the era of multimessenger astronomy (MMA) with
GWs [5–8]. The combined detection of multiple messen-
gers allows us to improve our understanding of complex
astrophysical phenomena, such as the r- and s-processes
at the origin of heavier elements in the Universe. This

improvement of MMAwill also allow a better measurement
of the Hubble constant and novel tests of general relativity,
such as a measurement of the speed of GWs [9–14]. A key
element in MMA is the time delay between the detection
of a GW and the identification of the location of its source.
In fact, to discover new physics it is necessary to detect the
source in the electromagnetic band at times close to the
merger. However, the time of response varies from one
telescope to another, so that a detection in the GW channels
should be made early to leave enough time for the
electromagnetic observatories to focus on the source. For
instance, the Swift Observatory [15] is able to focus on a
sky position in only seconds (around 15 s for Swift’s Burst
Alert Telescope [15]). Thus, it is advantageous to detect
gravitational waves from the inspiral, before the merger,
to enable prompt detection of the merger event in the
electromagnetic band.
The signal of a GW coming from compact binary

coalescence (CBC) is composed of three parts: the inspiral
(when the orbital motion of the two objects radiates away
energy and the orbit shrinks), the merger (when they touch
and join), then by a ringdown (when the newly formed
body returns to its ground state). As the signal enters in the
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detector, the signal-to-noise-ratio (SNR) accumulates. Due
to the low frequency and small amplitude of the signal
during the early inspiral, the SNR accumulation is slow,
which hinders the detection of the signal. It becomes
observable when the frequency of the early inspiral enters
into the sensitivity band of the detector. Upgrading the
current detectors and building the next generation of
interferometers, such as Cosmic Explorer (CE) and the
Einstein Telescope (ET) [16–18], will increase significantly
the sensitivity through, among other things, the reduction
of the noise. As a consequence the frequency threshold will
also decrease, leading to the detection of signals with
longer inspirals and to a larger number of detections. Up to
now, both the low-amplitude early inspiral and the high-
amplitude late inspiral have been needed to detect BNSs.
Some studies already investigate the question of early
warning for the next generation of interferometers [19].
The standard methodology employed to search for GWs

relies on matched filtering techniques. A large bank of
template waveforms is built. The templates are then
correlated with the input data of the detector over their
sensitivity band, extracting the signals from the detector
noise. The standard matched filtering can be computation-
ally expensive [20–23], but some pipelines such as GstLAL
[24], PyCBCLive [25], MBTAOnline [26] and SPIIR [27]
are adapted to run in low latency and obtain fast candidate
detection, also referred to as trigger.
Matched filtering techniques usually consider the whole

template (meaning the template over all the sensitive
frequencies of the detector) to correlate it with the signal.
However in the context of MMA it is necessary to employ
only the premerger information of the template for prompt
alerts. In this line of thought, recent advances to perform
matched filtering with only a fraction of the inspiral have
been made in Ref. [28], where the authors have implemented
a GstLAL-based pipeline that produces premerger alerts.
It enabled them to compute the matched filter, the

false-alarm rate, and the sky localization using only the
information in the low-frequency band of the template,
corresponding to the early inspiral. This showed that this
method could detect signals as early as one minute before the
merger. However, the number of early alerts issued is lower
than the total number of detections based on full waveforms.
Due to the computational complexity of matched filter-

ing and the increasing amount of events related to the future
upgrades of the detectors, alternative approaches to over-
come the challenges of MMA are under development.
In particular, the use of machine learning (ML) methods
has sparked the interest of several authors, who have built
deep learning (DL) algorithms. These algorithms are able to
capture complex nonlinear relationships in the data by
composing hierarchical internal representations. The main
advantage of these methodologies is that the prediction task
is performed rapidly since most of the computations are
made during the training stage [29]. Several studies have

shown the power of these algorithms for the detection of
GW in low latency, obtaining a sensitivity similar to that of
matched filtering techniques [29–34]. Other recent papers
[35–39] focus on the parameter estimation for CBC events
and other applications of ML for gravitational wave
astronomy. Moreover, in [29,30] the authors have presented
the generalization ability of convolutional neural networks
(CNNs) by training with a dataset of nonspinning wave-
forms and obtaining a high performance when testing with
precessing systems.
In [32], only part of the template is used in their DL

approach. The authors employed a pretrained Resnet-50
network [40] to classify time-frequency maps. The data
were acquired from the detectors after an extra preprossess-
ing step to build a spectrogram of the data. When
computing such figures, depending on the desired reso-
lution, we found that the time to produce a single map could
vary from ∼0.5 seconds.1

In this paper, we propose to use the 1-D whitened strain
as the input data of a CNN for premerger alert so that we
bypass the computation of the spectrograms. The goal of
the algorithm is to perform a binary classification task to
differentiate inputs that contain a GW from inputs that
do not. The classification is made independently for three
different categories of objects: light, intermediate and
heavy BNS. The templates with a GW contain only the
early inspiral part of the waveform, which is embedded in
colored Gaussian noise, made with the noise power spectral
density (PSD), corresponding to the design sensitivity
of LIGO and given in PyCBC [41]. Different categories
have different observational time windows (OTW), i.e., the
duration of inspiral seen by each CNN is different depend-
ing on the category. A short CNN, as in [29–31], is
implemented for each category. We stress that this work
is a proof of concept to show the promises of this type of
neural networks. The optimization of their performance and
the inclusion of multiple detectors will be considered in
further studies.
This paper is organized as follows. In Sec. II, we discuss

the data generation. Section III details the methodology
used to design and train the networks. Section IV is devoted
to our different results and discusses them. Finally,
in Sec. V we draw our conclusions and consider future
enhancements to be brought to our detection system.

II. DATA GENERATION

A. SNR and partial-inspiral SNR

The final output of a matched filtering algorithm is the
signal-to-noise ratio (SNR). It measures the match between
the template and the data. Mathematically, the SNR (ρ) [42]
is defined as

1All the tests on CPU were done on a Intel(R) Core(TM)
i7-8650U CPU.
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ρ ¼
�
4Re

�Z
fmax

fmin

d̃ðfÞh̃�ðfÞ
PðfÞ df

��
1=2

; ð1Þ

where h̃�ðfÞ and d̃ðfÞ are respectively the complex con-
jugate of the Fourier transform of the template and the
Fourier transform of the data. PðfÞ is the noise power
spectral density. Here, fmin is the minimal frequency in the
detector sensitivity band and fmax is the maximum fre-
quency considered, typically the Nyquist frequency, i.e.,
half of the sampling frequency.
The SNR represents how well a typical template h

matches the data d, which is the addition of a GW signal
and noise. A matched-filtering-based search finds the
template that maximizes the SNR and is optimal for
Gaussian stationary noise and an exactly known signal.
For this type of noise, when the signal does not contain a
GW, the SNR fluctuates around a mean value. Nonetheless,
if a GW enters the detector, the SNR increases and when
that exceeds a predefined SNR threshold, a candidate
trigger event is recorded.
However, the noise from the detectors is neither Gaussian

nor stationary, making the search more complex. For
example, glitches (spurious noise variations in the detector
band) can occur and lead to a peak in SNR which can mimic
a GW trigger. To avoid the detection of noise, the matched
filtering-based pipelines often require the detection to be in
coincidence in different detectors. Additionally, more elabo-
rate tests also exist, such as the χ2 test [43], that can
downrank the noise artefacts in the final candidate lists.
The confidence one has about the detection is also often
translated by a false-alarm-rate that gives the frequency at
which noise fluctuations lead to the same ranking statistic
value. This ranking is a multivariate statistic that includes
different statistics such as SNR and χ2 [23].
The optimal SNR is obtained when the template is

matched with itself [42]:

ρopt ¼
�
4Re

�Z
fmax

fmin

jh̃ðfÞj2
PðfÞ df

��
1=2

: ð2Þ

This value represents the loudness of the signal in the
detector.
In the context of premerger analysis, only part of the

inspiral is considered, and the loudness of the signal is
not represented anymore by the optimal SNR. Instead, we
define it by a partial inspiral SNR (PI SNR), which has the
same definition as the optimal SNR in Eq. (2), but where
the template is now the partial template containing only the
early partial inspiral (hPI). In the frequency domain, it is
equivalent, for a given waveform, to replace the fmax in
Eq. (2) by the maximum frequency reached by the template
in the part of the inspiral considered. Typically, this
frequency will be below 50 Hz (instead of thousands
usually), reducing the value of the integral.

The SNR increases more rapidly around the late inspiral
and the merger than during the early inspiral. Figure 1
shows this behavior as it represents the value of the PI SNR
as a function of the fraction of the signal that is taken into
account.
The behavior of the PI SNR comes from the relation

between frequency and time. At the lowest order in
velocity, one finds:

fðtÞ ¼ 1

π

�
GMc

c3

�
−5=8

�
5

251

1

ðtm − tÞ
�

3=8
; ð3Þ

where fðtÞ is the frequency at time t,Mc is the chirp mass
defined in terms of the component massesm1 andm2 of the
system:Mc ¼ ðm1m2Þ3=5=ðm1 þm2Þ1=5 and tm is the time
of the merger. This behavior is illustrated in Fig. 2, which
shows the full and partial templates and their frequency
evolution.

B. BNS categories

The duration of the observable CBC signal depends
mainly on the chirp massMc. Indeed, at the lowest order in
velocity,2 the duration of the signal is given by [44]

τðsÞ ≃ 3

ðMc=M⊙Þ53
��

100 Hz
flow

�8
3

−
�
100 Hz
fhigh

�8
3

�
; ð4Þ

where flow is the lowest frequency in the detector sensi-
tivity band and fhigh is the highest frequency reached by the
binary (approximated by the frequency of the innermost
stable orbit). From this expression it is clear that, for a fixed

FIG. 1. Evolution of the PI SNR as a function of the duration of
the early inspiral for a BNS with component masses of 1 M⊙. On
the vertical axis, the PI SNR is normalized by the optimal SNR,
and on the horizontal axes, duration of the early inspiral is
normalized by the duration of the full template.

2In the early inspiral, the strong field effects and the velocities
are rather small, which means that the expression derived for the
lowest order in velocity approximates well the behavior of the
binary systems.
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lowest frequency flow, if the chirp mass Mc increases, the
duration of the detectable signal shortens.
Furthermore, at the lowest order in velocity, the SNR

also has a simple expression [45]:

ρ ≃
1

2

ffiffiffi
5

6

r
1

π
2
3

c
D

�
GMc

c3

�5
6 ffiffi

I
p

gðθ;ϕ;ψ ; ιÞ: ð5Þ

In this expression, c is the speed of light, D is the
luminosity distance, G is the gravitational constant, Mc is
the chirp mass, I is the frequency integral

I ¼
Z

fmax

fmin

ðf0Þ−7=3
Pðf0Þ df0; ð6Þ

and gðθ;ϕ;ψ ; ιÞ is a function that depends on the orienta-
tion of the orbital plane and on the sky position through the
antenna pattern of the detectors [46]. From Eqs. (4) and (5)
one can see that if the chirp mass decreases, the optimal
SNR of the signal decreases while its duration increases.
As we can observe in Fig. 1, the PI SNR depends on the

fraction of the signal considered, as well as on the highest
frequency reached within the observation time. Therefore,
observing the signal for a longer time would lead to a
higher PI SNR, making the signal easier to detect.
However, we also want to detect the signal as early as
possible in order to have an efficient premerger alert
system. This leads to a trade-off in our method, as we
want to have a high PI SNR, but also prompt detections.
Since we know that the time evolution of the amplitude

of the signals will be different depending on the masses,
we split the BNS set into three different categories: light,
intermediate and heavy BNS. For each of these categories,
we use a different observation time window (OTW),
meaning that we train the networks on a different length

of data. Hence, our algorithm consists of 3 CNNs, one for
each category and input size. Note that the OTW is a
hyperparameter that will be tuned in a later work. A
discussion of the influence of this parameter will be
discussed in Sec. IV.
Table I summarizes the characteristics of the different

categories, which are classified according to their chirp
massMc. In order to give an intuition for the masses of the
objects present in each category, we give the highest and
lowest chirp masses of each category and the component
masses for an equal-mass system.3 For each of the
categories, in addition to the constraint on the chirp mass,
we also restricted the individual component masses to be
between 1 M⊙ and 3 M⊙, which corresponds to a broad
mass range for neutron stars. Note also that spin effects are
absent at this order in v

c, so that we considered only
nonspinning BNS.

C. Dataset generation

The inputs of the neural networks are 1-dimensional
whitened time series, made of Gaussian noise generated
from the design sensitivity PSD of Advanced LIGO
(aLIGO) with a GW added in some cases. Indeed, the
network is trained as a classifier between an event class
(noiseþ template) and a noise class (only noise). The GW
data analysis and generation has been performed with the
PyCBC package [41].
We start by generating 120 seconds of colored Gaussian

noise. Then, a nonspinning BNS waveform is injected into
it. The approximant used is SpinTaylorT4 [47] and it is
generated with a minimum frequency of 20 Hz.
By default, we employ the optimal sky localization

considering only the plus polarization of the GW aligned
with the arms of the interferometer to generate training,

FIG. 2. The top panel represents an intermediate BNS template
where the component masses are m1 ¼ m2 ¼ 2 M⊙. The bottom
panel shows the frequency evolution of the template with time. In
both plots, the inspiral part considered for our ML-based
approach is colored in red.

TABLE I. Summary of the CBC merger types for the different
CNNs. A different OTW is considered for each category because
of the difference in duration of the signals depending on the
component masses. The fraction of signal corresponds to the time
passed by the signal in the frame with respect to the total duration.
The early alert time is the duration between the end of the OTW
and the end of the signal. For each OTW, the minimum and
maximum component masses are 1 and 3 M⊙.

BNS Light Intermediate Heavy

Mc (M⊙) 1.13–1.56 1.56–2.09 2.09–2.61
flow (Hz) 20 20 20
Duration (s) 100–180 65–100 45–65
OTW (s) 80 50 30
Fraction of signal 0.44–0.8 0.5–0.77 0.46–0.66
Early alert
before merger (s)

20–100 15–50 15–35

3Non-equal mass systems were also considered during the
training and testing of our networks.
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validation and testing sets. Note however that when we later
will test the performance of the networks with realistic BNS
populations, similarly to [44], the sky location will not be
the optimal one anymore.
Since our objective is to train the networks on the early

inspiral part of the waveforms, we select the desired OTW
for the generated strain and its PI SNR is computed. In
Fig. 3, we plot the waveform embedded in Gaussian noise.
The vertical red lines represent the portion of the strain in
the OTW. Note that the frame we use is always starts at the
beginning of the 120 second injection it is taken from.
Finally, we whiten the stretch of data under consideration
and normalize its amplitude by dividing all the points by
the maximum amplitude in absolute value. Therefore, all
points are in ½−1; 1�. For the frames containing a GW, the
event characteristics, such as the distance, are chosen so
that the PI SNR distribution covers a wide range.

III. METHODOLOGY

A. Architecture of the CNN

The goal of this search is to perform a binary classi-
fication task, to distinguish the OTWs with GW signals
from those without, with a short CNN, similarly to
[29–31]. The CNNs were implemented with the
PyTorch package [48]. We use cross entropy as the loss
function and ADAMAX as the optimizer, which is a
variant of ADAM, based on the infinity norm [49]. Several
hyperparameters such as the learning rate, the batch size,
the numbers of layers, the kernel size, were tested, but in
this work we only report on the ones that provided the best
performance.
After several trials, we found that the best performance

with the minimum computational cost was acquired for 5

convolutional layers. It was found that a bottleneck
structure, i.e., starting with a large kernel size, making it
smaller in the middle and enlarging it again afterwards,
yielded the best results. We represent the best-performing
architecture in Fig. 4 and in Appendix A. The output of the
network is a probability vector which contains the prob-
abilities of the template belonging to the event class, where
the event is present into the noise, or to the noise class
otherwise. The classification task is performed according to
a predefined threshold, which is associated with the false
alarm probability (FAP).

B. Training and testing of our neural networks

For each category we have a predefined OTW, given in
Table I. Due to the varying size of the inputs we perform a
binary classification task with a tuned replication of the
CNN for each BNS category. The dataset is balanced, i.e., it
contains 4000 frames of the noiseþ signal class, and 4000
frames of the noise class, where each of the frames
corresponds to an OTW, built as described in the previous
section. We employ 80% of the dataset for training and
20% for validation. The performance of the network in the
training and the validation sets is compared to avoid
overfitting. Finally, we test the network with 2000 frames
of the noiseþ signal class, where the events are chosen to
fall into the distance range considered for each BNS
category, and 2000 frames of the noise class. More
information about the distributions of the dataset can be
found in Appendix B.
To assess the performance of each neural network,

we classify its output for a given data frame into true
positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN), according to the standard confusion
matrix [50].

FIG. 3. Representation of the noise and the injected waveform
before the whitening. The CBC signal corresponds to a BNS
where both component masses are 1.8 M⊙ and the binary is
placed at a luminosity distance of 100 Mpc. At the time of
training and testing of the CNNs, we do not pass this full frame to
the network, but only the first 50 s (denoted by the two red lines),
which is the chosen OTW length for this BNS category.

FIG. 4. Architecture of the best performing CNN for all the
categories. From one BNS type to the other, one needs to adapt
the input size.
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We also define the true alarm probability (TAP) and the
false alarm probability (FAP) as follows:

TAP ¼ TP
TPþ FN

FAP ¼ FP
TN þ FP

: ð7Þ

The TAP corresponds to the number of noiseþ signal
classified as such over all the number of frames that belong
to the noiseþ signal class, whereas the FAP represents
the number of noise frames which are misclassified over
the number of frames that belong to the noise class. The
performance of the networks will be evaluated based on the
TAP for a fixed FAP, which is related to the threshold
discussed in the previous subsection.
For this paper, we decided to present all the results for an

FAP of 1%. This can be considered to be high if compared
with the current GW searches, but we want to insist on the
fact that this work is a proof of concept and that our
pipeline uses only one detector. We expect that, by
considering coincident triggers in Nd detectors, the FAP
will roughly go as 0.01Nd . This is an approximation where
we assume that the three channels are independent and that,
at each instant, each CNN has 1% chance to claim a false
detection.

IV. RESULTS AND DISCUSSION

In this section, we first discuss the performance of the
three networks. Then, we report on the results of our
method when applied to a realistic population of BNSs.
Finally, we discuss a first attempt at curriculum learning,
which is promising for the future.

A. Performance of the CNNs

In Fig. 5 we plot the TAP as a function of the distance in
Mpc and the PI SNR for each category individually. We see
that the network trained on heavier objects is able to reach
higher distances. From Eq. (5) we can observe the same
behavior, as for smaller chirp masses we need to decrease
the luminosity distance in order to keep the same SNR
value. We obtain the best performance for the heavy BNS
category. The intermediate and low categories have very
similar performance, where we see that the 2σ interval of
the two categories overlaps when considering the PI SNR.
We also note that, since the architecture of the network has
been optimized for the heavy category, it is expected that it
performs best for this BNS category.
Note that the CNNs are sensitive to the accumulation of

the signal. To confirm this, we trained and tested the
networks on data with low frequency cutoffs set to higher
values than the usual 20 Hz. This is a way to reduce the PI
SNR of the injected signal while maintaining the same
maximum amplitude. For the testing set, we obtained an
88% TAP for a cutoff at 20 Hz, and 71% for a low-pass
frequency at 26 Hz, showing that the CNN is sensitive to
the PI SNR for a fixed maximum amplitude. Similarly to

matched filtering, a CNN is designed to recognize patterns
and, in this context, the larger PI SNR means that the signal
is present for a longer time.
From Fig. 5, we see that Network 1 is able to reach

distances larger than 60 Mpc before its TAP has a departure
from 100%. As the first BNS detected GW170817 was
located at a distance of the order of 40 Mpc, our method
will have a high probability to detect similar signals when
present in noise at design sensitivity. This means that our
method is able to recover realistic signal from Gaussian
noise when only the inspiral part is present. Network 2,
which is trained on intermediate BNSs, is able to have a
better performance at higher distances, which is expected
based on the chirp mass–PI SNR relation. Finally, Network
3 has a TAP of 100% even for a distance of 125 Mpc,
meaning that the efficiency of detection is still high for
distances similar to that of GW190425, the second BNS
discovered by the LIGO-Virgo collaboration [51].
We now perform a series of tests to evaluate the influence

of the length of the OTW. Indeed, this is an important

FIG. 5. The top panel represents the results of the three
networks, each trained on its category, as a function of the
distance. In the second panel, we compute the mean μ PI SNR
and its standard error ϵ, as μðPI SNRÞ � ϵðPI SNRÞ for each
distance and a confidence of 2σ, represented by the colored band.
For each graph the FAP is fixed at 0.01.
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hyperparameter that represents the fraction of the signal
seen for a given event. It needs to be optimized to have
as many detections as possible while keeping a long
enough delay between the trigger and the merger time.
In Fig. 6, we show the TAP for Network 3 when using
different OTW. As expected, a larger OTW increases the
TAP, but is associated with a shorter time lapse before
the merger.
We also test whether a network trained on a certain

category is able to find signals that belong to a different
category. We concentrate on Network 3, which is trained to
detect heavy BNSs, and check whether it is capable of
detecting intermediate BNSs. For this, we increase the
OTW of intermediate BNSs to 30 s, to be able to feed the
dataset to Network 3. We find that the TAP decreases
significantly. Network 2, which is trained to detect inter-
mediate BNSs, yields a TAP of ∼68%, while Network 3
reaches only ∼16%. This is also understandable in terms of
PI SNR, as the reduction of the OTW duration leads to a
decrease in the PI SNR, and we already established that this
is the key parameter for detection.
We now compare the time needed for our CNN to

analyze one frame with the time needed for matched
filtering. When applying matched filtering on a 50 s frame,
similar to those passed to the CNNs and with only the
optimal template, the computation time is ∼0.05 s. This is
just the bare minimum time needed to get the SNR in
matched filtering. In this traditional method, several tem-
plates are tested and the trigger is not only assigned an
SNR, but also other statistics, such as the FAR. As a
consequence, the time to get the final information is longer
[24]. Analyzing the same frame using our CNN on a
Nividia GeForce RTX 2070 SUPER GPU, we get the
probability of an inspiral to be present in ∼0.005 s.
Therefore, the time needed to analyse the frame and get
a prediction probability is improved by a factor of 10.

B. Test on a realistic population of BNS

In order to have a better grasp on the performance of our
networks with respect to matched filtering, we also test
them on a simulated realistic population of BNS systems.
Therefore, we compute both the optimal SNR and the PI
SNR for each BNS with a high-frequency cutoff of 32 Hz,
similarly to what was done in [28]. When performing the
run with a high-frequency cutoff and the test with our
CNNs, we only consider the events that have a full matched
filtering SNR higher than 8. This basic computation is
performed for the high rate presented in [52].
The cutoff frequency of 32 Hz has been chosen to give

results comparable to those in [28], while having in-band
times that correspond to the OTWs defined in Table I.
The population synthesis is performed using the code of

[44], with minor changes in order to suit our framework.
For example, the PSD employed is the same as for the noise
generation, the low frequency cutoff used is 20 Hz, and we
generate the equivalent of 5 years of data.
One shortcoming of this procedure to generate a realistic

population of BNSs is that, although it is fast, it is based on
analytical approximations. As a consequence, we do not
inject the signals in noise to compute the SNR, and are not
able to compute the matched filtering false alarm rate
(FAR) for such frames. So, we cannot use the criterion of
Ref. [28] (namely an SNR threshold followed by an FAR)
and the direct comparison is nontrivial. Our procedure
confirms the difficulty to detect those events with matched
filtering methods.
Once we have selected the events based on the analytical

approach, we inject them in design-sensitivity noise and
pass the frames to the CNNs. Figure 7 represents the events
detected, those missed and those misidentified. We also
generate the same noise for each event but without injecting
the BNS in it. We test our networks on these pure noise
frames to highlight the false positives. As shown in Fig. 5,
the networks detect most of the BNSs which have a PI SNR
sufficiently high. We also want to emphasize the fact that
matched filtering applied for premerger alert also needs the
PI SNR to be above a threshold to lead to a trigger. This
threshold depends of the framework, and the number of
detectors included. We can see that, if one chooses an SNR
threshold of 8, our results are comparable to those of
matched filtering. Nevertheless CNNs are much faster.4

A key feature employed in [28] is the network of
detectors. Requiring coincident detections in the different
detectors helps to remove signals due to noise artefacts.
Another advantage is that the signal can accumulate in
several detectors simultaneously. Additionally, the sky
localization is found using the data in the three detectors
[53]. For a neural network, the input will have a certain
number of channels, one for each detector. Then, the input

FIG. 6. Representation of the performance of the CNN trained
on the heavy BNS systems for different OTWs. One sees that a
longer window gives a higher number of detections. However, it
also means the detection happens closer to the merger time. The
mean times before merger are 35, 30, 25, and 20 seconds for the
20, 25, 30, and 35 seconds OTW, respectively.

4Here, we neglected the latency needed for the data transfer.
It would be, in the worst case, comparable to that of [28].

CONVOLUTIONAL NEURAL NETWORKS FOR THE DETECTION … PHYS. REV. D 103, 102003 (2021)

102003-7



will be convolved through the network, finding relation-
ships between the different channels. This should decrease
the FAP of our detector network and enable us to find the
sky localization. This will be explored in a future work.

C. Basic curriculum learning exploration

Aside from the architecture, another key factor in the
development of DL algorithms is the training procedure.
From the population analysis we conclude that the net-
works see the loudest events, i.e., those with the highest PI
SNR in the OTW (or the highest SNR in the detector for the
full template). The networks have been trained on a very
wide distance range for the events (hence a wide PI SNR
range), but it is hard for them to detect smaller PI SNR, as
we can see in Fig. 5. Away to overcome this obstacle is by

training the CNNs with curriculum learning. The main idea
is to train the network on batches of PI SNR, first on the easy
examples, namely the frames with highest PI SNR. Then the
difficulty is increased iteratively by decreasing the PI SNR,
until the hardest examples are reached, namely the frames
with the lowest PI SNR (see [30] or [54] for an example).
With this idea in mind, we generate an extra batch of

training data with higher distances and lower PI SNR.
Thus, we train on the first dataset, store the weights, then
train on the newly generated set starting with the previously
stored weights. The results of this test can be seen in Fig. 8.
It can be observed that the TAP increases significantly even
if we are using only one extra data batch. As a consequence,
we expect the efficiency of our networks to increase
substantially once they are trained through the curriculum
learning methodology.

V. CONCLUSION

In this work, we have introduced a new approach based on
short CNNs for premerger alert. We have shown that it is
possible to detect BNS events when only part of the early
inspiral is present in the data stretch under consideration.
For this purpose, we have introduced three different neural
networks, each trained on a particular range of chirp masses
for the BNS systems. Such developments are important in the
context of MMA, as the prediction stage is computationally
less expensive and usually faster than for traditional matched
filtering. We have also shown that our method is able to
recover signals coming from a realistic BNS population
simulated at design sensitivity, and compared our detection
statistics to those obtained with current matched filtering
pipelines. In addition, we also suggested some improvements
in the trainingmethod, aswell as in the structure of ourCNNs,
to enhance their performance further, leading the way to a
premerger alert system that would be competitive.
This paper was presented as a a proof of concept and we

will continue to build upon this basis to upgrade our
networks and get an even better performance. The next
steps, which will probably require more complex networks,
are the consideration of multiple interferometers and the
implementation of sky localization. Furthermore, curricu-
lum training will be systematically deployed, as this will
allow us to train on a bigger dataset with smaller PI SNR.
Indeed, the training set currently has a minimum PI SNR
around 8. With curriculum learning it will be possible to
lower this value. A fourth CNN trained to retrieve the full
BNS signal regardless of the category will be built. This
will complete the pipeline as the events that are not detected
based only on their inspiral would still be found in low-
latency. Another recent approach [55] used CNNs to
remove some nonlinearly coupled noises and detect the
early phase of a gravitational wave signal. This further
reinforces the case for using CNNs in early alert systems.
It has already been shown in various works that ML-

based algorithms can help GWastronomy. In this work, we

FIG. 8. Comparison of the TAP as a function of the distance for
the GW sources with and without basic curriculum learning for
the heavy BNS class. One sees that even a very rudimentary
curriculum learning setup helps improve the TAP at higher
distances. Note that the blue curve is the same than in Fig. 5.

FIG. 7. The PI SNR for a low-pass filter at 32 Hz for each BNS
with a full SNR higher than 8. The black crosses represent the
events missed by the CNNs, and the red squares are the events
correctly found. The orange diamonds are triggers that corre-
spond to noise fluctuations (false positives).
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have shown that it can also be used to solve one of the
challenges that will arise in the future, namely the early
detection of BNS mergers in the context of MMA.
However, we still want to improve the performance and
add some features, such as sky location. These are the next
milestones which will probably require more complex
networks and more advanced training methods.
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APPENDIX A: DETAILS ON THE
ARCHITECTURE OF THE CNNs

In Sec. III we briefly described the networks, but in this
section we provide with more details about the architecture
(see Table II), and the different hyper-parameters fine-tuned
for heavy BNS category. The batch size of the training was
40 for networks 1 and 2, and 30 for network 3, due to
memory issues. We employ the cross-entropy as loss-
function. The optimizer is Adamax [49] with a learning
rate of 8 × 10−5 and a weight decay of 10−5. We trained the
networks over 40 epochs. Usually, the validation and
training loss drop before epoch 5, as we show in Fig. 9,
where plot the training and validation loss of the neural

network 3, on heavy BNS category. As a consequence,
and to avoid over-fitting, we generally use early stopping
(around the 12th epoch).
The training of the three networks was done with a

dataset of 8000 frames. The datasets are balanced so that
half of them correspond to noise and the other half are
noiseþ waveform. The testing was performed with a
testing set of 4000 frames, where again, half of them
correspond to noise, the other half are noiseþ waveform.

APPENDIX B: DATA DISTRIBUTION

In this section we represent the data distribution with
respect to the to SNR and PI SNR. Each distribution
employed for training contains 4000 frames, and each
distribution employed for testing contains 2000 frames.
In Fig. 10 we observe that the main difference between
the data distributions against SNR or PI SNR is a shift
and a decrease in the range of PI SNR due to the removal
of the merger from the frames. Indeed, the SNR is in
the range ≈ ½20; 130�, while the PI SNR is in the
range ≈ ½1; 70�. Therefore, due to the smallness of the
PI SNR, the classification task becomes more difficult.

FIG. 9. The loss variation for the training set and the validation
set of CNN 3 as a function of the epoch.

TABLE II. Complete architecture of our CNNs. Between the last MaxPool1D layers we flatten all the channels to
obtain an output of dimension 1 and length X (the X depends of the OTW).

Layers Input Output Kernel size Stride Padding Dilation Activation

BatchNorm 1 1 � � � � � � � � � � � � � � �
Conv1D 1 32 128 1 0 1 ReLU
MaxPool1D 32 32 4 4 0 1 � � �
Conv1D 32 64 32 1 0 1 ReLU
MaxPool1D 64 64 4 4 0 1 � � �
Conv1D 64 128 16 1 0 1 ReLU
MaxPool1D 128 128 4 4 0 1 � � �
Conv1D 128 256 32 1 0 1 ReLU
MaxPool1D 256 256 4 4 0 1 � � �
Conv1D 256 612 128 1 0 1 ReLU
MaxPool1D 612 612 4 4 0 1 � � �
Dense X 128 � � � � � � � � � � � � ReLU
Dense 128 2 � � � � � � � � � � � � SoftMax
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