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Bayesian analysis of heavy ion collisions with the heavy ion computational framework TRAJECTUM
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We introduce a model for heavy ion collisions named TRAJECTUM, which includes an expanded initial stage
with a variable free streaming velocity vfs and a hydrodynamic stage with three varying second order transport
coefficients. We describe how to obtain a Gaussian emulator for this 20-parameter model and show results for
key observables. This emulator can be used to obtain Bayesian posterior estimates on the parameters, which
we test by an elaborate closure test as well as a convergence study. Lastly, we employ the optimal values of
the parameters found in Nijs et al. [G. Nijs, W. van der Schee, U. Gürsoy, and R. Snellings, Phys. Rev. Lett.
126, 202301 (2021)] to perform a detailed comparison to experimental data from PbPb and pPb collisions. This
includes both observables that have been used to obtain these values as well as wider transverse momentum
ranges and new observables such as correlations of event-plane angles.
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I. INTRODUCTION

The collisions of heavy ions at the Relativistic Heavy Ion
Collider (RHIC) at Brookhaven and the Large Hadron Col-
lider (LHC) at CERN have led to an accepted picture of a short
prehydrodynamic phase followed by a relativistic fluid com-
posed of quark-gluon plasma (QGP) with remarkably small
shear viscosity [1].

The most convincing evidence for an almost perfect fluid
comes from the anisotropies of the particle spectra at low
momentum in combination with elaborate hydrodynamical
modeling that can explain these nontrivial correlations [2].
This started with ideal hydrodynamics (effectively having
shear viscosity η = 0) [3], after which simulations including
viscosity pointed to a surprisingly small value of the specific
viscosity of η/s ≈ 0.08, with s the entropy density [4]. This
value was particularly exciting, since results from string the-
ory using a holographic dual black hole indicate that quantum
matter that is infinitely strongly interacting has a universal
specific viscosity equaling η/s = 1/4π ≈ 0.08 [5].

This hydrodynamic modeling relied on two pillars. First,
it was assumed early on that the exploding debris left after
the collision interacts so strongly that starting at a time as
early as 1 fm/c (as in [4]) a fluid would be formed that can
be described by viscous hydrodynamics. This assumption is
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nontrivial since the full stress-energy tensor has many more
degrees of freedom (nine for conformal matter) as compared
to hydrodynamics (the energy density plus fluid velocity gives
four degrees of freedom). This assumption of fast “hydrody-
namization” has been substantiated by studies in holography
which showed that far-from-equilibrium matter can always
be described by hydrodynamics within a time of the inverse
temperature 1/T [6–8]. Similarly fast times have been found
utilizing kinetic theory at a realistic value of the coupling
constant [9,10].

Second, the hydrodynamic simulations need initial profiles
for the energy density and fluid velocity. A Monte Carlo
Glauber model [11] can provide a realistic estimate of the
distribution of nucleons inside a heavy ion, but a priori it
is not clear how this translates into an energy density for
the plasma. Two naive pictures are to add up all left- and
right-moving colliding pairs (binary collisions), as would be
appropriate for a completely transparent collision where all
interactions are independent (this is indeed applicable for the
production of highly energetic quarks or gluons). For the low
energy dynamics the collisions are not independent and it is
more realistic to add up colliding nucleons, without doubly
counting them if they collide several times (wounded nucleon
approximation). In Sec. II A we review the more elaborate
phenomenological TRENTO model [12], but here we note that
none of these descriptions are based on microscopic insights.
Exceptions to this are the color glass condensate (CGC) initial
model [13], Eskola-Kajantie-Ruuskanen-Tuominen (EKRT)
model [14], or models from holography [15].

Especially the uncertainty in the initial prehydrodynamic
stage has led to considerable uncertainty for the hydrody-
namic transport coefficients. One example is the difference in
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the estimate for η/s ≈ 0.08 of [4] (using binary collisions) or
η/s ≈ 0.20 when using CGC initial conditions [16]. Further-
more, in these references the bulk viscosity was assumed to
vanish and the comparison with experiment focused on the
anisotropic flow coefficients. When also demanding a simul-
taneous fit of the mean transverse momentum of all identified
particle species it turns out that [16] needed a sizable bulk
viscosity, which in turn meant that the shear viscosity was
refitted to a value of η/s ≈ 0.095 [17].

All of this is to stress the significant uncertainties in
the precision analysis of the QGP and furthermore the im-
portance of having a model that describes all experimental
results simultaneously, preferably among different colliding
systems as well as across vastly different colliding energy
scales. This can be done by a sufficiently flexible model setup,
where all free parameters are obtained from a global analysis,
comparing with as much experimental data as possible. Refer-
ences [18–22] pioneered such studies using large computing
resources combined with emulation and Markov chain tools
inspired from similar analyses in cosmology. This culminated
in the most precise temperature dependent estimate for the
QGP shear viscosity to date [23].

In the current paper we will build on this expertise, which
was generously made available on GitHub together with an
excellent documentation [24,25]. First, we enlarge the scope
of the prehydrodynamic phase by allowing a free streaming
parameter that can interpolate between noninteracting free
streaming with the speed of light to no streaming at all.
On the one hand this is motivated by possible interactions
during this phase, which can slow down the free streaming.
On the other hand, by enlarging the scope of the model we
can gauge the sensitivity of (physical) QGP parameters such
as the viscosities to the specific parametrization used for the
initial condition. Second, we enlarge the set of parameters
with three second order hydrodynamic transport coefficients.
This is again motivated to study the robustness of previous
results on the specifics of the hydrodynamic code, but we also
hope that after the relatively successful determination of η/s
constraints can be obtained on second order transport coef-
ficients. Third, an important addition is the addition of more
experimental observables, such as the transverse momentum
differential observables for pions, kaons, and protons, both for
the yield as well as the anisotropic flow coefficients.

Of special recent interest is the debated question whether a
QGP can also form in (high multiplicity) proton-ion (pA) col-
lisions [26]. It is for this reason that we include pPb collisions
in our analysis (also done in [27]). First, by obtaining results
both with and without pPb collisions it is possible to at least
give a partial answer if hydrodynamic modeling can describe
low momentum experimental data in pPb. Second, if this is
indeed possible it is the expectation that these collisions can in
principle be more sensitive to several observables influenced
by large gradients, which would average out for the larger and
longer lived PbPb system.

In Sec. II we will describe this enlarged model which
includes ten parameters for the initial stage, six first order
and three second order transport coefficients, and one final pa-
rameter at which temperature to particlize our hydrodynamic
fluid into hadrons for a subsequent hadronic cascade code. In

FIG. 1. Components implemented in TRAJECTUM. Also shown
are the dependencies between the various components, where the
information flow is indicated by the arrows. Note the (perhaps nonob-
vious) arrow between the equation of state/transport coefficients and
the initial conditions. This allows the initial conditions to access
information which is for example needed for Gubser flow.

Sec. III we describe its results, including a detailed study of
how several observables depend on any of our twenty param-
eters. We furthermore present several computational aspects,
including elaborate closure tests.

Importantly, global analyses have never been performed
with transverse momentum dependent spectra or (identified)
transverse momentum dependent anisotropic flow coeffi-
cients. In our companion paper [28] we attempt to fill this
lacuna by comparing to such experimental data, both for PbPb
and pPb collisions. A detailed analysis of the resulting QGP
properties is presented in Sec. IV.

II. THE TRAJECTUM FRAMEWORK

The results in this paper have been generated using the new
heavy ion code TRAJECTUM. TRAJECTUM is named after the
old Roman name for the city of Utrecht, where the code was
developed. The code is written in C++ and incorporates the
computation of the initial conditions, prehydrodynamic phase,
hydrodynamic phase, and the particlization inside a single
executable. Furthermore, for each of these components a base
class specifies the interface with which the component com-
municates with the other components. In this way, it becomes
possible to have several versions for each component, which
the user can swap out as desired. The common interface then
guarantees that whichever choice the user makes the compo-
nent will consistently interact with the others. Additionally,
TRAJECTUM will also query of each chosen component which
parameters it requires to function properly, and will check a
user-specified parameter file to read these parameters.

In Fig. 1 we show the various components, as well
as the interactions between them. The particle content can
serve as an example of the statement that components au-
tomatically interact correctly with the others. In the current
implementation, it is possible to choose from the particle
content of URQMD [29,30] or SMASH [31–33]. Upon the user
choosing one of these options, the choice is automatically
communicated to the class handling particlization, which
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needs this to work out which particles to produce, but also
to compute viscous corrections and amounts of particles of
each type to be produced. Upon the user choosing one of
these options, the choice is automatically communicated to
the class handling particlization, which uses this to compute
a list of particles coming out of the hydrodynamic phase.
In addition, the choice is automatically communicated to the
class handling the equation of state (EOS), where it is needed
for the hadron resonance gas (HRG) part of the equation of
state.

As another example, consider the choice between (2 +
1)-dimensional (2 + 1D) and (3 + 1)-dimensional (3 + 1D)
hydrodynamics. These models require different behaviors
from the initial conditions, the partial differential equation
(PDE) solvers, and the particlization algorithms. In particular,
components like the initial conditions need extra parameters
to set up a 3 + 1D simulation [34]. This does not lead to
incompatibility between different sets of components though,
as each component is guaranteed to work well together with
whichever other components the user chooses. Instead, the
components communicate, and change their behavior even
according to which other components they are combined with.
As a result, in case the user specifies 3 + 1D hydrodynamics,
the component responsible for the initial conditions will make
sure that the user also specifies the extra needed parameters.

A. Initial conditions

For the initial conditions, one can choose from the fol-
lowing options: (1) Monte Carlo Glauber [35–38]; (2) Ohio
State University [39,40]; (3) TRENTO, both with and without
nucleon substructure [12,27]; and (4) Gubser flow [41–43].
Although conceptually separate, in TRAJECTUM the prehy-
drodynamic phase is part of the initial conditions. Therefore
the prehydrodynamic phase presented in the next subsection
is only available when using TRENTO initial conditions. The
Gubser initial conditions initialize the fluid according to the
Gubser solution, but the time dependent Gubser flow will
only be recovered if the ideal gas equation of state is used
for the hydrodynamical evolution (see Sec. II D), as this is a
conformal equation of state.

In the analysis presented in this paper, we use the TRENTO

model with nuclear substructure [27]. The TRENTO model
describes nuclei using a Woods-Saxon distribution, where a
minimal internucleon distance dmin is imposed. Each nucleon
subsequently is made up of nc constituents, each with width
given by

vmin + χstruct(w − vmin),

with vmin = 0.2 fm, and w and χstruct parameters. The con-
stituents are sampled from a Gaussian distribution, such that
the width of the matter distribution in each nucleon is w on
average. After sampling the configuration of each nucleus,
every pair of nucleons is labeled wounded with a probability
based on their overlap, in such a way that the nucleon-nucleon
cross section σNN equals the proton-proton cross section for
that particular collision energy (63 mb for 2.76 TeV and 70 mb
for 5.02 TeV). The constituents in each wounded nucleon each
then source a thickness function with a Gaussian distribution,

where for each individual constituent the norm of the Gaus-
sian is given by Nγ /nc. Here γ is sampled from a gamma
distribution with width σfluct

√
nc, and N and σfluct are param-

eters. In this way, for each nucleus a thickness function is
computed, TA and TB. These functions are combined together
as

T =
(T p

A + T p
B

2

)1/p

, (1)

with p a parameter. This parametrizes a wide range of ini-
tial conditions, whereby in particular for p = 1 we have
T = TA + TB (also called wounded nucleon scaling) and for
p = 0 (1) reduces to T = √

TATB, which is qualitatively
similar to EKRT [14,21] or holography [15]. This thickness
function T is then assumed to be boost invariant and pro-
portional to the energy density, whereby the proportionality
factor is given by 1/τ , as is appropriated for a pressureless
fluid. TRAJECTUM is capable of extending this to the 3 + 1D
case [34], but this was not used in this paper.

B. Prehydrodynamic phase

After obtaining the initial conditions, the matter is free
streamed for a time τfs with velocity vfs. This is a physically
significant modification of the implementation [44–46] used
in [23], where vfs = 1. Since the free streaming evolution
starts at proper time τ = 0+, the initial velocity in the lon-
gitudinal direction is zero and we have T μη = 0, with η here
referring to spacetime rapidity. This results in the following
stress-energy tensor:

T μν (x, y) = 1

2πτfs

∫ 2π

0
dφ p̂μ p̂ν

× T (x − vfsτfs cos φ, y − vfsτfs sin φ) (2)

with

p̂μ p̂ν =

⎛
⎜⎝

1 vfs cos φ vfs sin φ

vfs cos φ v2
fs cos2 φ v2

fs cos φ sin φ

vfs sin φ v2
fs cos φ sin φ v2

fs sin2 φ

⎞
⎟⎠.

It is interesting to examine the small τfs behavior of the
prehydrodynamic stress-energy tensor. For this purpose, we
expand (2) for small τfs. In this case, the integral can be
performed analytically, resulting in the following expression:

T μν =

⎛
⎜⎜⎜⎝

T
τfs

−T v2
fs

2 ∂x log T −T v2
fs

2 ∂y log T

−T v2
fs

2 ∂x log T T v2
fs

2τfs
0

−T v2
fs

2 ∂y log T 0 T v2
fs

2τfs

⎞
⎟⎟⎟⎠,

where we omit the spatial arguments for brevity. By solving
the eigenvalue problem

T μνuν = ρuμ,

we can then extract the fluid velocity:

uμ =
(

1,− v2
fsτfs

2 + v2
fs

∂x log T ,− v2
fsτfs

2 + v2
fs

∂y log T
)

+ O
(
τ 2

fs

)
.

(3)
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Using holographic simulations [47–49] it was found in [50]
that at strong coupling in a conformal theory an appropriate
initial velocity can be initialized with u⊥ ≈ − τ

3.0∇⊥ log T .
Quite curiously this exactly agrees with (3) for vfs = 1. This
is somewhat coincidental, since the holographic evolution is
quite unlike free streaming. Free streaming has zero longi-
tudinal pressure, whereas the holographic evolution has a
large negative longitudinal pressure at early times, but quickly
hydrodynamizes towards a positive longitudinal pressure (see
also [51,52]). Depending on the starting time of hydrody-
namics this pressure can average to the zero free streaming
result. Note also that this does not mean that the entire stress
tensor agrees. In particular, the holographic result features fast
hydrodynamization, whereas we will see in Sec. III F that in
our model the prehydrodynamic phase takes the fluid away
from hydrodynamics, and that a free streaming velocity of
around 0.93 minimizes deviations from hydrodynamics for
the bulk viscous pressure. For the shear tensor, minimization
of deviations from hydrodynamics is achieved for vfs ≈ 0.6.

C. Hydrodynamic phase

For the hydrodynamics model, one can choose between
one including only first order transport coefficients, and one
including also the second order transport coefficients from
the 14-moment approximation [53]. Both of these choices
are available in both 2 + 1D (assuming boost invariance) and
3 + 1D versions. In the analysis presented in this paper, we
used the second order 2 + 1D version. This solves the conser-
vation equations for the stress-energy equation

∂μT μν = 0, (4)

with ∂μ the covariant derivative. We use the constitutive rela-
tion

T μν = ρuμuν − (P + �)μν + πμν, (5)

with μν = gμν − uμuν , uμ the local fluid velocity, and gμν a
mostly minus metric. The relation between the energy density
ρ and the pressure P is given by the equation of state, which is
discussed in Sec. II D. There are also two viscous corrections,
πμν and �. The shear tensor πμν is a symmetric traceless
tensor which is transverse to uμ. It and the bulk pressure �

obey the second order 14-moment approximation equations
of motion [53], where we keep only the transport coefficients
that have been computed explicitly in [53]:

D� = − 1

τ�

[� + ζ∇ · u + δ��∇ · u�

− λ�ππμνσμν], (6)

μ
αν

βDπαβ = − 1

τπ

[
πμν − 2ησμν

+ δπππμν∇ · u − φ7π
〈μ
α πν〉α

+ τπππ 〈μ
α σ ν〉α − λπ��σμν

]
. (7)

Here D ≡ uμ∂μ, ∇μ ≡ μν∂ν , and σμν ≡ 1
2 (∇μuν +

∇νuμ) − 1
3 (∇ · u)μν . These constitutive equations do

not include vortical transport as well as some second order
transport coefficients involving the bulk viscous pressure �.

Both of these are expected to be small in boost invariant
settings with approximate conformal symmetry.

D. Equation of state and transport coefficients

For the equation of state and transport coefficients, there
are two possible choices available in TRAJECTUM.

1. Ideal gas equation of state P = αT 4, with α a constant
specifiable by the user

This equation of state comes with constant user-specifiable
values for the dimensionless ratios of transport coefficients:

η

s
,

ζ

s
,

τπ sT

η
,

τ�sT

ζ
,

δππ

τπ

,

φ7P,
τππ

τπ

,
λπ�

τπ

,
δ��

τ�

,
λ�π

τ�

.

Note that the dimensionless ratios for τ� and λ�π differ
from that used by the other equation of state and transport
coefficients model, by factors (1/3 − c2

s )2 and (1/3 − c2
s )−1,

respectively. The reason for this is that for this particular
equation of state the speed of sound cs equals

√
1/3, which

would cause τ� to be infinite, with similar issues for λ�π .

2. Lattice QCD/HRG hybrid equation of state with temperature
dependent shear and bulk viscosities

In this model, the equation of state is a hybrid constructed
from the HotQCD lattice equation of state, together with the
HRG constructed from the chosen particle content [24,54,55].
Here the analytical fit described in [55] to the lattice equation
of state is used instead of a tabulated form, and the transition
between the two parts of the equation of state lies in the region
165–200 MeV. A consistent switch from hydrodynamics to a
HRG is therefore possible for temperatures below 165 MeV,
as in this region the EOS is constructed from the HRG (see
also Sec. II F). The user can also specify mostly the same
dimensionless ratios of transport coefficients as in the ideal
gas model, except for the bulk relaxation time τ� and the
coefficient λ�π , for which we instead specify

τ�sT
(
1/3 − c2

s

)2

ζ
,

λ�π

τ�

(
1/3 − c2

s

) .

Another difference from the previous model is that we now
allow for temperature dependence in the dimensionless ratios
for both the shear and bulk viscosities, which are given by the
following expressions:

η

s
=

{
a + b(T − Tc)

(
T
Tc

)c
T � Tc,

0.06 T < Tc,

ζ

s
= (ζ/s)max

1 + ( T −(ζ/s)T0
(ζ/s)width

)2 ,

with Tc = 154 MeV, and a = (η/s)min, b = (η/s)slope, and
c = (η/s)crv, (ζ/s)max, (ζ/s)width, and (ζ/s)T0 user-specifiable
parameters. In the analysis presented in this paper, the lattice
QCD/HRG hybrid equation of state with temperature depen-
dent viscosities was used.
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In the Bayesian analysis, we varied all parameters govern-
ing the shear and bulk viscosities η/s and ζ/s, as well as the
following three second order transport coefficients:

τ�sT
(
1/3 − c2

s

)2

ζ
,

τπ sT

η
,

τππ

τπ

.

We keep the remaining coefficients

δ��

τ�

= 2

3
,

λ�π

τ�

(
1/3 − c2

s

) = 8

5
,

δππ

τπ

= 4

3
,

φ7P = 9

70
,

λπ�

τπ

= 6

5

fixed to the kinetic theory values [53] in the limit of small par-
ticle masses, which is a common choice from earlier analyses.
In this paper we made the choice to vary the two relaxation
times, which most likely have the largest influence on the
hydrodynamical evolution, as well as one additional coeffi-
cient τππ that does not vanish in the conformal limit. In future
work it would be important to vary also other second order
coefficients, but we note that varying more parameters can
come at a significant computational cost.

E. PDE solvers

There are two choices available for the PDE solvers that
solve the equations of motion (4), (6), and (7).

1. Finite difference [56]

This method discretizes spatial derivatives by simply tak-
ing a symmetric finite difference. An advantage of this method
is that it is fast since it is simple and does not need a lot of
computations. A disadvantage, though, is that this method is
not always stable, and can diverge in the presence of shocks or
other large spatial gradients, especially if the shear viscosity is
small. Of course, in the setting of a Bayesian analysis, this is
not a good tradeoff, as we need to be able to generate theoret-
ical predictions even for very “exotic” choices of parameters.

2. MUSCL [57,58]

This method separates the equations of motion into a
part describing conserved quantities, plus a source term. The
conserved part is then solved by examining the fluxes be-
tween each pair of neighboring grid points, where the left-
and right-moving fluxes are combined using the Kurganov-
Tadmor algorithm [57]. Crucially, the fluxes are subsequently
limited using the minmod flux limiter, which guarantees the
stability under all circumstances. For small gradients the flux
limiting vanishes and the result of MUSCL agrees exactly. Sta-
bility makes this method well suited for our purposes, as it will
produce an accurate result under all circumstances. The price
to pay for stability, though, is speed, as the MUSCL algorithm is
more complicated. The most computationally expensive part
of using MUSCL is the computation of the velocity and energy
density from the primary variables (T ττ , T τx, T τy, πμν , and
�). This step is required five times more often in MUSCL

as compared to finite difference in order to evaluate its flux
limiting feature that makes the code stable in presence of

shocks. For this reason, we wrote a “fast” version of MUSCL

that applies the same flux limiting procedure directly to the
velocities instead of computing the velocities from the flux
limited stress tensors. In a regime in which the velocity can
be approximated as a linear function of the stress tensor, this
modified flux limiting procedure is identical to the original
MUSCL. We have also verified that this fast version is just
as stable as the unmodified version, and that the difference
between both results is negligible for our simulations. In this
paper, we used the fast version of MUSCL.

F. Particlization and hadronic phase

For the particlization, only the Cooper-Frye procedure with
viscous corrections as presented in [24,59] is available. This
model finds the isotemperature surface of the switching tem-
perature Tswitch, and subsequently generates particles at that
surface from a thermal distribution in the local restframe with
temperature Tswitch. In the Bayesian analysis we vary this parti-
clization temperature. For a continuous evolution the equation
of state must match the one derived from the particle content
used in particlization, which in our implementation is only
the case for the lattice QCD/HRG hybrid equation of state.
The other equation of state is implemented mostly for testing
purposes and is not used in the results presented.

For the viscous corrections at each location, the spatial
momenta pi of the sampled particles are subsequently rescaled
by

pi 	→ pi +
∑

j

[(λshear)i j + λbulkδi j]p j .

Here, (λshear)i j ∝ πi j , where the proportionality constant,
which is species independent, is determined by demanding
that to linear order the resulting HRG has the same shear
tensor as the fluid from which πi j was taken. Likewise, λbulk

is computed from a similar HRG computation, however the
dependence of λbulk on � is nonlinear. Lastly, the density
of sampled particles is adjusted as a function of � in order
to match the energy density of the fluid [60]. In this way,
the entire stress-energy tensor is by construction on average
continuous across the particlization surface. The nonlinearity
of the dependence of λbulk on � guarantees that large negative
values for � cannot flip the sign of the momenta of the
sampled particles. It is important to note that this method is
only one way to generate a continuous stress-energy tensor
and for future work it would be interesting to verify that
different methods do not strongly affect the results, such as,
e.g., studied in [61,62].

The sampled particles subsequently undergo a hadronic
cascade. TRAJECTUM does not incorporate this hadronic cas-
cade itself, but it does offer the flexibility to work with
more than one possible code for this cascade, namely,
URQMD [29,30] and SMASH [31–33]. These two codes require
their inputs to be in slightly different formats, but importantly
for the whole simulation their resonance content is differ-
ent. This means that in order for TRAJECTUM to consistently
interact with the hadronic cascade, it must use the exact
same resonance content, to indeed ensure continuity across
the particlization surface. In this paper, we have solely used
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FIG. 2. Particle multiplicity where centrality has been deter-
mined from 10 000 events, relative to the true distribution from which
the samples were obtained.

SMASH, as that contains a few more resonances as compared
to URQMD.

G. Validation of TRAJECTUM

Because TRAJECTUM is a new code, it is important to val-
idate its results. We performed several checks to verify the
correct functioning of the code.

(1) To test the equations of motion, we compared the nu-
merical computation of Gubser flow to the analytically
known result [41–43]. This leads to good agreement,
but in Gubser flow there is no bulk viscosity, and there
is also little dependence on second order coefficients.
For this reason we performed an additional check, by
comparing the implementation of the equations of mo-
tion for generic events to an independently performed
computation in MATHEMATICA. The two computations
agree to machine precision.

(2) The particlization procedure we use is designed so
that on average the stress-energy tensor is continuous
across the particlization surface. We checked that this
is indeed true to good precision, by oversampling the
number of produced particles, producing a statistically
significant sample.

(3) We compared various quantities such as the initial
state eccentricities εn between our implementation of
TRENTO and the original version [63], finding good
agreement.

(4) We computed the observables from [23] using the
maximum a posteriori (MAP) values for the parame-
ters specified there. The results from TRAJECTUM agree
well with theirs.

H. Centrality classes

A common but relatively large problem is the determi-
nation of centrality classes. When using a finite number of
minimum bias events [O(104)] the boundary between cen-
trality classes can easily be the dominant error, especially for
observables that depend strongly on centrality. This is illus-
trated in Fig. 2, where we show the ratio of the multiplicity

of six random samples to the “true” distribution (taken from
Sec. IV, we also used this distribution to draw the random
samples). For a realistic simulation using 10 000 minimum
bias events this results in errors up to 10%, which is especially
unfortunate as this particular observable has low experimental
uncertainties.

For the theoretical centrality determination it is however
possible to use a trick to resolve this statistical problem with-
out running extra hydrodynamic simulations. First, it is known
that for PbPb the initial entropy correlates very well with
final state multiplicity. In turn, the initial entropy correlates
very well with the spatial integral of the initial thickness
function in TRENTO, for which one does not need to perform
the computationally expensive free streaming stage. The way
in which one can use these facts is to generate a large number
O(105) of TRENTO simulations, and in this way generate an
accurate distribution of initial thickness functions. We then
sort the simulations into bins, and we save the upper and
lower initial thickness functions for each bin. Subsequently,
for each bin we run the entire hydrodynamical evolution for
some fixed number of events with initial thickness function
within the bin boundaries. In this way, we guarantee that for
these events the initial thickness functions are distributed the
same way as for the large set described above. Since the initial
thickness function correlates well with the final multiplicity,
we generate final multiplicities with the correct distribution as
well, and hence get a determination of centrality as if we had
used O(105) events. In the limit of a large number of events,
the distribution still converges to the true distribution as long
as the number of initial condition simulations is larger than
the number of full hydrodynamics computations. The only
difference is that it converges to the true distribution faster
than without this optimization, so the resulting events are still
minimal bias. In particular, since our centrality determination
is based on final state multiplicity this means that even if the
final state multiplicity does not correlate well with the initial
thickness function the final distribution will still converge to
the true distribution, albeit at a slower rate than with a strong
correlation and our improved algorithm.

One can also use this method to generate weighted sam-
ples, by simply generating more events for the desired bins.
For our pPb simulations, we bias the selection towards higher
multiplicities, and subsequently weigh events in the analysis
accordingly. In this way we obtain better statistics for (rela-
tively rare) higher multiplicity events.

A related, but separate issue is the experimental centrality
selection. In our boost invariant simulations our only choice
is to bin events according to their multiplicity at midrapidity.
Experimentally, however, centrality classes are often selected
by binning at relatively high rapidity (ALICE often uses the
V0 detectors, located at pseudorapidities −3.7 up to −1.7 and
at 2.8 up to 5.1). For PbPb collisions this bias is not so severe,
since the V0 amplitude correlates strongly with multiplicity
at midrapidity (see Fig. 15 in [64]), but for pPb this can
introduce a serious bias [65]. Ideally we would compare to
experimental data that also determine centrality at midrapid-
ity, but unfortunately this is rarely available. This is part of the
reason why we chose to independently fit the normalizations
in PbPb and pPb collisions.
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FIG. 3. Left: Emulator prediction shown against model output (validation) for charged pion multiplicity in the 1.8–2.2-GeV pT bin for the
0–20% centrality class using 1000 design points. When emulating the logarithm of the yield (labeled log, red) the accuracy of the emulator is
much improved. The right three plots compare the emulator error, defined as 〈|yemu/yval − 1|〉 vs the number of design points for the left plot,
v2{4} at 20–30% centrality and dNch/dη in pPb at 0–20% centrality, respectively (validation vs emulator results are shown as insets). For v2{4}
the statistical error becomes dominant at about 250 design points and the log scaling does not improve. For pPb the emulator error is relatively
large, which is the reason why this paper uses 2000 design points for pPb.

III. RESULTS

A. Emulator

As our aim is to perform a global analysis of heavy ion
collisions depending on all parameters specified in Sec. II
it is necessary to obtain a large sample of events for many
points in this parameter space. Even for a single parameter
point it is however computationally expensive to obtain suffi-
cient statistics for interesting observables, and it is therefore
standard practice to evaluate the model at a number ndesign

of “design” points in the parameter space and employ an
emulator to interpolate those results to any point in parameter
space. These design points are typically distributed on a latin
hypercube with reasonable (physical) limits on the parameter
range [24,66], that in our case will equate with the range of
prior probabilities.

To further reduce computational time we decided to leave
the nucleon-nucleon cross section σNN as a parameter. The
major advantage of doing so is that a single scan over the
design points can be used to compare to experimental data
from several colliding energies. The addition of one extra
parameter is much more efficient than performing two sep-
arate scans. Each energy will have its own normalization and
cross section, whereby either we can choose to fix the cross
section to its independently measured proton-proton value, or
we can leave it up to the Bayesian analysis to estimate the
cross section. In the current paper we fix σNN = 63 (70) mb
for collisions at

√
sNN = 2.76 (5.02) TeV.

For the emulator we train a Gaussian process emulator
with a squared exponential (a Gaussian) plus a noise ker-
nel [24,25,67], as implemented in the SCIKIT-LEARN library
for PYTHON. Even though the emulator itself estimates its
own uncertainty it is important to validate its output, which
is shown in Fig. 3 for three representative observables. The
uncertainty of the emulator is not shown for clarity, but cor-
responds well with the actual validation error (equal to the
deviation from the black diagonal line). For some observables
such as transverse momentum spectra the spread of points
is such that for points with small values a small emulator
error can make a large relative change. In these situations
it is often better to train the emulator on the logarithm of
the datapoints, and afterwards exponentiate the emulator re-

FIG. 4. We show the validation of our emulator for PbPb (top)
and pPb (bottom) systems in red, whereby we show the average of
the emulator discrepancy with the true model result for 200 valida-
tion points (red). Experimental uncertainties are shown and often of
the same order as the emulator uncertainty, which in turn is much
smaller than the parameter range probed (orange). Statistical model
uncertainty is dominant for a few statistically difficult observables
(green). The pPb system is much harder to emulate, as also found
in [25].
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FIG. 5. We show v2{2} for the 1.0–1.4-GeV pT bin for pions, kaons, and protons in the 20–30% centrality class as a function of our model
parameters. All parameters are fixed to the optimal point found in [28], with the exception of the varying parameter displayed. The relevant
datapoints [68] are displayed at its optimal point. As expected the elliptic flow decreases as the shear viscosity is increased. Similarly strong
dependencies are seen for the TRENTO parameter p [affecting the initial geometric anisotropy, see (1)] and for protons the norm and fluctuations
σfluct are important.

sults. This is shown as the “normal” versus “log” result in
Fig. 3, and gains can be as large as a factor 3 reduction in
emulator error. In this paper we decided to designate dN/dη,
dET /dη, and the transverse momentum spectra of pions,
kaons, and protons as observables on which to perform the log
transformation.

For an accurate emulation with limited computing re-
sources it is important to balance the number of design points
versus the number of events per design point. For some ob-
servables, such as the v2{4} shown in Fig. 3 (the observable
vn{k} is defined in Sec. IV C), statistics is often the limit-
ing factor and increasing the number of design points does
not improve the emulator uncertainty. For statistically eas-
ier observables, such as the multiplicity, the emulator error
decreases as approximately 1/

√
ndesign up to larger ndesign.

Second, we noticed that pPb observables are more difficult to
emulate. For these reasons we chose to model PbPb and pPb
with 1000 and 2000 design points, using 6000 and 40 000
events per design point, respectively.

To emulate the full dataset it is important to perform a
linear transformation on the datapoints, as these are often
highly correlated. This is done using a principal component
analysis (PCA), which extracts the few principal components
(PCs) that contain independent information. In our dataset
we found that the first 25 PCs per colliding system suffice,
capturing over 97% of the variation in the data. An impor-
tant criterion on the number of PCAs to use is the estimated

(statistical) noise found by the emulator training. For our case
only from the ninth PC onward the noise levels can surpass
10%, and only at the 22nd and 24th the noise was dominant
(over 40%), which led us to conclude that 25 PCs is sufficient
to capture all nontrivial information. Performing the PCA also
automatically gives a good estimate of theoretical correlations
among the datapoints, which will be important later (the log
transformation above also needs to be applied to the correla-
tion matrix).

After performing the PCA it is again necessary to validate
the emulator, which is shown in Fig. 4 for PbPb (top) and
pPb (bottom) in red. This is estimated by taking the model
values m and emulator predictions e for the same 200 val-
idation points for all our observables, where the red points
then correspond to 〈e/m〉 ± s, with s the standard deviation
of e/m. For comparison we also show the experimental error
of the datapoint (blue), the average statistical error of our
model (green), and the range of model predictions given our
prior range, defined as the standard deviation over the mean
(orange). Ideally the emulator uncertainty should be smaller
than the experimental uncertainty, but this is only the case for
a few observables and adding further design points is hence
likely to improve our results. The statistical uncertainty is only
dominant for statistically difficult observables, such as pT -
differential v2, and can be improved by running design points
with more events. Lastly, we find that the range of model
output is often roughly five times the emulator uncertainty,
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FIG. 6. Similar to Fig. 5 we show the multiplicity for the 1.0–1.4-GeV pT bin for pions, kaons, and protons in the 20–30% centrality class
as a function of our model parameters normalized to the relevant datapoints [69]. As expected the multiplicity depends strongly on the norm.
Strong dependencies for the proton to pion ratio are seen for the switching temperature (as expected) as well as the bulk viscosity.

which gives a good discriminating power. As is clear from
the plots the emulator performs worse for pPb collisions than
for PbPb collisions (consistent with [25]), which is the reason
why we ran pPb with 2000 design points and used only 1000
design points for PbPb.

B. Parameter dependence of observables

Once we have a fully trained emulator we can evaluate
the emulator on a set of parameters and immediately obtain
all observables, reducing the computational time from days
to fractions of a second. As we have 514 observables as a
function of a 20-dimensional parameter space it is impossible
to display all this information here, but in Figs. 5 and 6 we,
respectively, show the representative v2{2} and multiplicity
in the intermediate pT bin of 1.0–1.4 GeV for pions, kaons,
and protons in the 20–30% centrality class. All panels use
the optimal parameters found in [28], with the exception of
the parameter being displayed. The experimental datapoint is
shown at the optimal value for the parameter itself, such that
at this point all curves agree exactly with each other and are
indeed also close to the actual datapoint.

A few things are as qualitatively expected: v2{2} decreases
as we increase either (η/s)min or (η/s)slope. v2{2} depends sen-
sitively on the TRENTO parameter p. The multiplicity depends
strongly on the norm (but perhaps surprisingly less so for pro-
tons) and the proton to pion ratio increases for higher Tswitch.
As also expected the dependence on second order transport

coefficients is much less pronounced, and it is not possible to
extract a preferred value by just looking at these plots; we
will come back to a global analysis shortly. We also see a

FIG. 7. To illustrate the interaction of the norm and width of the
bulk viscosity we fix all parameters at, respectively, 20, 50, and 80%
of their range and at the MAP value. Clearly, when the norm is at
80% there is a much stronger dependence on the width. Only if either
the norm or the width is close to zero it is possible to simultaneously
fit the pion, kaon, and proton multiplicities in this intermediate pT

bin.
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FIG. 8. To illustrate the centrality dependence more clearly we
show v2{4} (solid), v2{2} (dashed), and v3{2} (dotted) coefficients
(top) and δpT fluctuations (bottom) for several centrality classes as a
function of representative parameters for 2.76-TeV PbPb collisions.
There is a clear increase in both δpT as well as the difference between
v2{4} and v2{2} when increasing fluctuations through σfluct.

strong dependence on the bulk viscosity through (ζ/s)max on
both the particle ratios as well as v2{2}. This is partly due
to the influence of the bulk viscosity on hydrodynamics, and
partly due to its influence on the stress tensor at the moment
of particlization (see [61] for a more detailed study on the
influence of particlization; we use what they call the PTB
prescription). In the Appendix we show similar results for pPb
collisions, this time showing the elliptic flow coefficient and
the mean kaon transverse momentum for several centrality
classes. As already mentioned emulator uncertainty is larger
for this smaller system, but it is still clear that dependence
on our parameters is increasingly nontrivial as we go to these
smaller systems.

Of course the sensitivity of observables on a parameter
may (strongly) depend on the location in the parameter space.
From Figs. 5 and 6 it may for instance seem that observables
are rather insensitive to the width of the bulk viscosity. This,
however, is due to the low value of the norm for the bulk vis-

FIG. 9. We show the pT -differential v2{2} for five pT bins as a
function of the shear and bulk viscosity for the 20–30% centrality
class (top), as well as the integrated v2{2} for several centrality
classes (middle). Quite interestingly the bulk viscosity causes an
increase of v2{2} in all pT bins, even though the integrated v2{2}
decreases. This can be understood by the fact that the mean pT

decreases as a function of the bulk viscosity (bottom left). We also
note an increase in mean pT as a function of vfs (bottom right).

cosity for the optimal parameters, which in turn (physically)
means there is little to no effect of (ζ/s)width. Note though
that this (physical) correlation is not explicitly put in for the
emulator, and even for (ζ/s)max = 0 some dependence on the
width is still expected, at least within the error band of the
emulator. All this can be clearly seen in Fig. 7, which shows
the sensitivity of the number of pions, kaons, and protons
with pT ∈ 1.0–1.4 GeV to (ζ/s)width where all parameters
are chosen to lie at 20, 50, and 80% of the prior range or
at the MAP point, respectively. In this case we hence have
that (ζ/s)max = (0.06, 0.15, 0.24, 0.0060). Clearly the largest
variation is present for (ζ/s)max = 0.24, which incidentally
also has the highest overall yield since the norm N is then also
fixed at 80%. The figure also shows that unless either (ζ/s)max

or (ζ/s)width is close to zero it is hard to obtain simultaneous
agreement with the experimental datapoints for all identified
particles.

Some observables have a strong centrality dependence. For
this reason we show in Fig. 8 the anisotropic flow coefficients
v2{2}, v2{4}, and v3{2} as well as the transverse momentum
fluctuations for three different centrality classes as a function
of a few representative parameters. As can be expected the
transverse momentum fluctuations depend sensitively on the
fluctuating TRENTO parameter σfluct (see Sec. II A). A large
bulk viscosity on the other hand reduces the pT fluctuations.
The difference between v2{4} and v2{2} increases strongly
as σfluct increases, especially for central collisions. This is in

054909-10



BAYESIAN ANALYSIS OF HEAVY ION COLLISIONS … PHYSICAL REVIEW C 103, 054909 (2021)

FIG. 10. Mean (solid) and median (dashed) combined with 68 and 95% confidence intervals (shaded dark and light, respectively), computed
over all 600 walkers as a function of the step number. After about 9000 steps the distributions are converged (apart from some statistical
fluctuations) and the remainder of the chain points can be used as an approximation for the true posterior distribution.

agreement with the statistical interpretation for the difference
between these two estimates of elliptic flow [70].

Lastly, it can be surprising that the v2{2} in the 1.0–1.4-
GeV bin in Fig. 5 increases as a function of the bulk viscosity,
whereas from the dissipative character of transport coeffi-
cients the viscosity is expected to isotropize the plasma. In
Fig. 9 we show this in more detail, both for the shear and
bulk viscosity, and indeed for all pT bins the v2{2} increases,
but nevertheless the integrated v2{2} decreases. This can be
understood by the fact that the v2{2} is larger for larger trans-
verse momentum and the fact that the bulk viscosity reduces
the mean transverse momentum (Fig. 9 bottom).

C. Bayesian posterior estimate

After having obtained an emulator and hence model pre-
dictions as a function of our input parameters the next step
is to estimate the probability distributions for our parameter
space x. Using Bayes’s theorem this is done by first assuming
a prior probability distribution, which is typically flat within
a given (physically motivated) range and zero outside this
range, and by second reweighing this distribution taking into
account new evidence from comparing the model output with
some set of experimental data. Mathematically, this amounts
to a posterior distribution given by

P (x|yexp) = e−2/2

√
(2π )n det [�(x)]

P (x) (8)

with P (x) the (flat) prior probability density and where

2 = [y(x) − yexp]�(x)−1[y(x) − yexp], (9)

with y(x) the predicted data for parameters x, yexp the n
experimental datapoints, and �(x) = �emu(x) + �exp the sum
of the emulator and experimental covariance uncertainty ma-
trices. For the emulator this follows from the correlations in
the theoretical model, as determined by a PCA. In principle
the experimental matrix should be provided by the relevant
experiment, but as this is rarely available we follow the simple

prescription from [24]. Numerically it is often more conve-
nient to work with the logarithm of (8), which we will refer to
as the log likelihood (LL), and we note that (8) should still be
normalized.

For the experimental datapoints we use the same set
of 514 observables as in [28], which built upon [24,25].
These include PbPb charged particle multiplicity dNch/dη at
2.76 [71] and 5.02 TeV [72], transverse energy dET /dη at
2.76 TeV [73], identified yields dN/dy and mean pT for pions,
kaons, and protons at 2.76 TeV [69], integrated anisotropic
flow vn{k} for both 2.76 and 5.02 TeV [74], and pT fluctu-
ations [75] at 2.76 TeV. All of these use centrality classes
of width 2.5% (for central transverse energy) up to 20%
(for peripheral vn{k}). On top of this we added identified
transverse momentum spectra using six coarse grained pT

bins separated at (0.5, 0.75, 1.0, 1.4, 1.8, 2.2, 3.0) GeV both
for PbPb at 2.76 [69] and pPb at 5.02 TeV [76], anisotropic
identified flow coefficients using the same pT bins (statistics
allowing) at 2.76 [68] and 5.02 TeV [77]. As in [25] we use
ṽn{k} anisotropic flow coefficients for pPb at 5.02 TeV [78].
Since in pPb vn{k} can become imaginary we here use ṽn{k} ≡
sgn(vn{k}k )|vn{k}|, which equals vn{k} when it is real. For pPb
we furthermore compare to the mean pT for pions, kaons,
and protons at 5.02 TeV [79]. Here we typically use the
0–5, 5–10, 10–20, up to 50–60% centrality classes, except for
the pPb flow coefficients, where high multiplicity events are
specifically interesting. In that case we follow [25] and use
five multiplicity classes, separated according to charged par-
ticle multiplicity over the mean particle multiplicity. With the
bias introduced in Sec. II H this was possible with reasonable
statistics up to the bin with multiplicity four to five times the
average particle multiplicity. In total this leads to 418 and 96
datapoints for PbPb and pPb collisions, respectively.

To compute the actual posterior distributions we use a
Markov chain Monte Carlo, which produces a chain of param-
eters with a distribution that converges to the true distribution.
For this we use the EMCEE code [80], with a chain of 600 walk-
ers initialized using a uniform distribution and subsequently
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FIG. 11. For ten representative posteriors we show the influence of including a varying number of principal components (PCs) for the
posteriors of PbPb at 2.76 and 5.02 TeV. Some parameters converge more smoothly than others, but from ten PCs onward the precision gains
are modest.

evolved for 15 000 steps. It is important to run the computa-
tion for a sufficient number of steps to allow the distribution
to converge to the true distribution. Figure 10 shows the mean
and median over all walkers for all parameters as a function of
step number. The 68 and 95% confidence intervals are shaded,
whereby we note that we take these intervals symmetrically
with for the second region 2.5% probability left on either side
of the distribution (see [24] for an alternative definition that
minimizes the width of the distribution). For the distribution
to have converged it is necessary that not only the mean but
also the entire distribution has converged, apart from statisti-
cal fluctuations. As can be seen in Fig. 10, some parameters
satisfy this condition faster than others. For example, σfluct

converges quite fast, while w only ends its downward trend
after around 9000 steps, so that for all analyses only the part
of the chain after this point should be used.

As another test on the convergence of the chains we varied
the number of PCs in Fig. 11, shown for PbPb at 2.76 and
5.02 TeV only. For some parameters the posterior changes
quite suddenly, for instance the switching temperature is
clearly most constrained by the fifth PC, after which not much
precision is gained anymore. Throughout this paper we chose
to show results using 25 PCs.

D. Closure tests

For any model including emulators and Bayesian estimates
it is crucial to implement a closure test: given a set of param-
eters one determines the model output (“experimental data”)
and from this output one obtains the posterior estimates on
the parameters, which naturally should be consistent with the
input parameters (see also [81]). This test is useful for two
reasons: first it gives a strong test that all steps from emulation
to the MCMC are working correctly, and importantly that the
uncertainties obtained are realistic. Second, since the closure
test uses the same dataset as the “real” model it shows how
constraining this dataset is on each of the varying parameters.
It could for instance be that the model is not sensitive to one
of the input parameters, and the closure test should then result
in a flat distribution regardless of the input parameter. This
latter effect can also depend on where we are in the parameter

space; on physical grounds it is for instance clear that the
width of the bulk viscosity is unconstrained if the norm of the
bulk viscosity vanishes. It is therefore important to perform
the closure test at several points in the parameter space.

Figure 12 shows the posterior distribution for six such
points; the dashed lines indicate the (random) input param-
eters for each closure test using different colors. Note that
both the norm as well as the nucleon-nucleon cross section
are chosen randomly for each system separately, whereby
we did not constrain the norm to be larger for 5.02 TeV as
compared to 2.76-TeV collisions. For reference we include the
real posterior distributions as obtained in [28] (black). A few
parameters are clearly well constrained, including the norms,
the width, the switching temperature, the TRENTO parameter p,
the amount of fluctuations, the free streaming velocity as well
as the minimum of η/s, and the norm of ζ/s. Other parameter
distributions are more similar to the priors (being flat over the
range), or depend more sensitively on the point in parameter
space. τπ sT/η is for instance quite well constrained for points
1, 2, and 5, but less so for the others.

Most posterior distributions align well with the input pa-
rameter. This can be quantified by looking at the percentile
in the posterior distribution of the input parameter, of which
a histogram is shown for all 6 × 24 parameters in Fig. 13.
Clearly the distribution of the percentiles is approximately
flat, as expected. There is a small excess around 100%, which
can indicate that we should not have put (random) input pa-
rameters close to the edge of the parameter range. In that case
the prior probabilities, which are zero outside the parameter
range, guarantee a percentile that is close to zero or 100%.
For the real dataset this issue is not present, as all prior prob-
abilities have been chosen to include a parameter range that
should reasonably include the physical point. Lastly, in rare
cases the posterior is clearly off, such as for instance for vfs

for point 4. In this case there is a strong correlation with χstruct

(see also [28]), which is also off, thereby at least providing
part of the explanation.

A more detailed and refined look can be obtained by
showing the average posterior deviations of the actual 514
datapoints for each closure point, as shown in blue in Fig. 14
as a ratio with respect to the uncertainty that includes both
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FIG. 12. For all parameters that we vary we show the posterior distributions obtained from model output at six random locations in
parameter space (shown as dashed lines). For comparison we also show the posterior comparing to real data from [28] (black). The posterior
distributions match well with the input parameter, and for many parameters strong constraints are possible using the experimental data as
presented in Sec. III C.

emulator uncertainty as well as statistical uncertainty in com-
puting the “data” point. Systems are numbered 1, 2, and 3 for
PbPb at 2.76 and 5.02 and pPb at 5.02 TeV, respectively. The
red points show the deviation when using the emulator on the
input parameters directly, without using the posterior distribu-
tion. Ideally all these points would agree within their normal
errors, whereby the red points test solely the emulator and the
blue points also test the posterior distributions. In the text we
also display the (average) values of the deviation computed
by (9) as well as the LL of (8). The red validation is supposed
to give the best estimates of the datapoints and naively should
have the highest LL. Nevertheless, the posterior distributions
are optimized to maximize this likelihood, so it is no surprise
that these often give a higher LL. Nevertheless, their relative
closeness gives further credibility that all works well. Lastly,
it is worthwhile to study a few outliers more specifically. Point
2 has a four (blue) or six (red) standard deviation difference

FIG. 13. We show the distribution of percentiles of the input
parameter in the posterior probability distribution for all 6 × 24
parameters displayed in Fig. 12. Ideally this should be a flat dis-
tribution, with each bin containing 14.4 ± 3.8 points. The highest
bin is overrepresented, which is partly due to our choice of random
input parameters that can lie at the edge of the prior probability
distribution.

for a pion v2 in system 2. Looking more carefully, this is
a high pT off-central datapoint whereby the norm for this
closure point is furthermore small (8.21 in this case). This
discrepancy is hence a result of a lack of statistics for this
particular somewhat unlucky combination. Point 5 has a rather
strong deviation in red for the centrality dependence in system
1 already at the emulator level (as seen from red points be-
coming consistently worse for dNch/dη and dET/dη), which
would be interesting to investigate further.

Finally, we can compare to the equivalent result using the
real experimental data, as shown in Fig. 15. Here we do not
have knowledge of the true physical parameters, so there are
no validation points. Instead we do show the part of σy due
to experimental error (in black). We see that the mean of
all posterior distributions nicely follows a normal distribution
with no clear outliers. The pPb results have larger deviations,
especially when compared to the experimental error. This is
because it is much harder to simulate this smaller system, as
already noticed in Fig. 4.

E. Discretization error

An important source of potential error is the discretization
error in the simulation. Our simulations are performed on a
square lattice with lengths of 50 fm, containing Nsites × Nsites

lattice sites. A straightforward way to examine the effect of
discretization error is to perform the hydrodynamic simula-
tion on the same event with multiple values for Nsites and
comparing the results. We performed this check for Nsites =
200, 300, 400, and as shown in Fig. 16 we find no significant
differences between the results.

In addition to this, we also employed a novel technique, by
which we vary Nsites in the Bayesian analysis as if it were a
physical parameter. In particular, one looks for two important
indications that the error is indeed under control, i.e., that the
smallest value for Nsites in the chosen range is large enough.
First, it is possible to utilize the emulator to verify that our
observables do not depend on Nsites. This is shown for a
few representative observables in Fig. 17 (top left, top right,
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FIG. 14. For the closure points presented in Fig. 12 we present the average of 100 posterior datasets, as compared to the true datapoint
with the estimated uncertainty σy (including both emulator uncertainty and statistical uncertainty from obtaining the datapoint in the model).
The validation dataset is obtained from the emulator prediction at the input parameters. Data are labeled by class, where the number refers to
the system (PbPb at 2.76 and 5.02 TeV and pPb at 5.02 TeV, respectively) and subclasses or centralities are not displayed. In total we included
514 datapoints.

bottom left). All observables shown are indeed consistent
with being independent of Nsites when taking into account the
uncertainty associated with the emulator (shown as a band).
ṽ2{2} for pPb shows the strongest dependence, whereby the
relatively wide uncertainty band is due to both the statistical
difficulty obtaining accurate results for (low multiplicity) pPb
flow coefficients, as well as the more difficult emulation (see
also Sec. III A). Second, the posterior distribution treating
Nsites as a physical parameter should not show any preference
or correlation, which is implied if indeed observables do not
depend on Nsites. Figure 17 (bottom right) shows the result of
the six closure tests that we performed for Nsites, together with
the posterior from the comparison with real data. One can see
that while none of the distributions are completely flat, the

FIG. 15. We show the equivalent plot of Fig. 14 for the real
experimental data. Black points represent the part of σy due to the
experimental error, where for pPb collisions (labeled 3) the emulator
error is clearly dominant. All posterior averages fit our 514 experi-
mental datapoints nicely according to a normal distribution.

locations of the maxima do not correlate with the known input
values used in the closure tests. This means that the nonflat
distributions are unlikely to reflect any true correlations found
through the posterior estimates.

We also checked the correlations of all 24 parameters
with Nsites for the six closure tests and the real posterior
distributions. For all parameters the average correlation never
exceeded 10%, from which we conclude that also the corre-
lations with Nsites are insignificant. Lastly, we note that this
technique could also be used to estimate a minimum number
of required grid points, or point to observables and parameter
settings that need particularly accurate simulations.

Another source of discretization error can come from the
fact that τπ or τ� can become of the same order as the time
step t . For the simulations used in this paper and in [28],
t = 0.08x, where x varies between 0.17 and 0.25 fm (for
pPb more refined simulations are necessary, whereby we used
a lattice of 12 fm in size with at least 70 lattice sites such
that 0.11 < x < 0.17 fm). This leads to t � 0.02 fm/c for
our simulations. For this reason we require that τπ > 2t and
τ� > 0.1 fm/c throughout the simulation. Due to the temper-
ature dependence in both η/s and ζ/s, whether this rule is
invoked often depends in a relatively complicated way on the
parameters.

We verified that in less than 0.2% of our posterior distri-
bution we needed to invoke this requirement for τπ at any
temperature below 400 MeV and hence we can trust the re-
sulting distribution not to be affected by the minimum time
step. For τ� this is however different, as our analysis keeps the
ratio τ�sT (1/3 − c2

s )2/ζ fixed. As our posterior distribution
obtains a small specific bulk viscosity ζ/s this implies that
often τ� is small as well. We hence verified that in most
of our simulations the constraint τ� > 0.1 fm/c is dominant.
This means we should not put much trust in our posterior
distributions for τ�, which in our case did not give strong
constraints anyway.
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FIG. 16. We show the temperature of a typical event at the initial time τ = 0.4 fm/c and at 4 and 8 fm/c, together with the difference
in temperature at the end of the evolution comparing resolutions of Nsites = 200 or 300. The difference is shown only where there is plasma
(defined by T > 140 MeV) and shows that the discretization error is small.

F. Prehydrodynamic phase

This section attempts a more refined understanding of the
prehydrodynamic phase and more in particular the influence
of the free streaming velocity vfs. First of all we note that
the free streaming velocity directly affects the pressure of
the free streaming stress tensor (2), whereby vfs = 0 leads to
a pressureless fluid and vfs = 1 corresponds to a conformal
stress tensor for which the EOS equals P = ρ/3. This pressure
is in turn matched to the viscous shear tensor πμν and the
bulk viscous pressure � in order to guarantee a continuous
stress tensor. Second, it is important to realize that the EOS
at the relevant temperatures is not yet fully conformal, and
in fact at T = 0.4 GeV we have P ≈ 0.85ρ/3 [54]. From the
equation of state one may therefore suspect that physically a
free streaming velocity around 0.85 may be the most realistic.

To quantify this effect we are interested in the effects of
changing the free streaming velocity vfs on the initialization

FIG. 17. Top left: v2{2} (1.0–1.4 GeV) for PbPb at 2.76 TeV,
shown for pions, kaons, and protons in the 20–30% centrality class.
Top right: Charged particle multiplicity, normalized by the exper-
imental data, for PbPb at 2.76 TeV, shown for pions, kaons, and
protons in the same centrality class. Bottom left: ṽ2{2} for pPb at
5.02 TeV, in the multiplicity classes Nch/〈Nch〉 ∈ [0, 1], [2, 3], and
[4,5]. Bottom right: Posterior distribution for Nsites, shown together
with six posterior distributions for the closure chains. Colors are as
in Fig. 12.

of the shear stress πμν and the bulk viscous pressure �. These
are shown in, respectively, the left and right panel of Fig. 18,
in a cross section through the plasma, relative to the energy
density ρ. Since the shear tensor is traceless, we define the
absolute value of the shear tensor as the simplest nonvanishing
scalar:

|π | ≡ √
gμνgρσ πμρπνσ . (10)

The event shown is generated using the MAP values for the
parameters presented in [28], which in particular means that
these figures are shown at τfs = 0.47 fm/c. Furthermore, this
one event is computed multiple times, each time using a dif-
ferent value for vfs. In addition, the “quasiequilibrium” values
of |π |/ρ and �/ρ are also shown. These are obtained by,
respectively, setting the left hand sides of (7) and (6) to zero.
In other words, these are the values that the shear stress and
bulk viscous pressure would take if the fluid was initialized
close to the value that (7) and (6) would relax to given enough
time.

In the left panel of Fig. 18, one can see that the value closest
to the quasiequilibrium value for the shear stress is vfs ≈ 0.6.
However, because πμν is a tensor it is not clear that these
configurations resemble each other. To investigate this further
we furthermore computed the absolute value of the difference,
defined analogously as |π | ≡ √

gμνgρσ πμρπνσ , with
π ≡ π

μν

fs − π
μν

quasi-eq. This shows that vfs ≈ 0.6 indeed mini-
mizes the deviation from the quasiequilibrium value, whereby
|π |/ρ ≈ 0.05.

In the right panel of Fig. 18, one can see that the quasiequi-
librium value for the bulk viscous pressure is slightly negative,
in agreement with the small value found for the bulk viscos-
ity ζ . However, when initializing the plasma with vfs = 1,
the bulk viscous pressure is much larger and positive, as is
indeed expected for an EOS that has a pressure below the
conformal value. As one lowers vfs, the bulk viscous pressure
decreases, and eventually changes sign around vfs ≈ 0.93.
The posterior distribution for vfs is peaked around vfs ≈ 0.9,
suggesting that data perhaps show a preference for initial-
ization near quasiequilibrium. Such an initialization is also
what is suggested by holography, where the system quickly
hydrodynamizes after the initial stage [48].

The fact that the vfs for a quasiequilibrium initialization of
πμν and � are different means that within the free streaming
model it is impossible to initialize both the shear stress and
bulk pressure near quasiequilibrium. This implies that while
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FIG. 18. Left: Ratio of the absolute shear viscous pressure |π | and the energy density ρ, where we define |π | = √
gμνgρσ πμρπνσ . Right:

Ratio of the bulk viscous pressure � and the energy density ρ, computed at the time of initialization in a cross section through the plasma.
The free streaming has been performed on the same event with three different free streaming velocities (different colors). We also show the
“quasiequilibrium” value, defined as the zeros of the right hand sides of (7) and (6).

the stress-energy tensor itself is continuous at the switch to
hydrodynamics, its derivative will not be continuous. This is
in marked contrast with, e.g., holographic models [48], which
would hence be interesting to study further in future work.

The behavior of � as a function of vfs can be under-
stood as follows: For vfs = 0, the stress tensor has the form
T μν = ρδ

μ
0 δν

0 . Using the constitutive relation (5), one can
decompose this stress tensor, yielding πμν = 0 and � = −P.
This therefore leads to � being negative. At early times we
can use (2), which for vfs = 1 yields a traceless stress tensor,
i.e., ρ − 3(P + �) = 0. For our equation of state the speed of
sound is below the conformal bound, which implies 3P < ρ

and hence that � is positive. For intermediate values of vfs,
the behavior of � interpolates between these two cases.

Another interesting dependence of the prehydrodynamic
phase is that on the free streaming time τfs. In Fig. 19, the devi-
ation from quasiequilibrium is shown for the shear stress (left)
and the bulk viscous pressure (right). As in Fig. 18, the same
event is computed, but here we used vfs = 1 together with

various values of τfs. It can clearly be seen that the shear tensor
moves away from quasiequilibrium during the prehydrody-
namic phase, even though the τfs dependence is mild. For the
bulk viscous pressure, the interior of the plasma moves away
from quasiequilibrium during the prehydrodynamic phase,
whereas the edges move towards quasiequilibrium. These
edges contain only a small part of the total energy though, so
we can conclude that the prehydrodynamic stage moves the
fluid away from quasiequilibrium.

G. Correlation between τππ/τπ and (η/s)min

As shown in [28], τππ/τπ and (η/s)min are negatively cor-
related. The reason for this is that η/s is mostly determined
by the measurement of v2{2}, and that both η/s and τππ

tend to lower this observable, making the effects of these two
transport coefficients more or less interchangeable. The mech-
anism ultimately causing this is that both of these transport
coefficients are dissipative, and hence increase the entropy by
making the fluid less anisotropic. For this reason, we expect

FIG. 19. Difference from quasiequilibrium relative to the energy density ρ for different values of the free streaming time τfs, shown for
the shear stress (left) and the bulk viscous pressure (right). Here we define |π | ≡ √

gμνgρσ πμρπνσ , with πμν ≡ π
μν

fs − π
μν

quasi-eq and
� = �fs − �quasi-eq.
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FIG. 20. γ , defined by (12), as a function of proper time τ for the
idealized plasma initialized according to (11), for different values of
η/s and τππ/τπ . Inset: The resulting values for the elliptic flow v2{2}.

this correlation to be generically present, but in the following
we will look at a specific configuration, to examine whether
the mechanism by which the anisotropy decreases is similar
in both cases.

In the case of the shear viscosity, the decrease in anisotropy
is well understood to work through the mechanism that in
the “short” direction pressure gradients are larger, driving
the buildup of momentum in that direction, while the shear
viscosity counters this momentum buildup [82]. In a similar
spirit, we look at an idealized plasma, where we initialize
πμν and � to zero, set uμ = (1, 0, 0, 0), and take the energy
density to be

ρ(x, y) = α

1 + exp
(√

x2+(1.3y)2−R
θ

) , (11)

with R = 5 fm, θ = 1 fm, and α = 50 fm−4. Initializing the
plasma as such at τ = 0.98 fm/c, we let it evolve with η/s
independent of temperature, and the bulk viscosity equal to
that found in [24]. We then define the quantity γ as follows:

γ (τ ) =
∫ ∞

0 dx
∫ ∞

0 dy T 01(x, y, τ )∫ ∞
0 dx

∫ ∞
0 dy T 02(x, y, τ )

, (12)

which measures the ratio of the total x momentum and y
momentum present in one quadrant. In an isotropic setting
γ equals unity, and by using the departure from unity we
can analyze how the dynamics of the fluid convert the spa-
tial anisotropy into an anisotropic momentum distribution. In
Fig. 20, the result of this analysis is shown for three different
choices of η/s and τππ/τπ (note that increasing η/s by 50%
also increases τππ by 50% since we fix our ratios such that
τπ ∝ η/s). One can clearly see that increasing η/s decreases
the amount of anisotropy, thereby decreasing v2{2}. One can
also see that indeed τππ/τπ has a similar, albeit smaller,
effect. Hence we can indeed conclude that both of these dis-
sipative corrections tend to lower the amount of momentum
anisotropy.

In the inset of Fig. 20, we see the associated v2{2} of these
three simulations. It can clearly be seen that the observed

momentum anisotropy translates into v2{2}, explaining the
observed correlation.

IV. MAXIMUM A POSTERIORI

With the emulator and MCMC together with 514 data-
points we obtained optimal (MAP) values for our varying
parameters [28]. Strictly speaking these values are just the
mean expectation value for each parameter and nontrivial
correlations could mean that such a combination is not maxi-
mizing the LL of (8). We verified, however, that this method
led to a LL that is comparable with the maximum LL obtained
otherwise. In this section we analyze a high statistics run
(400 000 and 4 × 106 events for PbPb and pPb, respectively)
using these parameters, which allows us both to verify the
emulator at this point specifically and importantly to compare
to experimental data that were statistically not feasible to
include in the Bayesian optimization.

A. Transverse momentum spectra

In Fig. 21 we show the transverse momentum spectra for
central and very peripheral PbPb collisions as well as central
pPb collisions including ALICE data [76,83] for the entire
range where particle identification is possible. These spectra
have been included in the posterior estimate using pT bins
separated at (0.5, 0.75, 1.0, 1.4, 1.8, 2.2, 3.0) GeV for cen-
tralities up to the 40–50% class. At high pT the spectra are
dominated by hard processes described by perturbative QCD,
which have a characteristic polynomial falloff as a function of
pT . Our hydrodynamic thermal model falls off exponentially
due to the Boltzmann factor with the switching temperature,
and hence it is expected that around pT ≈ 3 GeV the hydrody-
namic prediction starts to deviate from the full experimental
result. This effect is more pronounced for very periph-
eral collisions as well as pPb collisions. At low pT below
500 MeV (not included in the posterior) there is a small sur-
plus of pions, especially for very peripheral collisions where
this deviation exceeds two standard deviations (see also [22]
for a similar result).

From the spectra it is possible to obtain the average trans-
verse momentum, as shown in Fig. 22. Overall this provides
an excellent fit, but the experimental mean transverse momen-
tum for kaons in peripheral pPb collisions is surprisingly high
(we show the neutral kaons here, as their experimental un-
certainty is much smaller than that of the charged kaons [76]).
The hydrodynamic results seem consistent with [25] and given
the significantly lower mean kaon momentum in PbPb col-
lisions it is possible that this requires a nonhydrodynamic
explanation, which is also apparent from the deviation of the
kaon spectrum at intermediate pT in Fig. 21 (bottom). Also
the spectra of pions and protons deviate from the experimental
data at intermediate pT , but this is compensated at lower pT ,
which then leads to the correct mean transverse momentum.
This stresses once more why it is important to include the
full identified transverse spectra. Since the average kaon trans-
verse momentum has perhaps the most apparent deviation we
chose this observable when showing its dependence on our
parameters in Fig. 30 in the Appendix.
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FIG. 21. We compare the MAP results for the transverse momen-
tum spectra for charged pions, kaons, and protons for central (top),
peripheral (middle, data from ALICE [83]), and central pPb (bottom,
data in [76]) collisions. The model somewhat underpredicts the low
pT pions (also seen in [22]), as well as the spectra at high pT . The
latter is more pronounced in peripheral and pPb collisions and can
possibly be explained by polynomial processes in pQCD.

FIG. 22. We compare the mean of the transverse momentum
for pions, kaons, and protons as a function of centrality (colored)
to experimental data from ALICE (black, [76]). The hydrodynamic
results match perfectly, with the possible interesting exception of the
mean kaon transverse momentum in peripheral pPb collisions that
possibly requires a nonhydrodynamic explanation.

We also stress that the MAP results are obtained using the
expectation values found in [28], but importantly they do not
include the posterior uncertainties. Especially for pPb this is
relevant, as the emulator has a significant uncertainty, and
indeed the posterior mean kaon transverse momentum has a
wide band that may just about include the experimental result
(see Fig. 1 in [28]). It could hence be that certain parameters
especially relevant for pPb can still be found that provide a
better fit to the kaon mean pT . One likely option here would
be to have a larger free streaming velocity vfs (see Fig. 30).

Lastly, we show the transverse momentum fluctuations

in Fig. 23, defined as δp2
T = 〈〈(pT,i − 〈pT 〉)(pT, j − 〈pT 〉)〉〉,

where the double brackets denote an average over all pairs in
the same event as well as averaging over the centrality class.
Up to 60% in centrality this observable is also used to obtain
the posteriors (as also done in [24]), but even then it turns
out to be difficult to capture the peripheral bins (see [24]).
It is therefore satisfactory that we manage to obtain a good
agreement, with perhaps the exceptions of the most central
and most peripheral bins.

Transverse momentum fluctuations have not been mea-
sured for pPb collisions and it is therefore interesting to make
a prediction, which is shown as red points in Fig. 23 (see
also [27] for a similar prediction). The fluctuations do not
depend strongly on centrality, but a relatively strong decrease
is seen for ultraperipheral collisions (see inset). Remarkably
we see a similar decrease for very peripheral collisions.

B. Strangeness enhancement

The fraction of strange quarks in the final particle spectra
is enhanced as one goes to higher and higher multiplici-
ties [84], which was originally proposed as a signature of
QGP formation. The naive explanation for this is that in
nucleon-nucleon collisions the fraction of strange quarks is
canonically suppressed as compared to the fraction that would
exist in thermal equilibrium. In Fig. 24 we show the ratio of
multiplicities of strange hadrons with respect to pions versus
event activity including experimental data for both pp and pPb
collisions [84,85]. The theoretical curves contain results from
our pPb (solid) and PbPb (dashed) collisions. To stress the im-
portance of resonance decays as well as hadronic interactions
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FIG. 23. We compare the transverse momentum fluctuations of
charged particles as a function of centrality (blue) to experimental
data from ALICE (black, [75]). Especially for peripheral collisions
this is a difficult observable [24] and even though we did not use
the centrality bins beyond 60% to obtain the MAP values there is
still a satisfactory match with the model. The red points are predic-
tions for pPb collisions at

√
sNN = 5.02 TeV for the same 0.15 <

pT [GeV/c] < 2.0 range. The inset shows the pPb fluctuations for
ultracentral events with multiplicities up to six times the average
multiplicity.

we also include the corresponding results without using the
SMASH afterburner as dotted lines.

In general the hydrodynamic results align well with the
high-multiplicity pp and pPb results, indeed confirming that

FIG. 24. We show the ratio of hadrons containing strange quarks
with respect to the pion yield as a function of multiplicity for pp
(experiment only [84]), pPb [experiment [85] and model (solid)],
and PbPb collisions (model only, dashed). To show the importance
of the resonances and the afterburner we include results without
applying the hadronic afterburner (dotted). Experimental strangeness
increases with multiplicity, while the theoretical curves do not de-
pend on multiplicity. Small but significant deviations exist even for
high multiplicity events for both kaons and lambda hadrons.

a thermal model like ours can explain the saturation of the
strangeness fraction. There is no significant multiplicity de-
pendence in our hydrodynamic model. There is also a small
but significant discrepancy even at high multiplicities: the
kaons are overpredicted and the lambdas are underpredicted.
In [86,87] fits have been performed in the canonical ensemble,
which can become important as the system size becomes
smaller; see also [88] for thermal fits performed by the ALICE
collaboration.

C. Anisotropic flow

Anisotropic flow coefficients are an interesting family of
observables that encode the anisotropy of the particle distri-
butions in the final state. Examples are integrated (vn{k}) over
a certain pT and η range, and pT differential [vn{k}(pT )]. The
integrated flow coefficients are computed by first computing
the Qn vector for each event [89,90]:

Qn =
M∑

i=1

einφi , (13)

where φi is the azimuthal angle of particle i and the sum runs
over a certain set of M particles. Each different set of chosen
particles defines a different observable. For example, one can
choose to use only charged particles, or to also include neutral
particles. Also, one can choose to incorporate only particles
of a certain species, leading to identified flow, or to include all
species, leading to unidentified flow. In this paper, we chose
to compute unidentified charged particle flow coefficients. For
this, we used all charged particles with 0.2 � pT � 5 GeV
and |η| � 0.8 in accordance with [74]. After having computed
the Qn vector, one can compute the two- and four-particle
correlations for that particular event as

〈2〉n = |Qn|2 − M

M(M − 1)
,

〈4〉n = |Qn|4 + |Q2n|2 − 2Re[Q2nQ∗
nQ∗

n]

M(M − 1)(M − 2)(M − 3)

− 2
2(M − 2)|Qn|2 − M(M − 3)

M(M − 1)(M − 2)(M − 3)
.

These two- and four-particle correlations are then averaged
over all events in a given centrality class, with per-event
weights given by M(M − 1) for the two-particle correla-
tions, and M(M − 1)(M − 2)(M − 3) for the four-particle
correlations. This yields the averaged two- and four-particle
correlations 〈〈2〉〉n and 〈〈4〉〉n. The integrated flow coefficients
are then given by

vn{2} =
√

〈〈2〉〉n,

vn{4} = 4

√
2〈〈2〉〉2

n − 〈〈4〉〉n.

The differential flow is computed in a similar way, but now
we define two groups of particles for each observable: the
reference flow particles (RFPs) and the particles of interest
(POI). In this way, one can reconstruct the pT dependence of
the flow. First, one defines the Qn vector in the same way as
for the integrated flow, where the sum now runs over all RFPs.
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FIG. 25. We show the anisotropic flow coefficients for PbPb collisions at 2.76 TeV using our MAP values. The top row shows for six pT

bins v2{2} for pions (left), kaons (middle), and protons (right) as a function of centrality. On the bottom row, the left (middle) panel shows
v3{2} (v4{2}) for pions, and the rightmost panel shows integrated flow for v2{2}, v2{4}, v3{2}, and v4{2}. The solid colored lines indicate the
full model result, and the dotted lines are the result without using the afterburner. The black datapoints are from [68,74].

In addition, one defines

qn =
mq∑
i=1

einφi ,

where the sum runs over only the mq POI. One then defines
the two- and four-particle correlations:

〈2′〉n = qnQ∗
n − mq

mqM − mq
,

〈4′〉n = [qnQnQ∗
nQ∗

n − q2nQ∗
nQ∗

n − qnQnQ∗
2n − 2MqnQ∗

n

− 2mq|Qn|2 + 7qnQ∗
n − Qnq∗

n + q2nQ∗
2n

+ 2qnQ∗
n + 2mqM − 6mq]/

[(mqM − 3mq)(M − 1)(M − 2)].

In similar fashion to the integrated flow coefficients, these
are averaged over all events, with weights mqM − mq and
(mqM − 3mq)(M − 1)(M − 2) for the two- and four-particle
correlations, respectively. The resulting averages over all
events, 〈〈2′〉〉n and 〈〈4′〉〉n, can then be used to obtain the
differential flow coefficients for the pT bin the POI were taken
from:

vn{2}(pT ) = 〈〈2′〉〉n√〈〈2〉〉n
,

vn{4}(pT ) = 2〈〈2′〉〉n〈〈2〉〉n − 〈〈4′〉〉n(
2〈〈2〉〉2

n − 〈〈4〉〉n
)3/4 .

In Fig. 25 we show the anisotropic flow coefficients for
pions, kaons, and protons in different pT bins as a function of
centrality, as well as the integrated vn{k} for a simulation both
including (solid) and without (dotted) the hadronic afterburner

SMASH. By showing the flow coefficients before applying the
afterburner we clearly show how the afterburner can in this
case significantly decrease anisotropic flow. The figure shows
an impressive agreement with the data, especially considering
how both the pT bin as well as the centrality affect these
different hadrons differently. The only significant deviations
are found in the three highest pT bins of pions and the highest
pT bin of kaons. It is interesting that for protons all curves
agree, even though in the Bayesian analysis only the (1.0, 1.4)
and (1.4, 1.8) bins were used due to the more limited statistics
for the protons.

Figure 26 shows the equivalent figure for the flow co-
efficients in pPb collisions. Recall that we defined ṽn{k} ≡
sgn(vn{k}k )|vn{k}|, for which ṽn{k} is negative when vn{k} is
imaginary. Only the second and third harmonic are used for
the posterior estimates. As also mentioned in Sec. IV A the
emulator error for pPb is large for this observable, which is
not included in the theoretical errors shown. It is however
comforting to see a reasonable description of the data, in-
cluding statistically significantly negative values for ṽ3{2} and
ṽ4{2} (for ṽ4{2} this is opposite from both ATLAS [78] and
ALICE [91] experimental data), which in particular shows
that even within a purely hydrodynamic model with hadronic
cascade vn{2} is not necessarily real.

D. Event-plane correlations

Event-plane angle correlations are another interesting fam-
ily of observables that we did not use in the Bayesian analysis.
It is hence interesting to compare the results of TRAJECTUM to
experimental data. We used the definition from the ATLAS
collaboration [92]. For two-plane correlations, this starts by
splitting each event into two subevents. Subevent N contains
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FIG. 26. We show the anisotropic flow coefficients for pPb colli-
sions at 5.02 TeV obtained for our MAP values. Given the difficulty
obtaining accurate pPb results and hence posterior distributions the
model compares well with the data (dashed, [78]). Interestingly our
method also reproduces the flow coefficients for negative ṽn{k},
which corresponds to imaginary values for the standard vn{k}.

all charged particles with pseudorapidity −2.5 � η � −0.5,
while subevent P contains all charged particles with pseu-
dorapidity 0.5 � η � 2.5. In addition to the pseudorapidity
requirement, both subevents require the transverse momentum
to satisfy 0.5 � pT � 5 GeV. For each subevent, we then
compute the Q vectors

Qn =
M∑

j=1

einφ j ,

where the sum runs over all M particles in the subevent, n is
an integer, and φi is the azimuthal angle of particle i. We then
decompose each Q vector into a magnitude vn and event-plane
angle �n:

Qn = Mvnein�n . (14)

The event-plane correlations are then defined as correlations
between the �n as follows:

〈cos[k(�n − �m)]〉SP

=
〈(
vP

n

)k/n(
vN

m

)k/m
cos

[
k
(
�P

n − �N
m

)]〉 + P ↔ N

2Res{k�n}Res{k�m} , (15)

where the average is over all events in the centrality class. For
the observable to be properly defined k must be a multiple of
both n and m. This correlation aims to measure the correlation
between the true event-plane angles �n, as defined from a
(hypothetical) smooth distribution emitting a large number
of particles. However, due to finite statistics the correlation
between the measured event-plane angles �n is different. To
compensate for this difference, the definition includes the
resolution factors

Res{k�n} =
√〈(

vN
n vP

n

)k/n
cos

[
k
(
�P

n − �N
n

)]〉
.

The three-plane correlations are defined in a similar fash-
ion. In this case, each event is subdivided into three subevents.
Subevent A contains all charged particles with −2.5 � η �

−1.5, subevent B contains charged particles with −1 � η �
1, and subevent C contains the charged particles with 1.5 �
η � 2.5. Transverse momenta satisfy 0.5 � pT � 5 GeV for
each subevent. The three-plane correlations are then defined
by

〈cos(i�l + j�m + k�n)〉SP

=
(
ci jk

lmn

)BAC + (
ci jk

lmn

)BCA

Res
{
i�B

l

}
Res

{
j�A

m

}
Res

{
k�C

n

} + A ↔ C
, (16)

where(
ci jk
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)ABC

= 〈(
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l

)l/i(
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m

)m/ j(
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n
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(
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n
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and (
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l
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l vB
l
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l
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× 〈(
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l

)i/l
cos

[
i
(
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l − �C
l

)]〉
/

〈(
vB

l vC
l
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cos

[
i
(
�B

l − �C
l

)]〉
.

For the observable to be properly defined, i/l , j/m, and k/n
must be integers, and i, j, and k must add up to zero. Again,
resolution factors are employed to compensate for the differ-
ence between the idealized true event-plane angles �n and the
measured event-plane angles �n.

Because the cosines always evaluate between −1 and 1,
both the numerator and the denominator of (15) and (16)
become quite accurate rather fast. However, for many observ-
ables both the numerator and the denominator are also close to
zero, leading to large uncertainties in the final result. Figure 27
shows several event-plane correlations that have reasonably
small final uncertainties for 200 000 events generated with
TRAJECTUM using the MAP values.

The experimental agreement with ATLAS is excellent for
the two-plane correlations, which is nontrivial since this ob-
servable is in a different class than the ones used to obtain
the MAP values. We note that [14] obtained a similarly
good agreement, but their agreement was only possible when
specifically choosing η/s = 0.20. Reference [14] also ob-
tained the event-plane angles directly from the hydrodynamic
profile, whereas it is clear from (15) that significant modifi-
cations can come from both the finite statistic sample as well
as the hadronic afterburner used in the current paper. For the
three-plane correlations the statistics is more limited, but for
those observables that are feasible to compute we also obtain
good agreement.

E. Eccentricities and anisotropic flow

It is well known that hydrodynamics translates ini-
tial state spatial anisotropies into final state momentum
anisotropies [95–98]. In particular, there is an approximately
linear relation between initial state ellipticity ε2 and the final
state elliptic flow v2 and similarly for the triangular flow v3.
The proportionality constant depends on quantities such as
the shear viscosity. Here, vn are defined on an event-by-event
basis through (14), and εn can be defined from the initial state
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FIG. 27. Event-plane correlations using the MAP parameters
(solid), for PbPb at 2.76 TeV. ATLAS data (dashed) are shown for
comparison [92].

through [14]

εn =
∣∣∣∣
∫

dx dy rneinφρ(x, y)∫
dx dy rnρ(x, y)

∣∣∣∣,
where r2 = x2 + y2, φ = arctan(y/x), and ρ(x, y) is the en-
ergy density in the transverse plane. From a computational
point of view, this is interesting, because it opens up the
possibility of obtaining v2 by running a small number of full
hydrodynamic simulations to determine the proportionality
constant, after which it is sufficient to obtain the initial state
ε2 to determine v2.

In principle there is then the initial anisotropy ε2, the
anisotropy of the freeze-out surface which leads to anisotropic
flow, and finally the anisotropy of the final particle spectra vn.
A priori it is not clear how to relate the final particle spectra
to the hydrodynamic freeze-out surface, first of all because

of the influence of the afterburner and second since the fi-
nite multiplicity will lead to statistical fluctuations. In [93]
these effects were unfolded using a Bayesian method, leading
to a vn distribution that is constructed to be similar to the
freeze-out surface. In our code we have direct access to the
initial eccentricity and the final particle spectra, and with a
trick by generating a factor 100 more particles (oversampling)
we can obtain an accurate estimate of the freeze-out surface
anisotropy.

These results are illustrated in Fig. 28, where we show vn

as a function of εn for n = 2, 3, and 4 for three different cases.
In the left panels we perform a full hydrodynamics simulation
with afterburner, in the center left we perform the same cal-
culation without the afterburner, and in the center right panels
we perform a computation without afterburner, but increasing
the number of sampled particles in the output by a factor 100.
Different from the rest of this section, the results for “without
afterburner” and “100x oversampled” were performed using
50 000 events. All panels also show linear fits through the
distribution. One can clearly see that the correlation for n = 2
and 3 is much better when using oversampling. For n = 4,
the correlation is not more pronounced with oversampling,
indicating that the absence of the correlation is not due to
statistics. The reason for this is actually physical, as v4 is
determined by a nonlinear combination of ε2 and ε4 [99].

A more detailed view can be obtained from the vn and εn

distributions, normalized to their mean values, as shown in the
right column of Fig. 28. For ε2 and v2 the oversampled distri-
bution differs significantly from the final vn distributions, both
with and without the hadronic afterburner, and is also different
from the ε2 distribution. For the third and fourth harmonics
all distributions are similar, which reflects the fact that these
harmonics originate from fluctuations, whereas v2 has a large
mean contribution from the ellipticity from the geometry. It
is hence no surprise that the statistical fluctuations from the
finite number of particles in the afterburner widen the v2 dis-
tribution. Experimentally it is possible to unfold this statistical
effect, and after this unfolding the data indeed agree with the
oversampled result [93]. From a theoretical point of view this
has the disadvantage that a direct comparison with the output
of the hydrodynamic code with afterburner is not possible,
but on the other hand it has the advantage that without using
an afterburner the hydrodynamic profiles themselves can be
directly compared to the experimental distributions, such as
for instance done in [14].

V. DISCUSSION

We performed a detailed closure test, including carefully
comparing the posterior distributions with the true parame-
ters, which gives convincing evidence that the emulation and
Monte Carlo work well. Nevertheless, we have to stress that a
closure test does not tell if our model is reasonable as a phys-
ical description of heavy ion collisions. After all, the closure
test only compares to output from the model itself and hence
has to work by construction. It is hence always important
to study weaknesses in the physical model in higher detail,
especially where part of the physics may be missing. Clear
examples can be intermediate pT particles, which are not
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FIG. 28. Event-by-event anisotropic flow vn [defined by (14)] as a function of initial state eccentricities εn, for n = 2 (top row), n = 3
(middle row), and n = 4 (bottom row), at 20–40% centrality for PbPb collisions at 2.76 TeV. The left column shows the result with the hadronic
afterburner, and the center left column shows the result where the particles produced at particlization do not have any further interactions. The
center right column is similar to the middle column, except that the number of produced particles at particlization has been artificially multiplied
by a factor 100. A linear fit through the origin is also shown for each of these three panels. The rightmost panel shows projections on the εn and
vn axes of the three other columns together with experimental data from ATLAS (gray, [93]). The data are unfolded to match the oversampled
distribution, which indeed compares well with these MAP results. ALICE has a similar measurement (orange, dashed, [94]), which uses a
different method and agrees with [93].

necessarily described by a hydrodynamic or thermal model,
especially in pPb systems. Nevertheless, as shown in Fig. 15
and verified in Sec. IV, our model comfortably fits almost all
data, thereby giving confidence that our (phenomenological)
model scope is wide enough to capture most of the physics
presented.

As far as we are aware we are the first to obtain imaginary
values for v3{2} and v4{2} using a purely hydrodynamic model
(see Fig. 26). This is interesting, since without statistical fluc-
tuations both vn{4} and especially vn{2} are expected to be real
in hydrodynamics. Even though our posterior probabilities for
pPb collisions are relatively uncertain, our MAP parameters
give a significantly imaginary value for v3{2}, which is in
agreement with ATLAS data [78].

There are several avenues for improvement. First of all
this can include adding more experimental data. Especially
important to further constrain the temperature dependence

of the transport coefficients will be the addition of data at
lower energies from RHIC (also done in [61,100]). One could
also add additional system sizes, such as XeXe at the LHC
or 3HeAu at RHIC, or one could even study what would
be gained by performing OO or ArAr collisions. It is com-
putationally relatively difficult to add more PbPb and pPb
observables at LHC energies, as many of these would require
a much larger number of events per design point. One way
forward in this scheme is to use simpler observables, such
as initial state eccentricities, that correlate well with (more
difficult) final state flow correlations. Initial investigations into
such methods were presented in Sec. IV E (see also [14,93]).
Another opportunity for such observables could be to perform
a smaller run with better statistics.

Another potential improvement lies in the particlization
procedure. Here, thermal particle production is modified by
the viscous corrections to ensure continuity of the stress-
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FIG. 29. Similar to Figs. 5 and 26 we show the ṽ2{2} for several multiplicity classes. What is clear is that there is a much more refined
dependence on all parameters, as opposed to the PbPb case, where the viscosity is mostly dominant. For these small systems also the subnuclear
structure, parametrized by χstruct and nc, is more pronounced.

energy tensor. However, the precise manner in which this
should be done is unknown. Several different prescriptions
exist, and the choice of prescription is known to affect

the posterior distributions [61]. In the future, it would be
interesting to improve this part of the simulation, either
by data-driven methods such as those presented in [61],

FIG. 30. Similar to Fig. 5 we show the mean transverse momentum for kaons for three centrality classes as a function of our model
parameters. Datapoints [79] are shown at the MAP values and as discussed in Sec. IV A this particular datapoint does not match well. Note,
however, that for this case a different and not excluded value of the width w or free streaming velocity vfs could lead to a better fit.
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or by microscopic insights guiding towards the correct
prescription.

Currently the difficult emulation of pPb prevents the pPb
data from providing a precise constraint in the Bayesian anal-
ysis. Our high statistics MAP results for ṽ4{2} (see Fig. 26)
do not agree well with ATLAS data [78]. This is an indication
that perhaps tighter constraints can be obtained by improv-
ing the emulation of pPb further. Furthermore, we observe a
deficit of kaon transverse momentum in pPb (see Fig. 22).
One hint for resolving this deficit is the strong dependence
on vfs in Fig. 30. Higher values of vfs would increase the
mean kaon pT , while these values are not excluded from the
Bayesian analysis. It would be interesting to see whether an
improved emulation and global fit will be able to resolve
this discrepancy, or whether the discrepancy will require a
nonhydrodynamic explanation.

Lastly, we wish to go beyond the more phenomenologi-
cal model for the initial stage as presented here. Both the
TRENTO initial energy deposition as well as the free stream-
ing phase are not motivated by microscopic models, even
though they may be wide enough in scope to describe some
of these models. Perhaps most pressing is the fact that the
switch from free streaming to hydrodynamics is not smooth,

as shown in Fig. 19, whereas this transition is smooth in
holographic [47,48] or weakly coupled models [9,101].
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APPENDIX: PARAMETER DEPENDENCE OF pPb
OBSERVABLES

We show the emulator results for pPb collisions in Figs. 29
and 30 for both anisotropic flow coefficients as well as the
mean transverse momentum for kaons. The latter is of special
interest, as for peripheral pPb collisions there is currently a
clear tension between the MAP result and the experimental
data (see Fig. 22).
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