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Advances in smartphone technology have allowed for individuals to have access to near-
continuous location tracking at a very precise level. As the backbone of mobility research, the
Travel Diary Study, has continued to offer decreasing response rates over the years,
researchers are looking to these mobile devices to bridge the gap between self-report recall
studies and a person’s underlying travel behavior. This article details an open-source
application that collects real-time location data which respondents may then annotate to
provide a detailed travel diary. Results of the field test involving 674 participants are
discussed, including technical performance, data quality and response rate.
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1. Introduction

Understanding the true underlying movement behavior of persons in a given geographic

area is a key component in the foundation of national infrastructure decisions. Institutions

responsible for generating official statistics have designed streamlined instruments to

enable the collection of important travel behavior metrics. Most organizations currently

implement some form of travel diary survey (TDS), in which participants record a series of

trips and stops over a specified time period. When these diaries are completed within

probabilistic samples, the aggregate results can be used to model travel demand between

regions, generate statistics on transportation modes, or monitor the uptake of green

incentives such as telecommuting.

Usage of TDS in official statistics to create a granular picture of individual travel

behavior over time has spanned more than half a century. Modes of administration have

evolved with the times, from face-to-face interviews in the 1950s transitioning gradually

into mail and telephone survey instruments in the 1980s and 1990s, followed by a

transition to web-based methodology in the early twenty-first century (Adler et al. 2002;

Arentze et al. 2005; Axhausen 1995). Although this mode evolution has led to both

reduced costs as well as increased ease of administration, reliance on respondent recall for

generation of the diary has remained constant.
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Researchers have long been aware of the tendency of this method to lead to trip under-

reporting (Clarke et al. 1981; Richardson et al. 1995). Recent studies comparing

concurrent GPS and recall methodologies have demonstrated that reliance on recall

methodology produces under-reporting of short trips, differences in reported trip departure

times, overestimation of trip length, and underestimation of vehicle miles of travel (Bricka

et al. 2009; Carrion et al. 2014; Forrest and Pearson 2005; Kelly et al. 2013; Stopher and

Shen 2011; Wolf et al. 2003). More generally, the response rates for TDS have been

decreasing steadily over the decades. Bricka et al. (2009) noted disproportionate

nonresponse for large households, low-income households and younger adults, and Ogle

et al. (2005) showed similar nonresponse trends within households making the fewest and

most trips. Although presumably less burdensome, studies using standalone GPS devices

have presented similar nonresponse challenges, but do seem to increase uptake among

younger participants (Bricka 2008). Managing lowering response rates requires increasing

the cost per respondent of an already expensive design, which has prompted researchers to

find more cost-effective ways to access the information.

Smartphone-based travel studies have been proposed as a solution for addressing issues

of cost and decreasing response rate among younger households. Smartphone penetration

over the last decade has neared saturation, with recent numbers from Statistics Netherlands

indicating that over 90% of the Dutch population owns a mobile device (Centraal Bureau

voor de Statistiek 2019). Additionally, Roddis et al. (2019) found that respondents rated

interaction with an app more enjoyable than either a traditional user-completed travel

diary or a personal log, rating it as less burdensome, and both Roddis et al. (2019) and Safi

et al. (2017) demonstrated that smartphone-based apps provided higher-quality data in

comparison with recall-based TDS. These potential advantages have led to the

introduction of multiple app-based travel diaries (Berger and Platzer 2015; Cottrill et al.

2013; Greaves et al. 2015; Lynch et al. 2019; Patterson and Fitzsimmons 2016; Prelipcean

et al. 2018). To date, however, these studies have yet to address the unique challenges

involved with fieldwork within the general population, nor has the impact of a large-scale

implementation been assessed. To that end, the primary goal of this research is to present a

realistic assessment of a smartphone-based travel study within a national sample,

showcasing problems at the different component levels of Total Survey Error. For fitness

in general population surveys, important requirements are acceptable recruitment rates,

low drop-out, low in-app missing data and high in-app data quality. This article explores

these features. Apart from these more methodological requirements, there are complex

logistical and procedural requirements. Although these are referenced here, they are not

focal in this exploration.

Introduction of the app-based TDS is not a silver bullet. There are known issues arising

from Global Navigational Satellite System (GNSS) measurements themselves, ranging

from the problems of urban canyons to the length of time required to establish an initial

signal (Park et al. 2014). Additionally, although processed Android location data can be as

accurate as þ /210m, this accuracy varies across different devices (Liu et al. 2017;

Menard et al. 2011). Even when the accuracy is acceptable, technical issues with the

applications themselves can lead to completely missed travel behaviors (Roddis et al.

2019). Independent of technical issues, semantic issues present an additional hurdle. The

transition to automated stop identification from respondent’s subjective interpretation of
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their travel behavior has proven a difficult task, and the reduction in burden expected from

travel mode identification is yet to surface (Prelipcean et al. 2016; Yang et al. 2016; Zhao

et al. 2015). Importantly, apps must also remain user-friendly or risk early dropout

(Assemi et al. 2018). In this study, we aim to investigate the feasibility of an app-based

TDS to be robust enough against these errors to be usable in official general population

surveys of travel behavior.

2. Statistics Netherlands Travel Application Overview

The initial objective of this study was to develop an application that would be able to

assess the potential of smartphone technology in mobility research. To this end, the app

was designed both to collect the data of interest as well as metadata and user input that

would allow assessment of the data quality. In order to collect and represent back to the

participant their mobility data, the app needed to provide latitude and longitude updates

frequently enough to reliably determine location, separate these measurements into a

series of moving periods (tracks) and stationary periods (stops). This would then allow the

user to enrich the data with auxiliary day-level and trip-level information.

The Travel App System is comprised of a front end and a back end. The front end

consists of the Statistics Netherlands (SN) Travel App, which collects the location data,

resolves stops and tracks, and exposes these to the user for annotation purposes. Both the

raw location data and the resolved data are stored locally in a SQLite database on the

mobile device. The back end consists of an API written in GO that performs the data

ingestion and transformation into a PostgresSQL database that ultimately receives and

stores the data (see Figure 1).

2.1. CBS Travel App

In order to be able to deploy equivalent algorithms to both Android and iOS versions, the

client was developed in C# using the Xamarin framework. This framework provides

compilation to Intermediate Language which is Just-in-Time compiled to native assembly

on Android devices, and Ahead-of-Time compilation into native ARM assembly code for

the iOS build. The application was developed Open Source and hosted on a publicly

accessible collaborative code repository in order to facilitate distribution and address

potential privacy concerns. Full code for back end and front end is available at

https://gitlab.com/tabi/archive.

2.1.1. User Interface

Users who download the application to their smartphone are requested to log in using the

credentials received in the invitation letter received in the mail. Upon successful

registration of their device on the server, users are asked to enable location permissions on

their device. Specifics of this permission request differ across devices, although the UI

prompt does not. Following this, regardless of permission status, users are provided with a

brief video tutorial explaining proper use of the application. Users are shown how to

navigate between stops and tracks within a day, adding annotative information, as well as

how to pause and resume the application’s location-tracking behavior (see Figure 2).
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Fig. 1. Technical implementation and integration of back end and front end.

Fig. 2. Interface for initial login, permissions, and use instructions.
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While the application is running, an icon is visible in the system bar. When the user

accesses the notification drawer, a message is visible alerting the user that the app is

running in the background to track movement.

The user interface for adding annotations is organized by day, with days beginning at

midnight. A user opening the app while it is running in background mode will be taken to a

list of the current day’s stops and tracks, called the Day Overview. From the Day

Overview, it is possible to return to the calendar to see a list of available days, to drill down

into each stop or track, or to answer day-specific questions (see Figure 3).

Clicking on a stop opens a map with a point and surrounding radius representing the

user’s registered location for that time period. Clicking on a track will provide a map with

two points representing start and stop locations and a blue line representing their

movement trajectory. This map can be manipulated by zooming or panning in order for the

user to determine with greater accuracy where they were. The stop menu requests users to

record a name and reason for the stop. Figure 4 shows the track menu, which requests that

users enter the mode of transportation used in the trip leg.

The user is presented with differential icons indicating whether the annotation item has

been completed. A user who completes a day by assigning motives and mode annotations

to each stop and track on a day as well as completes the day-level annotation questions will

see a check mark for the day.

2.2. Algorithms and Implementation

The application collects and saves raw data from an operating-system-specific location

API implementation. For iOS, this is Core Location. For Android, Google Play services’

Google Location Services API is preferred. When it is not available, the native Android

location API is called in its place. All three APIs return similar information. Although the

methods that produce the location information are proprietary, it is known that these

location APIs aim to produce accurate location results by combining information from

GNSS, local Wi-Fi signals and cell phone tower signals. Android devices offer a setting

Fig. 3. User Interface for travel log display and day-level questions.
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external to our application where the user may prefer to use only GNSS signals, or to turn

on ‘high-accuracy mode’ which provides a location derived from the combination of

Wi-Fi, Bluetooth, cell tower and GNSS signal information. Devices running iOS as an

operating system also offer a setting to disable GPS, although it is accessible only through

a series of menus. Beginning with iOS 11, Apple devices offer the user the option to share

location information with the requesting application either only when the app is open and

running in the foreground, or at all times.

The format and content of the coordinates returned by the location APIs vary by the

polled system. Latitude and longitude are universally returned, although the number of

significant digits varies. Altitude is reported if and only if a connection is established

between the device and a GNSS system. The accuracy returned by the Google Location

Services API is defined as the radius of 68% confidence in meters. The interpretation of the

horizontal accuracy variable returned by CoreLocation is currently undocumented by

Apple.

2.2.1. High/Low Tracking

The application running on the mobile phone requests information from the OS-specific

API at regular intervals in order to generate a pattern of movement. When the device is

determined to be not in motion, the application requests a location update once per minute

in order to preserve battery life. When the device is in motion, the location request is

submitted once per second. On Android, the application also accepts other location

updates that were requested by different applications with the goal of providing the highest

possible accuracy at no increased cost to battery life.

An algorithm was developed in order to determine when a device should move between

the two tracking profiles. This algorithm has two parameters: time and distance. The

implementation is similar in the Android and iOS implementations. A listener is engaged

to receive location updates, all of which are saved in the location repository on the device.

Each updated location is checked against the time parameter to determine whether a

Fig. 4. User Interface for trip and stop detail annotation.
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distance check should be performed. Once the time parameter is exceeded, the distance

from the immediately preceding location is calculated using the Haversine formula. This

calculated distance is compared to the distance parameter to determine whether or not the

user is moving. In the event that the reported accuracy of the location is larger than the

distance parameter, this number is used instead of the distance parameter in order to offer

adjustment for the potentially erratic behavior in a situation in which multiple low-

accuracy locations are returned because of poor signal availability. If the calculated

distance exceeds this number, the application activates high tracking mode and begins

requesting location updates at the rate of one per second. If it does not, low tracking mode

is activated and location updates are requested once per minute.

2.2.2. Stop Detection/Resolution

The stop detection algorithm developed within this application functions similarly to the

high/low-tracking algorithm. The algorithm identifies a stop when the device reported

location is within a given radius for a particular length of time. By altering these two

parameters, respectively radius and duration, it is possible to adjust the sensitivity with

which a set of locations can be consolidated into a single stop. In Section 3 Field Test, we

describe the design of our study in which we varied these attributes across participants. A

simulation study conducted post-hoc on the field-test data in which we clustered

participants’ locations in each combination of radius and duration parameters identified

minimal differences in the number of identified stops (Killaars et al. 2019).

While all location updates were stored in the repository, only those locations where the

reported accuracy was less than 80 meters were used for the separate step of stop

determination. The stop detection algorithm consists of four steps. First, the timestamp of

the last known stop is requested from the internal location repository. Second, the set of

locations with timestamps greater than or equal to the last known stop are returned. Third,

the set of all positions are divided into groups based on the distance between the positions;

this step involves calculating the distance between each new proposed location and the set

of all locations identified as belonging to a stop. If this distance is less than the radius

parameter, the location is incorporated into the existing stop. If the distance is greater than

the radius parameter, it becomes the first location in a proposed new stop. Fourth, the time

elapsed between the first and last location in the proposed stop is calculated and compared

against the duration parameter. If the elapsed time exceeds this value, the mean latitude,

longitude and the beginning and ending timestamp are registered in the local database.

Adjacent stops are merged when the distance between the two stops’ average position is

less than one hundred meters. Following the stop resolution phase, stop visits can be

processed. Stops may be places to which users return, such as a house or workplace. A stop

visit is therefore a singular instance of having been at a stop.

2.2.3. Tracks

Tracks were defined as the set of locations between stops. Start time, beginning

latitude/longitude and ending latitude/longitude are saved in the local repository. Track

length was calculated as a summation over individual distances between consecutive

locations after filtering out coordinates with an accuracy greater than 100 meters.
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2.2.4. Additional Data Collected

Data were collected at various intervals. Upon registration with the server, device

information was recorded in the database, including phone manufacturer, model, OS and

version number. As described in the preceding section, location data were collected at time

intervals of varying length and processed client-side into tracks and stops.

Users were requested to annotate all tracks with the mode(s) of transportation utilized in

the movement. Various common options were provided for the user in a drop-down select

menu in addition to an open text field to accommodate less common forms of

transportation. Users were requested to annotate stops with the motive of the stop. Users

were provided with a list of many common motives, such as home, work and shopping.

Additionally, users could submit their own motive or mark the stop as incorrect. Stops

could be given a name for ease of recall.

To facilitate detection of unexpected events, users were requested to provide feedback

on three day-level questions: ‘Did you have your phone with you at all times today?’, ‘Was

today a normal day for you?’ and ‘Do you have comments on the day?’.

3. Field Test

A field test was designed and conducted in late 2018 in order to address two primary

research questions:

1. To what extent are persons willing to register an app and provide seven days of time-

location sensor data?

2. What is the quality of the resulting sensor data and additional survey data?

To facilitate comparison with existing mobility research, the TDS Underway in the

Netherlands (ODiN), conducted by the Dutch Ministry of Infrastructure, was selected as

the basis for the pilot study (Statistics Netherlands 2019). ODiN is designed as a web-

based diary study, where respondents keep track of all their trips, including start- and

endpoints, and times for a specific day of the week.

3.1. Participants

The field-test survey was sent to 1902 sample persons, half of whom were randomly

sampled from the Dutch population register and half of whom were sampled from the pool

of previous ODiN respondents whose surveys had been conducted in the months of

September and October 2018. The target population consists of people 16 years and older

living in non-institutionalized households.

3.2. Methods

3.2.1. Incentive Stratification

The sample was split into three and randomly assigned to one of three incentive

conditions. All incentives were paid in the form of gift cards mailed to recipients. All

sample persons received an unconditional EUR 5. One third of the sample was promised a

split sum of EUR 10, with EUR 5 conditional on registration and EUR 5 conditional on
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seven days of recorded travel data. One third was promised EUR 10 conditional on seven

days of travel data. One third received EUR 20 conditional on seven days of recorded

travel data. In the following, we will omit the reference to the unconditional EUR 5 and

denote the incentive conditions by 5 þ 5, 0 þ 10 and 0 þ 20.

3.2.2. Stop Detection Stratification

Sampled persons were additionally allocated different stop detection parameters at random.

Participants were assigned a duration, d, of either 2-, 3-, 4- or 5-minute intervals and a

radius, r, between 60 and 100 meters inclusive, representing the maximum distance from a

central point of a stop. These parameters were implemented to influence the relative

strictness of the algorithm to automatically identify a stop, with lower values representing

looser criteria and higher values representing more stringent requirements. These

parameters were implemented in the back end of the app and were unknown to participants.

3.2.3. Materials

The sample was sent an invitation letter by mail with app login information and both a QR

code and URL leading to the SN Travel App landing page. The invitation letter arrived on

November 2nd and persons were given the opportunity to respond until December 15th.

On the landing page, persons were given background information and a brief explanation

of the study and the app, and were directed to the appropriate application store based on

device operating system (Android or iOS). On November 16th, those persons yet to

register with the app were sent a reminder letter in the mail containing the same login

information, QR code and URL. On November 23rd, respondents who had not reached

seven days of travel data were sent a motivation letter.

All letters, the app, and the landing page contained information on how to contact

Statistics Netherlands if there were questions or difficulties.

3.2.4. Analysis Plan

As the primary goal was to establish the feasibility for future widespread implementation,

we aimed to investigate initial uptake, study dropout and data quality. Initial uptake

analyses were stratified by the demographics available in the Dutch population register, as

well as by incentive condition and previous participation in Travel Diary Study status.

Dropout analyses were stratified by these same variables and additionally included

information on the type of mobile device used by the participant and its operating system.

Quality of the data was judged by frequency of collection and alignment of summary

measures for field test data and ODiN responses on the subset of participants who were

involved in the September 2018 data collection.

4. Results

4.1. Registration and Response

Of particular interest was whether use of an app-based TDS could lead to acceptable

participation rates, and to determine which factors would lead to either nonresponse or

participation. Additionally, this study sought to determine the extent to which

McCool et al.: App-Assisted Travel Survey in Official Statistics 157



non-response and dropout were selective by using administrative data available on all

Dutch residents of all potential respondents.

The following sequential stages were required for full participation in the study:

receiving and reading the invitation letter, downloading the application, registering within

the app, accepting location permissions on the device, not closing the app for the full seven

days, and providing annotative data. Unit response was considered to coincide with the

third step, device registration.

Of the 1902 respondents who were sent a letter, 674 registered a device using the login

information they received, leading to a total unit response rate of 35.4%. Previous ODiN

participants had a response rate of 44.4% compared with the newly-acquired sample’s

response rate of 26.5%. This reflects a slightly lower response rate than the 31.0% and

27.9% obtained for ODiN in 2018 and 2019 respectively (Statistics Netherlands 2019;

CBS/RWS-WVL 2020). As shown in Table 1, the three incentive conditions, 0þ20, 0þ10

and 5þ5 achieved response rates of 39.7%, 36.4% and 30.1% respectively.

The measure of non-registration represents an overestimation of nonresponse. However,

distinguishing non-contact, refusal and non-eligibility from other factors was possible

only for those persons who independently contacted Statistics Netherlands. Contact was

received from people who attempted to participate in the study, but were unable to

download and install the application for various reasons. Unregistered is, within this study,

a close analogue of nonresponse. Most who fail to register a device are likely to be

traditional nonresponders.

4.2. Nonresponse

Device registration status varied across known demographic variables from the Dutch

population register, which is a governmental database containing administrative

information on all persons registered as living in the Netherlands. Younger persons

were more likely to register a device than older persons. Immigrants were less likely to

register a device than those originally of Dutch origin, and first generation immigrants

were less likely to register a device than second-generation immigrants. Persons with

college degrees or higher were more likely to register a device than those with elementary

or vocational school degrees.

Divorced and widowed persons were less likely to register a device in comparison with

persons who were never married. However, single-person households were less likely to

Table 1. Device registration (unit response) rate by sample source and incentive condition.

Unregistered Registered

n % n %

Sample source ODiN respondents 529 55.6 422 44.4
Newly acquired 699 73.5 252 26.5

Incentive 5þ5 443 69.9 191 30.1
0þ10 403 63.6 231 36.4
0þ20 382 60.3 252 39.7

Total 1228 64.6 674 35.4
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respond than family households with children. Home-owners were more likely to register

a device than were renters. People with higher household incomes were also more likely to

register their device. See Table 2.

Most transportation-related characteristics that could be drawn from the Dutch

population register, including possession of a car, moped or lease car, were not

significantly related to registration status. Possession of a driver’s license, however, was

significantly related to registration status, with those in posession of a driver’s license

more likely to register a device than those not in possession of a license.

Geographic variables, including address density and province- or city-related variables

were not significantly related to device registration status. A full table of response across

all available variables can be found in Table 7 in Appendix (Section 6).

Table 2. Device registration by sample characteristics.

Unregistered Registered

Age categories [15,30] 240 (58.0%) 174 (42.0%)
(30,50] 343 (58.7%) 241 (41.3%)
(50,70] 437 (66.5%) 220 (33.5%)
(70,96] 202 (83.8%) 39 (16.2%)

Origin Dutch 961 (62.5%) 577 (37.5%)
Non-western 130 (76.5%) 40 (23.5%)
Western 131 (69.7%) 57 (30.3%)

Generation Dutch 961 (62.5%) 577 (37.5%)
First 149 (78.8%) 40 (21.2%)
Second 112 (66.3%) 57 (33.7%)

Marital status Married 624 (63.7%) 355 (36.3%)
Never married 410 (60.8%) 264 (39.2%)
Divorced 121 (71.2%) 49 (28.8%)
Widow/widower 67 (91.8%) 6 (8.2%)

Education Vocational 155 (72.4%) 59 (27.6%)
Elementary 63 (78.8%) 17 (21.2%)
Secondary 282 (60.1%) 187 (39.9%)
Graduate 74 (49.7%) 75 (50.3%)
University 136 (48.2%) 146 (51.8%)
NA 512 (72.9%) 190 (27.1%)

Household type Single 244 (72.6%) 92 (27.4%)
Partners 420 (64.2%) 234 (35.8%)
Partners, child 473 (60.4%) 310 (39.6%)
Single parent 79 (69.3%) 35 (30.7%)
Other household 6 (66.7%) 3 (33.3%)

Has drivers license No 281 (73.4%) 102 (26.6%)
Yes 941 (62.2%) 572 (37.8%)

Home ownership Own 790 (61.6%) 492 (38.4%)
Rent, corporation 275 (73.1%) 101 (26.9%)
Rent, other 123 (66.8%) 61 (33.2%)
Unknown 4 (80.0%) 1 (20.0%)
NA 30 (61.2%) 19 (38.8%)

Total 1222 (64.5%) 674 (35.5%)
a All x 2 differences significant, p , .01
b Table omits 6 non-responders lacking register data
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4.3. Drop-out

Technical difficulties contributed to ambiguity in the identification of dropout as

participants reported an inability to send data following successful device registration. Of

the 674 participants who registered a device, 98 were never able to send GPS data.

Participants who contacted Statistics Netherlands with this problem were instructed to

upgrade their OS version, reinstall the application, or install on a different device. Each

additional registration was recorded separately. In total, the 674 participants completed

748 registrations, of which 706 were unique configurations (differing model or OS

version), and the remaining 42 were reinstallations. In total, 136 unique-to-user device

configurations produced no GPS data. Table 3 shows the distribution of lack of GPS data

across OS and OS version. The likelihood that an Android device would send GPS location

data at least once generally increased across operating system versions. Although we

found that iOS devices were more likely never to send data, we did not observe differences

across versions of iOS. Distinguishing in a determinative way those users who expressly

denied location permission when prompted in the OS from those who experienced

technical issues with location provision or for whom other settings in their mobile device

disallowed location provision was not possible with the available data.

In addition to dropout over time within the seven day period, we identified a pattern of

dropout within a day in which the app would not send location reports during the full 24

hours, but would continue to send data either later in the day or on a subsequent day. While

it is not possible to distinguish intentional closing and reopening of the application from

the data, the patterns identified in the data lend support to the idea that this effect comes

from the behavior of the OS. In order to investigate this phenomenon and determine its

effects, we created a measure called gap time. Gap time refers to the length of time

between two subsequent location reports from a single device. A device functioning

properly and without additional restrictions imposed by the operating system of the device

should have gap times of approximately one second while in motion, and of one minute

while stationary. After removing duplicate records, on average, we identified a mean gap

time of 18.8 seconds during trips and a mean gap time of 47.5 seconds during contiguous

non-trip activity.

Table 3. OS and version by data status.

GPS No GPS

Android version , 6.0 22 (81.5%) 5 (18.5%)
6 42 (89.4%) 5 (10.6%)
7 83 (96.5%) 3 (3.5%)
8.0.0 170 (95.0%) 9 (5.0%)
8.1.0 20 (95.2%) 1 (4.8%)
9 2 (100.0%) 0 (0.0%)

iOS version , 11.4.1 30 (75.0%) 10 (25.0%)
11.4.1 24 (77.4%) 7 (22.6%)
12.0 14 (77.8%) 4 (22.2%)
12.0.1 124 (75.6%) 40 (24.4%)
12.1 70 (76.9%) 21 (23.1%)

Total 601 (85.1%) 105 (14.9%)
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At face value, receiving an update during trips at half the rate and updates during

stationary periods more often than requested seems to indicate that very little data is lost.

However, if we instead consider the maximum gap time per day per user, a different

picture emerges. Figure 5 shows that approximately 30% of trips and 65% of non-trip

activity contains gap times greater than one hour. Any statistics calculated on the basis of

available data, therefore, must consider this fact, as aggregate summative statistics will

likely be underestimated if we assume that gap times are likely to cover periods of

meaningful data. Although determining the length of an acceptable gap time to consider

coverage to be complete may depend on end goals, choosing a maximum gap time no

larger than fifteen minutes yielded an average of 12.8 hours covered per user-day.

Complicating the problem, the gap times are not evenly distributed throughout the day.

In fact, there is evidence that these gap times represent app or device fall-off, leading to a

greater proportion of missingness later in the day than in the beginning of the day. Figure 6

shows the hour at which contact is lost and the hour at which we again start receiving data

from the device, following from a gap time of at least thirty minutes.

4.4. Comparison to Traditional Diary

Data from the ODiN travel diary were made available to facilitate comparison between the

app-based and travel diary methods. Only the data for respondents who participated in

both this study as well as the ODiN study were used for comparison. Three measures were

selected for comparison between the two methodologies: number of trips within a day, trip

length and trip distance. ODiN respondents were asked to self-report information for a

single, specific day that was assigned randomly. Trip-level measures were summed per

day to establish number of trips per day, total trip length and total trip distance within a

day. Trip-level characteristics were calculated per trip and then averaged for the user.

The total number of trips within a day were compared between the ODiN data and this

study. As shown in Table 4, the median number of trips as determined by the SN App

mechanism was four as compared to the median of three in the ODiN data. Additionally,

we see a distribution with a much longer tail from the SN App data in Figure 7. Some
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Table 4. Descriptive statistics of trips per day by survey.

Survey Respondent days Mean Median Max

ODiN 321 3.54 3 12
Current study 1353 5.13 4 33
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portion of this increase likely represents a desirable outcome for our study, in which we are

capturing short trips known to pose problems in self-report measures.

Additionally, our study records a longer time spent in transit per day than did ODiN.

The average time spent in travel is higher for the SN app data, as shown in Table 5. Figure 8

shows recorded total travel time per day within both the current study and ODiN. The SN

App recorded more time spent in all categories above one hour, which is in alignment with

our hypothesis that automation would capture travel behavior at a more granular level.

However, the combination of an increased number of trips per day and an increased time

spent in travel could additionally be due to mechanisms within the tracking application

that are too sensitive to movement, inflating both counts by including trips that would

generally fall outside the purview of travel behavior, such as trips from an office

workplace to a canteen in the same building. These differences may also be related to

natural month-to-month discrepancies in travel behavior.

Curiously, although we demonstrate both more trips per day and more time spent

traveling, aggregated distance within a day is notably shorter in this current study as

compared to the ODiN data. Table 6 shows descriptive statistics for total distance traveled

in a day within both studies. ODiN respondents reported a median distance per person-day

of 32.2 kilometers compared to the median of 8.47 kilometers as tracked within this study.

Figure 9 shows the differential distribution, with over 40% of person-days within the

current study summing to fewer than 5 kilometers in comparison to approximately 15%

within ODiN. It is likely that the missing data problem contributes to this difference. For

example, consider a situation in which the app successfully initiates tracking a commuter

successfully in the morning, but which loses contact in the course of the day, dropping the

likely return trip in the evening.

Table 5. Descriptive statistics for travel time (hours) per day by survey.

Survey Respondent days Mean Median Max

ODiN 321 0.59 0.33 8.00
Current study 2327 1.14 0.51 20.26
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Fig. 8. Travel time per day by survey.
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5. Conclusions

The primary goal of this research was to determine whether or not direct implementation

of smartphone travel diaries was feasible in large scale own-device studies. In order to be

considered feasible, we outlined requirements that we must have an acceptable response

rate and the data collected from the device must be of high enough quality to allow for

important metrics to be calculated reliably.

Response rates for this study were similar to those of the travel diary study ODiN.

Although prior to 2018, response rates were upwards of 50%, this was largely a function of

the CATI and CAPI contact initiatives following initial nonresponse, which were very

costly. Since 2018, these modes have been phased out, leaving only the CAWI mode,

which lowered response rates to 31.0% and 27.9% respectively for 2018 and 2019. The

26.5% response rate for this study’s new responders is similar, but in place of a single

day’s data, they are responding to our request for a week’s worth of data.

Respondents also proved willing to provide annotative data to the passive traces.

Although this currently takes the form of labeling stops for purpose and tracks for

transportation mode, these are variables which could conceivably be calculated from the

data itself as the accuracy of mobile-device GPS units approaches centimeter-level

accuracy (Dabove and Di Pietra 2019; Humphreys 2018). This frees researchers to reduce

respondent burden by either relying on the passive data itself or adapting a verification

approach where respondents either confirm the predicted mode or correct it.

Importantly, this study identifies a major hurdle for researchers wishing to transition to

app-based TDS implementations. There is ample evidence within our data to suggest that

concerns over dropout and missing data are inherently device-related. A recent survey of

the state of the art of current smartphone-based travel apps demonstrated that across 22

Table 6. Descriptive statistics for travel distance (km) per day by survey.

Survey Respondent days Mean Median Max

Current study 2290 34.68 8.47 1366.41
ODiN 319 288.22 32.30 12884.00
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different apps, device characteristics such as operating system and phone manufacturer

impacted both quantity and quality of collected data (Harding 2019). Researchers in this

field have remained hopeful over the years that improved smartphone technology would

address current limitations with missing data, low accuracy, urban canyons and battery life

(Berger and Platzer 2015; Verzosa et al. 2017; Cottrill et al. 2013; Greaves et al. 2015;

Allström et al. 2017; Gong et al. 2014; Geurs et al. 2015). Although these predictions are

likely warranted as they pertain to the inexorable march of technology, it does not

necessarily follow that the resultant data will be any better as new technological issues will

arise to replace the old. Consider battery life: in order to keep pace with increasing battery

requirements, Android has implemented mechanisms to close apps without informing the

user, leading to gaps and unintentional drop-out in the data (Petter et al. 2019). For the

same battery concerns, iOS has taken over strict control of the location management

system, restricting the frequency that locations can be polled, leading to the problem of

cold starts in the data.

Researchers ultimately have little control over the device upon which the application

will be installed. Google, Apple and the various device manufacturers are unlikely to be

open in releasing details describing the precise functioning of their location systems.

Additionally, as versions move quickly and much changes between iterations, a system

that functions well one year may require an intensive change in the following year in order

to continue to function, and the data that are generated may ultimately be quite different as

well. It may be that researchers must, at least for the time being, continue to involve

participants in assessing their passive data with active control questions.

It is easy to view this as a negative if we view it in the context of the relatively clean and

complete data that comes back from written survey instruments. Researchers have been

promised higher-quality data that strictly improve upon the TDS, but the current study

demonstrates that any increase in quality is by no means free. Instead, these data must be

judged on their own terms. The richness is not only useful, but key to its use. Identification

of the issues underlying missingness and measurement is an important first step. The next

step must be to find ways to compensate for the technological issues as we do for other

methodological issues, and here the unique characteristics of the data itself may prove

invaluable: the longitudinal nature of the data collected may allow recovery of missing

track segments within a person’s own travel log, the spatial nature of the data may allow us

to correct for measurement error and the sheer size of the data may open up new methods

of inference to us. Technological challenges will persist, necessitating development of

robust methodology for identification of the true underlying behaviors, but the data are

sufficient to provide grounds for good inference if researchers can move past these initial

steps.
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6. Appendix

Table 7. Device registration by full sample characteristics.

Unregistered (N ¼ 1228) Registered (N ¼ 674) p value

Age , 0.011

N-miss 6 0

Mean (SD) 50.4 (19.0) 44.3 (17.1)

Range 15.0 – 96.0 15.0 – 90.0

Agecat , 0.012

N-miss 6 0

15-20 90 (7.4%) 63 (9.3%)

21-30 150 (12.3%) 111 (16.5%)

31-40 157 (12.8%) 117 (17.4%)

41-50 186 (15.2%) 124 (18.4%)

51-60 229 (18.7%) 118 (17.5%)

61-70 208 (17.0%) 102 (15.1%)

.70 202 (16.5%) 39 (5.8%)

Gender 0.773

N-miss 6 0

Male 606 (49.6%) 329 (48.8%)

Female 616 (50.4%) 345 (51.2%)

Origin , 0.012

N-miss 6 0

Dutch 961 (78.6%) 577 (85.6%)

Non-western 130 (10.6%) 40 (5.9%)

Western 131 (10.7%) 57 (8.5%)

Generation , 0.012

N-miss 6 0

Dutch 961 (78.6%) 577 (85.6%)

First 149 (12.2%) 40 (5.9%)

Second 112 (9.2%) 57 (8.5%)

Marital status , 0.012

N-miss 6 0

Married 624 (51.1%) 355 (52.7%)

Never married 410 (33.6%) 264 (39.2%)

Divorced 121 (9.9%) 49 (7.3%)

Widow/widower 67 (5.5%) 6 (0.9%)

Education , 0.014

N-miss 518 190

Elementary school 63 (8.9%) 17 (3.5%)

High school 282 (39.7%) 187 (38.6%)

Vocational school 155 (21.8%) 59 (12.2%)

University 136 (19.2%) 146 (30.2%)

Graduate school 74 (10.4%) 75 (15.5%)

Household type , 0.012

N-miss 6 0

One-person household 244 (20.0%) 92 (13.6%)

Partners, no child 420 (34.4%) 234 (34.7%)

Partners, child 473 (38.7%) 310 (46.0%)

Single parent 79 (6.5%) 35 (5.2%)

Other household 6 (0.5%) 3 (0.4%)
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Table 7. Continued

Unregistered (N ¼ 1228) Registered (N ¼ 674) p value

Urbanicity 0.554

Very high 259 (21.2%) 144 (21.4%)

High 316 (25.9%) 171 (25.4%)

Moderate 239 (19.6%) 136 (20.2%)

Slight 208 (17.0%) 128 (19.0%)

Rural 200 (16.4%) 95 (14.1%)

Province 0.242

N-miss 6 0

Groningen 37 (3.0%) 28 (4.2%)

Friesland 46 (3.8%) 26 (3.9%)

Drenthe 47 (3.8%) 12 (1.8%)

Overijssel 75 (6.1%) 45 (6.7%)

Flevoland 31 (2.5%) 13 (1.9%)

Gelderland 149 (12.2%) 88 (13.1%)

Utrecht 85 (7.0%) 59 (8.8%)

Noord-Holland 206 (16.9%) 103 (15.3%)

Zuid-Holland 256 (20.9%) 127 (18.8%)

Zeeland 27 (2.2%) 13 (1.9%)

Noord-Brabant 179 (14.6%) 115 (17.1%)

Limburg 84 (6.9%) 45 (6.7%)

Home ownership , 0.012

N-miss 36 19

Own 790 (66.3%) 492 (75.1%)

Rent, corporation 275 (23.1%) 101 (15.4%)

Rent, other 123 (10.3%) 61 (9.3%)

Unknown 4 (0.3%) 1 (0.2%)

Std. income pct. , 0.011

N-miss 20 5

Mean (SD) 55.4 (27.7) 64.3 (25.6)

Range 0.0 – 100.0 0.0 – 100.0

Has car 0.113

N-miss 6 0

No 665 (54.4%) 341 (50.6%)

Yes 557 (45.6%) 333 (49.4%)

Has moped 1.003

N-miss 6 0

No 1155 (94.5%) 637 (94.5%)

Yes 67 (5.5%) 37 (5.5%)

Has drivers license , 0.013

N-miss 6 0

No 281 (23.0%) 102 (15.1%)

Yes 941 (77.0%) 572 (84.9%)

1. Linear Model ANOVA

2. Fisher’s Exact Test for Count Data with simulated p-value (based on 500 replicates)

3. Fisher’s Exact Test for Count Data

4. Trend test for ordinal variables
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