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Abstract Recently, a small-molecule communication mechanism was discovered in a range of

Bacillus-infecting bacteriophages, which these temperate phages use to inform their lysis-lysogeny

decision. We present a mathematical model of the ecological and evolutionary dynamics of such

viral communication and show that a communication strategy in which phages use the lytic cycle

early in an outbreak (when susceptible host cells are abundant) but switch to the lysogenic cycle

later (when susceptible cells become scarce) is favoured over a bet-hedging strategy in which cells

are lysogenised with constant probability. However, such phage communication can evolve only if

phage-bacteria populations are regularly perturbed away from their equilibrium state, so that acute

outbreaks of phage infections in pools of susceptible cells continue to occur. Our model then

predicts the selection of phages that switch infection strategy when half of the available

susceptible cells have been infected.

Introduction
For several decades now, it has been recognised that communication between individuals is not lim-

ited to multicellular organisms, but is also common among microbes. The best-known example of

microbial communication is bacterial quorum sensing, a process in which bacteria secrete signalling

molecules to infer the local cell density and consequently coordinate the expression of certain genes

(Nealson et al., 1970; Miller and Bassler, 2001). A wide variety of bacterial behaviours have been

found to be under quorum-sensing control (Miller and Bassler, 2001; Hense and Schuster, 2015),

including bioluminescence (Nealson et al., 1970), virulence (Antunes et al., 2010), cooperative pub-

lic good production (Diggle et al., 2007; Darch et al., 2012), and antimicrobial toxin production

(Cornforth and Foster, 2013; Kleerebezem and Quadri, 2001). Remarkably, it has recently been

discovered that even some bacterial viruses (bacteriophages or phages for short) use signalling mol-

ecules to communicate (Erez et al., 2017). Here, we use a mathematical model to explore the

dynamics of this viral small-molecule communication system. We study under what conditions com-

munication between phages evolves and predict which communication strategies are then selected.

Bacteriophages of the SPbeta group, a genus in the order of Caudovirales of viruses that infect

Bacillus bacteria, encode a small signalling peptide, named ‘arbitrium’, which is secreted when the

phages infect bacteria (Erez et al., 2017). These phages are temperate viruses, meaning that each

time a phage infects a bacterium, it makes a life-cycle decision: to enter either (i) the lytic cycle,

inducing an active infection in which tens to thousands of new phage particles are produced and

released through host-cell lysis, or (ii) the lysogenic cycle, inducing a latent infection in which the

phage DNA is integrated in the host cell’s genome (or episomally maintained) and the phage

remains dormant until it is reactivated. This lysis-lysogeny decision is informed by the arbitrium pro-

duced in nearby previous infections: extracellular arbitrium is taken up by cells and inhibits the

phage’s lysogeny-inhibition factors, thus increasing the propenstiy towards lysogeny of subsequent

infections (Erez et al., 2017). Hence, peptide communication is used to promote lysogeny when
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many infections have occurred. Similar arbitrium-like systems have now been found in a range of dif-

ferent phages (Stokar-Avihail et al., 2019). Notably, these phages each use a slightly different sig-

nalling peptide and do not seem to respond to the signals of other phages (Erez et al., 2017;

Stokar-Avihail et al., 2019).

The discovery of phage-encoded signalling peptides raises the question of how this viral commu-

nication system evolved. While the arbitrium system has not yet been studied theoretically, previous

work has considered the evolution of lysogeny and of other phage-phage interactions. Early model-

ling work found that lysogeny can evolve as a survival mechanism for phages to overcome periods in

which the density of susceptible cells is too low to sustain a lytic infection (Stewart and Levin, 1984;

Maslov and Sneppen, 2015). In line with these model predictions, a combination of modelling and

experimental work showed that selection pressures on phage virulence change over the course of an

epidemic, favouring a virulent phage strain early on, when the density of susceptible cells is high,

but a less virulent (i.e. lysogenic) phage strain later in the epidemic, when susceptible cells have

become scarce (Berngruber et al., 2013; Gandon, 2016). Other modelling work has shown that if

phages, lysogenised cells, and susceptible cells coexist for long periods of time, less and less virulent

phages are selected (Mittler, 1996; Wahl et al., 2018). This happens because phage exploitation

leads to a low susceptible cell density, and hence a virulent strategy in which phages rapidly lyse

their host cell to release new phage particles that can then infect other cells no longer pays off

(because few cells are available to infect).

Erez et al., 2017 propose that the arbitrium system may have evolved to allow phages to cope

with the changing environment during an epidemic, allowing the phages to exploit available suscep-

tible bacteria through the lytic cycle when few infections have so far taken place and hence the con-

centration of arbitrium is low, while entering the lysogenic cycle when many infections have taken

place and the arbitrium concentration has hence increased. This explanation resembles results for

other forms of phage-phage interaction previously found in Escherichia coli-infecting phages (Abe-

don, 2017; Abedon, 2019). In the obligately lytic T-even phages, both the length of the latent

period of an infection and the subsequent burst size increase if additional phages adsorb to the cell

eLife digest Bacteriophages, or phages for short, are viruses that need to infect bacteria to

multiply. Once inside a cell, phages follow one of two strategies. They either start to replicate

quickly, killing the host in the process; or they lay dormant, their genetic material slowly duplicating

as the bacterium divides. These two strategies are respectively known as a ‘lytic’ or a ‘lysogenic’

infection.

In 2017, scientists discovered that, during infection, some phages produce a signalling molecule

that influences the strategy other phages will use. Generally, a high concentration of the signal

triggers lysogenic infection, while a low level prompts the lytic type. However, it is still unclear what

advantages this communication system brings to the viruses, and how it has evolved.

Here, Doekes et al. used a mathematical model to explore how communication changes as

phages infect a population of bacteria, rigorously testing earlier theories. The simulations showed

that early in an outbreak, when only a few cells have yet been infected, the signalling molecule levels

are low: lytic infections are therefore triggered and the phages quickly multiply, killing their hosts in

the process. This is an advantageous strategy since many bacteria are available for the viruses to

prey on. Later on, as more phages are being produced and available bacteria become few and far

between, the levels of the signalling molecule increase. The viruses then switch to lysogenic

infections, which allows them to survive dormant, inside their host.

Doekes et al. also discovered that this communication system only evolves if phages regularly

cause large outbreaks in new, uninfected bacterial populations. From there, the model was able to

predict that phages switch from lytic to lysogenic infections when about half the available bacteria

have been infected.

As antibiotic resistance rises around the globe, phages are increasingly considered as a new way

to fight off harmful bacteria. Deciphering the way these viruses communicate could help to

understand how they could be harnessed to control the spread of bacteria.

Doekes et al. eLife 2021;10:e58410. DOI: https://doi.org/10.7554/eLife.58410 2 of 33

Research article Computational and Systems Biology Evolutionary Biology

https://doi.org/10.7554/eLife.58410


while it is infected – a process called lysis inhibition (Hershey, 1946; Doermann, 1948; Abe-

don, 2019). In the temperate phage l, the propensity towards lysogeny increases with the number

of co-infecting virions, called the multiplicity of infection (MOI) (Kourilsky, 1973). In both cases,

modelling work has shown that the effect of the number of phage adsorptions on an infection can

be selected as a phage adaptation to host-cell density, as it allows phages to switch from a virulent

infection strategy (i.e. a short latent period or a low lysogeny propensity) when the phage:host-cell

ratio is low to a less virulent strategy (i.e. a longer latent period or higher lysogeny propensity) when

the phage:host-cell ratio is high (Abedon, 1989; Abedon, 1990; Sinha et al., 2017).

Here, we present a mathematical model to test if similar arguments can explain the evolution of

small-molecule communication between viruses, and to explore the ecological and evolutionary

dynamics of temperate phage populations that use such communication systems. We show that arbi-

trium communication can indeed evolve and that communicating phages consistently outcompete

phages with non-communicating bet-hedging strategies. We however find that communication

evolves under certain conditions only, namely if the phages regularly cause new outbreaks in sub-

stantial pools of susceptible host cells. Moreover, when communication evolves under such condi-

tions, we predict that a communication strategy is selected in which phages use arbitrium to switch

from a fully lytic to a fully lysogenic strategy when approximately half of all susceptible cells have

been infected. Finally, we investigate how reliable the arbitrium signal needs to be for such commu-

nication to evolve, and show that the results are remarkably robust against variation in the density of

bacteria.

Materials and methods

Model
Following earlier models (e.g. Stewart and Levin, 1984; Berngruber et al., 2013; Sinha et al.,

2017; Wahl et al., 2018), we use ordinary differential equations to describe a well-mixed system

consisting of susceptible bacteria, lysogens (i.e. lysogenically infected bacteria), and free phages,

but extend this system to include an arbitrium-like signalling peptide (Figure 1A). For simplicity, we

consider phages that do not affect the growth of lysogenised host cells; susceptible bacteria and lys-

ogens hence both grow logistically with the same growth rate r and carrying capacity K. Lysogens

are spontaneously induced at a low rate a, after which they lyse and release a burst of B free phages

per lysing cell. Free phage particles decay at a rate d and adsorb to bacteria at a rate a. Adsorptions

to lysogens result in the decay of the infecting phage, thus describing the well-known effect of

superinfection immunity (Hutchison and Sinsheimer, 1971; Susskind et al., 1974; McAllister and

Barrett, 1977; Kliem and Dreiseikelmann, 1989; Bondy-Denomy et al., 2016), whereas adsorp-

tions to susceptible bacteria result in infections with success probability b. We consider the lytic

cycle to be fast compared to both bacterial growth and the lysogenic cycle (Stewart and Levin,

1984; Berngruber et al., 2013; Sinha et al., 2017; Wahl et al., 2018), so that a lytic infection can

be modelled as immediate lysis releasing a burst of B free phages. Since the genes encoding arbi-

trium production are among the first genes to be expressed when a phage infects a host cell

(Erez et al., 2017; Stokar-Avihail et al., 2019), each infection leads to an immediate increase of the

arbitrium concentration A by an increment c. The lysis-lysogeny decision is effected by the current

arbitrium concentration: a fraction ’ðAÞ of the infections results in the production of a lysogen, while

the remaining fraction ð1� ’ðAÞÞ results in a lytic infection. Arbitrium does not decay spontaneously

in the model (since it is a small peptide, spontaneous extracellular degradation is considered to be

negligible), but it is taken up by bacteria at a rate u (e.g. through general bacterial peptide import-

ers such as OPP [Erez et al., 2017]), and then degraded intracellularly, thus reducing the arbitrium

concentration A.

Consider competing phage variants i that differ in their (arbitrium-dependent) lysogeny propen-

sity ’iðAÞ. The population densities (cells or phages per volume unit) of susceptible bacteria S, phage

particles Pi and corresponding lysogens Li, and the concentration of arbitrium A can then be

described by:
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dS

dt
¼ rSð1�N=KÞ
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

logistic growth

�baS
X

i

Pi

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

infection

; (1)

dLi

dt
¼ rLið1�N=KÞ
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

logistic growth

þ ’iðAÞbaSPi
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

lysogenic infection

� aLi
|{z}

induction

; (2)

dPi

dt
¼ BaLi

|ffl{zffl}

burst from induction

þBð1�’iðAÞÞbaSPi
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

burst from lytic infection

� dPi
|{z}

phage decay

� aNPi
|ffl{zffl}

adsorption

; (3)

dA

dt
¼ cbaS

X

i

Pi

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

production upon infection

� uNA
|{z}

adsorption and degradation

; (4)

where N ¼ SþPi Li is the total density of bacteria.

We study two scenarios for the lysis-lysogeny decision: (i) a baseline scenario in which the arbi-

trium concentration does not affect the lysis-lysogeny decision; each phage variant has a constant

lysogeny propensity fi and (ii) a full scenario in which the arbitrium concentration does affect the

lysis-lysogeny decision; each phage variant causes lytic infection when the arbitrium concentration is

Figure 1. Model overview. (A) Free phages infect susceptible bacteria, at which point a fixed amount of arbitrium is produced. This arbitrium is taken

up and degraded by susceptible cells and lysogens. Upon infection, a cell enters the lysogenic cycle with propensity ’ðAÞ, or the lytic cycle with

propensity ð1� ’ðAÞÞ; the lysogeny propensity ’ðAÞ depends on the current arbitrium concentration. The lytic cycle leads to immediate lysis of the host

cell and release of a burst of new virions. In the lysogenic cycle, the phage remains dormant in the lysogen population, which grows logistically with the

same rate as the susceptible cell population. Lysogens are spontaneously induced at a low rate, at which point they re-enter the lytic cycle. (B) In

communicating phages, the lysogeny propensity ’ðAÞ is modelled by a step-function characterised by two phage characteristics: �, the arbitrium

concentration above which the phage increases its lysogeny propensity, and fmax, the lysogeny propensity of the phage at high arbitrium

concentration.
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low, but switches to some lysogeny propensity fmaxi
when the arbitrium concentration exceeds the

phage’s response threshold �i (Figure 1B; note that we use fmaxi
to denote a constant characteristic

of the phage and ’i to denote the function describing how phage variant i’s lysogeny propensity

depends on the arbitrium concentration). In this second scenario, phage variants with constant lysog-

eny propensity are still included: variants with a response threshold �i ¼ 0 cause lysogenic infections

with lysogeny propensity fmaxi
independent of the arbitrium concentration. Scenario (ii) is hence an

extension of scenario (i).

On top of the ecological processes described in Equation 1–4, the model also allows for evolu-

tion of the phages due to mutations that change the characteristics fðmaxÞ and � of phage variants. In

Equation 1–4 terms describing these mutations were omitted for readability; they are described in

detail in Appendix A1.1. In short, replication of any phage variant was assumed to produce mutants

with slightly different characteristics (e.g. a slightly higher or lower lysogeny propensity) with a small

probability m. Under scenario (ii), mutations changing fmax and � are implemented as independent

processes.

Serial passaging
In natural settings as well as in some laboratory experiments, phages regularly cause large outbreaks

in pools of susceptible cells that were previously unavailable to the phages (e.g. when phages are

spread to a new area, or when phages are serially passaged in a lab setting). Such outbreaks perturb

the phage and cell populations away from their equilibrium. To mimic such repeated perturbations,

we expose the system of Equation 1–4 to a phage serial-passaging regime (mimicking the experi-

mental set-up of, for example, Bull et al., 1993; Bull et al., 2004; Bollback and Huelsenbeck,

2007; Betts et al., 2013; Broniewski et al., 2020). We initialise the model with a susceptible bacte-

rial population at carrying capacity (S ¼ K cells per mL) and a small phage population (
P

i Pi ¼ 10
6

phages per mL) and numerically integrate Equation 1–4 for a time of T hours. Then a fraction of the

phage population is taken and transferred to a new population of susceptible bacteria at carrying

capacity and Equation 1–4 are again integrated for T hours. This cycle is repeated to bring about a

long series of epidemics. Throughout the manuscript, a dilution factor of D ¼ 0:01 is used (i.e. the

passaged sample is 1% of the phage population). Passaging does not alter the relative frequency of

the different phage variants, thus ensuring that the phage variants that were highly prevalent in the

phage population at the end of an episode remain at a high relative frequency at the start of the

new episode.

In this set-up, only phages are passaged from one epidemic episode to the next. To assess the

robustness of simulation results to changes in this protocol, a second set-up was considered in which

a fraction of the full sample (susceptible cells, lysogens, phages, and arbitrium) was passaged. We

furthermore tested how the results are affected by variation in the bacterial carrying capacity. For

this, at the start of each episode a carrying capacity value was sampled from a gamma distribution

with mean K. We control the level of noise through the variance of this gamma distribution.

Parameters
In total, the model (Equation 1–4) has nine parameters (excluding the phage characteristics fi,

fmaxi
, and �i, which vary between phage variants present in any given simulation). As far as we are

aware, none of these have been estimated for phages of the SPBeta group, but many have been

measured for other phages, most of which infect E. coli (Table 1, estimates taken from Little et al.,

1999; De Paepe and Taddei, 2006; Wang, 2006; Shao and Wang, 2008; Zong et al., 2010;

Berngruber et al., 2013). To reduce the number of parameters in our analysis, we nondimensional-

ised the equations to obtain five scaled parameter values (Appendix A1.3) and used the literature

estimates to derive default values for these scaled parameters (Table 1). To account for the uncer-

tainty in these estimates, we performed parameter sweeps consisting of 500 simulations with param-

eter values randomly sampled from broad parameter ranges (Table 1). To ensure that low values of

the parameters were well-represented, parameter values were sampled log-uniformly.

Model analysis
Numerical integration was performed in Matlab R2017b, using the default built-in ODE-solver

ode45. Scripts are available from https://github.com/hiljedoekes/PhageCom.
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Next to numerical integration results, we analytically found expressions for the model equilibria

and derived expressions for the evolutionarily stable strategy (ESS) under serial passaging in both

scenarios (excluding and including arbitrium communication). Detailed derivations are provided in

Appendix A3.

Results

Evolution of the lysis-lysogeny decision and arbitrium communication
requires perturbations away from equilibrium
A common approach to analysing ODE-models such as Equation 1–4 is to characterise the model’s

equilibrium states (Stewart and Levin, 1984; Wahl et al., 2018; Cortes et al., 2019). Such an analy-

sis is provided in Appendix A2. However, we will here argue that to understand the evolution of

arbitrium communication, and the lysis-lysogeny decision in general, considering the equilibrium

states is insufficient.

Firstly, the function of the arbitrium system is to allow phages to respond to changes in the den-

sity of susceptible cells and phages as reflected in the arbitrium concentration. But when the system

approaches an equilibrium state, the densities of susceptible cells and phages become constant,

and so does the arbitrium concentration. Equilibrium conditions hence defeat the purpose of small-

molecule communication such as the arbitrium system. Evolution of small-molecule communication

must be driven by dynamical ecological processes, and hence can only be studied in populations

that are regularly perturbed away from their ecological steady state.

Secondly, under equilibrium conditions natural selection can act on the lysis-lysogeny decision

only if infections still take place, and hence lysis-lysogeny decisions are still taken. We argue that this

is unlikely. If the phage population is viable (i.e. if the parameter values are such that the phages

proliferate when introduced into a fully susceptible host population), the model converges to one of

two qualitatively different equilibria, depending on parameter conditions (Appendix A2): either (i)

Table 1. Model parameters.

Original parameters

Parameter Description (dimension) Literature
estimates

References

r Net replication rate of bacteria (hour�1) 1.0 Berngruber et al., 2013

K Carrying capacity of bacteria (cells mL�1) 109 Berngruber et al., 2013

a Adsorption rate of phages to bacteria (hour�1 (cells per mL)�1) 10-9— 10-7 De Paepe and Taddei, 2006; Shao and Wang,
2008

b Proportion of adsorptions of a phage to a susceptible cell that leads to
infection (cells phage�1)

set at 10-2, not
measured

Berngruber et al., 2013

B Burst size (phages) 10— 3.5� 103 De Paepe and Taddei, 2006; Wang, 2006

a Rate of spontaneous lysogen induction (hour�1) 10-4—10-3 Little et al., 1999; Zong et al., 2010;
Berngruber et al., 2013

d Spontaneous decay rate of free phages (hour�1) 10-3—2�10-2 De Paepe and Taddei, 2006

u Uptake rate of arbitrium by cells (arbitrium mL�1 (cells per mL)�1) no estimates
known

-

Scaled dimensionless parameters used in parameter sweeps

Parameter Description Default value Parameter sweep range

B̂ ¼ bB Effective burst size 2 1—103

â ¼ aK
r

Scaled adsorption rate of phages to cells 10 1—100

d̂ ¼ d
r

Scaled decay rate of phage particles 0.01 10-3—0.1

â ¼ a
r

Scaled spontaneous phage induction rate 10-3 10-4—10-2

û ¼ uK
r

Scaled rate of arbitrium uptake and degradation by cells 0.1 10-3—1

D Dilution factor of phages at serial passages 0.01 10-3—0.1
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susceptible host cells, lysogens and free phages all coexist, or (ii) all susceptible host cells have been

infected so that only lysogens and free phages remain. The evolution of a constant lysogeny propen-

sity in a host-phage population with a stable equilibrium of type (i) was recently addressed by Wahl

et al., who show that under these conditions selection always favours phage variants with high lysog-

eny propensity (i.e. f ¼ 1) (Wahl et al., 2018). However, only a narrow sliver of parameter conditions

permits a stable equilibrium of type (i) (Sinha et al., 2017; Cortes et al., 2019), and when we esti-

mated reasonable parameter conditions based on a variety of well-studied phages, we found that

they typically lead to a stable equilibrium of type (ii) (Appendix A2, parameter estimates based on

Little et al., 1999; De Paepe and Taddei, 2006; Wang, 2006; Shao and Wang, 2008; Zong et al.,

2010; Berngruber et al., 2013). This is because phage infections tend to be highly effective: their

large burst size and consequent high infectivity cause temperate phages to completely deplete sus-

ceptible host cell populations, replacing them with lysogens that are immune to superinfection and

hence have a strong competitive advantage over the susceptible cells (Bossi et al., 2003;

Gama et al., 2013). Under common parameter conditions, after a short epidemic the susceptible

cells population is hence depleted and no more infections take place, causing the competition

between different phage variants to cease (see Figure 2A for example dynamics). Then there is no

long-term selection on the lysis-lysogeny decision, and studying its evolution in this state is

pointless.

We therefore consider a scenario in which the phage and cell populations are regularly perturbed

away from equilibrium. To do so, we simulate serial-passaging experiments by periodically transfer-

ring a small fraction of the phages to a new population of susceptible host cells at carrying capacity,

thus simulating cycles of repeated outbreaks (see Materials and methods).

In the absence of arbitrium communication, bet-hedging phages are
selected with low constant lysogeny propensity
To form a baseline expectation of the evolution of the lysis-lysogeny decision under the serial-pas-

saging regime, we first considered a population of phage variants that do not engage in arbitrium

communication, but do differ in their constant lysogeny propensity fi. Under typical parameter con-

ditions (default values in Table 1), each passaging episode starts with an epidemic in which the sus-

ceptible cell population is depleted, followed by a period in which the bacterial population is made

up of lysogens only (Figure 2A, dynamics shown for a passaging episode length T ¼ 12 h). The com-

position of the phage and lysogen populations initially changes over subsequent passaging episodes

(Figure 2A), but eventually an evolutionarily steady state is reached in which one phage variant dom-

inates the phage population (f ¼ 0:04; Figure 2B), confirming that the lysis-lysogeny decision is

indeed under selection.

The distribution of phage variants at evolutionarily steady state depends on the time between

passages, T (Figure 2C). If this time is short (T � 5 h), the phage variant with f ¼ 0 dominates at

evolutionarily steady state. This is an intuitive result: under these conditions phages are mostly

exposed to environments with a high density of susceptible cells, in which a lytic strategy is favour-

able. Surprisingly, however, if the time between passages is sufficiently long (T>5 h), the viral popu-

lation at evolutionarily steady state always centres around the same phage variant, independent of T

(f ¼ 0:04; Figure 2C). This result can be explained by considering the dynamics within a passaging

episode (see Figure 2A): Once the susceptible cell population has collapsed, free phages no longer

cause new infections and are hence ‘dead ends’. New phage particles are then formed by reactiva-

tion of lysogens only, so that the distribution of variants among the free phages comes to reflect the

relative variant frequencies in the lysogen population. Hence, when the time between passages is

sufficiently long, the phage type that is most frequent in the sample that is eventually passaged is

the one that is most frequent in the population of lysogens (Figure 2—figure supplement 1). Under

default parameter conditions, these are the phages with a low lysogeny propensity of f ¼ 0:04.

Note that although a single phage variant clearly dominates the population, some diversity is

maintained (Figure 2B–C). This is due to a mutation-selection balance: because mutants with slightly

different f-values continuously arise from the dominant phage variant and selection against these

mutants is weak (due to their similarity to the dominant phage variant), the balance between influx

of mutant variants by mutation and their efflux by selection results in the long-term presence of

these mutants in the population. Such a population consisting of a dominant variant and its close

mutants is called a quasi-species (Eigen, 1971).
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Next, we assessed the robustness of the results to changes in the serial passaging protocol. In

the standard protocol, only phages are passaged between episodes. If instead the passaged sample

consists of the full system (susceptible cells, lysogens, and phages), almost identical results are

obtained (Figure 2—figure supplement 2). This is again explained by realising that, as long as the
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Figure 2. Results in the absence of phage communication. (A) Short-term model dynamics under default parameter conditions (Table 1) and a

passaging episode duration of T ¼ 12 h. The model was initialised with a susceptible bacterial population at carrying capacity (S ¼ K) and a low

frequency of phages (
P

i Pi ¼ 10
�5KB), and upon passaging the phages were diluted 100-fold. Phage variants differ in their lysogeny propensity fi.

Dynamics within a single passaging episode are further illustrated in Figure 2—figure supplement 1. (B) Long-term model dynamics for default

parameter settings and T ¼ 12 h. Over many passages, a single phage variant (f ¼ 0:04) is selected. (C) Distribution of phage variants at evolutionarily

steady state as a function of the time between passages, T. A total number of 101 phage variants was included, with lysogeny propensities varying

between f1 ¼ 0 and f101 ¼ 0:5. When the interval between passages is short, the susceptible cells are not depleted during the rounds of infection and

a fully lytic strategy (f ¼ 0) is selected. For larger values of T, however, a bet-hedging strategy with small but non-zero f-value is selected (f» 0:04).

Almost identical results are obtained if the serial passaging set-up is altered to simulate serial passaging of a full sample (phages, susceptible bacteria,

and lysogens) instead of phages only (Figure 2—figure supplement 2). (D) Parameter sweep results. The model was run with 500 sets of randomly

sampled parameters, and for each run the most abundant f-value in the population at evolutionarily steady state was plotted against the analytically

predicted evolutionarily stable strategy (ESS; see Appendix A3 and Box 1). The dotted line is the identity line. The analytically derived ESS is a good

predictor of the simulation outcome.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Model dynamics during a single passaging episode for default parameter values and constant lysogeny propensities (no

communication).

Figure supplement 2. Distribution of phage variants at evolutionarily steady state as a function of the time between passages, T, for constant lysogeny

propensities (no communication) under a serial-passaging regime in which full samples (susceptible bacteria, lysogens, and phages) are passaged.
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time between passages is sufficiently long, the distribution of variants in the free phages is equal to

the distribution in the lysogens. Since lysogens need to be induced to contribute to a new outbreak

and the induction rate a is the same for all phage variants, the contribution of passaged lysogens to

the new outbreak does not alter the relative frequency of phage variants.

To examine how these results depend on the model parameters, we determined which phage

variant was most abundant at evolutionarily steady state for 500 randomly chosen parameter sets

(see Table 1 for parameter ranges), always using a long time between passages (T ¼ 24 h). The

selected f-values for all parameter settings lie between f ¼ 0 and f ¼ 0:12 (y-axis of Figure 2D).

We can hence conclude that selection favours phages with low but usually non-zero lysogeny pro-

pensities. These phages employ a bet-hedging strategy: throughout the epidemic they ‘invest’ a

small part of their infection events in the production of lysogens, such that they are maximally repre-

sented in the eventual lysogen population.

To better understand how the lysogeny propensity f that is selected depends on parameter val-

ues, we derived an analytical approximation for the evolutionarily stable strategy (ESS) under the

serial-passaging regime if the time between passages is sufficiently long (Appendix A3.1–2). Because

the phage dynamics during an epidemic affect the dynamics of the susceptible cells and vice versa,

phage fitness is frequency dependent and the ESS is not found by a simple optimisation procedure,

but by identifying the particular f-value, denoted f�, that maximises phage fitness given that this

strategy f� itself shapes the dynamics of the epidemic (Box 1). We find that the ESS can be approxi-

mated by the surprisingly simple expression

f� ¼ 1�ðbBÞ�1

log BK
P0

� � ; (5)

where P0 is the density of phages at the start of a passaging episode. This approximation corre-

sponds well with the results of the parameter sweep (Figure 2D), indicating that it indeed captures

the most important factors shaping the evolution of the lysogeny propensity f.

Equation 5 shows that the ESS depends on the initial phage density in a passaging episode, P0,

relative to the burst size B and maximal host-cell density K, and the effective burst size bB, which

represents the expected number of progeny phages per phage that adsorbs to a susceptible bacte-

rium. The ESS f� decreases with the dilution factor of the phages upon passage (i.e. with lower P0).

On the other hand, f� increases with the effective burst size bB (note that ðbBÞ�1 decreases when

ðbBÞ increases). Both effects can be intuitively understood by considering how these factors affect

the duration of the epidemic, TE. If the phage density is low at the start of a passaging episode or if

the phages have a small effective burst size, it takes a while before the phage population has grown

sufficiently to cause the susceptible population to collapse. Since a lytic strategy is favoured early in

the epidemic, when the susceptible cell density is still high, a longer epidemic favours phages with

lower values of f (see the red line in the figure in Box 1). On the other hand, if the initial phage den-

sity is high or if the phages have a high effective burst size, the susceptible cell population collapses

quickly, phages have a much shorter window of opportunity for lysogen production and hence

phages with higher f-values are favoured.

If arbitrium communication is included, communicating phages are
selected that switch from a fully lytic to a fully lysogenic strategy
Next, we included the possibility of arbitrium communication and let phage variants be characterised

by two properties: their arbitrium response threshold, �i, and their lysogeny propensity when the

arbitrium concentration exceeds their response threshold, fmaxi
(see Figure 1B). We then again con-

sidered the dynamics of our model under a serial-passaging regime.

In Figure 3A, example dynamics are shown for three competing phage variants, all with fmax ¼ 1

but with different response thresholds �i. The arbitrium concentration increases over the course of

the epidemic, and the phage variants switch from lytic infection to lysogen production at different

times because of their different response thresholds.

Note that the maximum arbitrium concentration obtained during a passaging episode is approxi-

mately A ¼ cK (Figure 3A). This is because during the epidemic the dynamics of the susceptible cell

density are mostly determined by infection events and not so much by the (slower) bacterial growth.
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Box 1. Lysogeny propensity of the evolutionarily stable

strategy (ESS).

An evolutionarily stable strategy (ESS) is a strategy that cannot be invaded by any other strat-

egy. In the context of the lysogeny propensity f, it is the value f� such that a population cur-

rently dominated by a phage with f ¼ f� cannot be invaded by any phage variant with a

different f-value. A phage variant with f ¼ fi invading in a resident population with the same

f ¼ fi always grows exactly like the resident. If this is the best possible invader, any other

phage variant must perform worse than the resident and cannot invade. Hence, the ESS is the

optimal response to itself. However, we still have to define what it means to be the ‘‘best pos-

sible invader’’ under the serial-passaging regime. Note that if the time between passages is

sufficiently long, phages are selected on their ability to produce lysogens during the active

epidemic (see Main Text). The optimal invader is hence the phage variant that, when intro-

duced at a very low frequency, produces the most lysogens per capita between time t ¼ 0 and

the time that the susceptible cell population collapses, TE. The f-value of the optimal invader

depends on TE (red line in plot): if the epidemic phase is short, lysogens have to be produced

quickly and a high f-value is optimal, while if the epidemic lasts longer, phages can profit

more from lytic replication and a lower f-value is optimal. In turn, however, the duration of

the epidemic TE depends on the lysogeny propensity f of the resident phage population

(blue line in plot): phages with a lower value of f replicate more rapidly and hence cause an

earlier collapse of the susceptible population. The ESS is the value f� that is optimal given the

collapse time TEðf�Þ that results when f� itself is the resident strategy. Graphically, this value

can be identified as the intersection of TEðfÞ and foptðTEÞ (the red and blue lines).
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Box 1—figure 1. The ESS is found as the intersection of the curves of (i) the duration of the epidemic as a

function of the lysogeny propensity of the resident (blue line), and (ii) the optimal lysogeny propensity of the

invader given a fixed duration of the epidemic (red line).
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Since the arbitrium concentration increases by an increment c every time a susceptible cell is

infected, the infection of all initial susceptible cells will result in an arbitrium concentration of A ¼ cK

(assuming that the degradation of arbitrium is also slow and can be ignored during the growth

phase of the epidemic). The arbitrium concentration during the early epidemic then is a direct reflec-

tion of the fraction of susceptible cells that have so far been infected.

To study the evolution of arbitrium communication, we again considered the distribution of

phage variants at evolutionary steady state for varying values of the time between passages, T. Simi-

lar to the results shown in Figure 2C, we find two main regimes (Figure 3B): if the time between

passages is short (T<4 h, illustrated by T ¼ 2 h in Figure 3B), selection favours phage variants that

only cause lytic infections (fmax ¼ 0); if the time between passages is sufficiently long (T � 5 h, illus-

trated by T ¼ 12 h in Figure 3B), the phage population is dominated by variants with fmax ¼ 1 and

�» 0:65cK. For 4 � T<5 h, we see a transition between these two regimes (Figure 3—figure supple-

ment 1). If the time between passages is sufficiently long (T>5 h), phage variants are hence selected

that switch from a completely lytic to a completely lysogenic strategy when the arbitrium concentra-

tion exceeds a certain threshold.

In the simulations of Figure 3B, phage variants could have emerged that use the bet-hedging

strategy found in the absence of communication (in phage variants with � ¼ 0, the lysogeny propen-

sity is always fmax, independently of the arbitrium concentration), but this did not happen. We can

hence conclude that any bet-hedging phage variants were outcompeted by variants that do use arbi-

trium communication. To underscore this conclusion, we simulated a competition experiment

between the bet-hedging phage variant that was selected in the absence of communication and the

communicating variant selected when arbitrium dynamics were included (Figure 3C). The communi-

cating phage quickly invades on a population of bet-hedging phages and takes over, confirming

that communication is indeed favoured over bet-hedging.

If a full sample (susceptible cells, lysogens, phages, and arbitrium) is passaged instead of phages

only, again almost identical results are found (Figure 3—figure supplement 2). As was the case for

the simulations in which arbitrium was absent, passaged lysogens do not alter the distribution of

phage variants in the new outbreak. The passaged arbitrium does not significantly affect the out-

break dynamics either, because its concentration after dilution is much lower than the response

threshold q of the phage variants that are selected.

Evolved phages switch from the lytic to the lysogenic life-cycle when
approximately half of the susceptible cells have been infected
To study how the evolution of phage communication depends on phage and bacterial characteris-

tics, 500 simulations were performed with randomly sampled sets of parameter values (Table 1),

using a long time between serial passages (T ¼ 24 h). For each simulation, we determined which

phage variant was most prevalent at evolutionary steady state. Although we varied the parameter

values over several orders of magnitude, the most prevalent phage variant had a lysogeny propen-

sity of fmax ¼ 1 and a response threshold of � ¼ 0:5cK or � ¼ 0:6cK in almost all simulations

(Figure 4A). Hence, over a broad range of parameter values, phages are selected that use the arbi-

trium system to switch from a fully lytic to a fully lysogenic strategy (i.e. fmax ¼ 1). This suggests that

over the course of an epidemic, there is an initial phase during which the lytic strategy is a ‘better’

choice (i.e. produces the most progeny on the long run), while later in the epidemic the production

of lysogens is favoured and residual lytic infections that would results from a lysogeny propensity

’<1 are selected against.

To better understand the intriguing consistency in q-values found in the parameter sweep, we

used a similar approach as before to analytically derive an approximation for the response threshold

�� of the evolutionarily stable strategy under the condition that the time between passages is long

(Appendix A3.3). Again, we find a surprisingly simple expression for the ESS:

�� ¼ cK

2�ðbBÞ�1
: (6)

Note that the expression in Equation 6 again depends on the effective burst size bB, which is an

indicator of the phage’s infectivity. The evolutionarily stable response threshold �� declines as the

effective burst size increases, converging to a value of �� ¼ 1

2
cK for highly infective phages
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(Figure 4B, green line). The same result was found for simulations of the competition between

phage variants with different q-values under different effective burst sizes (Figure 4B, blue dots). We

see that Equation 6 provides a good prediction for the response threshold value that is selected

over evolutionary time, especially for phages with high effective burst size (Figure 4B).

For phages with a very small effective burst size, the response threshold selected in the simula-

tions tends to be lower than the analytical approximation. This is due to a violation of one of the sim-

plifying assumptions made to arrive at the analytical approximation of Equation 6, namely that

during the active epidemic the dynamics of the arbitrium concentration are dominated by its produc-

tion through infections and arbitrium uptake and degradation by susceptible cells can be ignored.

While this is a reasonable assumption in a fast progressing epidemic, it breaks down if the dynamics

of the epidemic are slow, which is exactly the case if the effective burst size bB is small. Under these

conditions, the uptake and degradation of arbitrium by susceptible cells cause the arbitrium
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Figure 3. Model dynamics if phage communication is included in the model. (A) Short-term dynamics for default parameter conditions (Table 1) and

the same serial-passaging regime as in Figure 2. This example shows the competition between three phage variants, all with fmax ¼ 1 but with varying

response thresholds �. (B) Distribution of phage variants at evolutionary steady state for varying passaging episode durations T. In total 441 phage

variants were included in this analysis, covering all combinations of fmax between 0 and 1 and q between 0 and cK with step sizes 0.05 and 0:05cK,

respectively. When the interval between passages is very short, again a fully lytic strategy (fmax ¼ 0) is selected. For longer times between passages,

however, we consistently see that a strategy with fmax ¼ 1 and �» 0:65cK dominates the population. The results shown for T ¼ 2 h are representative

for values of T � 4 h, while the results shown for T ¼ 12 h represent results obtained for T � 5 h (see Figure 3—figure supplement 1 for distributions

for a large range of T-values). Almost identical results are obtained if instead of only phages a full sample (susceptible cells, lysogens, phages, and

arbitrium) is passaged (Figure 3—figure supplement 2). (C) Rapid invasion by ’optimally’ communicating phages into a population of phages with the

’optimal’ bet-hedging strategy. The bet-hedging phages have f ¼ 0:04 (see Figure 2C), while the communicating phages are characterised by

fmax ¼ 1 and � ¼ 0:66cK (see panel C). The communicating phage is initialised at a frequency of 1% of the bet-hedging phage.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Phage variant distribution at evolutionary steady state for various lengths of the time interval between passages T.

Figure supplement 2. Phage variant distribution at evolutionary steady state for various lengths of the time interval between passages T under serial

passaging of full samples (susceptible cells, lysogens, phages, and arbitrium).
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concentration to be lower than assumed in the analytical derivation. Consequently, the actual

selected response thresholds (which are essentially arbitrium concentration values) are lower than

the analytically predicted values.

The result in Equation 6 can be further understood biologically. Remember that the arbitrium

concentration during the epidemic varies between A ¼ 0 and A ¼ cK, and is a reflection of the frac-

tion of susceptible cells that have so far been infected. It makes sense that the evolutionarily stable

response threshold causes phages to switch infection strategy somewhere in the middle of the epi-

demic: if a phage variant switches to the lysogenic strategy too early, its free phage population does

not expand enough to compete with phages that switch later, but if it switches too late, the suscep-

tible-cell density has decreased to such a degree that the phage has missed the window of opportu-

nity for lysogen production. The ESS results from a balance between the fast production of phage

progeny during the initial lytic cycles and the eventual production of sufficient lysogens. For phages

with a high effective burst size, this balance occurs around the time that half of the available suscep-

tible cells have been infected. Phages with lower effective burst size are, however, predicted to

switch later, because these phages need to invest a larger portion of the available susceptible cells

in the production of free phages to produce a sufficient pool of phages that can later form lysogens.

Note, however, that the range of biologically reasonable effective burst sizes includes many high val-

ues (range of x-axis in Figure 4B, Table 1), that is, many real-life phages have high infectivity. Hence,

for natural phages in general, we predict that if they evolve an arbitrium-like communication system,

communication will be used to switch from causing mostly lytic to mostly lysogenic infections when

in an outbreak approximately half of the pool of susceptible bacteria has been infected.
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Figure 4. Parameter dependance of the selected values of fmax and q. (A) Parameter sweep results. A total of 500 simulations were run with randomly

sampled parameters (Table 1) and a long time between passages (T ¼ 24 h). In each simulation, 121 phage variants were included, covering all

combinations of fmax ¼ 0 to fmax ¼ 1 and � ¼ 0 to � ¼ cK with step sizes 0.1 and 0:1cK, respectively. The size of the circles corresponds to the number

of simulations that yielded that particular phage variant as most abundant at evolutionary steady state. (B) Analytically predicted q-value as a function of

the effective burst size per adsorption to a susceptible cell, bB, and most abundant phage variant found in a simulation with varying bB but otherwise

default parameter values, T ¼ 24 h, fmax ¼ 1 and � ¼ 0; 0:02cK; . . . ; cK. The range on the x-axis is equal to the range sampled in the parameter sweep.

The analytically derived evolutionarily stable �� is a good prediction for the response threshold selected in the simulations, especially for phages with

high effective burst size.
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Arbitrium communication is robust against variation in bacterial
carrying capacity
So far, we have considered the evolution of arbitrium communication under highly predictable set-

tings, with each outbreak taking place in a population of bacteria with the same initial density (i.e.

the bacterial carrying capacity was constant). As argued above, in such a set-up the arbitrium con-

centration provides information on the density of susceptible cells still available for infection, and

the phages use this to inform their lysis-lysogeny decision. While the bacterial carrying capacity can

be kept constant in lab experiments, it is far from obvious that this would be the case in natural envi-

ronments. This warrants the question of how robust the results are to variation in the bacterial carry-

ing capacity.

We therefore performed simulations in which the carrying capacity varies from outbreak to out-

break. For a long time between passages (T = 24 h), at the start of each passaging episode a ran-

dom carrying capacity was drawn from a gamma distribution with mean K and a pre-set variance

that differs from simulation to simulation. We use the coefficient of variation (CV), which is defined

as the standard deviation relative to the mean, to describe the level of noise.

Figure 5 summarises the results of these additional simulations. Surprisingly, a communication

strategy with fmax ¼ 1 and �» 0:5cK is selected for a large range of carrying capacity noise up to CV

�0.35 (illustrated by CV = 0.22 in Figure 5A; see Figure 5—figure supplement 1 for full data). In

other words, even if the carrying capacity varies with a standard deviation up to one third of its

mean value, the communication strategy described in the previous section is still selected.

As the coefficient of variation increases even further, the arbitrium response threshold value � of

the selected phages decreases, and so does the lysis-lysogeny propensity that is used at high arbi-

trium concentration fmax (Figure 5B and C). These results make sense: if the carrying capacity

strongly varies between passaging episodes, the phages regularly cause outbreaks in bacterial popu-

lations with low density. Phages with a response threshold value larger than the bacterial carrying

capacity do not produce any lysogens during such an outbreak, which is disastrous for their long-

term fitness. Hence, lower response thresholds are selected. The corresponding lower fmax values

likely evolve to compensate for the earlier switch to lysogen production caused by the lower q-

Figure 5. Distribution of phage variants at evolutionary steady state for increasing variation in the bacterial carrying capacity. Each simulation included

a total of 441 phage variants that covered all combinations of fmax between 0 and 1 and q between 0 and cK with step sizes 0.05 and 0:05cK,

respectively. In each simulation, 1000 passaging episodes were simulated, with a long time between passages (T ¼ 24 h). Parameter were set to default

values (Table 1), except that at the start of each passaging episode the value of the bacterial carrying capacity was drawn from a gamma distribution

with mean K. The coefficient of variation (CV = standard deviation / mean) was varied between simulations. Results are shown here for (A) CV = 0.22, (B)

CV = 0.39, (C) CV = 0.59. The results in panel (A) are representative for CV � 0.35, and the results in panel (C) are representative for CV � 0.5

(Figure 5—figure supplement 1).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Phage variant distribution at evolutionary steady state for a sufficiently long time between passages (T ¼ 24 h) and increasing

variability in the bacterial carrying capacity between passaging episodes.

Doekes et al. eLife 2021;10:e58410. DOI: https://doi.org/10.7554/eLife.58410 14 of 33

Research article Computational and Systems Biology Evolutionary Biology

https://doi.org/10.7554/eLife.58410


values. In highly variable conditions, phages are hence selected to switch from a lytic strategy very

early in the epidemic to a bet-hedging strategy later.

While we find much lower response threshold values when the variation in bacterial carrying

capacity is high, these threshold values do remain clearly larger than zero (Figure 5C). This is true

even if the carrying capacity is exponentially distributed (CV = 1; see Figure 5—figure supplement

1). Hence, even under very high variation of bacterial density a form of arbitrium communication (in

which phages use the arbitrium signal to switch from a lytic to a bet-hedging strategy) is still fav-

oured over completely bet-hedging strategies.

Discussion
We have presented a mathematical model of a population of phages that use an arbitrium-like com-

munication system, and used this model to explore the evolution of the lysis-lysogeny decision and

arbitrium communication under a serial-passaging regime. When arbitrium communication was

excluded from the model, we found that bet-hedging phages with relatively low lysogeny propensity

were selected. But when arbitrium communication was allowed to evolve these bet-hedging phages

were outcompeted by communicating phages. These communicating phages switch from a lytic

strategy early in the epidemic to a fully lysogenic strategy when approximately half of the available

susceptible cells have been infected.

The serial-passaging set-up of the model is crucial for the evolution of the lysis-lysogeny decision

and arbitrium communication. This has two main reasons. Firstly, it ensures that the phages are regu-

larly exposed to susceptible cells, thus maintaining selection pressure on the lysis-lysogeny decision.

Because of their high infectivity (see Materials and methods section and De Paepe and Taddei,

2006; Wang, 2006), most temperate phage outbreaks will completely deplete pools of susceptible

bacteria, resulting in a bacterial population consisting of lysogens only in which the phage no longer

replicates through infection (Bossi et al., 2003; Gama et al., 2013). The bet-hedging strategy we

found in the absence of phage communication is a mechanism to deal with these (self-inflicted) peri-

ods of low susceptible cell availability, consistent with earlier studies (Maslov and Sneppen, 2015;

Sinha et al., 2017). Secondly, the serial-passaging set-up imposes a dynamic of repeated epidemics

in which a small number of phages is introduced into a relatively large pool of susceptible cells. Such

dynamics are necessary for the arbitrium system to function: the arbitrium concentration provides a

reliable cue for a phage’s lysis-lysogeny decision only if it is low at the beginning of an epidemic and

subsequently builds up to reflect the fraction of cells that have so far been infected.

Based on these considerations, we can stipulate which environments promote the evolution of

small-molecule communication such as the arbitrium system. One major factor that can ensure a reg-

ular exposure to susceptible cells (the first requirement) is spatial structure. If phages mostly infect

bacteria that are physically close to them, a global susceptible population can be maintained even

though susceptible bacteria may be depleted in local environments (Kerr et al., 2006). Indeed, spa-

tial structure has been shown to greatly influence phage evolution, for instance by promoting the

selection of less virulent strains that deplete their local host populations more slowly (Kerr et al.,

2006; Heilmann et al., 2010; Berngruber et al., 2015). For small-molecule communication to

evolve, however, the phages would also have to undergo repeated, possibly localised, outbreak

dynamics (the second requirement). Such dynamics could occur in structured meta-populations of

isolated bacterial populations, between which the phages spread at a limited rate. Alternatively,

phages might encounter large pools of newly susceptible bacteria if they escape superinfection

immunity through mutation (Zinder, 1958; Bailone and Devoret, 1978; Scott et al., 1978). Under

this scenario, however, any remaining arbitrium signal from previous infection events no longer pro-

vides accurate information about the number of susceptible cells available, since cells that were lyso-

genically infected are once again susceptible to infection with the new phage variant. If the escape

mutation occurs after the arbitrium produced during previous epidemics has been degraded, this

problem does not occur and the newly produced arbitrium does function as a reliable signal of sus-

ceptible cell density for the new phage variant. If, however, the escape mutation occurs while the

arbitrium concentration is still high from previous outbreaks, the new phage variant will cause lyso-

genic infections while in fact the lytic cycle should be favoured. There will then be selection pressure

on the new phage variant to acquire additional mutations that change its signal specificity. This
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might in part explain the large diversity of phage signalling peptides observed (Erez et al., 2017;

Stokar-Avihail et al., 2019).

The model presented in this paper allows us to put hypotheses about the arbitrium system to the

test. For instance, it has been suggested that the arbitrium system would benefit from the produc-

tion of arbitrium by lysogens, because phages thereby would be warned about the presence of

neighbouring lysogens (which are immune to superinfection; Hynes and Moineau, 2017). Above we

have argued, however, that under repeated epidemics, such as caused by serial passaging, selection

on the lysis-lysogeny decision and arbitrium signalling is limited to the relatively short window of

time in which all (locally) present susceptible cells become infected: afterwards no new infections

occur and arbitrium therefore has no effect. During this short time window, the density of lysogens is

still low, and any arbitrium produced by lysogens contributes little to the information already con-

veyed by arbitrium produced during infection events. Hence, our model predicts that, under

repeated epidemics that completely deplete (local) pools of susceptible cells, the effects of arbitrium

production by lysogens are likely very minimal. Arbitrium production by lysogens can be effective

only if lysogens and susceptible cells coexist over sufficiently long periods of time, such that infection

events occur in the presence of lysogens. In the model, we found that such coexistence is highly

unlikely. Coexistence between lysogens and susceptible cells might, however, happen under circum-

stances that were not included in our model, for instance through a constant inflow of susceptible

cells because of cell migration, or through the loss of superinfection immunity by lysogens.

Intriguingly, our model predicts that phages using small-molecule communication to coordinate

their lysis-lysogeny decision would be selected to switch from a lytic to a lysogenic strategy once

approximately half of the available susceptible bacteria have been lytically infected. This prediction

warrants experimental testing. However, it also raises the question of how the phages would ‘know’

at what bacterial density the susceptible population has been halved. For the arbitrium signal to

carry reliable information about the density of remaining susceptible cells, the initial concentration of

susceptible bacteria has to be similar from outbreak to outbreak. Hence, one might expect the com-

munication strategy to break down if the density of susceptible bacteria is variable. Surprisingly, this

turned out not to be the case. We found that arbitrium-like communication could evolve even if the

bacterial carrying capacity was highly variable. The characteristics of the communication system then

depend on the level of noise. In highly variable environments, we predict the selection of phages

that start their lysogen production earlier in an outbreak (i.e. phages that have a low response

threshold), and then do so in a bet-hedging way (i.e. with a lysogeny propensity much smaller than

1).

In fact, few details are known so far about the response curve of phages’ lysogeny propensity to

the arbitrium concentration. In the model, we chose to implement the response to arbitrium as a

stepwise function. This allowed us to clearly distinguish between strategies that are favoured at low

arbitrium concentration (the lytic cycle) and at high arbitrium concentration (the lysogenic cycle). In

reality, phages might respond more gradually to the arbitrium concentration. While this would alter

some of our results (e.g. pinpointing an arbitrium concentration at which the phages switch infection

strategy becomes harder, if not impossible), we do not expect the results in general to depend on

the precise shape of the response curve: phages will still use the arbitrium signal to adjust their infec-

tion strategy to whichever strategy currently yields most progeny phage on the long run. Once more

data become available on the actual shape of the response curve, these can be incorporated in the

model by adjusting the arbitrium response function ’ðAÞ, thus producing a more specific model of

the arbitrium system.

Next to the arbitrium system, several other examples of temperate phages affected by small sig-

nalling molecules have recently been described. For instance, the Vibrio cholerae-infecting phage

VP882 ‘eavesdrops’ on a quorum-sensing signal produced by its host bacteria, favouring lytic over

lysogenic infections when the host density is high (Silpe and Bassler, 2019), while in coliphages l

and T4 and several phages infecting Enterococcus faecalis, the induction of prophages, that is, the

lysogeny-lysis decision, is affected by bacterial quorum sensing signals (Ghosh et al., 2009;

Rossmann et al., 2015; Laganenka et al., 2019). The model could be adapted to capture these

other regulation mechanisms by changing the arbitrium equation to an equation describing the pro-

duction and degradation of the bacterial quorum sensing signal, and – for the second mechanism –

letting the prophage reactivation rate a, rather than the lysogeny propensity f, depend on the sig-

nal concentration. Similar analyses to the ones in this paper would then allow us to study under what
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conditions phage eavesdropping on bacterial quorum sensing can and cannot evolve. Mathematical

and computational modelling can thus help to better understand the ecology and evolution of these

fascinating regulation mechanisms as well.
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Appendix 1

Model equations and parameters
A1.1 Full model equations, including mutations

For readability, the model equations in the main text (Equation 1–4) did not include mutations

between phage variants. Here, we present the full model equations, including mutations. We assume

that mutations happen when new phage particles (and hence new copies of the phage’s genetic

material) are formed prior to lysis of the host cell. Infection with a parent phage of variant j results in

progeny phages of variant i with probability �ij, where �ii is the probability that offspring of a parent

phage of type-i has no mutations. The full model reads:

dS

dt
¼ rSð1�N=KÞ� baSP; (A.1)

dLi

dt
¼ rLið1�N=KÞþ’iðAÞbaSPi�aLi; (A.2)

dPi

dt
¼ B

X

j

�ij aLjþ ½1�’jðAÞ�baSPj

� �
� dPi� aNPi; (A.3)

dA

dt
¼ cbaSP� uNA; (A.4)

with ’iðAÞ ¼fi if arbitrium communication is excluded from the model; (A.5)

and ’iðAÞ ¼
0 if A� �i;

fmaxi
if A>�i

(

if arbitrium communication is included ðsee Figure 1BÞ: (A.6)

In the first part of the manuscript, where we exclude arbitrium communication from the model,

phage variants are characterised by their constant lysogeny propensity fi (Equation A.5). Mutations

between phage variants were implemented in a stepwise fashion, that is, �ij ¼ �>0 if fj is one step

higher or lower than fi, and �ij ¼ 0 ði 6¼ jÞ otherwise. Throughout this study, a value of �¼ 5 � 10�4 was

used. Varying � alters the mutation-selection balance and thus affects the frequency of mutants in

the quasi-species. As long as � is reasonably small, however, it does not change which phage variant

dominates the population, that is, � does not affect the evolutionarily stable strategy.

In the second part of the manuscript, where we include the possibility of arbitrium communica-

tion, phage variants are characterised by two properties (Equation A.6): their arbitrium threshold �i
and the lysogeny propensity obtained when the arbitrium concentration exceeds this threshold,

fmaxi
. Mutations in the values of fmax and � were implemented as independent processes, both hap-

pening in a stepwise fashion as explained above.

A1.2 Phage variants included in simulations

In the simulations of the restricted model (arbitrium communication excluded) shown in Figure 2C,

a range of phage variants was included with f1 ¼ 0, f2 ¼ 0:005, . . ., f100 ¼ 0:495, f101 ¼ 0:5. In the

simulations presented in Figure 2D, a range of phage variants was included of f1 ¼ 0, f2 ¼ 0:01, . . .,

f100 ¼ 0:99, f101 ¼ 1:0.

In the simulations of the full model (arbitrium communication included) shown in Figure 3B, 441

phage variants were included, representing all possible combinations of fmax ¼ 0; 0:05; . . . ; 1 and

� ¼ 0; 0:05cK; . . . ; cK. In the simulations of Figure 4A, 121 phage variants were included representing

all possible combinations of fmax ¼ 0; 0:1; . . . ; 1 and � ¼ 0; 0:1cK; . . . ; cK. In the simulations of

Figure 4B, all phage variants had fmax ¼ 1, but they varied in � ¼ 0; 0:02cK; . . . ; cK.

All simulations were initialised with the susceptible cells at carrying capacity (S ¼ K cells per mL),

no lysogens (
P

i Li ¼ 0) and a low total density of
P

i Pi ¼ 10
6 phages per mL. All phage variants

were initially present at equal frequency.

In all simulations mutations between phage variants were included as described in the previous

section, with the exception of the competition experiment between the optimal bet-hedging phage

variant and the optimal communicating phage variant (results shown in Figure 3C). In this latter

case, the mutation rate was set to zero.
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A1.3 Parameter reduction

In total, the model of Equation A.1–A.6 has nine parameters (ignoring mutation probabilities). This

number can, however, be reduced by non-dimensionalising the equations. We introduce the dimen-

sionless variables

t̂¼ rt; Ŝ¼ S

K
; L̂i ¼

Li

K
; P̂i ¼

Pi

KB
; Â¼ A

cK
; �̂i ¼

�i
cK

;

and define P̂¼Pi P̂i, L̂¼
P

i L̂i, and N̂ ¼ Ŝþ L̂. Let furthermore

B̂¼ bB; â¼ aK

r
; â¼ a

r
; d̂¼ d

r
; û¼ uK

r
:

Using these new variables and parameters, the equations reduce to:

dŜ

d̂t
¼ Ŝð1� N̂Þ� B̂âŜP̂; (A.7)

dL̂i

d̂t
¼ L̂ið1� N̂Þþ ’̂iðÂÞB̂âŜP̂i� âL̂i; (A.8)

dP̂i

d̂t
¼
X

j

�ij âL̂jþ½1� ’̂jðÂÞ�B̂âŜP̂j

� �
� d̂P̂i� âN̂P̂i; (A.9)

dÂ

d̂t
¼ B̂âŜP̂� ûN̂Â; (A.10)

with ’̂iðÂÞ ¼fi if arbitrium communication is excluded from the model; (A.11)

and ’iðAÞ ¼
0 if A� �̂i;

fmaxi
if A>�̂i

(

if arbitrium communication is included: (A.12)

Five dimensionless parameters are left in Equation A.7–A.12: the effective burst size per adsorp-

tion of a phage to a susceptible cell, B̂, and the scaled rates â, â, d̂, and û. These non-dimensional-

ised equations are used throughout the rest of this appendix, unless stated otherwise, dropping the

hats for convenience.
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Appendix 2

Equilibrium analysis
In this section, we find the dynamical equilibria existing in the model, and derive parameter condi-

tions for their stability. This analysis provides us with a baseline expectation of the densities of

phages, lysogens, and susceptible cells that the model converges to after sufficient time.

Equilibria of the model are found by equating Equation A.7–A.10 to zero and solving for the

model variables. By the definition of equilibrium, the arbitrium concentration at equilibrium is

constant:

�A¼
Ba�S�P

u�N
if �N>0;

�A¼ 0 if �N ¼ 0;

8

<

:
(A.13)

where the bar indicates equilibrium values. Because the equilibrium arbitrium concentration is con-

stant, at equilibrium the different phage variants are characterised by their lysogeny propensity

’ið�AÞ only, irrespective of whether arbitrium communication is included in the model or not. Hence,

expressions for the model equilibria are the same in the absence and presence of arbitrium commu-

nication. Below, we derive these expressions, and determine under what conditions the different

model equilibria are stable.

In the model, four qualitatively different types of equilibria can occur.

Firstly, there is a trivial equilibrium at �S ¼ 0, and �Li ¼ 0, �Pi ¼ 0 for all phage variants i. This equilib-

rium is unstable as long as the bacterial logistic growth rate satisfies r>0.

Secondly, there is an equilibrium in which the susceptible population is at carrying capacity and

the infection is absent: �S ¼ 1, and �Li ¼ 0, �Pi ¼ 0 for all phage variants i. This equilibrium is stable if

no phage-lysogen pairs Pi-Li can invade on the susceptible population. To derive stability conditions,

we approximate the dynamics of Pi and Li in the vicinity of the equilibrium by the linearised

equations

dLi
dt

dPi

dt

 !

»
�a �fiBa

a ð1� �fiÞBa� d� a

� �
Li

Pi

� �

¼: J
Li

Pi

� �

; (A.14)

where �fi ¼ ’ið0Þ is the lysogeny propensity of phage type i at the equilibrium. No phage-lysogen

pair can invade (i.e. the equilibrium is stable) precisely if the real parts of both eigenvalues of the

Jacobian matrix J are negative for all i. The eigenvalues of the Jacobian matrix J are given by

lþ=� ¼ G�
ffiffiffi

D
p

2
; with G¼ a Bð1� �fiÞ� 1

� �
� d�a and D¼ G2 þ 4a aðB� 1Þ� dð Þ:

The real parts of lþ=� are both negative precisely if D<G2 and G<0. From G<0, we find

aðBð1� �fiÞ� 1Þ<dþa; (A.15)

while D<G2 yields

aðB� 1Þ<d: (A.16)

Since all parameters are non-negative and 0� �fi � 1, the condition in Equation A.16 is more

stringent than the condition in Equation A.15. Note also that the condition in Equation A.16 does

not depend on the lysogeny propensity of the invading phages, �f. Hence, the equilibrium �S¼ 1,
�Li ¼ 0, and �Pi ¼ 0 for all phage variants i is stable exactly if the condition in Equation A.16 is satis-

fied. This condition makes sense: phages cannot spread in a susceptible cell population at carrying

capacity if their infection rate Ba�S is smaller than the decay rate of phage particles dþ a�S.

Thirdly, there is a class of equilibria in which �S ¼ 0, and �Li>0, �Pi>0 for some i. In these equilibria,

the total densities of lysogens �L and of free phages �P are given by

�L¼ 1�a; �P¼ a�L

dþ a�L
¼ að1�aÞ
dþ að1�aÞ : (A.17)

Doekes et al. eLife 2021;10:e58410. DOI: https://doi.org/10.7554/eLife.58410 22 of 33

Research article Computational and Systems Biology Evolutionary Biology

https://doi.org/10.7554/eLife.58410


In the absence of susceptible cells at equilibrium, no infections can take place and hence all

phage variants behave identically (since phages vary only in ’iðAÞ, which occurs exclusively in the

infection terms). This is reflected in the equations for the different lysogen variants, which for �S¼ 0

and �L¼ 1�a (Equation A.17) reduce to

dLi

dt
¼ Lið1� �LÞ�aLi ¼ 0:

Hence, any combination of �Li values with
P

i
�Li ¼ �L¼ 1�a and corresponding �Pi-values,

�Pi ¼
a
P

j�ij
�Lj

dþ að1�aÞ ; (A.18)

is an equilibrium. Analogous to the reasoning above, such an equilibrium is stable if the susceptible

cells cannot invade the phage-lysogen population at equilibrium. The linearised equation for the

dynamics of S near the equilibrium of Equation A.17 reads

dS

dt
»Sð1� �LÞ�BaS�P¼ S a� Baað1�aÞ

dþ að1�aÞ

� �

: (A.19)

The right-hand side of this equation is negative (i.e. susceptible cells cannot invade) precisely if

dþ að1�aÞ<Bað1�aÞ, or summarised

d<aðB� 1Þð1�aÞ: (A.20)

(Note that to arrive at condition Equation A.20 we assume dþ að1�aÞ>0. This assumption is jus-

tified because the spontaneous induction rate of lysogens a is small, and hence 1�a>0 (see

Table 1).)

Lastly, there can be an equilibrium in which the susceptible cells, lysogens and phages all coexist.

Expressions for �S, �Pi, and �Li at this equilibrium are bulky and not directly insightful. This type of equi-

librium was however extensively analysed in recent work by Wahl et al. for phages with a constant

lysogeny propensity (i.e. the restricted model where arbitrium communication is excluded)

(Wahl et al., 2018). Remember that in an equilibrium state, phage variants are characterised by their

lysogeny propensity ’ið�AÞ only (i.e. differences in response threshold � are relevant only if they are

reflected in differences in ’ið�AÞ; phage variants i and j with �i 6¼ �j but ’ið�AÞ ¼ ’jð�AÞ can for all practi-

cal purposes be considered the same), and hence the results found by Wahl et al. can be extended

to the model analysed here. Phage variants with different lysogeny propensity ’ið�AÞ can be seen as

consumers that compete for a single resource, namely susceptible cells to infect. As long as �S>0, we

hence expect competitive exclusion, and the phage population at equilibrium will be dominated by

phages with a single lysogeny propensity value �f � ’ð�AÞ (when mutations are ignored, these phages

will be the only ones present; otherwise we find a quasispecies). Furthermore, Wahl et al. show that

if susceptible host cells coexist with a resident lysogen-phage population with some lysogeny pro-

pensity �fr, a phage-lysogen pair of a variant with higher lysogeny propensity �fi>�fr can always

invade on this equilibrium. Hence, in this equilibrium, the dominant phage will be the one with the

highest equilibrium lysogeny propensity, �f ¼ 1 .

As has been demonstrated previously (Stewart and Levin, 1984; Wahl et al., 2018), the ‘coexis-

tence equilibrium’ is stable only if phages and lysogens can invade on a susceptible population at

carrying capacity (i.e. the condition in Equation A.16 is violated), and susceptible cells can invade

on the phage-lysogen population in equilibrium (i.e. the condition in Equation A.20 is violated).

Hence, susceptible cells, lysogens and phages all coexist precisely if

ð1�aÞðB� 1Þa<d<ðB� 1Þa: (A.21)

If the effective burst size B>1 (a necessary condition for the phage to be viable), this can be

rewritten as

ð1�aÞ< d

ðB� 1Þa<1: (A.22)
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Because the spontaneous induction rate of lysogens, a, is small (a<0:01, see Table 1),

the condition in Equation A.22 is very specific. Susceptible cells, lysogens and phages coexist only if

the exponential growth rate of a lytic phage spreading in a susceptible population at carrying capac-

ity, ðB� 1Þa� d, is positive but very small, that is, if the epidemic is viable but only barely so. In real-

ity, however, most phage epidemics are characterised by a high infectivity, mainly because of a large

burst size (De Paepe and Taddei, 2006). Therefore, the condition in Equation A.22 is rarely satis-

fied, and for most phages we should instead expect to converge to equilibria of the third type

(�S¼ 0;�L>0; �P>0).

This observation has consequences for the selection pressures on phage variants over the course

of a typical epidemic. As soon as the pool of susceptible host cells is depleted, competition between

the different phage variants vanishes and the relative frequency of the variants freezes (see Fig-

ure 2—figure supplement 1 for an illustration). Under these conditions, no infections take place

and hence there is no selection on the lysis-lysogeny decision. We conclude that the evolution of the

lysis-lysogeny decision of typical phages requires regular perturbations away from equilibrium

conditions.
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Appendix 3

Derivation of the evolutionarily stable strategy (ESS) under the serial-
passaging regime
In the main text, we present simulation results of the evolution of the lysis-lysogeny decision of

phages exposed to a serial-passaging regime, both when arbitrium communication is excluded from

the model (Figure 2), and when it is included (Figures 3 and 4). These simulations show that, after

many passaging episodes, a single variant dominates the phage population (accompanied by its

quasispecies, see Figure 2C, Figure 3B). We therefore assume that, within the parameter range of

interest, a pure Evolutionarily Stable Strategy (ESS) exists. In this section, we derive analytical expres-

sions for the ESS. We first provide a definition of the ESS under a serial-passaging regime, and give

a general description of how this ESS can be found (section A3.1). Then, we apply this general

approach to derive the ESS of phages that differ in a constant lysogeny propensity, f (absence of

arbitrium communication, section A3.2), and the ESS of communicating phages that differ in their

response threshold � (section A3.3).

A3.1 General approach
Consider a population of phages under a serial-passaging regime with long time T between pas-

sages. At the start of each passaging episode, a fraction D of the phages is taken from the end of

the previous episode, and is added to a ‘fresh’ population of susceptible bacteria at carrying capac-

ity. This procedure is repeated over many episodes. Within each episode, the dynamics of the sus-

ceptible bacteria, lysogens, phages, and arbitrium are described by Equation A.7–A.12.

An evolutionarily stable strategy (ESS) is defined as a strategy that cannot be invaded by any

other strategy that is initially rare. To find the ESS, we therefore consider a scenario where an

invader phage variant attempts to invade a resident phage variant. Below, we specify what it means

for a phage variant to be able to invade in a resident phage population under the imposed serial-

passaging regime.

Envision a resident population consisting of an isogenic phage population that has gone through

many passaging episodes. Over time, the dynamics within these episodes have converged to a

repeatable trajectory characterised by PrðtÞ, the resident phage density over time, SðtÞ, the density

of susceptible bacteria over time, and LrðtÞ, the density of lysogens over time. At the start of one

episode, now suddenly introduce a second phage with its own (possibly different) strategy. Crucially,

the initial density of this invading phage Pið0Þ is infinitesimally small. Consequently, during the first

passaging episode the dynamics of the resident phage and the bacteria (PrðtÞ, SðtÞ, and LrðtÞ) are not

affected by the invader. The invader is able to invade precisely if at the end of the first episode its

frequency has increased relative to that of the resident, that is, if PiðTÞ=PrðTÞ>Pið0Þ=Prð0Þ.
Note that the relative frequency of an invader with exactly the same strategy as the resident does

not change during an episode. Suppose that such an invader is the best-performing invader under

the environment set up by the resident; then this implies that no invader can increase in frequency

over a passaging episode, and therefore the resident strategy must be an ESS. In other words, in a

resident phage population consisting of the ESS only, the ESS itself is the optimal strategy for an

invading phage variant, that is, the ESS is the optimal response to itself.

What does it take to be the best-performing invader? To answer this question, we consider the

dynamics within a single passaging episode in more detail.

If the time between passages T is long (see below for exact condition), and the parameter condi-

tions are such that the system converges to an equilibrium with S ¼ 0;P>0; L>0 (typical parameter

values, see Appendix 2), the dynamics within an episode can be divided in three distinct phases (see

Figure 2—figure supplement 1):

1. Epidemic phase. A substantial population of susceptible bacteria (S>0) supports an ongoing
epidemic. Free phages and lysogens are formed through infection of susceptible bacteria.

2. Transition phase. The population of susceptible cells has collapsed (S» 0). The lysogen popula-
tion expands to fill up the space left behind by lysed cells. Free phages particles can no longer
infect susceptible cells, and disappear through decay and adsorption to lysogens.

3. Equilibrium phase. The composition of the population is well-characterised by an equilibrium
of ‘type 3’ (see Equation A.17). There is a small but consistent population of free phages that
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originates from lysogens through spontaneous induction. The distribution of phage variants in
the free phage population is a direct representation of the relative frequency of the variants in
the lysogen population (Equation A.18).

Let TE be the time at which the susceptible population collapses, that is, the end of the epidemic

phase. If the time between passages T is sufficiently larger than TE, the passage takes place during

the equilibrium phase. The relative frequency of phage variants in the passaged sample then directly

reflects the relative frequency of the corresponding lysogens. Since lysogens are only differentially

formed through infection dynamics (and not through lysogen replication, which happens at the same

rate for all lysogen variants), the relative frequency of the different lysogens is established during the

epidemic phase and does not change afterwards. The performance of an invading phage can hence

be measured by its lysogen production between t ¼ 0 and t ¼ TE.

The dynamics of SðtÞ, and consequently TE, are determined by the resident phage: highly virulent

resident phages (that cause many lytic infections, for instance because of a low f-value) deplete the

susceptible cell population faster than less virulent residents. The optimal invader under a certain

resident is the phage variant that produces the most lysogens during the limited window of opportu-

nity that it is offered by the environment set up by the resident. Since the ESS is the optimal

response to itself, it is the strategy that, as an invader, produces the most lysogens during an epi-

demic phase set up by itself. We will use this reasoning to identify the ESS.

A3.2 Evolutionarily stable lysogeny propensity of non-communicating
phages
Consider the restricted model in which arbitrium communication is excluded and phages are charac-

terised by a fixed lysogeny propensity f. To find the ESS under this scenario, we take the following

steps:

1. Derive how the duration of the epidemic, TE, depends on the f-value of a resident phage
population.

2. Find the optimal f given a fixed value of TE, that is, the f-value that yields a maximal lysogen
density at time TE.

3. Combine 1. and 2. to find the ESS: the f-value f� that maximises its lysogen density at time
TEðf�Þ, the duration of the epidemic as dictated by its own f-value, f�.

This approach is summarised in Box 1. Below, we provide the full analysis.

A3.2.1 Simplifying assumptions

To make the model analytically tractable, we make the following simplifying assumptions (based on

the typical infection dynamics, see Figure 2A):

1. Bacterial growth, decay of free phages, and induction of lysogens are considered to be much
slower than the phage infection dynamics. We hence ignore these processes when describing
the epidemic phase.

2. The epidemic ends when all susceptible cells have been infected. In other words, we solve TE

from
R TE
t¼0

BaSPr dt ¼ 1 (where this one represents the carrying capacity in the non-dimensional-

ised units).
3. The density of lysogens during the epidemic is small, hence N » S.
4. The susceptible population remains relatively constant for some time, after which it rapidly col-

lapses. We approximate these dynamics with a block function, setting S ¼ 1 for t � TE, and S ¼
0 for t>TE.

Under these assumptions, the dynamics of the resident phage population for the period 0 � t �
TE are described by:

dPr

dt
¼ Bað1�frÞS� aSð ÞPr ¼ Bð1�frÞ� 1ð ÞaPr; (A.23)

with solution

PrðtÞ ¼ Pr;0e
Bð1�frÞ�1ð Þat ¼ Pr;0e

ðh�frÞBat; (A.24)
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where Pr;0 � Prð0Þ is the initial density of resident phages and we have introduced h :¼ 1�B�1. Note

that the description of the infection dynamics in Equation A.23 is meaningful only if early in the epi-

demic the phage population indeed grows exponentially, that is, if fr<h. For default parameter set-

tings, this upper bound on fr is well above the f-values that are typically selected

(f»0:04 [Figure 2C], while h¼ 0:5 [Table 1]), indicating that this assumption is reasonable.

A3.2.2 Duration of the epidemic given a resident phage

First, we derive how the duration of the epidemic, TE, depends on the lysogeny propensity of a resi-

dent phage variant fr. To find TEðfrÞ, we substitute Equation A.24 into assumption 2:

Z TE

t¼0

BaSPrðtÞ dt¼
Z TE

t¼0

BaPr;0e
ðh�frÞBat dt¼ Pr;0

ðh�frÞ
eðh�frÞBaTE � 1

� �

;

and then equate this integral to one to find

TEðfrÞ ¼
1

Baðh�frÞ
log

h�fr

Pr;0
þ 1

� �

: (A.25)

Note that the density of the resident phage at time TE is now given by

PrðTEÞ ¼ Pr;0e
ðh�frÞBaTE ¼ Pr;0 þh�fr: (A.26)

Therefore, the expression for TE (Equation A.25) can also be read as:

TEðfrÞ ¼
1

Baðh�frÞ
log

PrðTEÞ
Pr;0

� �

: (A.27)

Equation A.27 will prove useful later for the derivation of the ESS.

A3.2.3 Optimal invader strategy given a fixed duration of the epidemic

Next, we ask what invader lysogen propensity fi;opt maximises the invader’s lysogen production,

LiðTEÞ, if the duration of the epidemic TE is fixed. For 0 � t � TE, the dynamics of LiðtÞ are described

by

dLi

dt
¼fiBaPi: (A.28)

Since PiðtÞ ¼ Pi;0e
ðh�fiÞBat (see Equation A.24) and Lið0Þ ¼ 0, we can now solve

LiðtÞ ¼ Pi;0
fi

h�fi

eðh�fiÞBat � 1

� �

: (A.29)

To find the fi-value that maximises LiðTEÞ, we take the derivative of Equation A.29 with respect

to fi:

qLiðTEÞ
qfi

¼ Pi;0
hðeðh�fiÞBaTE � 1Þ

ðh�fiÞ2
�fiBaTEe

ðh�fiÞBaTE

h�fi

 !

: (A.30)

To find fi;opt, we should hence solve

Pi;0

h�fi

hðeðh�fiÞBaTE � 1Þ
h�fi

�fiBaTEe
ðh�fiÞBaTE

� �

¼ 0: (A.31)

Unfortunately, Equation A.31 cannot be solved analytically. We can however simplify

Equation A.31 by noting that for sufficiently small fi, ðh�fiÞ is of order 0:1� 1, while TE is typically

of order 1, and Ba is of order 10� 1000 (Table 1). Hence, eðh�fiÞBaTE is typically � 1, and

Equation A.31 can be approximated by
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Pi;0e
ðh�fiÞBaTE

h�fi

h

h�fi

�BafiTE

� �

¼ 0: (A.32)

From Equation A.32 we find

h

h�fi
¼ BafiTE

() BaTEf
2 �hBaTEfi þh¼ 0

() fi;optðTEÞ ¼ 1

2
h� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 � 4h

BaTE

q

:

(A.33)

A3.2.4 The ESS

Equation A.25 and its alternative formulation Equation A.27 describe how the duration of the epi-

demic TE depends on the lysogeny propensity fr of the current resident, while Equation A.33 gives

the value fi;opt that maximises the lysogen production of an invader during an epidemic of a fixed

duration TE. The ESS is now given by the value f� that is ‘optimal’ as defined by Equation A.33,

when it itself is the resident and hence dictates TEðf�Þ. Combining Equation A.33 and

Equation A.27 we find

f� ¼ 1

2
h� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 � 4
hðh�f�Þ

logðPrðTEÞ=Pr;0Þ

q

() ðf� � 1

2
hÞ2 ¼ 1

4
h2� hðh�f�Þ

logðPrðTEÞ=Pr;0Þ

() ðf�Þ2 �f� hþ h

logðPðTEÞ=P0Þ

� �

þ h2

logðPrðTEÞ=Pr;0Þ¼ 0;

from which we can solve:

f� ¼ 1

2
hð1þ 1

logðPrðTEÞ=Pr;0Þ
Þ� 1

2
hð1� 1

logðPrðTEÞ=Pr;0Þ
Þ: (A.34)

Of these two solutions, fþ ¼ h is an asymptote at which our approximation no longer holds

(remember that we previously demanded that fr<h to ensure initial spread of the infection). Hence,

f� should be given by f�:

f� ¼ h

logðPrðTEÞ=Pr;0Þ
: (A.35)

Although Equation A.35 seems to provide an elegant equation for the ESS, it still depends on

PrðTEÞ and Pr;0. If the interval between passages is sufficiently long, the phage density at the end of

a passaging episode will be given by Equation A.17 and hence

Pr;0 ¼D
að1�aÞ

dþ að1�aÞ ; (A.36)

where D is the dilution factor of phages upon passaging. While the value of Pr;0 does not depend on

the lysogeny propensity fr, PrðTEÞ does (see Equation A.26). Substituting PrðTEÞ ¼ Pr;0 þh�f�

yields

f� ¼ h

logð1þ h�f�

Pr;0
Þ
: (A.37)

This equation cannot be solved analytically. However, we can make a reasonable approximation

of Equation A.37 by considering the differences in orders of magnitude of the terms within the log-

arithm. As argued above, ðh�f�Þ is generally of order 0:1� 1, while typical values of Pr;0 are several

orders of magnitude smaller (Pr;0 »10
�5). Therefore, we can approximate the logarithm in

Equation A.37 by
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logð1þh�f�

Pr;0
Þ» log

1

Pr;0

� �

:

Using this approximation, we find

f� ¼ h

logð 1

Pr;0
Þ ; (A.38)

which is also presented in the main text (Equation 5). Equation A.38 and Equation A.36 were used

to find the analytical predictions shown in Figure 2D.

A3.3 Evolutionarily stable response threshold of communicating phages
Next, consider a population of phages that do engage in arbitrium communication, again under a

serial-passaging regime with sufficiently long time between the passages. Below, we use an

approach similar to section A3.2, but more general, to derive the evolutionarily stable arbitrium

response threshold, ��. We take the following steps:

1. Describe the dynamics of an invading phage and its corresponding lysogens in an environment
dictated by a resident phage.

2. Find the optimal invader response threshold under a fixed resident response threshold, that is,
find the q-value that maximises the invader’s lysogen production at time TE when the dynamics
of susceptible cells (and hence TE) are determined by a fixed resident phage.

3. Determine the ESS, ��, as the optimal response to itself: the optimal invader response thresh-
old (as found in step 2) if that same response threshold is the resident strategy.

We found that the results below are best understood in terms of the non-scaled model; in partic-

ular the (non-scaled) burst size of the phages turns out to be an important parameter. Therefore, the

derivations below are presented for the dimensionalised equations Equation A.1–A.6.

A3.3.1 Simplifying assumptions

To make the model tractable, we again make a few simplifying assumptions:

1. As in section A3.2, we assume that there is a separation of time scales between the infection
dynamics of the phages and the reproduction of the bacteria, spontaneous phage decay and
lysogen induction. Hence, when describing the epidemic phase we ignore these other
processes.

2. Additionally, we assume that there also is a separation of time scales between the production
of arbitrium through infections (first term in Equation A.4) and its uptake and degradation by
cells (second term in Equation A.4). We ignore the uptake and degradation of arbitrium dur-
ing the early epidemic, such that the increasing arbitrium concentration reflects the decrease
of the susceptible cell density because of infections.

3. We assume that communicating phages switch from a completely lytic strategy (’ðAÞ ¼ 0) to a
completely lysogenic strategy (’ðAÞ ¼ 1) once the arbitrium concentration exceeds the phages’
response threshold. This is in line with observations from simulations, where we find that
phage variants with fmax ¼ 1 dominate the population for a wide range of parameter values
(Figure 4A).

The assumptions above are less strict then the assumptions made in section A3.2. In particular,

we no longer assume that the density of susceptible cells, SðtÞ, remains constant for the duration of

the epidemic 0 � t � TE. Rather, for the derivations below it suffices to assume that SðtÞ is a declining

function which is completely determined by the resident phage, and that SðtÞ is sufficiently close to 0

after the epidemic, that is, for times t>TE (where TE still depends on the characteristics of the resi-

dent phage).

It will be useful to refer to the time when the resident and invader switch to lysogeny as t r and

t i, respectively. Given particular dynamics of the susceptible cell density and the arbitrium concen-

tration dictated by a resident phage population, there is a direct relation between t i and �i (the

arbitrium response threshold of the invader). Keep in mind, however, that this relation changes if the

resident phage is changed.
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A3.3.2 Dynamics of the invading phage and its corresponding lysogens

First, we describe how the dynamics of an invading phage variant depend on the resident phage

population. Remember that we consider an invader phage variant that starts off at infinitesimally

small density, and attempts to invade an isogenic resident phage population that has already con-

verged to a repeatable trajectory of PrðtÞ, LrðtÞ, SðtÞ, and AðtÞ per passaging episode. Under these

conditions, the dynamics of SðtÞ, NðtÞ ¼ SðtÞ þ LrðtÞ and AðtÞ over the first passaging episode do not

depend on the switch time t i of the invader, but only on the switch time of the resident phage, t r.

Based on the assumptions formulated above, the ODEs for the density of the invading phage and its

corresponding lysogens can be written as

dPiðtjt i;t rÞ
dt

¼ BbaSðtjt rÞPiðtjt i;t rÞ� aNðtjt rÞPiðtjt i;t rÞ; ðt<t iÞ (A.39)

�aNðtjt rÞPiðtjt i;t rÞ; ðt� t iÞ

�

dLiðtjt i;t rÞ
dt

¼
0; ðt<t iÞ

baSðtjt rÞPiðtjt i;t rÞ; ðt� t iÞ

8

><

>:

(A.40)

where vertical lines are used to indicate which phage charactistics the trajectories of variables

depend upon. Equation A.39–A.40 capture the switch from a completely lytic infection strategy (for

t� t i), in which new phage particles are produced through infection but no lysogens are formed, to

a completely lysogenic strategy (for t>t i), in which no new phage particles are produced but all

infections result in the production of lysogens (see assumption 3). Remember that we here use the

dimensionalised equations, so B is the burst size, a the rate of adsorption of phages to bacterial cells

(irrespective of whether they are susceptible or lysogen), and b the probability that adsorption to a

susceptible cell leads to an infection.

The solution to Equation A.39 can be written as

Piðtjt i;t rÞ ¼ Pi;0 �
exp Bba

R t

0
Sðt0jt rÞdt0� a

R t

0
Nðt0jt rÞdt0

� �
; ðt<t iÞ

exp Bba
R t i

0
Sðt0jt rÞdt0� a

R t

0
Nðt0jt rÞdt0

� �
; ðt� t iÞ

(

(A.41)

as is easily verified by differentiating this solution with respect to t.

As before, the performance of the invading phage variant is determined by its lysogen production

during the epidemic phase, that is, between t ¼ 0 and t ¼ TE. At any time t, the density of invader

lysogens is

Liðtjt i;t rÞ ¼
0; ðt<t iÞ
R t

t i
baSðt0jt rÞPiðtjt i;t rÞdt0: ðt� t iÞ

(

(A.42)

Invading phage variants are selected on their lysogen density at the end of the epidemic,

LiðTEjt i;t rÞ. Once the epidemic phase has ended (t� TE), no new phage particles or lysogens are

formed through infection. Hence, any reasonable switching time must obey t i<TE. Furthermore,

since SðtÞ»0 for any time t� TE,

LiðTEjt i;t rÞ ¼
Z TE

t i

baSðt0jt rÞPiðt0jt i;t rÞdt0 ¼
Z

¥

t i

baSðt0jt rÞPiðt0jt i;t rÞdt0 (A.43)

which we will denote Liðt i;t rÞ.

A3.3.3 Optimal invader strategy given some resident phage

The optimal invader strategy t i given Sðtjt rÞ and Nðtjt rÞ is the one that maximises Liðt i; t rÞ. To find

this optimal strategy, we differentiate Equation A.43 with respect to t i:

qLiðt i;t rÞ
qt i

¼�baSðt ijt rÞPiðt ijt i;t rÞþ
Z

¥

t i

baSðt0jt rÞ
qPiðt0jt i;t rÞ

qt i

dt0: (A.44)

The derivative in the integrand can be calculated from Equation A.41 (noting that, inside the

integral, t0 � t i):
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qPiðtjt i;t rÞ
qt i

¼ q

qt i

Bba

Z t i

0

Sðt0jt rÞdt0
� �

Pi;0 exp Bba

Z t i

0

Sðt0jt rÞdt0� a

Z t

0

Nðt0jt rÞdt0
� �

¼ BbaSðt ijt rÞPiðtjt i;t rÞ:
(A.45)

Inserting the last expression into Equation A.44 yields

qLiðt i;t rÞ
qt i

¼�baSðt ijt rÞPiðt ijt i;t rÞþBb2a2Sðt ijt rÞ
Z

¥

t i

Sðt0jt rÞPiðt0jt i;t rÞdt0

¼�baSðt ijt rÞPiðt ijt i;t rÞþBbaSðt ijt rÞLiðt i;t rÞ:
(A.46)

The terms in Equation A.46 have a clear interpretation. By taking the derivative of Liðt i;t rÞ to
t i, we are implicitly comparing one possible invading phage variant (phage 1) that switches at time

t¼ t i to a second invading phage variant (phage 2) that switches ever so slightly later, at t¼ t i þdt .

Equation A.46 says that the lysogen density of these two variants at the end of the epidemic will dif-

fer because of two effects: On the one hand (first term) phage 2 will have a lower lysogen density

than phage 1 because it does not produce lysogens in the time interval from t i to t iþdt . The dam-

age is �baSðt ijt rÞPiðt ijt i;t rÞdt lysogens per volume. On the other hand, phage 2 will have a higher

higher lysogen density because it produces additional free phages in the time interval from t to

t þdt , which results in additional lysogens in the rest of the epidemic. As a result, throughout the

rest of the epidemic the second phage has ð1þBbaSðt ijt rÞdt Þ times as many phages as the first

phage variant, and therefore produces an additional number of BbaSðt ijt rÞLiðt i;t rÞdt lysogens per

volume.

The optimal invading phage variant given a resident phage is the variant with the value of

t i;optðt rÞ for which the two terms in Equation A.46 cancel precisely:

Piðt i;optðt rÞjt i;optðt rÞ;t rÞ ¼ BLiðt i;optðt rÞ;t rÞ: (A.47)

That is, the optimal invader switches precisely when its phage density is equal to its total eventual

lysogen production multiplied by the burst size B.

We may rewrite Equation A.47 as

BEiðt i;optðt rÞjt rÞ ¼ 1; (A.48)

where Eiðt ijt rÞ �Liðt i;t rÞ=Piðt ijt i;t rÞ is the number of lysogens eventually produced per phage of

the invader phage variant present at time t i. Eiðt ijt rÞ can be interpreted as a kind of ‘exchange

rate’, expressing the value of a single phage at time t i in the currency of lysogens. This suggests

another way of phrasing the results above, where we compared two phage variants of which phage

2 switched slightly later than phage 1: During the time interval from t i;1 to t i;2 ¼ t i;1 þdt , both com-

peting invading phage variants infect baSðt i;1ÞPiðt i;1jt i;1;t rÞdt susceptible bacteria per volume.

Phage 1 directly converts these infected bacteria into lysogens. Phage 2 instead converts each of

them into B additional phages. Whether this is a good idea depends precisely on whether increasing

the phage density by B phages per volume will, during the rest of the epidemic, result in an

increased lysogen density of more than 1 lysogen per volume. That is, phage 2 is the better invader

precisely if BEiðt ijt rÞ>1, while phage 1 is the better invader if BEiðt ijt rÞ<1. Again we see that the

optimal invader must obey Equation A.47 and Equation A.48.

A3.3.4 The ESS

To find the ESS, we ask what phage variant is the optimal response to itself, that is, what phage vari-

ant satisfies

t i;optðt �Þ ¼ t �: (A.49)

In other words, the ESS must obey a special case of Equation A.47 and Equation A.48:

Piðt �jt �;t �Þ ¼ BLiðt �;t �Þ or BEiðt �jt �Þ ¼ 1: (A.50)
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Importantly, in this case the resident and invader behave identically, so that the exchange rate of

the resident must be the same as that of the invader. That is,

Eiðt �jt �Þ ¼ Erðt �jt �Þ ¼Lrðt �Þ=Prðt �jt �Þ; (A.51)

where Lrðt rÞ is the total density of lysogens eventually produced by a resident with switching time

t r. Combined with Equation A.50 this results in:

BLrðt �Þ=Prðt �jt �Þ ¼ 1: (A.52)

Hence, the ESS is the strategy that, when it is the only phage variant present, switches from the

lytic to the lysogenic cycle precisely when the density of free phage particles it has is equal to the

burst size times the density of lysogens it will still produce in the remainder of the active epidemic

(see explanation in the previous section).

So far, we have expressed the results for the ESS as a switching time t �. In reality, however, the

communicating phages switch when a certain threshold arbitrium concentration �� is reached. As a

last step, we therefore have to relate the terms in Equation A.52 to the arbitrium concentration.

Under our simplifying assumptions, the arbitrium dynamics between time t ¼ 0 and t ¼ t r are

described by

Aðtjt rÞ ¼ cbaSðtjt rÞPrðtjt rÞ; (A.53)

where c is increase in arbitrium concentration per infection. The total arbitrium concentration at time

t is hence given by

Aðtjt rÞ ¼
Z t

0

cbaSðt0jt rÞPrðt0jt rÞdt0; (A.54)

which can be written as Aðtjt rÞ ¼ cIrðtjt rÞ, where

Irðtjt rÞ ¼
Z t

0

baSðt0jt rÞPrðt0jt rÞdt0 (A.55)

is the infection density: the number of infections that has occurred per volume at time t.

To express the ESS in terms of the arbitrium concentration, we first show that Prðt �jt �Þ is approx-
imately proportional to Irðt �jt �Þ. In general, the resident phage density obeys an equation equiva-

lent to Equation A.39 (even though this equation was originally written down for the invading

phage). For the time period t<t r, the solution of this equation can be expressed as

Prðtjt rÞ ¼ Pr;0 þ
Z t

0

ðBb� 1ÞaSðt0jt rÞPrðt0jt rÞdt0

¼ Pr;0 þðB� b�1ÞIrðtjt rÞ
(A.56)

Provided that the initial phage density Pr;0 is negligible compared to the phage density at time

t �, we find that

Prðt �jt �Þ» ðB� b�1ÞIrðt �jt �Þ: (A.57)

Next, we use that the epidemic will eventually consume (almost) all susceptible bacteria. (Note

that this is equivalent with our earlier assumption that SðtÞ»0 for t>TE.) Hence, we must have that

Lrðt �Þ»Sð0Þ� Irðt �jt �Þ: (A.58)

If we insert Equation A.57 and Equation A.58 into Equation A.47 and solve for Irðt �jt �Þ, we
arrive at

Irðt �jt �Þ ¼ Sð0Þ
2�ðbBÞ�1

: (A.59)

That is, the ESS switches when the infection density obeys Equation A.59. This implies that the

ESS should have the threshold
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�� ¼ cIrðt �jt �Þ ¼ cK

2�ðbBÞ�1
; (A.60)

where we have substituted Sð0Þ ¼K, the carrying capacity of the bacteria. Equation A.60 is also pre-

sented in the main text (Equation 6). This equation was used to provide the analytical estimates

shown in Figure 4B.
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