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Abstract

Skillful seasonal climate forecasts can support decision making in water

resources management and agricultural planning. In arid and semi-arid

regions, tailoring reliable forecasts has the potential to improve water manage-

ment by using key hydroclimate variables months in advance. This article ana-

lyses and compares the performance of two common approaches (empirical

and hybrid dynamical-statistical) in seasonal climate forecasting over a

drought-prone area located in Southwest Asia including Iran. Empirical

models are framed as a baseline skill that hybrid models need to outperform.

Both approaches provide probabilistic forecasts of precipitation and tempera-

ture using canonical correlation analysis to provide forecasts at 0.25� resolu-

tion. Empirical models are developed based on the large-scale observed

atmosphere–ocean patterns for forecasting using antecedent climate anomalies

as predictors, while the hybrid approach makes use of model output statistics

to correct systematic errors in dynamical climate model forecast outputs. Eight

state-of-the-art dynamical models from the North American Multi-Model

Ensemble project are analysed. Individual models with the highest goodness

index are weighted to develop seven different hybrid dynamical-statistical

Multi-model Ensembles. In this study, (October–December) and (January–
February) are considered as target seasons which are the most important

periods within the water year for water resource allocation to the agriculture

sector. The results show that the hybrid approach has improved performance

compared to the raw general circulation models and purely empirical models,

and that the performance of the hybrid models is season-dependent. Seasonal

forecasts of precipitation (temperature) have a higher skill in OND (JFM). In

addition, in most cases, Multi-model Ensemble (MME) is more skillful than

the empirical models and outperforms individual dynamical models. However,

the best individual model might be as skillful as the MME given the target sea-

son and region of interest.
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1 | INTRODUCTION

Long-lead monthly and seasonal predictions can improve
water management, especially in areas facing water scarcity.
Continuous international efforts have been made during
the past few decades to develop and improve long-range cli-
mate forecasting systems. Skillful seasonal climate forecasts
are now available for many countries and regions which
can help governments by providing valuable information
for many disaster management decisions that add values
into Regional Climate Outlook Forums (RCOFs) (Hellmuth
et al., 2011; Mwangi et al., 2014; Shukla et al., 2016). Sea-
sonal climate forecasts have assisted scholars and practi-
tioners to tailor seasonal forecasting in sectoral applications
such as streamflow prediction for water resources manage-
ment (Golembesky et al., 2009; Li et al., 2009;
Sankarasubramanian et al., 2009a, 2009b; Gobena and
Gan, 2010; Oludhe et al., 2013; Robertson and Wang, 2013;
Wang and Liu, 2013; Li et al., 2014; Robertson et al.,
2014; Yu et al., 2014; Crochemore et al., 2016; Lu
et al., 2017; Sahu et al., 2017), hydropower operation
(Block, 2011; Block and Goddard, 2011), drought warning
systems development (Mwangi et al., 2014; Sheffield
et al., 2014), risk management in agriculture (Crane
et al., 2011; Crane et al., 2010; Hansen et al., 2011), and
water-food-energy nexus (Conway et al., 2015). Some recent
studies have shown promising seasonal forecast skills (Kim
et al., 2012; Weisheimer and Palmer, 2014; Dunstone
et al., 2016) especially in the tropics (Barnston et al., 2012).

Seasonal forecasts can be constructed using empirical,
and dynamic approaches. For building empirical seasonal
climate forecasts, the coupled atmosphere–ocean processes
and large-scale general circulation patterns are frequently
used. Based on historical analysis, sources of regional pre-
dictability are identified in the first step. For example,
anomalous hydroclimate conditions associated with the
global impacts of El Niño-Southern Oscillation (ENSO) have
been evaluated at global (e.g., Mason and Goddard, 2001;
Sun et al., 2015; Emerton et al., 2017) and regional scales
(Fraedrich and Müller, 1992; Moron and Plaut, 2003;
Nazemosadat and Ghasemi, 2004; Brönnimann, 2007;
Donat et al., 2014; Bichet et al., 2016; Rodríguez-Fonseca
et al., 2016). Once the specific sources of predictability (land,
atmosphere, ocean, and their interactions) are recognized,
large-scale atmospheric-oceanic signals are correlated to
observations to forecast regional hydroclimate conditions
months or seasons in advance. For many years, empirical

approaches have been applied as the primary approach
towards the long-range prediction (Troccoli et al., 2008). In
the dynamic approach, the skill of general circulation
models (GCMs) is assessed for specific target seasons and
different lead times. A recent analysis based on state-of-the-
art coupled atmosphere–ocean GCMs has shown promising
results at seasonal time scale over many parts of the world
(Kim et al., 2012). Both methods provide decision-makers
with relevant information for climate risk management
given forecast models have appropriate resolution and reli-
able skill (National Council Report, 2010). Model Output
Statistics (MOS) is applied to dynamical climate model out-
puts to remove systematic biases. Sometimes, MOS correc-
tion is referred to as a hybrid dynamical-statistical
approach. Data-driven predictions are the most common
methods which are applied as empirical methods for
seasonal-to-interannual climate projections (Tippett and
DelSole, 2013; Ciancarelli et al., 2014). Statistical models
including linear regression techniques and Canonical Corre-
lation Analysis (CCA) are also applied as MOS in several
studies (Barnston and Tippett, 2017).

Since critical questions often arise during stake-
holder engagement, on the current skill of state-of-the-
art models in forecasting the hydroclimate indicators
of relevance to decision-makers, the main idea of this
study is to provide a framework for comparing the sea-
sonal forecast skill of empirical and hybrid approaches
which can be transferred to other regions. For this pur-
pose, CCA is applied for empirical forecasting and
developing hybrid models. The proposed framework
uses the MOS of the North American Multi-Model
Ensemble (NMME) predictions models (e.g., Kirtman
et al., 2014). The NMME project includes both a retro-
spective forecast and a real-time prediction protocol,
which enables bias correction, skill assessment, and
forecast outputs in real-time. Note that extensive
research has been conducted to verify monthly precipi-
tation and temperature predictions from NMME. Some
recent studies evaluated NMME seasonal forecast skill
at global and regional scales mainly for drought onset
(Yuan and Wood, 2013), streamflow, and soil moisture
forecasting (Thober et al., 2015; Wood et al., 2015;
Madadgar et al., 2016). NMME forecasts have been
evaluated over many regions around the world, for
example in the United States (Barbero et al., 2017;
Khajehei et al., 2017), East Africa (Shukla et al., 2016),
China (Ma et al., 2015), Central South West Asia
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(Ehsan et al., 2017), and Europe (Mo and Lyon, 2015;
Thober et al., 2015; Slater et al., 2017; Wanders
et al., 2019).

One main source of climate predictability is the large-
scale atmospheric circulation patterns and teleconnections.
Their influence on surface climate variables (precipitation
and temperature) has been investigated in a number of
studies in south Asia (e.g., Ahmadi et al., 2019; Hoell
et al., 2018; Nazemosadat and Cordery, 2000; Nazemosadat
and Ghaedamini, 2010; Nazemosadat and Ghasemi, 2004;
Ghasemi and Khalili, 2006; Raziei et al., 2013a; Irannejad
et al., 2016; Pourasghar et al., 2012, 2015, 2019). The
impacts of the warm and cold phases of ENSO on the inter-
annual variability of Iran's precipitation and temperature
have been investigated more than other teleconnections in
the literature existing for southwest Asia domain including
Iran. The average response of precipitation to El Niño and
La Niña phases of ENSO is investigated in several studies
(Barlow et al., 2002; Nazemosadat and Ghasemi, 2004;
Hoell et al., 2017a; Alizadeh-Choobari et al., 2018). A con-
sistent finding between previous studies is that wet and dry
conditions are accompanied respectively by El Niño and La
Niña (Nazemosadat and Ghasemi, 2004; Barlow et al., 2016;
Rana et al., 2017, 2019; Hoell et al., 2017a, 2017b, 2018;
Alizadeh-Choobari et al., 2018). The range of response is
reported by Hoell et al. (2018) which concluded that precipi-
tation of boreal cold season (November–April) in Southwest
Asia is affected by central Pacific (CP) and eastern Pacific
(EP) of El Niño and La Niña in Southwest Asia. The winter-
time upper-tropospheric westerly jet stream over subtropical
east Asia and the western Pacific (East Asia jet stream-
EAJS) is influenced by Maritime Continent convection. It
has been identified as a physical mechanism linking west-
ern Pacific Ocean conditions with central Southwest Asia
winter precipitation (Tippett et al., 2003) in such a way that
there is a strong correlation between EAJS and negative
precipitation anomalies. Alizadeh-Choobari et al. (2018) dis-
cussed that 26 % of variance of Iran's precipitation is due to
the ENSO signal. The CP El Niño has been argued to cause
wet years in central, eastern, southwestern, southern and
southeastern regions, explained by more amplified Rossby
waves moving more slowly, while more rapid movement
of Rossby waves during La Niña has resulted in less
extreme weather which is anomalously dry (reference
needed). Ahmadi et al. (2019) evaluated the effect of
34 teleconnection patterns (indices) on Iran's precipita-
tion and their results demonstrated that Southern
Oscillation Index (SOI) has a significant correlation
with Iran's mean precipitation in three months of
October, November, and December. Moreover, the
combination of La Niña and predominant southeasterly
wind on the Indian Ocean bring moisture from this
region to the Middle East and Iran and the

combination of La Niña and prevailing northwesterly
wind on the Indian Ocean will increase the risk of
drought in Iran. Large deviations are observed in time
series of observed precipitation mainly linked to mod-
erate/strong El Niño and La Niña events. For example,
in some regions, extreme wet conditions (> two standard
deviation) is observed during 1994–1995 El Niño. The first
leading mode of winter precipitation (EOF-1) is significantly
linked to ENSO characterized by a mono-sign pattern
according to findings by Rana et al. (2019). Simulations
based on a large ensemble of atmospheric models (three
models, 42 members) forced by 1901–2012 time varying
boundary conditions show the association of wet years with
El Niño throughout the whole period and exceptionally dry
conditions with La Niña after 1970 (Hoell et al., 2017a).
According to their study, the long-term changes of precipi-
tation in southwest Asia are influenced by a strong anomaly
contrast between the western Pacific Ocean and the central
Pacific Ocean. A review of regional drought mechanisms
was provided by Barlow et al. (2016). The study found con-
siderable potential predictability of drought linked to the
tropical oceans, snowmelt and Madden Julian Oscillation
(MJO) among other factors. In another study, extreme
droughts during 1948–2012 were investigated using a physi-
cal model which found climate variability over the Pacific
Ocean to be associated with several drought events (Hoell
et al., 2017b). The Indian Ocean Dipole (IOD) has also been
found to have a significant role in the inter-annual variabil-
ity of precipitation in the southern part of Iran (Pourasghar
et al., 2012).

For disseminating climate forecast information to end-
users, the sources of uncertainties in GCMs should be quan-
tified. A common strategy is to develop MMEs by capitaliz-
ing on the complementary strengths of multiple models
and improving the estimate of the forecast distribution by
increasing the ensemble size (Weigel et al., 2008; DelSole
et al., 2013; ECMWF Working Group Report, 2016). Recent
MME studies conducted have revealed the superior predic-
tion skill of multiple models compared to individual single
models (Batté and Déqué, 2011; Kirtman et al., 2014; Ma
et al., 2015; Pegion, 2015; Shukla et al., 2016; Wanders and
Wood, 2016; Ehsan et al., 2017; Vigaud et al., 2017).

Based on the existing literature, mostly weak and
moderate skills have been found in seasonal forecasting
of extratropics and Europe where the signal to noise ratio
is low (see, for example, Frías et al., 2010; Ehsan
et al., 2017; Manzanas et al., 2017). Considering barriers
and challenges to implement tailored climate forecasts at
the operational level (see Vogel and O'Brien, 2003;
Bolson et al., 2013), reliable, and skillful forecast informa-
tion can support sectoral applications with significant
socioeconomic added values. In this study, a framework
is proposed to evaluate seasonal climate forecast over
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Iran as a semi-arid region located in Southwest Asia. It is
expected that the suggested framework provides better
insights into the potential opportunities and limitations
of seasonal forecasting for tailoring in water resources
management. Applying MOS to dynamic model outputs
and linking the information from GCMs to climate data
relevant for application sectors can help in hydroclimate
modelling and all managing sectors that are impacted by
interannual climate variability. The proposed framework
has the potential for application to other regions and is
capable of providing information at spatial resolutions
appropriate for regional planning and to produce input
data required for running hydrological and agricultural
crop models. The next section provides an overview of
the study area. Section 3 describes the methodological
framework. Section 4 presents the main findings and
mapping results followed by the conclusion of this article
in Section 5.

2 | STUDY AREA

The study area is Iran located in Southwest Asia and
some parts of adjacent countries (44� and 64� longitude
and 24� and 40� latitude) which is shown as the inner
box of Figure 1. The complex orography of Alborz and
Zagros (two mountain ranges in the North and West of
Iran) together with two desserts of Dasht-E-Kavir and
Dasht-E-Lut in the central part of Iran plays an impor-
tant role in climate variability in different parts of the
region under study. An extensive part of area under study
lies within the subtropical high pressure belt during sum-
mer, leading to hot dry summers in almost entire Iran.
The area between the Alborz Mountains and the Caspian
Sea experiences a humid subtropical climate (Molavi-
Arabshahi et al., 2016), while other areas have mainly
arid and semi-arid climates. The water year starts in the
late September within the study region, and more than
70% of the annual Iranian precipitation falls from
October to March, associated with eastward-propagating
midlatitude baroclinic waves that form over the Mediter-
ranean Sea in winter. Seasonal forecasts have the poten-
tial to help better plan and allocate water resources to the
agriculture sector within the rainy season.

Trends of hydroclimate variables in addition to
extreme event analysis have been the subject of recent
studies targeted the area under study (e.g., Tabari
et al., 2011; Soltani et al., 2016). Investigating extreme
hydroclimate features provides a better understanding of
changes in seasonal, interannual and inter-decadal vari-
ability significant for sectoral decision-making and
regional planning. Analyses of the annual mean maximum
and minimum temperature during 1975–2010 shows an

increase (less than 0.06�C/decade) while for total precipita-
tion, a considerable spatially coherent trend was not found
for precipitation (Soltani et al., 2016). The spatial distribu-
tion of variance of precipitation and temperature in the
region during the fall and winter seasons is provided in
Figure 1. Note that Iran's precipitation variability is
influenced largely by the mid latitude climate systems and
complex orography of the two mountain chains of Alborz
and Zagros positioned around the north and west of the
country (Raziei et al., 2013b; Kiani et al., 2019). The highest
seasonal precipitation variance is on winter and fall
(Sabziparvar et al., 2015; Ahmadi et al., 2018). The pattern
for precipitation variance is relatively similar in OND and
JFM seasons showing a larger variance in the west of Iran.
It is explained by topography along the Zagros Mountains
slope (Alijani, 2008; Raziei et al., 2013b). The variability of
temperature in the two seasons is different while the pat-
tern for precipitation is relatively similar and explained by
topography along the Zagros Mountains slope. The mean
winter 250 hPa geopotential height anomaly over 50–60�E,
40–50�N minus that over 0–10�E, 45–55� N has found to
have significant correlation with Iran's mean winter tem-
perature (Irannejad et al., 2016). The larger variance in
JFM mean near surface temperature is likely to be linked
with the mentioned teleconnection.

3 | DATA AND METHODOLOGY

3.1 | Precipitation and temperature
observed datasets (1983–2013)

Two observational monthly gridded precipitation and tem-
perature datasets are used. Precipitation Estimation from
Remotely Sensed Information using Artificial Neural Net-
works Climate Data Record (PERSIANN-CDR) is used as
the reference data set for precipitation. PERSIANN-CDR is
adjusted to the Global Precipitation Climate Project
(GPCP) 0.25� monthly dataset during the merging proce-
dure (Ashouri et al., 2015). Recent studies have shown a
reasonable performance of monthly and annual precipita-
tion of PERSIANN-CDR for Iran, based on a dense net-
work of 2,100 precipitation gauges (Katiraie-Boroujerdy
et al., 2016, 2017).

Data for temperature was obtained from the Climatic
Research Unit (CRU), which provides a monthly gridded
temperature on high spatial resolution (0.5 × 0.5�) grids
(Harris et al., 2014). In previous studies, CRU's monthly
temperature has shown to have an accurate estimate
when compared to 88 synoptic stations all over Iran (Miri
et al., 2017). Miri et al. (2017) found that, except for the
coastal line of the Caspian Sea in the north of the coun-
try, CRU performs well over Iran (RMSE ≤4�C, Pearson
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Correlation ≥.9). In this study, two seasons are selected
as target seasons, October–December (OND) and
January–March (JFM).

3.2 | Canonical correlation analysis

Empirical and hybrid forecasting models were con-
structed in this study using CCA. In CCA, the multi-
tude of a considerable number of correlations in the
correlation matrix is reduced to the small number of
variables derived (Barnett and Preisendorfer, 1987).
Linear combinations between variables x in set A and
y in set B, are considered in the way that the correla-
tion between their time series is maximized. Canonical
correlations (ρ) are found for the linear combination

(canonical variates) of Zt= �́atx in set A and the linear
combination of Wt=

�́bty in set B from Step 1 to t. In each
step, correlation is at its maximum value under the
assumption that Zt and Wt in step t are uncorrelated with
Zt− 1 and Wt− 1 (canonical variates are uncorrelated). For
example, at the first step, ρ1,1 = Corr(Z1,W1). In other
words, given I components in set A (I>1) and
J components in set B (J>1), t = min (I, J) and that the
minimum (maximum) number of CCA modes cannot
exceed the minimum (maximum) number of set A modes
or that of B. Using eigenvectors in each step, t canonical
correlations are obtained corresponding to t calculated
canonical variates. Fitting CCA, the amount of noise is
reduced by truncating subset of EOF coefficients (elimi-
nating the higher EOF modes), which make it interesting
for hydroclimate studies (e.g., seasonal forecasting in a

FIGURE 1 The area under study; inner box—Iran included, and time variance of temperature (CRU) and precipitation (PERSIANN-

CDR) for OND and JFM seasons during 1983–2013 is also presented [Colour figure can be viewed at wileyonlinelibrary.com]
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spatial domain) where t may be reasonably large. The
minimum and the maximum allowable number of modes
for both set A (predictor) and set B (predictand) are con-
sidered 1 and 15, respectively.

Forecasting models are trained using the cross-
validated calculation. In this process, optimal trunca-
tion of principle components (PCs) and CCA modes
are determined. The optimal forecasting model is con-
structed based on the highest goodness index given the
optimum number of modes (for the predictor,
predictand, and CCA). Cross-validated forecasts are
produced for each year during the training period
based on standardized anomalies that are calculated
for precipitation and temperature. Goodness index
(area-average Kendall's τ) is maximized through 1-year
leave out cross-validation. This can be interpreted as
the average correlation between the cross-validated
forecasts and observations.

Precipitation data are transformed to a normal
distribution. Probabilistic forecasts of precipitation
and temperature are derived from the best-guess
forecasts (regressions estimated from the CCA), and
distribution of the errors using Climate Predictability
Tool (Mason and Tippett, 2017). Seasonal precipita-
tion forecasts are then transformed back to the origi-
nal distribution by applying the inverse process. In
this process, the cross-validated correlation is
between the transformed forecasts and observations.
Assuming that the errors are normally distributed,
the variance of errors is defined by sampling errors
in the regression parameters.

3.3 | Empirical approach

In this study, observed antecedent Sea Surface Tem-
perature (SST), Mean Sea Level Pressure (MSLP), soil
moisture and geopotential height at 850 hPa level
were selected as predictor fields. Predictand is
observed precipitation/temperature over the study
area. For example, EOFs of the September SST
values over several domains are used as the input of
CCA (predictor) to forecast precipitation/temperature
anomalies for target seasons. Table 1 provides a sum-
mary of variables and datasets used for the empirical
approach.

3.4 | Hybrid model (dynamical-
statistical approach)

Coupled atmospheric-ocean GCMs solve the Navier–
Stokes equations to simulate physical mechanisms

responsible for non-linear interactions between earth
components. It is expected that the state-of-the-art
dynamic seasonal forecasting systems represent the
important mechanisms contributing to seasonal to inter-
annual climate variability at the regional scale. MOS is
applied to correct the GCMs' systematic errors and to
derive post-processing equations that can be applied
to future runs of similar forecast model (useful for real-
time forecasting). Precipitation and temperature forecasts
from this hybrid dynamical-statistical approach can then
be used to force-land surface models for streamflow and
soil moisture operational seasonal forecasting. In this
study, a hybrid approach is developed by applying CCA
to both individual seasonal forecasting systems presented
in Section 3.4.1, in addition to their weighted combina-
tion provided in Section 3.4.2.

3.4.1 | NMME individual seasonal
forecasting system

NMME is an experimental project based on collaboration
and coordination of several modelling centres from the
United States and Canada (Kirtman et al., 2014). Several
atmosphere–ocean coupled models are contributed to the
NMME project to produce monthly climate predictions
with lead times up to 12 months ahead. The project is an
effort to meet information accessible to all users for the
specific tailored regional needs and supports required for
real-time decision making. This article takes operational
seasonal forecasting models participated in Phase-I of the
project. The seasonal climate systems in the NMME pro-
ject which are used in this study include NOAA National
Centers for Environmental Prediction (NOAA/NCEP),
NOAA's Geophysical Fluid Dynamics Laboratory
(NOAA/GFDL), and models developed by the Environ-
ment Canada, and are provided in Table 2.

3.4.2 | MME

MME is an approach which helps to improve the skill
and quantify uncertainties associated with seasonal fore-
casting systems. It is expected that both increased model
diversity and greater ensemble members improve the
quality of forecasts (Doblas-Reyes et al., 2000). The
MMEs in this study consist of eight models from NMME
(provided in Table 1). The ensemble mean from each
model's retrospective forecasts is averaged over the period
1983–2013 and this model climatology is then subtracted
from the year-to-year ensemble mean for each target sea-
son to correct for mean biases. Then, equal weights are
assigned to the resulting anomalies of each model's
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ensemble mean output to make the MME ensemble
mean. CCA is then applied to this MME output to fore-
cast precipitation and temperature.

3.5 | Verification scores

In this study, continuous and categorical skill maps are
presented. Continuous scores include the Spearman corre-
lation, Root Mean Squared Error (RMSE) and Mean Abso-
lute Error (MAE). In addition to Spearman correlation,

model performance is also provided based on area-
averaged Kendall's τ rank correlation. Both Spearman and
Kendall's τ correlations measure monotonicity relation-
ships. However, Kendall's τ is selected as the goodness
index in this study, since the discriminatory power of the
forecasts is an important aspect for decision-making espe-
cially when seasonal forecasts are provided in categories.
It is not sensitive to the distribution of the data and is
more tractable in cases when data have tied ranks
(Gilpin, 1993). Kendall's τ is interpretable as the percent-
age of pairs of data points that show a positive correlation.

TABLE 1 Predictand variables for empirical forecasting models in this study

Variable Description/Project Center

Resolution
(degree North
and East) References

Mean Sea Level
Pressure
(MSLP)

Monthly intrinsic MSL pressure from
NCEP-NCAR CDAS-1: Climate Data
Assimilation System I; NCEP-NCAR
Reanalysis Project

US Weather Service—
National Met. Center

2.5 Kalnay et al. (1996)

Geopotential
Height

US Weather Service—
National Met. Center

2.5 Kalnay et al. (1996)

SST Extended Reconstructed Sea Surface
Temperatures (ERSST) from NOAA
NCDC ERSST version3b

NOAA NCDC 2 Smith et al. (2008);
Xue et al. (2003)

Soil Moisture NOAA NCEP CPC Global Monthly Soil
Moisture: (Global monthly high-
resolution soil moisture)

Climate Prediction
Center

0.5 Huang et al. (1996);
and van den Dool
et al. (2003)

TABLE 2 Brief descriptions of the NMME individual seasonal forecasting systems used in the present study

Model name

Atmospheric
component
resolution
(Degree)

Ensemble
member

Forecast Lead
time (month) Center Reference

CFSv2 0.9 24 0.5–9.5 National Centers for
Environmental Prediction
(NOAA/NCEP)

Saha et al. (2014)

CMC1-CanCM3 2.5 10 0.5–11.5 Environment Canada's
Canadian Meteorological
Centre (CMC)

Merryfield
et al. (2013)

CMC2-CanCM4 2.5 10 0.5-11.5 Environment Canada's
Canadian Meteorological
Centre (CMC)

Merryfield et al.
(2010)

CM2.1-aer04 2 11 0.5–11.5 NOAA/GFDL Zhang et al. (2007)

CMp2.5 (FLOR_A06) 0.5 11 0.5-11.5 NOAA/GFDL Zhang et al. (2007)

CMp2.5 (FLOR_B01) 0.5 11 0.5-11.5 NOAA/GFDL Zhang et al. (2007)

RSMA-CCSM4 0.9 × 1.25 11 0.5–11.5 COLA/NCAR Gent et al. (2010)

NASA-GMAO 1 × 1.25 12 0.5–8.5 NASA Vernieres
et al. (2012)
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Suggested by WMO's Standardized Verification System for
Long-Range Forecasts (SVSLRF) verification, the area
under Relative Operating Characteristics curve (ROC) is
also calculated for each grid point as a certain measure for
both hybrid and empirical forecasting approaches. ROC
gives the proportion of times that a specific condition
(e.g., above-normal/below normal conditions) is distin-
guished successfully from the other categories. Threshold
values define the above- and below-normal categories cal-
culated as the terciles from the climatological period. For
time series of predictand (observations) and predictors,
standardized anomalies are calculated for every grid cell
during 1983–2013.

4 | RESULTS

4.1 | Empirical approach

4.1.1 | Forecasting precipitation

As discussed in previous sections, seasonal precipitation in
the study area during fall and winter season is greatly
influenced by Pacific and Indian Ocean SST. The next
section constructs empirical forecasting models for OND
and JFM precipitation.

a. OND

Several lags and combinations of predictor fields are
tested for developing empirical relations between Iran's
precipitation and large-scale patterns. The association
between west Asia precipitation, ENSO teleconnection
together with tropical and extra-tropical SST have been
reported in previous studies, most strongly during October
to December (Nazemosadat and Shahgholian, 2017). In
agreement with previous studies, observed SST in
August–September is found to be the best independent
variable among other predictors for forecasting OND pre-
cipitation in the empirical approach. Selecting SST among
other fields leads to the highest skill of empirical models.
Figure 2 shows the leading two CCA modes of SST (Lat:
48 N–26S Lon: 84E–90 W) and Iran's precipitation which
is used to construct the empirical forecast model for OND
precipitation. More than 50% of total variance of OND
precipitation is explained by the first mode. The correla-
tion between precipitation average in study area and SST
in the Tropical Pacific (not shown) during 1983–2013 is
found to be significant (r = .60). Figure 6a shows that the
Spearman correlation is between .3 and .45 in almost all
grid points except those located in the southeastern part
of the study area (in 5% significance level [α = .05], the
absolute critical value for Spearman's ρ is .36). Except for

the northwestern part, OND forecast skill is high (ρ ≥.45
and ROC ≥0.7) in the northern part of the country (see
Figure 6a–c).

b. JFM

The results show that the empirical approach gener-
ally have lower skill in forecasting precipitation in JFM
(Figure 6d–f) than OND (Figure 6a–c) over Iran, with
skill confined to the southwest of the domain. The aver-
age of MSLP for two months of November and December
is recognized as the best predictor (Kendal's τ = 0.253) in
JFM. Table 3 illustrates how Kendal's τ and CCA modes
change by predictor and domain selection in constructing
empirical models for forecasting JFM precipitation. Cal-
culated RMSE is between 0.3 and 0.7 mm/day for most of
the grid points in both target seasons. The calculation
method of the modes provided in Table 3 for X, Y and
CCA is explained in Section 3.2. Temporal scores for JFM
is shown in Figure 3.

4.1.2 | Forecasting temperature

a. OND

Average SST in September is selected as a predictor
for forecasting OND temperature. The leading CCA
modes for predictor and predictand in addition to tem-
poral scores are shown in Figure 4. Kendall's τ of the
best empirical model to forecast is 0.209. The Spear-
man correlation is less than .3 in almost all grid cells
except the southwestern part (Figure 6g). The skill in
terms of ROC is high in the Southwest part (Figure
6h,i).

b. JFM

For JFM, observed SST in November and December is
the best-selected predictor among others (see Figure 5).
Positive winter temperature has been reported by Walker
and Bliss (1932) to be associated with El Niño. Kendall's
τ of the best empirical model to forecast JFM temperature
is 0.315. The Spearman correlation (Figure 6j) is higher
in JFM (between .3 and .45 countrywide and more than
.60 in southern Iran) in comparison to OND. The skill of
empirical models for forecasting temperature looks more
similar between the OND and JFM seasons than in the
case of precipitation.

To test the stability and robustness of the CCA
results beyond the leave-one-out cross-validation, we
run CCA (1) by removing the trend component and
(2) by additional split-in-two sensitivity tests. For the
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FIGURE 2 Spatial loading of predictor (averaged SST for August–September) in left, temporal scrores of the fiest CCA mode (middle)

and predictand (OND precipitation) in right [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Performance of the effect of different predictor selection in precipitation forecasting results of empirical models

Predictand Predictor Domain
Modes
(X, Y, CCA)

Selected month(s)
for the predictor

Goodness
index

JFM Precipitation
(PERSIANN-CDR)

MSLP Whole globe 7, 1, 1 November–December 0.213

8, 1, 1 December 0.224

Lat: 30 N–30 S, Lon:
60E–155 W

1, 1, 1 November–December 0.253

1, 1, 1 December 0.223

SST Whole globe 5, 2, 1 November–December 0.184

10, 1, 1 December 0.166

Geopotential Height (850
HPa)

Whole globe 10, 1, 1 November–December 0.205

9, 1, 1 December 0.199

MSLP and Geopotential
Height (850 HPa)

Whole globe 6, 1, 1 November–December 0.208

Note: The goodness index is considered as the average Kendall's τ correlation between the cross-validated empirical forecasts and observations.

FIGURE 3 Spatial loading of predictor (averaged MSLP for November–December) in left, temporal scrores of the fiest CCA mode

(middle) and predictand (JFM precipitation) in right [Colour figure can be viewed at wileyonlinelibrary.com]
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trend analysis, it was found that trend component in
empirical approach has contributed to high skill for
temperature forecast. By detrending, the value of good-
ness index in empirical forecast of near-surface air tem-
perature is decreased from 0.209 to 0.155 for OND and
from 0.315 to 0.146 for JFM. However, a significant
impact in terms of precipitation forecasting skill was
not found by removing trend (see figures in the
Supporting Information). Therefore, trend component
could contribute partially to empirical forecast of air
temperature. We also apply CCA for the first and last
halves of the record, separately. Based on additional
analysis, CCA performance is considered acceptable by
capturing the variability for the first period (1983–
1997) and second period (1998–2013). In addition, it
was found that spatial patterns of the leading modes
for the predictor (X) is quite similar for two halves.

4.2 | Hybrid approach

4.2.1 | Raw GCM output validation

To demonstrate the usefulness of MOS within the frame-
work of developing hybrid models, we provide one exam-
ple of comparing the skill of the GCM raw model output
before and after applying the hybrid approach. It would
be instructive to know the extent to which the forecast
skill is improved by applying hybrid approach. Previous
studies show that it improves climate model outputs by
removing the systematic error (spatial pattern, mean,
and amplitude) from forecast grid (Mass et al., 2008).
Therefore, Figure 7 shows a comparison of Spearman
rank correlation and ROC (below and above normal) for
CFSv2. The skill of CFSv2 is calculated for OND precipi-
tation initialized in September. Based on Figure 7,

FIGURE 4 Spatial loading of predictor (September SST) in left, temporal scrores of the fiest CCA mode (middle) and predictand (OND

temperature) in right [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Spatial loading of predictor (November–December SST) in left, temporal scrores of the fiest CCA mode (middle), and

predictand (JFM temperature) in right [Colour figure can be viewed at wileyonlinelibrary.com]
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Spearman correlation of CFSv2-corrected forecast
(Figure 7d) shows improvement when compared to its
raw model output (Figure 7a) especially in the eastern
part. The skill improvement in terms of ROC is also

significant as for all grid points, (ROC ≥0.5). Sec-
tions 4.2.1 and 4.2.2 provide results of the hybrid
approach for individual and MME forecasts at 0.5 and
1.5-month lead times.

FIGURE 6 Empirical forecast skill of precipitation and temperature for OND and JFM. Predictands are PERSIANN-CDR for precipitation

and CRU for temperature. Predictors are average SST for August and September (upper panel), average MSLP for November and December

(second panel), average SST for September (third panel), and December (lower panel). Tercile categories are set at 33% and 66% based on the

climatological distribution for below- and above normal, respectively [Colour figure can be viewed at wileyonlinelibrary.com]
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4.2.2 | Individual models

Precipitation

a. OND

In general, the hybrid approach has successfully
captured interannual variability of precipitation in
both below and above normal conditions in OND
(Figure 8). However, the magnitude for some extreme
wet years is still underestimated. The precipitation
skill is shown for the two best individual NMME
models in Figure 8. The CMC2 (forecasts initialized in
early September, Kendall's τ = 0.397) and GFDL-aer04
(forecasts initialized in early October, Kendall's
τ = 0.388) have the highest skills among all individual
models for forecasting OND precipitation (Figure 8a–
c, and Figure 8d–f). Based on Figure 8b,e, both models
perform better in forecasting below-normal conditions
considering the number of grid cells where ROC ≥0.8.
GFDL-aer04 performs the best in distinguishing below
normal conditions within this area, which suggests the

added value of utilizing seasonal forecasting systems
to cope with meteorological droughts. The Spearman
correlation of GFDL-aer04 in the west of Iran is spa-
tially similar in 0.5 and 1.5-month lead times whereas
it is significantly lower for the CMC2 all over the
country. In the southwest of Iran, forecasting precipi-
tation is highly essential for agriculture planning and
hydropower generation. As this area contributes to
more than one-third of annual surface water
resources, the high skill of seasonal forecasting sys-
tems can significantly help decision-makers in water
resources management. It is found that the skill of
four models (CMC2, CFSv2, GMAO-06212, and
CMC1) is higher for forecasts initialized in early
September. For all models investigated in this study,
time series of standardized anomalies for every grid
cell were calculated and compared between observa-
tions and cross-validated hindcasts during 1983–2013.
Large deviations are observed in time series of precipi-
tation mainly linked to moderate/strong El Niño and
La Niña events. For example, in some regions, extreme
wet conditions (> two standard deviation) is observed

FIGURE 7 CFSv2 skill comparison for forecasting OND precipitation; raw model skill maps are shown in the top panel, hybrid skill

maps are shown in the bottom panel [Colour figure can be viewed at wileyonlinelibrary.com]
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during 1994–1995 El Niño. In general, hybrid
approach has successfully captured interannual vari-
ability of precipitation in both below and above

normal conditions. However, the magnitude for some
extreme wet years is underestimated by hybrid
approach.

FIGURE 8 Model Skill (Spearman correlation and area under ROC curve) for the two best individual NMME models having the highest

skill in forecasting OND and JFM's precipitation. Initializations for CMC2 (a–c) and GFDL-aer04 (d–f) are made in early September and

early October, respectively. Initializations for CMC1 (g–i) and CCSM4 (j–l) are made in early January [Colour figure can be viewed at

wileyonlinelibrary.com]
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b. JFM

Accumulated three-month precipitation in JFM is
also important for agricultural water allocation in Iran.
When a water year starts with a dry spell (below normal
conditions in OND), wet conditions in the second rainy
season (JFM) might compensate for water deficits. There-
fore, any reliable forecast of JFM's precipitation provides
valuable information for stakeholders. However, the
results suggest that JFM's precipitation is not as skillful
as that of OND in the study area. Unlike OND, NMME's
individual model skill is not high neither at 1.5 nor
0.5-month lead times for JFM target season. Spearman
correlation of all models is less than .45 for forecasts
made in the early December (except for CCSM4
forecasts in the south and southwestern parts). It means
the skill of NMME models in JFM is comparable to that
of OND target season.

After applying CCA, the highest goodness index in
forecasting JFM precipitation at 1.5-month lead time is
achieved for CMC1, CCSM4, and CFSv2 models. The
performance of CMC1 is better than the other two
models in the northern parts. For this model, the
Spearman rank correlation (Figure 8g) is less than .6
(.3 ≤ ρ ≤ .6) in the west of the study area between
45 and 51�E (Zagros region). CCSM4 has the same spa-
tial pattern regarding the Spearman correlation to that
of CFSv2 in areas close to the Persian Gulf also show-
ing high skill (Spearman correlation ≥.75) in areas
located in 25–30�N and 45–50�E (Figure 8j). CFSv2 has
skill in the area extended from the southwest to the
central parts of Iran (Spearman correlation between .6
and .75 not shown here). Among all models, CFSv2
performs the best in forecasting above-normal precipi-
tation anomalies (ROC ≥0.8 in the southern part of the
study area).

Temperature
a. OND

The skills of hybrid approach applied to individual
NMME models are shown in Figure 9 for OND temper-
ature. In the northeast and south of Iran, they are sig-
nificantly higher than other parts of the study area.
The Spearman correlation does not exceed .45 for most
models at lead times of 0.5 and 1.5 (month). Tempera-
ture forecasts are more skillful in the Strait of Hormoz
compared to other parts. NMME models perform better
in forecasting above-normal temperature anomalies
considering the area under ROC curve. FLOR-B01 and
CMC2 have the highest goodness index among others
(0.344 and 0.306). The MAE is less than 1 and RMSE is
between 0.6 and 1.1�C all over the country. For model

initializations on the early September, FLOR-B01
(Figure 9a–c) and CMC2 (Figure 9d–f) have higher skill
than the others (Kendal's τ >0.2). At the 0.5-month
lead time, CFSv2 forecasts standardized temperature
anomalies better than the rest of the models (not
shown here). Some models (CMC1, CMC2, GFDL-
aer04, and GMAO-06212) also have a negative Spear-
man correlation in the west of Iran, where temperature
variation has a high impact on hydropower plants and
crop growing.

b. JFM

The skills of JFM's temperature forecasts are higher
than OND. NMME models perform better at the
0.5-month lead time for forecasting JFM's temperature.
The skill of CMC2 and GMAO-06212 is significantly
higher at the 1.5-month lead time compared to
0.5-month lead time. The optimal goodness index of
four models (CFSv2, CCSM4, GMAO-06212, and
CMC1) is higher than 0.4. Figure 9 shows Spearman
correlation and ROC (above and below normal) for two
individual NMME models that have the highest
Kendall's τ (CFSv2 and CCSM4). After applying CCA,
the ROC (above-normal) of CFSv2 exceeds 0.8 in a
large number of grid points (Figure 9i). For this model,
.75 ≤ ρ ≤.9 in the central and eastern parts of the study
area (Figure 9g). For forecasts made in the early
January, Spearman correlations of CCSM4 and NASA-
GMAO-06212 are greater than 0.45 for the entire
domain. However, CCSM4 has higher skill in the north
and northeastern parts of Iran (between 0.75 and 0.9).
Comparatively, the Spearman correlation is higher in
the south of the study area (Strait of Hurmoz) for
NASA-GMAO-06212. On the longer lead times (fore-
casts made in early December), the maximum of
Kendall's τ is calculated for FLOR-A06, and CMC1
equal to 0.355 and 0.336, respectively. By applying
MOS for spatial correction, CFSv2 outperforms GFDL-
FLOR-B01 in the east and central parts of the area
under study. The calculated RMSE is less than 1.96�C
for all models. Similar to OND, models perform better
in forecasting above normal temperature anomalies.

4.2.3 | MME

We select several model combinations to compare the per-
formance of the hybrid approach (individual models and
MMEs) to the raw outputs of seasonal climate forecasting
systems. The aim is to evaluate how MME can improve the
forecast skill compared to the results provided in the previ-
ous section. Comparison of models is mainly based on the
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goodness index although other skill performances are also
discussed. To understand the improvements by performing
the hybrid, the skill of dynamic models (raw output) is cal-
culated before applying CCA (not shown) and it is found

that the precipitation and temperature forecasts are
improved under a hybrid-approach. Then, the rank of each
individual dynamic model is given based on model perfor-
mance using the goodness index. Table 4 provides an

FIGURE 9 Same as Figure 8. But for temperature. For (a–g), initializations are made in early September (1.5-month lead time). For (g–
l), initializations are made in early January (0.5-month lead time) [Colour figure can be viewed at wileyonlinelibrary.com]

5712 NAJAFI ET AL.

http://wileyonlinelibrary.com


example of the skill improvement for OND precipitation
forecast (0.5-month lead-time) in the target area as an
illustration. Based on Table 4, the improvement is
achieved for all individual models which suggest CCA
has been successfully applied to remove systematic
biases. It provides the insights on how correcting sys-
tematic error have resulted in overall improvement
compared to uncorrected forecast.

To form MMEs, equal weights are assigned to the
ensemble mean of individual models (raw outputs). Then
CCA was applied to calculate calibrated MME probabilis-
tic retrospective forecasts. Model selection for each MME
is based on the rank of each (individual) model in terms
of calculated goodness index. The models which perform
better (having higher goodness index) are added one by
one to form seven different MMEs, consisting of two to
eight individual models. Then CCA is applied to remove
the systematic error of the MMEs. Another approach is
applying MOS to each individual model at the first step
and then averaging tercile-category probabilities of MOS
corrected models. We used the first approach in the pre-
sent study.

For the ease of reading, each specific MME is called
by a code (e.g., MME_XXX) which includes a digit num-
ber (XXX). Each digit corresponds to one specific sea-
sonal forecasting system. The number of digits (after the
acronyms of ‘MME_’) shows the number of individual
models that are weighted within that specific MME
(MME_XXXXX encompass five different individual
models). The model naming/description is presented in
Figures 10 and 12. For instance, MME_3481 means that
the MME is developed by assigning equal weights (in this
case 0.25) to each of the four NMME individual models
(CMC2, CM2.1-aer04, GMAO-06212, and CFSv2). While
equal weights are assigned to develop each MME, the

order of digits shows the models which have the highest
goodness index one after the other.

Precipitation
a. OND

In OND, six MMEs out of eight outperform the best
individual model (CMC2). Among all models,
MME_12348 has the highest goodness index (τ = 0.433).
RMSE and MAE for this model are less than 1.10 and
0.91 mm/day. Note that, there are some parts that perfor-
mances of other model combinations are better according
to Spearman correlation and area under ROC curves
(e.g., MME_34 in the western part of Iran and the area
along the coasts of Persian Gulf). Based on the analysis,
MME_34812576 has the lowest goodness index
(τ = 0.337), suggesting that adding individual models
with a lower skill does not necessarily provide any added
value to the MME and might even result in decreasing
model skill b. JFM In JFM, MME has higher skill at
0.5-month lead time and outperforms that of 1.5-month
lead time. MME_2718, MME_27184, and MME_271843
are outperforming the best individual model (τ = 0.323).
Adding CFSv2, GMAO-06212, GFDL-aer04, and CMC2
to the MME_27 increases the Spearman correlation in
the northeastern parts. Since the skill of the MME is close
to zero in the northern boundary of the study area nega-
tive anomaly correlation is calculated as a result of cross-
validation bias (Barnston and van den Dool, 1993).

Figure 11 summarizes the highest goodness index for
OND and JFM at 0.5 and 1.5-month lead times for indi-
vidual and MMEs. It shows the skill of individual models
against MMEs. Based on Figures 8 and 9, the skill of
MMEs decrease when more models are added for OND,
and for the two last individual models (GFDL_FLOR_A06
and FLOR_A06) for JFM. It means, adding more models
to the MME does not necessarily result in higher skill and
is influenced by the skill of which an individual is picked.
This result is partially in line with previous findings in
similar studies (e.g., Robertson et al., 2004).

Temperature
a. OND

In Figure 12, Spearman correlation is provided for dif-
ferent combinations of NMME individual models (seven
MMEs) for forecasting temperature in OND (1.5-month
lead-time) and JFM (0.5-month lead time). In OND, cal-
culated Kendall's τ is more significant for all MMEs at
the 1.5-month lead time compared to 0.5-month. Among
all models, MME_63 (consists of FLOR_B01 and CMC2)
has the highest goodness index (τ = 0.327). Spearman

TABLE 4 Individual model skill improvement by using hybrid

approach and goodness index comparison to raw model outputs for

forecasting OND precipitation in 0.5-month lead-time

Model/Skill

Raw models Hybrid approach

Goodness index (Kendall τ ) Rank

GFDL-aer04 0.10 0.39 1

CCSM4 0.12 0.37 2

FLOR_A01 0.05 0.33 3

CFSv2 0.23 0.33 4

FLOR_B06 0.09 0.31 5

CMC2 0.12 0.30 6

CMC1 0.16 0.30 7

NASA 0.18 0.28 8
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correlation of MME_63 (.45 ≤ ρ ≤ .60) in the northwest-
ern parts is higher than other models.

b. JFM

According to Fig 129, all MMEs perform better in
JFM in comparison with OND temperature forecasting.
Spearman correlation exceeds 0.6 in the eastern parts.
Some models also have ρ ≥ 0.6 in the coastal line of the

Caspian Sea. While the general pattern of Spearman cor-
relation is more or less the same, some models show
higher skill in the western part (e.g., MME_178). MME
consisted of CFSv2 and CCSM4 (MME_17) has the
highest skill compared to other models. The maximum
RMSE and MAE of this model are 1 and 0.86 degree Cel-
sius, respectively. Fig 130 summarizes the highest good-
ness index for OND and JFM temperature forecast at 0.5
and 1.5- lead times for individual and MMEs.

FIGURE 10 Seven different combinations of NMME individual models (MMEs) for precipitation forecasting in OND (1.5-month lead

time) and JFM (0.5-month lead time) target seasons. Equal weights are assigned to individual models to develop each MME. The basis for

combining individual models is their ranks according to calculated goodness index (Kendall's τ correlation) [Colour figure can be viewed at

wileyonlinelibrary.com]
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4.3 | Comparison of empirical and
hybrid approaches

Given the recent advances in numerical modelling of the
earth system and global observation network, one
assumption is that a physics-based model provides a bet-
ter forecast compared to that of empirical models. If
physics-based models perform better, one reason might
be the ability of GCMs to solve dynamical interactions
between the land-atmosphere–ocean.

The analyses provided in previous sections reveal that
empirical models have a moderate skill; however, hybrid
models have higher correlation on average in both target
seasons. The skill is season-dependent as regional climate
predictability is influenced by large atmospheric-oceanic
general circulations and regional impacts of
teleconnections on spatiotemporal regional pattern
of climate variability (e.g., ENSO, NAO) as demonstrated
in a number of studies (e.g., see Hurrell, 1996; Cullen
et al., 2002; Nazemosadat and Ghasemi, 2004; Ghasemi
and Khalili, 2006; Nazemosadat et al., 2006; Dezfuli
et al., 2010; Sabziparvar et al., 2011).

For comparison of empirical and hybrid approaches,
the areas under the ROC curve (below and above nor-
mal) are provided for models with the highest calculated
goodness index in Figure 14. In general, models do not
have a similar performance in all parts of the study area,
and the skill varies from one region to the other (except
for regions with high climate predictability). For a spe-
cific target season, almost all forecasting models have

skill regardless of the selected approach which means
the climate is more predictable in specific parts of the
region.

In a hybrid approach, developing MMEs has resulted
in improved the skill of individual models. The improve-
ment is sometimes significant. For precipitation, there is
at least one hybrid model that outperforms empirical
models and has a higher skill in terms of Spearman corre-
lation. The MME consisted of five models (CMC1, CMC2,
GMAO-06212, GFDL-aer04, and CFSv2) forecast correctly
both below and above normal precipitation conditions in
more than 70% of times. Areas across the Caspian Sea
(north of Iran) in addition to the southeastern part of the
study area have a negative rank correlation in JFM.

For temperature, the Spearman correlation (ROC
area) of the empirical approach is negative (less
than 0.5) in the southwest of Iran. MMEs are not
able to outperform the best individual model
(FLOR-B01) for forecasting OND temperature. How-
ever, all MMEs (consists of two to eight models) and
some individual models have higher goodness index
(τhybrid> τempirical= 0.209). Hybrid approach is signifi-
cantly better than empirical in forecasting temperature
for JFM target season. In MME with the highest good-
ness index (MME-5), more than 70% of grid points have
ρ ≥.6. Approximately, 25% of all grid points within the
study area have ρ ≥.75. For most parts of the study area
in JFM target season, MME has a high discriminatory
power which is provided by ROC skill maps (ROCabove-

normal ≥0.8. Also ROCbelow-normal ≥0.7).

FIGURE 11 Average rank

correlation (Kendal's τ ) between

the cross-validated forecasts

(individual and MME) and

PERSIANN-CDR for OND and

JFM' precipitation (1983–2013).
The number after the term

‘MME’ is the number of

individual models that take part

in the Multi-model Ensemble.

MME-8 is developed based on all

individual models [Colour figure

can be viewed at

wileyonlinelibrary.com]
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5 | SUMMARY AND DISSCUSSION

5.1 | Summary

In this article, two main approaches for seasonal forecast-
ing of precipitation and temperature are compared in an
area located in Southwest Asia including Iran. An empiri-
cal forecast approach is considered as a benchmark, and

the inter-comparison analysis is conducted to see if MOS
corrections of state-of-the-art coupled GCM outputs have
higher skill outperforming that of the empirical
approach. The same statistical method (CCA) is used in
both the empirical and hybrid approaches. 1-year leave
out cross-validation is applied to fit CCA within the
period of 1983–2013 using predictor data. A variety of
continuous performance scores are calculated to evaluate

FIGURE 12 Seven different combinations of NMME individual models (MMEs) for forecasting temperature in OND (1.5-month lead

time) and JFM (0.5-month lead time) target seasons. Equal weights are assigned to each model. Models which have the highest average

Kendall's τ correlation after CCA is applied are added one by one to the MME. Figure 12 summarizes Kendal's τ between the cross-validated

forecasts (individual and MME) and CRU at 0.5 and 1.5- month lead times for temperature (OND and JFM target seasons). According to

Figure 12., temperature forecasts have higher skill in JFM in comparison to OND [Colour figure can be viewed at wileyonlinelibrary.com]
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the forecasts including MAE, RMSE, Spearman, and
Kendall's τ rank correlations. In addition, the ROC statis-
tics for above and below normal conditions are calculated
in accordance with the WMO's SVSLRF for all grid
points. The main aims of the article have been to investi-
gate the performance of the hybrid approach compared
to the empirical one, and to test possible improvements
by means of removing systematic biases and developing
multi-model ensembles. Some of the main findings are:

• Empirical models have moderate skill in seasonal climate
forecasts of precipitation and temperature (Figure 6).

• For both seasons and variables, the hybrid approach
beats the raw GCM by means of improving model skill
(e.g., see Figure 7 for CFSv2 comparison).

• Based on Figure 8 and Figure 9, hybrid models have a
higher skill in forecasting OND precipitation compared
to JFM. For temperature, hybrid model exhibits higher
skill in JFM compared to OND.

• In forecasting precipitation using hybrid multi-model
ensemble, higher skill is found for OND target season
at the 1.5-month lead time (compared to 0.5- month),
whereas in forecasting JFM, the skill is significantly
dropped from 0.5-month lead-time to 1.5 month
(Figure 11).

• Some individual NMME models have a high skill in
the area under study for forecasting OND precipitation
(Figure 8) and JFM temperature (Figure 9).

• Forecasting skill among different multi-model ensem-
bles corresponds to the number of climate forecasting

systems, their individual performance and systematic
biases (Figure 10 and Figure 12).

• Developing MME can increase model skill compared
to individual climate forecasting systems for precipita-
tion (Figure 11) and temperature (Figure 13).

• Overall, hybrid models outperform empirical models
(Figure 14).

5.2 | Discussion

While a large proportion of previous studies have focused
on interannual variability during the boreal winter
(November–April), this study considered the OND and
JFM seasons separately, motivated by hydrologic user
demands. Forecasting information for OND can help in
early water resources planning in the beginning of water
year. In cases of observed dry conditions in OND, skillful
forecast of hydroclimate variables in JFM could help in
drought risk management for the rest of water year.

In current study, several predictors are considered to
build empirical seasonal forecasting of precipitation and
temperature over Iran. Considering the link between
Pacific Ocean and interannual variability in study area
found in previous studies (e.g., Barlow et al., 2016), a
physical reasoning was made for choosing predictor
domains for empirical approach. Precipitation in the
study region is mainly influenced by several
teleconnections. Among several studies which have
investigated the relation between Iran's precipitation

FIGURE 13 Average rank

correlation (Kendal's τ) between

the cross-validated forecasts

(individual and MME) and CRU

at 0.5 and 1.5- month lead times

for temperature (OND and JFM

target season over 1983–2013).
The number after the term

‘MME’ is the number of

individual models that take part

in the Multi-model Ensemble.

MME-8 is developed based on

all individual models [Colour

figure can be viewed at

wileyonlinelibrary.com]
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and several teleconnections, most have been agreed
that ENSO, IOD, NAO, and MJO are as the most influ-
ential teleconnection patterns (see e.g., Nazemosadat
and Ghasemi, 2004; Pourasghar et al., 2015, 2019; Rana
et al., 2017, 2019; Ahmadi et al., 2019). ENSO and IOD
influenced OND precipitation while JFM precipitation
variability is mainly associated with (NAO) based on
teleconnection research studies over the region. Low
NMME skill in forecasting winter precipitation over the
study area has been assigned to the low predictability of
NAO in seasonal time scale found by Ehsan
et al. (2017). In this study, antecedent SST was found to
provide the highest overall skill in terms of the

goodness index for temperature (OND, JFM) and for
precipitation (JFM). For forecasting near surface tem-
perature, the time series of the leading CCA modes
(Figures 4 and 5) suggest that a large part of the skill
may be associated with the long-term warming trend in
SST. The spatial pattern of the forecast skill between
empirical and hybrid individual models are relatively
similar for precipitation which shows higher skills with
a southwest to northeast spatial pattern in OND, and in
the western Zagros in JFM (see Figures 6 and 8). The
similarity of results between the two approaches
implies that: (a) there is SST-related predictability of
Iran rainfall (largely associated with ENSO) that the

FIGURE 14 Comparison between empirical and hybrid approaches for OND (first and third rows) and JFM (second and fourth rows).

Skill maps are based on the area under the ROC curve (below and above normal) for precipitation and temperature. Hybrid approach

(individual/MME) having the highest goodness index (after cross-validation) are presented. The term ‘Best’ in this figure corresponds to the

model which has the maximum Kendall's τ on average in target season of interest. For hybrid approach, the model which has the highest

skill in all lead time (0.5 and 1.5- months) is provided. All measures are calculated over 1983–2013 [Colour figure can be viewed at

wileyonlinelibrary.com]
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empirical approach is able to capture. These results
agree with previous studies which found the high influ-
ence of ENSO in precipitation forecast using a
statistical-based approach (e.g., Gerlitz et al., 2016), one
similar to the empirical approach developed in this
study. (b) Dynamical models are able to capture the
corresponding link. Recent studies have shown statisti-
cally significant correlations in NMME associated with
ENSO for all seasons and leads. For example,
L'Heureux et al. (2017) found a high correlation (≥ 0.8)
between NMME and Niño-3.4 index in 0 and 1-month
lead times. Not surprisingly, two individual NMME
models (CFSv2 and CMC2) which have the highest skill
in forecasting Iran OND precipitation (see Figure 11),
have also been found in a previous study to be the top
two performing models for ENSO predictions based on
deterministic skill assessment (Barnston et al., 2019).
For temperature, empirical approach shows higher skill
in the southeast part (Figure 6) in OND, similar to
hybrid MME-2 (Figure 6 and 12). For forecasting JFM
temperature, hybrid approach has resulted in very
higher skill in many parts of the country compared to
empirical (Figures 9 and 12). Since the spatial patterns
of forecasting skill are found to be quite similar
between empirical and hybrid approaches, at least for
precipitation in both target seasons, it is argued that
similarity of the result is because of inherent climate
predictability in the region which changes from one
season to the other. One central underlying assumption
in the current research is that dynamic models are able
to capture the main mechanisms responsible for
regional variability of precipitation and temperature
linked to the large scale atmospheric-ocean patterns.
Therefore, the skill patterns and its similarity between
empirical and hybrid approaches are rooted in the
underlying assumption.

Except for southeastern part of study area, the skill of
temperature forecast is limited with a similar pattern in
empirical approach for both OND and JFM (Figure 6g–l).
On the other hand, high skillful forecasts have been
found by using a hybrid approach in forecasting JFM
temperature (Figure 9g–l and 12). The physical mecha-
nism between interannual variability of near surface air
temperature in Southwest Asia associated to eastern
Pacific El Niño, central Pacific El Niño and La Niña
events has been discussed by Alizadeh-Choobari
et al. (2018). Since the statistical method in both empiri-
cal and hybrid approaches are considered the same, per-
haps, higher skill found in forecasting JFM temperature
by hybrid approach is correspondence to the influence of
other teleconnections such as North Atlantic Oscillation
(NAO), the IDO, the Quasi-Biennial Oscillation (QBO),
MJO and their combined effect.

The broad patterns of skill are similar in empirical
and hybrid approach in OND, but the use of hybrid
approach enables improved skill compared to the empiri-
cal one. The use of hybrid-MME enables improved skill
which suggests improved skill associated with benefits of
using different dynamical model structures within MME.
However, as eight dynamic models are used in this study
and with respect to structural model uncertainty, the spa-
tial pattern of the skill between different dynamic models
are not the same. The hybrid scheme can improve the
dynamical forecast, but still poor for forecasting JFM pre-
cipitation and OND temperature. The improvement after
MOS-correction is mainly associated with handling sys-
tematic biases in raw model outputs. Nevertheless, fore-
cast skill in different seasons is still limited by large
inherent predictability and representation of tele-
connection patterns corresponding to variability of pre-
cipitation and temperature. Skillful prediction of the
winter North Atlantic Oscillation systems in the midlati-
tudes is still under debate based on the recent literature
and the skill level differs between state-of-the-art sea-
sonal forecasting systems (Dunstone et al., 2016; Baker
et al., 2018; Smith et al. 2019; Weisheimer et al. 2019).

Performance assessment between eight individual
models and seven multi-model combinations after CCA
is applied has shown that higher correlation skill is asso-
ciated with increasing ensemble size. Both simple models
averaging and model selection based on goodness index
calculated by hybrid performance are considered as a
baseline for developing MME in this study. Results
shown in Figures 10 and 12 suggest that assigning equal
weights to all individual seasonal forecasting systems is
not necessarily end up with higher skill as including
models with low skill could aggravate the MME overall
skill. It is possible that the performance of an individual
model is higher than the MME-8. On the other hand, spe-
cific combinations of individual models could lead to the
highest performance among any of individual models
and MME-8. In future studies, one can assess the fore-
casting skill of MMEs which are based on weighting the
models according to goodness index (e.g., Bayesian Model
Averaging). A meaningful baseline could also be a ran-
dom selection of models. For real-time forecasting tai-
lored for operation of water resources, hybrid models can
provide useful information months in advance for areas
with high climate predictability whereas to construct an
empirical model, near-real-time observation of large-scale
atmospheric-oceanic/general circulation patterns are
required. In this study, cross-validation is used for MME
model selection. It is suggested that the final optimized
MME, be tested on an independent dataset (e.g., for 2014
onwards). Then, it will be recommended to end users for
operational applications. Moreover, in an operational
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framework, stakeholders require monthly updated hydro-
climate forecast information for rolling 3-month periods
starting from the first month of water year (e.g., OND,
NDJ,…,SON) which could be studied in future research
over southwest Asia.
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