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Abstract

Given two distributions P and S of equal total mass, the Earth Mover’s Distance
measures the cost of transforming one distribution into the other, where the cost of
moving a unit of mass is equal to the distance over which it is moved.

We give approximation algorithms for the Earth Mover’s Distance between various
sets of geometric objects. We give a (1 + ε)-approximation when P is a set of weighted
points and S is a set of line segments, triangles or d-dimensional simplices. When P
and S are both sets of line segments, sets of triangles or sets of simplices, we give a
(1+ε)-approximation with a small additive term. All algorithms run in time polynomial
in the size of P and S, and actually calculate the transport plan (that is, a specification
of how to move the mass), rather than just the cost. To our knowledge, these are
the first combinatorial algorithms with a provable approximation ratio for the Earth
Mover’s Distance when the objects are continuous rather than discrete points.

1 Introduction

The Earth Mover’s Distance (EMD) is a metric that is widely used in fields such as image
retrieval [17], shape matching [7, 13, 20] and mesh reconstruction [4]. It models two sets P
and S as distributions of mass, and takes their distance D(P, S) to be the minimum cost
of transforming one distribution into the other, where cost is measured by the amount of
mass moved multiplied by the distance over which it is moved. More formally,

D(P, S) = inf
µ∈M

∫
P

∫
S
d(p, s) · µ(p, s) dp ds

where M is the set of all mappings of mass between P and S and d(·, ·) is any metric. In
the case where P and S are sets of (weighted) points, we can rewrite this as

D(P, S) = min
µ∈M

∑
p∈P

∑
s∈S

d(p, s) · µ(p, s)

For unweighted point sets, the solution can be obtained by solving an assignment problem;
for weighted point sets, this is an instance of a minimum cost flow problem.

Recently, much attention has been devoted to computing the Earth Mover’s Distance
when both P and S are sets of points [1, 5, 10, 18]. In this paper we expand on this by
letting P and S be sets of points, line segments, triangles or d-dimensional simplices in Rd.
We describe a unified framework for calculating the EMD between points and segments,
points and triangles, points and simplices, segments and segments, triangles and triangles
and simplices and simplices. Our approach provides polynomial-time algorithms that give a
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1

ar
X

iv
:2

10
4.

08
13

6v
1 

 [
cs

.C
G

] 
 1

6 
A

pr
 2

02
1



(1 + ε)-approximation to the Earth Mover’s Distance between P and S, for some arbitrarily
small ε > 0. Moreover, our algorithms produce an assignment of mass that realises this
cost. For triangles and simplices, the running time also depends on the largest edge length
(note that we normalise the total area/volume of each set to one, so we cannot improve the
running time by scaling the input). When neither set contains points, there is a small extra
additive term in our approximation. For all our algorithms, our approach is to subdivide
the elements of the input into sufficiently small pieces, and then approximate each piece
by a point. The approximate optimal transport plan can then be obtained by solving a
transport problem on these points. Our results are summarised in Table 1. Note that all
our algorithms give the solution with high probability; this is simply a consequence of using
Fox and Lu’s algorithm [5] to solve the optimal transport problem on points. Substituting
a deterministic algorithm here would make our results deterministic as well.

To our knowledge, these are the first combinatorial algorithms with a provable approxi-
mation ratio for the Earth Mover’s Distance when the objects are continuous rather than
discrete points. We give algorithms for moving mass from points to segments (Section 5),
points to triangles (Section 6), points to simplices (Section 9.1), segments to segments
(Section 7), triangles to triangles (Section 8) and simplices to simplices (Section 9.2).

2 Related work

The general problem of optimally moving a distribution of mass was first described by
Monge in 1781 [16], and was reformulated by Kantorovich in 1942 [9]. It is known as the
Earth Mover’s Distance due to the analogy of moving piles of dirt around; it is also known
as the 1-Wasserstein distance, and is a special case of the more general optimal transport
problem. For a full treatment of the problem’s history and connections to other areas of
mathematics, the reader is referred to Villani’s book [21].

The Earth Mover’s Distance has been studied in many geometric contexts. Agar-
wal et al. [1] give both exact and approximation algorithms for the case where both
sets are points under some Lp metric. When both sets are weighted points, Khesin at
al. [10] give two (1 + ε)-approximation algorithms running in O(nε−O(d) log(∆)O(d) log n)

and O(nε−O(d) log (UO(d) log(n)2) time, where d is the dimension, ∆ the aspect ratio of
the input, and U the total mass. However, their algorithm assumes that the point weights
are integers, whereas our weights can be arbitrary real numbers, as they correspond to

Objects Running time Additive term

Points to segments O
(
nm
εc polylog nm

ε

)
-

Points to triangles O
(
nm
εc polylog nm∆

ε

)
-

Points to simplices O
(

6dd2ddm+ 105dd2dd/2nm
εd+c polylog

(
dnm∆
εd

))
-

Segments to segments O
(
nm
εc polylog nm

ε

)
O
(
ε
nm

)
Triangles to triangles O

(
nm∆(n+m)

εc polylog nm∆
ε

)
O
(

ε√
nm

)
Simplices to simplices O

(√
d(nm)1/d∆d(n+m)

εc polylog
(
d(nm)1/d∆d

ε

))
O
( √

dε
(nm)1/d

)

Table 1: A summary of our results for different choices of sets P and S of sizes n and m.
d is the dimension, ∆ is the largest diameter of any element of the sets, and c is some
constant.
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lengths and areas. This result was improved by Fox and Lu [5], using a similar method
to obtain, with high probability, a (1 + ε)-approximation in O(nε−O(d) logO(d) n) time.
The EMD was also studied when the input sets may be transformed: Cabello et al. [2]
give a (2 + ε)-approximation to minimising the EMD between two point sets under rigid
transformations.

For continuous distributions, rather than discrete point sets, many numerical algorithms
are known (see e.g. De Goes et al. [3], Lavenant et al. [12], Mérigot [14, 15] and Solomon et
al. [19]). For the case where one set contains weighted points and the other is a bounded
set C ⊂ Rd, Geiß et al. [6] give a geometric proof that there exists an additively weighted
Voronoi diagram such that transporting mass from each point p to the part of C contained
in its Voronoi cell is optimal. The weights of this Voronoi diagram can be determined
numerically.

De Goes et al. [4] discuss a problem similar to our own, but in the context of the
reconstruction and simplification of 2D shapes. Given a set of points, they want to
reconstruct a simplicial complex of a given number of vertices that closely represents
the shape of the point set. They start with computing the Delaunay triangulation of
the point set, then iteratively collapse the edge that minimises the increase in the EMD
between the point set and the triangulation. They use a variant of the EMD in which the
cost is proportional to the square of the distance (2-Wasserstein distance). This allows
them to calculate this variant of the EMD between a given set of points and a given edge
of the triangulation exactly, as the squared distance can be decomposed into a normal
and a tangential component. However, they determine the assignment of points to edges
heuristically. In this work, we show how to obtain a (1 + ε)-approximation to the true
optimal solution.

3 Preliminaries

We are given a set of points P = {p1, . . . , pn} in the plane with weights {w1, . . . , wn} and
a set of geometric objects S = {s1, . . . , sm}, with lengths, areas or volumes {l1, . . . , lm}. It
is given that

∑
wi =

∑
lj . We assume the mass associated with an object si is distributed

uniformly over the object, and that all objects have the same mass density. For convenience,
and without loss of generality, we scale the input such that the total mass in either set
is one. We want to compute a “transport plan” of mass from P to S that minimises the
cost according to the Earth Mover’s Distance. We define for each pair (pi, sj) ∈ P × S a
function µi,j(x, y), that describes the density of mass being moved from pi to the point
(x, y) ∈ sj . All these functions together describe the function µ used in the definition of
D(A,B). Such a set of functions needs to satisfy the following conditions to be a valid
transport plan:

∀i, j : 0 ≤ µi,j(x, y) ≤ 1

∀i :

m∑
j=1

∫
sj

µi,j(x, y) dt = wi

∀j, (x, y) ∈ sj :

n∑
i=1

µi,j(x, y) = 1

We can then define the cost of a given transport plan µ as

|µ| =
n∑
i=1

m∑
j=1

∫
sj

µi,j(x, y) · d(pi, (x, y)) dt

3
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Figure 1: The regions of points for one subsegment qj , and the parts of the segment they
assign their mass to.

where d(·, ·) is any metric. Our problem is to find a transport plan µ∗ with minimal cost.
In the following section, we give an exact algorithm to calculate an optimal transport

plan between a set of weighted points and line segments when d(·, ·) is the L1 metric.
However, the approach we use does not seem to generalise to Euclidean distances, objects
with areas, or even two sets of segments. This motivated us to look towards approximation
algorithms for more general versions of the EMD problem. In the rest of this paper, we
describe approximation algorithms and only consider the case where d(·, ·) is the L2 metric.

4 Points to segments under the L1 metric

When S is a set of line segments and distances are measured by the L1 metric, we can solve
the problem exactly by a convex quadratic program. We first subdivide all segments on
the x- and y-coordinates of the points; call the set of subdivided segments Q = (q1, . . . , qk).
Note that the horizontal and vertical strip induced by each segment is now empty of points,
while the axis-aligned quadrants starting at each corner of its bounding box may contain
points; see Figure 1 for an illustration. Let Q1 be the set of segments in Q with slope
between −1 and 1, and let Q2 be Q \Q1.

We can now label the regions of points for each segment: let Xj1 and Xj2 be the regions
to the left of qj , with Xj1 being the region starting at the leftmost endpoint of qj , and Xj2

being the other. Similarly, let Xj3 be the region starting at the rightmost endpoint of qj ,
and let Xj4 be the other region on the right. In case of a horizontal or vertical segment,
Xj2 and Xj4 are simply merged into Xj1 and Xj3, and it does not matter if Xj1 is the top
or bottom region.

For all points the distance to any point on the a segment qj is the same as the distance
via one of the corners of the axis-aligned bounding box of qj . Therefore, for each region,
we can separately consider the cost to reach the bounding box of qj with a certain amount
of mass, and the cost to spread that mass out over the segment. Furthermore, the order in
which a segment with a given slope receives mass from the different regions in an optimal
solution is fixed depending on its slope.

Let uij be variables containing the amount of mass moved from pi to qj , let dij be the
precomputed distance from pi to the bounding box of qj , let Wj and Hj be the width and
height of the bounding box of qj , and let wj and hj be constants such that wj · ` is the
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1
2xj2)wj

1
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wj(xj1 +
1
2xj2)

Figure 2: The calculations of the distances to the midpoints of the regions to which the
mass from Xj1 and Xj2 will be assigned for a segment with slope between −1 and 1.

difference in x-coordinate when moving a distance of ` along segment qj , and hj · ` is the
difference in y-coordinate. Writing

∑
i∈Xj1

uij as xj1 for convenience, for a given segment
qj ∈ Q1 we can write the cost cjk for moving the mass from the corner of the region Xjk

to the segment as follows:

cj1 = 1
2x

2
j1(wj + hj)

cj2 = xj2(wjxj1 + wj
1
2xj2 + (Hj − hjxj1 − hj 1

2xj2)) = xj2((wj − hj)(xj1 + 1
2xj2) +Hj)

cj3 = 1
2x

2
j3(wj + hj)

cj4 = xj4(wjxj3 + wj
1
2xj4 + (Hj − hjxj3 − hj 1

2xj4)) = xj4((wj − hj)(xj3 + 1
2xj4) +Hj)

Here we use the fact that under the L1 distance, the cost of sending mass to some
connected region of a segment is the same as the cost of sending everything to the midpoint
of the connected region; see Figure 2 for an illustration of the calculations of the distances
to these midpoints. Note that we omit the cost of sending the mass from the points to the
corners of the bounding box; this will be accounted for later. Further note that wj − hj is
always positive here. Symmetrically, the costs c′k(qj) for a given segment qj ∈ Q2 are as
follows:

c′j1 = 1
2x

2
j1(wj + hj)

c′j2 = xj2((hj − wj)(xj3 + 1
2xj2) +Wj)

c′j3 = 1
2x

2
j3(wj + hj)

c′j4 = xj4((hj − wj)(xj1 + 1
2xj4) +Wj)

Note that hj −wj is always positive here. We can now formalise our problem as follows:

µ∗ = arg min
u

∑
j

∑
i

dij · uij

+
∑
k

∑
j∈Q1

cjk +
∑
j∈Q2

c′jk


subject to uij ≥ 0 ∀i, j∑

j

uij = wi ∀i

∑
i

uij = |qj | ∀j

5



Figure 3: An example subdivision of a set of segments. Small perpendicular line segments
delimit the generated subsegments. A green circle denotes the distance of δ/nm from each
point. Note that ε is set to a very large value here for the clarity of the resulting image.

Since all dij , cjk and c′jk are non-negative, this is a quadratic program with a convex
objective function, and as such it can be solved in (weakly) polynomial time [11].

Theorem 1. Let P be a set of n weighted points and S be a set of m line segments with
equal total weight. It is possible to construct an exact optimal transport plan between P
and S under the L1 metric in weakly polynomial time.

5 Points to segments

We now describe a polynomial-time algorithm that finds a transport plan with a cost
that is at most 1 + ε times the cost of the optimal transport plan when one set contains
points and the other contains line segments. The main idea is to reduce our instance
to a transport problem on two weighted sets of points. Our strategy is as follows: we
subdivide each segment such that for each subsegment s′ the ratio of the distance to the
closest and furthest point on s′ for every pi ∈ P is at most 1 + δ for some appropriate
choice of δ ∈ O(ε). We then approximate a minimum cost flow problem on a bipartite
graph between P and the subdivided segments, where the cost of any edge is equal to the
shortest distance between a point and a subsegment. Finally, we use the solution to this
flow problem to build a discrete transport plan. For an appropriate choice of δ, this gives
a (1 + ε)-approximation.

The naive approach to subdividing the segments would be to make all the pieces some
equal, appropriately small length. However, we can reduce the number of subsegments
required by subdividing the segments as follows∗. We repeatedly perform the following
procedure for each subsegment. If there exists a point in P such that the entire subsegment
lies within distance δ/nm of that point, do nothing. Otherwise, if there is a point in
P for which the ratio of the longest and shortest distance between that point and the
current subsegment is more than 1 + δ, cut the subsegment in half. Call the resulting set
of subsegments Q; see Figure 3 for an example.

We now define a complete bipartite graph G = (P ∪Q,P ×Q), with edges between
each point-subsegment pair (note that this graph is used for analysis only; our algorithm
does not construct it). The cost of each edge will simply be the shortest distance between
the point and segment it connects. A solution to a flow problem in G can be transformed
into a transport plan by assigning a piece of subsegment to a point with length equal to
the amount of flow along the corresponding edge. We will show that the EMD between P
and S is approximated by the cost of any transport plan derived from a minimum cost
flow in G.

∗This reduces the total number of subsegments required from O(nm/ε2) to O(nm
ε

log 1
ε
).
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First note the following general lower bound on the cost of an optimal solution:

Lemma 2. The Earth Mover’s Distance |µ∗| between P and Q is bounded from below by
the cost |W| of a minimum cost flow W in G.

Proof. Consider any transport plan µ∗ that minimises the Earth Mover’s Distance. If
instead of spreading the mass moved from each point pi equally over the whole segment,
we move all the mass to the point on the segment closest to pi, we obtain a plan λ with
cost |λ| ≤ |µ∗|. Such a plan is a solution to a flow problem in G, as it moves all available
mass. It follows that the cost |W| of a minimum cost flow W in G satisfies |W| ≤ |µ∗|.

We also note the following lower bound on the value of |W|:

Lemma 3. |W| ≥ δ − 2δ2 − 2δ3

nm
.

Proof. For a given point-segment pair (p, s) ∈ P × S, consider the segments in Q derived
from s that have a point within distance δ/nm of p. By construction, such a segment has
its furthest point at distance at most (1 + δ) · δ/nm = δ/nm + δ2/nm. Therefore, the
total length of these segments is at most 2(δ/nm+ δ2/nm) for a given p and s. Over all
point-segment pairs, this gives a total length of at most 2δ + 2δ2. This means the total
length of segments in Q with distance at least δ/nm is at least 1− 2δ − 2δ2. The cost of a
minimum flow in W is therefore at least (1− 2δ − 2δ2) · δ/nm = (δ − 2δ2 − 2δ3)/nm.

We calculate a transport plan µ between P and Q as follows. First, we approximate
each segment q ∈ Q by a point somewhere on that segment with weight equal to the length
of q; call this set of points T . We obtain µ by calculating an optimal transport plan ν
between P and T , and then spreading the mass sent to each point t ∈ T evenly over the
segment in Q that point was derived from. We now bound the cost of µ in terms of |W|:

Lemma 4. |W| ≤ |µ| ≤ (1 + δ)2|W|+ 4δ2

nm
+

2δ3

nm
.

Proof. We first bound the cost of ν. In W, we measured all the distances to the closest
point on each subsegment. Imagine that we picked all the points in T to be the furthest
point on the subsegment. For the subsegments with furthest distance at least δ/nm, the
ratio of these distances is at most 1 + δ by construction. We can therefore bound all the
parts of ν where the furthest distance is at least δ/nm by (1 + δ)|W|. The total mass being
moved over distance at most δ/nm in ν is at most 2δ, giving a cost of at most 2δ2/nm.
The total cost of ν is therefore at most (1 + δ)|W|+ 2δ2/nm.

Now consider the extra cost incurred when transforming ν into µ by spreading the mass
out evenly over all the segments. We can use the same argument as before: for the parts
of ν with distance at least δ/nm, the cost increases by a factor of at most 1 + δ, and the
total cost of the part within distance δ/nm is at most 2δ2/nm. We can therefore bound
the cost of µ by (1 + δ)|ν|+ 2δ2/nm.

We now obtain the upper bound stated in the lemma by plugging the bound on ν into
the bound on µ. The lower bound follows directly from the fact that none of the distances
in µ are smaller than the distances between the same objects in W.

We now show that |µ| approximates |µ∗|.

Theorem 5. |µ| is a (1 + 17δ)-approximation to the Earth Mover’s Distance |µ∗| between
P and S for 0 < δ ≤ 1

4 .
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Figure 4: An example of a single Rij . Small perpendicular segments delimit the generated
subsegments. The green circle denotes the distance of δ/nm from the projected point.

Proof. By Lemma 4, we know that

|µ| ≤ (1 + δ)2|W|+ 4δ2

nm
+

2δ3

nm

|W| is also a lower bound on |µ|; the ratio between the upper and lower bound is

(1 + δ)2|W|+ 4δ2

nm + 2δ3

nm

|W|

This ratio is the largest for small values of |W|, so we plug in the lower bound from
Lemma 3:

(1 + δ)2 · δ−2δ2−2δ3

nm + 4δ2

nm + 2δ3

nm
δ−2δ2−2δ3

nm

=
1 + 4δ − 3δ2 − 6δ3 − 2δ4

1− 2δ − 2δ2

= 1 + δ +
5δ + δ2 − 4δ3 − 2δ4

1− 2δ − 2δ2

≤ 1 + δ +
6δ

1− 2δ − 2δ2

≤ 1 + 17δ (assuming δ ≤ 1
4)

As |W| is also a lower bound for |µ∗| (Lemma 2), and µ can obviously not have lower
cost than the optimal transport plan, this gives a (1 + 17δ)-approximation.

Setting δ = ε/17 gives a (1 + ε)-approximation. Note that the bound on δ is not
restrictive: for any constant ε that would require a larger value of δ, we can simply use the
value 1/4 at the cost of a constant factor in the running time of our algorithm.

5.1 Running time analysis

We now analyse the number of subsegments in Q. We will count the number of subsegments
in a different subdivision of S, and then show that Q has at most a constant factor more
subsegments. The alternative subdivision of each sj will be as follows: project each pi onto
the supporting line of sj , call this point pij . We construct the one-dimensional Voronoi
diagram of all pij along the supporting line of sj ; let sij be the part of sj inside the Voronoi
cell of pij . From each pij , we subdivide sij into both directions. Up to a distance of
δ/nm, we make subsegments of size δ2/nm. Moving outward, we double the size of the
subsegments whenever their ratio of distances to pij would still be below 1 + δ. Let Rij be
the resulting subdivision; see Figure 4 for an example.

8



Lemma 6. R =
⋃
Rij has O

(
nm

δ
log

1

δ

)
subsegments.

Proof. We define β = δ
nm and γ = δ2

nm . In the following, we only analyse the case where
pij is on sij ; if it lies outside, the number of subsegments will be smaller, as the size of the
subsegments increases with distance. The length covered as we add subsegments on sij
can be written as

β + 2

k∑
i=0

αi2
iγ

where k is the number of times we double the size of the subsegments, and αi is the number
of subsegments with a size that has been doubled i times. The number of subsegments
can then be calculated by finding the values of k and αi. We start with α0, which can be
found by considering the distance at which the next cell could be double the size:

β + α0γ + 2γ

β + α0γ
≤ 1 + δ

2γ

β + α0γ
≤ δ

α0 ≥
2γ − δβ
δγ

=
2

δ
− β

γ

=
1

δ

We want to take the values of αi as small as possible, so we take α0 = 1
δ . Next, we can

show by induction that all αi are equal:

IH: αj = α∗ =
1

δ
for j < i.

9



β + 2i+1γ +
∑i

j=0 αj2
jγ

β +
∑i

j=0 αj2
jγ

≤ 1 + δ

2i+1γ

β +
∑i

j=0 αj2
jγ
≤ δ

2i+1γ ≤ δβ + δ

i∑
j=0

αj2
jγ

≤ δβ + δαi2
iγ + δ

i−1∑
j=0

αj2
jγ

2i+1 ≤ 1 + δα∗(2i − 1) + δαi2
i

αi ≥
2i+1

δ2i
− 1

δ2i
− δα∗(2i − 1)

δ2i

≥ 2

δ
− 1

δ2i
− 2i − 1

δ2i

≥ 2

δ
− 1

δ

=
1

δ

Knowing that all αi are equal to 1
δ , we can determine the value of k:

β +

k∑
i=0

1

δ
2iγ ≥ |sij |

β +
1

δ
γ(2k+1 − 1) ≥ |sij |

β + β(2k+1 − 1) ≥ |sij |

2k+1 ≥ |sij |
β

k ≥ log
|sij |
β
− 1

This gives a total number of subsegments of O(1
δ log

|sij |
β ) for each point-segment pair.

The sum over all pairs is largest when all |sij | are equal, i.e. 1/nm. This gives us a total

number of subsegments for all pairs of O
(
nm
δ log 1/nm

β

)
= O

(
nm
δ log 1

δ

)
..

Lemma 7. Q has O

(
nm

δ
log

1

δ

)
subsegments.

Proof. Consider any subsegment r ∈ R. Any subsegment q ∈ Q that overlaps with r has
|q| ≥ |r|/4: otherwise q was subdivided unnecessarily. As the subsegments in Q are disjoint,
it follows that r can overlap with at most 5 subsegments in Q. As such, Q contains at
most 5 times more subsegments than R, which, by Lemma 6, is O

(
nm
δ log 1

δ

)
.

Putting everything together, we obtain the following result:
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Theorem 8. Let P be a set of n weighted points and S be a set of m line segments with
equal total weight, let |µ∗| be the cost of an optimal transport plan between them, and let δ
be any constant > 0. Given an algorithm that constructs a (1 + δ)-approximation between
weighted sets of k points in fδ(k) time, we can construct a transport plan between P and S
with cost ≤ (1 + 25δ)|µ∗| in O

(
fε
(
nm
ε log

(
1
ε

)))
time.

Proof. In Theorem 5, we prove that an optimal transport plan ν between P and T
approximates |µ∗|. However, we may be able to compute a (1+δ)-approximation to ν faster
than we are able to compute it exactly. It remains to be shown that this approximation
also suffices.

Plugging in a (1 + δ)-approximation to |ν|, rather than the exact value, we obtain the
ratio

(1 + δ)3|W|+ 4δ2

nm + 4δ3

nm + 2δ4

nm

|W|
Following the same strategy as in the proof of Theorem 5, we derive the approximation

ratio as follows:

(1 + δ)3 · (δ − 2δ2 − 2δ3) + 4δ2 + 4δ3 + 2δ4

δ − 2δ2 − 2δ3

=
(1 + 3δ + 3δ2 + δ3)(1− 2δ − 2δ2) + 4δ + 4δ2 + 2δ3

1− 2δ − 2δ2

=
1 + 5δ − δ2 − 9δ3 − 8δ4 − 2δ5

1− 2δ − 2δ2

= 1 +
7δ + δ2 − 9δ3 − 8δ4 − 2δ5

1− 2δ − 2δ2

= 1 + δ +
6δ + 3δ2 − 7δ3 − 8δ4 − 2δ5

1− 2δ − 2δ2

≤ 1 + δ +
9δ

1− 2δ − 2δ2

≤ 1 + 25δ (assuming δ ≤ 1
4)

As such, using an approximation of ν still gives us an approximation of µ∗, albeit with
a somewhat worse dependency on δ.

To our knowledge, the current fastest algorithm to calculate a (1 + δ)-approximation to
ν is that by Fox and Lu [5], which runs in O(Nδ−O(1) polylogN) time. Setting δ = ε/25,
this gives the following corollary to the previous theorem:

Corollary 9. For any constant ε > 0, a transport plan between P and S with cost
≤ (1 + ε)|µ∗| can be constructed in O

(
nm
εc polylog

(
nm
ε

))
time with high probability.

6 Points to triangles

We consider the case where P is a set of weighted points with total weight one and S
is a set of m triangles with total area one. We denote the longest edge of any triangle
by ∆. Our strategy is similar to before: we subdivide the triangles such that for each
subregion, the ratio between its shortest and longest distance to each point is at most
1 + δ for some appropriate choice of δ ∈ O(ε). We then show that a solution based on an
optimal transport plan between P and some points inside the subregions approximates an
optimal solution.

11



∆

Figure 5: An example subdivision of a set of triangles. Each cell records the total area of
triangles it intersects. Cells that are part of Q are shown in black; empty cells are shown
in grey. A green disk denotes the distance of δ/

√
nm from each point. Note that ε is set

to a very large value here for the clarity of the resulting image.

We first overlay a uniform grid onto our triangles with grid cells of size ∆×∆. We can
identify the cells of this grid that contain a triangle in O(m logm) time using point-location
in a compressed quadtree where the smallest cell size is ∆×∆ [8]. As each triangle can
intersect at most four cells, the total size of this set of cells is O(m). We now recursively
subdivide each cell as follows: if there is a point in P such that the whole cell is within
distance δ/

√
nm of it, we stop; otherwise, if for any point the ratio of distances to the

furthest and closest point in this cell is more than 1 + δ, we subdivide this cell into four
cells of one quarter the area. If the ratio holds for all points, we stop. Call the resulting
set of cells Q; see Figure 5 for an example.

During each subdivision, we keep track of the total area of triangles contained inside
that cell. We can then once again build a complete bipartite graph G = (P ∪Q,P ×Q),
with the capacity of each vertex set to the weight of the corresponding point or the total
area of triangles contained in the corresponding cell, and the weight of each edge equal to
the shortest distance between the point and the cell it connects. The cost of a minimum
cost flow W is now once again a lower bound to the EMD, exactly as in Lemma 2. In an
analogous way to Lemma 3, we obtain a lower bound on the cost of W:

Lemma 10. |W| ≥ δ√
nm
− πδ3 + 2πδ4 + πδ5

√
nm

.

Proof. For a given point-triangle pair (p, s) ∈ P × S, consider the cells in Q intersecting
s that have a point within distance δ/

√
nm of p. By construction, such a cell has its

furthest point at distance at most (1 + δ) · δ/
√
nm = δ/

√
nm+ δ2/

√
nm. Therefore, the

total area of these cells is at most π(δ/
√
nm+ δ2/

√
nm)2 = π(δ2 + 2δ3 + δ4)/nm. Over

all point-triangle pairs, this gives a total area of at most π(δ2 + 2δ3 + δ4). This leaves
1 − π(δ2 + 2δ3 + δ4) with distance at least δ/

√
nm in W. The cost is therefore at least

(1− π(δ2 + 2δ3 + δ2)) · δ/
√
nm = δ/

√
nm− π(δ3 + 2δ4 + δ5)/

√
nm.

We now once again approximate |W| by reducing the flow problem to a transportation
problem between two sets of weighted points. Again, we pick any point in each cell q ∈ Q
and give it a weight equal to the area of triangles contained in q; call this set of points T .

Lemma 11. |W| ≤ |µ| ≤ (1 + δ)2|W|+ 2πδ3√
nm

+ πδ4√
nm

Proof. Let ν be an optimal transport plan between P and T , and let |ν| be its cost. We
can upper bound |ν| by measuring all distances to the furthest point in each cell. We

12



constructed Q such that the ratio of the closest and furthest distance between any point-cell
pair is 1 + δ when the furthest distance is at least δ/

√
nm. We can therefore bound all

parts of ν where the distance is at least δ/
√
nm by (1+δ)|W|. The total mass being moved

over a distance at most δ/
√
nm in ν is at most πδ2, giving a cost of πδ3/

√
nm. The total

cost when measuring to the furthest point is therefore (1 + δ)|W|+ πδ3/
√
nm.

We now turn ν into a transport plan µ between P and Q by spreading the mass sent
to each point t ∈ T out evenly over the parts of the triangles in the cell in Q that t was
derived from. By construction, for cells with a distance of at least δ/

√
nm, this increases

the cost by at most a factor 1 + δ. We can therefore bound the cost of this part of µ by
(1 + δ)|ν|. The remaining part has a total mass of at most πδ2, giving a cost of πδ3/

√
nm.

The total cost of µ is then bound by (1 + δ)|nu|+ πδ3/
√
nm.

Plugging in the bound on |ν| obtained above, we obtain an upper bound of (1+δ)2|W|+
2πδ3/

√
nm+ πδ4/

√
nm. The lower bound follows directly from the fact that none of the

distance in µ are smaller than the distances between the same objects in W.

Putting this all together, we can show that |µ| approximates |µ∗|.

Theorem 12. |µ| is a (1 + 9δ)-approximation to the Earth Mover’s Distance |µ∗| between
P and S for 0 < δ ≤ 1

2π .

Proof. By Lemma 11 have that

|µ| ≤ (1 + δ)2|W|+ 2πδ3

√
nm

+
πδ4

√
nm

|W| is also a lower bound on |µ|; the ratio between the upper and lower bound is

(1 + δ)2|W|+ 2πδ3√
nm

+ πδ4√
nm

|W|

This ratio is largest for small values of |W|, so we plug in the lower bound from

13



Lemma 10:

(1 + δ)2|W|+ 2πδ3√
nm

+ πδ4√
nm

|W|

≤
(1 + δ)2

(
δ√
nm
− πδ3+2πδ4+πδ5√

nm

)
+ 2πδ3√

nm
+ πδ4√

nm

δ√
nm
− πδ3+2πδ4+πδ5√

nm

≤ (1 + 2δ + δ2)(1− πδ − 2πδ2 − πδ3) + 2πδ2 + πδ3

1− πδ − 2πδ2 − πδ3

=
1 + 2δ + δ2 − 2πδ2 − 5πδ3 − 4πδ4 − πδ5

1− πδ − 2πδ2 − πδ3

= 1 +
2δ + δ2 − πδ − 4πδ3 − 4πδ4 − πδ5

1− πδ − 2πδ2 − πδ3

= 1 + δ +
δ + δ2 − πδ − 2πδ3 − 3πδ4 − πδ5

1− πδ − 2πδ2 − πδ3

< 1 + δ +
δ2

1− πδ − 2πδ2 − πδ3

≤ 1 + δ +
δ2

1− 1
2 −

1
π −

1
2π2

(assuming δ ≤ 1
2π )

< 1 + δ + 8δ2

< 1 + 9δ

As |W| is also a lower bound for |µ| (Lemma 2), and µ can obviously not have lower
cost than the optimal transport plan, this gives a (1 + 9δ)-approximation.

Setting δ = ε/9 gives a (1 + ε)-approximation.

6.1 Running time analysis

Our analysis will be the same as in Section 5.1; we just need to determine the size of Q.
We will once again make an alternative subdivision of each sj ∈ S, count the number of
cells in that subdivision, and then argue that |Q| differs by at most a constant factor.
Our alternative subdivision is a direct adaptation of the one used in Section 5.1 to two
dimensions: for each point pi and triangle sj , we fill a square with side length 2δ/

√
nm

centred on pi with cells of size δ2/
√
nm. From there, we add rings of cells of side length

δ2/
√
nm around the square, until the next full ring could have cells double the size without

violating the ratio of 1 + δ between the shortest and longest distance to pi for any cell in
the ring. We repeat this process until we have covered a square of size ∆×∆. Let Rij be
the resulting set of cells; see Figure 6 for an example. The proof is similar to Lemma 6.

Lemma 13. R =
⋃
Rij has O

(
nm

δ2
log

nm∆

δ

)
cells.

Proof. We define β = δ√
nm

and γ = δ2√
nm

. In the following, we only analyse the case where

pij is inside sij ; if it lies outside, the number of cells will be smaller, as the size of the cells
increases with distance. We also analyse the number of cells in one quadrant only; the
total number is simply four times as many. See Figure 6 for an illustration of a quadrant.
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β︷ ︷ ︸ ︸
α0

︸ ︸
α1

︸ ︸
α2

γ

2γ

4γ

Figure 6: On the left, part of one quadrant of the construction of Rij . There are αi layers
of cells of size 2iγ before the size is doubled. On the right, an illustration of the argument
that a cell of Q (blue) has at least one quarter the edge length of a cell of R that it
intersects (red).

x

y

δx

pi

δx

δx
2

δx
2

Figure 7: A cell of size δx has the correct ratio after one subdivision.

The number of cells created as we add rings of cells on sij can then be written as

β2

γ2
+

k∑
i=0

2αi ·
β +

∑i−1
j=0 αj2

jγ

2iγ
+ α2

i

where k is the number of times we double the size of the cells, and αi is the number of
rings containing cells of a size that has been doubled i times. The number of cells can then
be calculated by finding the values of k and αi. We take the values of αi to be the same
as in Lemma 6 (i.e. 1/δ): along a horizontal or vertical line through pi these values are
exact, and cells not on this line can be made to have the correct ratio through one extra
subdivision.

Let (x, y) be the vector from pi to the closest point on the cell. Assume w.l.o.g. that
0 ≤ y ≤ x; the other cases are symmetrical. By construction of our subdivision, we know
that the cell has size at most δx. We will now show that by dividing the cell on extra time
(i.e. to a size of δx/2), the furthest point will have the desired ratio irrespective of the
value of y. See Figure 7 for an illustration.
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√
(x+ δx

2 )2 + (y + δx
2 )2√

x2 + y2
≤ 1 + δ

(x+ δx
2 )2 + (y + δx

2 )2

x2 + y2
≤ (1 + δ)2

x2 + y2 + δx2 + δxy + δ2x2

2

x2 + y2
≤ 1 + 2δ + δ2

δx2 + δxy + δ2x2

2

x2 + y2
≤ 2δ + δ2

δxy ≤ δx2 +
δ2x2

2
+ 2δy2 + δ2y2

As δxy ≤ δx2, and the other terms on the right-hand side are positive, the inequality holds.
As such, the construction described can be turned into one where all cells have the desired
ratio with one extra subdivision.

Plugging the values of αi, β, γ into our initial formula, we can obtain the number of
cells as a function of k: δ√

nm

δ2√
nm

2

+
k∑
i=0

2

δ
·

δ√
nm

+
∑i−1

j=0
1
δ2j δ2√

nm

2i δ2√
nm

+
1

δ2

=
1

δ2
+
k

δ2
+

2

δ

k∑
i=0

δ√
nm

+ δ√
nm

∑i−1
j=0 2j

2i δ2√
nm

=
1

δ2
+
k

δ2
+

2

δ

k∑
i=0

δ√
nm

+ δ√
nm

(2i − 1)

2i δ2√
nm

=
1

δ2
+
k

δ2
+

2

δ

k∑
i=0

2i δ√
nm

2i δ2√
nm

=
1

δ2
+
k

δ2
+

2

δ

k∑
i=0

1

δ

=
1

δ2
+
k

δ2
+

2k

δ2

∈ O

(
k

δ2

)
We can directly calculate the value of k by considering the number of doublings needed
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to cover a horizontal line segment of length ∆ starting at pi:

δ√
nm

+

k∑
i=0

1

δ
· 2i · δ2

√
nm

= ∆

δ√
nm

+
δ√
nm

k∑
i=0

2i = ∆

1 +
k∑
i=0

2i =

√
nm∆

δ

2k+1 =

√
nm∆

δ

k ∈ O
(

log
nm∆

δ

)

This gives a total number of cells of O
(

1
δ2

log nm∆
δ

)
per point-triangle pair. Over all

pairs, we obtain a total number of cells of O
(
nm
δ2

log nm∆
δ

)
.

Lemma 14. Q has O

(
nm

δ2
log

nm∆

δ

)
cells.

Proof. Consider any cell r ∈ R. Any cell q ∈ Q that overlaps with r has |q| ≥ |r|/16:
otherwise q was subdivided unnecessarily; see Figure 6. As the cells in Q are disjoint, it
follows that r can overlap with at most 25 cells in Q. As such, Q contains at most 25 times
more cells than R, which, by Lemma 13, is O

(
nm
δ2

log nm∆
δ

)
.

This leads tot the following result:

Theorem 15. Let P be a set of n weighted points and S be a set of m triangles with equal
total weight, let ∆ be the longest edge length in S after normalising its total area to one, let
|µ∗| be the cost of an optimal transport plan between P and S, and let δ be any constant
> 0. Given an algorithm that constructs a (1 + δ)-approximation between weighted sets
of k points in fδ(k) time, we can construct a transport plan between P and S with cost
≤ (1 + 9δ)|µ∗| can be constructed in O

(
fδ
(
nm
δ2

polylog
(
nm∆
δ

)))
time.

We can again calculate a (1 + δ)-approximation to ν in O(Nδ−O(1) polylogN) time
using the algorithm by Fox and Lu [5], giving the following corollary to the previous
theorem:

Corollary 16. For any constant ε > 0, a transport plan between P and S with cost
≤ (1 + ε)|µ∗| can be constructed in O

(
nm
εc polylog

(
nm∆
ε

))
time with high probability.

7 Segments to segments

In the previous section, we considered the case when one of our two input sets contains
points. We now describe an algorithm to compute the EMD between two sets of line
segments. Here, we cannot directly apply our general approach of subdividing: the optimal
transport plan may have a cost arbitrarily close to zero. As such, if we disregard everything
within some radius of one of the sets, there may be nothing left. We solve this by introducing
an additive term into the approximation. The cost of a plan generated by our algorithm is
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u

v

x

τ(x)

Figure 8: Two points, with their mass assignment in an optimal solution shown in purple.
We greedily match a point x on u to τ(x) on v, and obtain the assignment of mass shown
in green.

(1 + ε)|µ∗|+A, for some value A depending on ε. This allows us to greedily match parts
of the input within a small distance of each other, and then solve the remainder with our
previous approach.

Let P = {p1, . . . , pn} and S = {s1, . . . , sm} be sets of line segments with equal total
length. Our algorithm is then as follows. First, we greedily match equal-length pieces of
P and S that are within distance δ/nm of each other, until no such pieces remain; we
describe this process in more detail later. Let P ′ and S′ be the remaining parts of P and S,
respectively. We subdivide P ′ and S′ as before: for every p ∈ P ′, if there is an s ∈ S′ such
that the ratio between the closest and furthest distance is more than 1 + δ, cut p in half;
after processing P ′, do the same for S′. Call the resulting sets Q and R. We then choose
a point on each q ∈ Q and r ∈ R, with a weight equal to the length of the subsegment,
and solve an optimal transport problem between these two point sets. Our final transport
plan is then obtained by spreading the mass moved between any two points evenly over
the segments they were chosen on.

We first prove that greedily matching parts of the input within distance δ/nm increases
the cost of an optimal solution by at most an additive term. The proof for the approximation
algorithm then follows the same structure as in the previous sections. Let µM be a transport
plan between the parts of the input that were greedily matched, in which the longest
distance is at most δ/nm, and let µ∗G be an optimal transport plan for the remainder of
the input.

Lemma 17. Let u and v be two subsegments with length l of P and S, respectively. If all
mass from u can be transported to v with distance at most κ, then a transport plan between
P \ {u} and S \ {v} has cost at most |µ∗|+ lκ.

Proof. We will construct a transport plan in which u and v are removed, having cost at
most |µ∗|+ lκ. The cost of an optimal solution on the remainder is then not higher.

Let µs(x, t) : R2 × [0, 1] → R2 be a function describing, for a point x ∈ s, where its
mass comes from or goes to (recall that each point sends or receives mass density one), let
ds(x, t) : R2 × [0, 1]→ R be defined as d(x, µs(x, t)), and let τ : R2 → R2 be a mapping of
points on u to points on v such that for all x ∈ u, d(x, τ(x)) ≤ κ. The cost of the part of
µ∗ involving segments u and v can then be written as

c∗(u) =

∫
x∈u

∫
du(x, t) dt dx

c∗(v) =

∫
x∈u

∫
dv(τ(x), t) dt dx

We modify µ∗ by removing u and v, and moving all mass that each point τ(x) receives
in µ∗ to where x moved it in µ∗; see Figure 8. We can distribute this mass in any way we
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like, as the total incoming and outgoing mass is one by definition. This gives a transport
plan µ with cost

|µ| = |µ∗| −
(∫

x∈u

∫
du(x, t) dt dx

)
−
(∫

x∈u

∫
dv(τ(x), t) dt dx

)
+

(∫
x∈u

∫
d(µu(x, t), µv(τ(x), t)) dt dx

)
By the triangle inequality, d(µu(x, t), µv(τ(x), t)) ≤ dv(τ(x), t) + κ + du(x, t). It follows
that

|µ| ≤ |µ∗| −
(∫

x∈u

∫
du(x, t) dt dx

)
−
(∫

x∈u

∫
dv(τ(x), t) dt dx

)
+

(∫
x∈u

∫
dv(τ(x), t) + κ+ du(x, t) dt dx

)
= |µ∗|+ lκ

We can now bound the costs of µ∗G and µM .

Lemma 18. |µ∗G| ≤ |µ∗|+
δ

nm
.

Proof. Any subsegments of P and S with length l that are greedily matched increase the
cost of an optimal solution in the remaining part by at most δl/nm (Lemma 17). The
total length that can be greedily matched is at most one, so the total extra cost is at most
δ/nm.

Lemma 19. |µM | ≤
δ

nm
.

Proof. By construction, the distance over which any mass is transported in µM is at most
δ/nm. The total mass transported is at most one, giving the bound.

For each segment p ∈ P , we can straightforwardly compute a maximal subset that can
be transported over distance at most δ/nm. Consider each segment s ∈ S: the supporting
lines of p and s can intersect inside p or s, outside both, or not at all. If they don’t intersect
(i.e. are parallel), computation of the parts that can be transported within the required
distance is trivial. If they intersect outside both, we can find the points on p and s furthest
from the intersection point that are within the required distance, then find the largest
distance we can move towards the intersection point while staying within the required
distance. If they intersect inside one or both of the segments, we split the segments at
the intersection point and handle both sides using the case for intersections outside the
segments.

Let P ′ and S′ be the parts of P and S that remain after the greedy matching, with
|P ′| = |S′| = `. We subdivide P ′ and S′ into Q and R as described above. As before, we
define a complete bipartite graph G = (Q ∪R,Q×R), where the weight of each edge is
equal to the shortest distance between the two subsegments it connects, and the capacity
of each vertex is equal to the length of the subsegment it represents. Let W be a minimum
cost flow in G; we observe the following lower bound on its cost:

Lemma 20. |W| ≥ δ`

nm
.

Proof. By construction, the distances in G are at least δ/nm. As the total mass moved is
`, we obtain the bound stated in the lemma.
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Lemma 2 also still applies to the part of the input that remains after greedy matching.
We now approximate |W| by reducing the flow problem to a transportation problem
between two weighted point sets. We pick any point on each q ∈ Q and r ∈ R, and give
them weights equal to |q| and |r|. Call these sets of points U and V . We can now bound
the cost of µG in terms of µ∗G using the flow problem.

Lemma 21. |µ∗G| ≤ |µG| ≤ (1 + δ)2|µ∗G|.

Proof. Let ν be an optimal transport plan between U and V , and let |ν| be its cost. We
can upper bound |ν| by measuring all distances to the furthest points inside the segments.
By construction of Q and R, the ratio of longest to shortest distance is at most 1 + δ. The
cost |ν| of ν can therefore not be more than (1 + δ)|W|.

We can turn µ into a valid transport plan µG between Q and R by spreading the mass
moved to each point in U and V evenly over the segments in Q and R that they were
derived from. Again, by construction, the distances increase by a factor of at most 1 + δ,
giving µG ≤ (1 + δ)|ν|.

Plugging in the bound on |ν| obtained above, we obtain an upper bound of (1 + δ)2|W|.
As |W| ≤ |µ∗G|, we obtain that |µG| ≤ (1 + δ)2|µ∗G|. The lower bound follows directly from
the fact that µ∗G is optimal, and therefore cannot have a cost higher than that of µG.

We can then show that, for a transport plan µ = µG + µM , |µ| approximates |µ∗|:

Theorem 22. |µ| ≤ (1 + 3δ)|µ∗|+ 5δ

nm
.

Proof. By Lemma 21, we know that |µG| ≤ (1 + δ)2|µ∗G|. As δ ≤ 1, (1 + δ)2 ≤ 1 + 3δ. By
Lemma 18, we have that |µ∗G| ≤ |µ∗|+ (1 − `)δ/nm. Combining the two results, we get
that

|µG| ≤ (1 + 3δ)|µ∗G|

≤ (1 + 3δ)

(
|µ∗|+ (1− `) δ

nm

)
≤ (1 + 3δ)|µ∗|+ (1− `)δ + 3δ2

nm

≤ (1 + 3δ)|µ∗|+ 4δ

nm

By Lemma 19, |µM | ≤ δ/nm. As |µ| = |µG|+ |µM |, we obtain the bound stated in the
lemma.

Setting δ = ε/3 gives a (1 + ε)-approximation with an additive term of 5ε/3nm

7.1 Running time analysis

During the greedy matching, each p ∈ P may have been cut into m pieces, and each s ∈ S
into n pieces. As such, P ′ and S′ (the parts remaining after greedy matching) both contain
O(nm) subsegments. In the worst case, P ′ and S′ are close to each other everywhere,
causing them to be subdivided into the smallest possible subsegments. As the minimum
distance is δ/nm, and the ratio of the longest and shortest distance between any two

subsegments is 1 + δ, the smallest possible subsegment has size Θ( δ
2

nm). Each subsegment
of P ′ and S′ may give rise to one extra subsegment in Q and R, as the length may not
be exactly divisible by δ/nm. This gives sets Q and R a size of O(nm

δ2
+ nm) = O(nm

ε2
),

leading to the following result:
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Theorem 23. Let P and S be sets of n and m line segments in the plane, both having equal
total length, let |µ∗| be the cost of an optimal transport plan between them, and let δ be any
constant > 0. Given an algorithm that constructs a (1 + δ)-approximation between weighted
sets of k points in fδ(k) time, we can construct a transport plan between P and S with cost
≤ (1 + c′δ)|µ∗|+ 5ε

3nm for some constant c′ in O
(
fδ
(
nm
δ2

))
time with high probability.

We can again calculate a (1 + δ)-approximation to ν in O(Nδ−O(1) polylogN) time
using the algorithm by Fox and Lu [5], giving the following corollary to the previous
theorem:

Corollary 24. For any constant ε > 0, a transport plan between P and S with cost
≤ (1 + ε)|µ∗| can be constructed in O

(
nm
εc polylog

(
nm
ε

))
time with high probability.

8 Triangles to triangles

We consider the case where P and S are both sets of triangles with total area one and
longest edge length ∆. The algorithm is completely analogous to the one for transport
between sets of segments: we greedily match parts of the input within a certain distance,
subdivide the remainder and approximate the optimal transport plan by reduction to a
minimum cost flow. As the setup and proofs are exactly the same as in the previous section
(just substitute the integrals over segments with integrals over area), this is omitted. All
we need is an algorithm that can greedily match parts of the input within a given distance.

We do this greedy matching as follows. We can first remove the parts where P and S
overlap: they have cost zero. We then overlay a grid with cells of size δ/(2

√
nm) onto our

input, and keep only the cells that contain an edge or are adjacent to one that does (the
other cells already have the desired clearance from cells containing triangles from the other
set). Inside each cell, we record the total area of triangles from P and S that lie inside
it separately. For parts of P and S that lie inside the same cell, we match as much as
possible, resulting in a grid where each cell only contains parts of P or S. We then match
as much of each cell as possible to each of its eight neighbours. The maximum distance
over which we have greedily matched weight is

√
2δ/
√
nm, and the remaining parts of P

and S have a minimum distance of δ/
√
nm to each other. Applying the analogous version

of the segment-to-segment algorithm then gives us a (1+ε)-approximation with an additive
term of O(ε/

√
nm).

8.1 Running time analysis

The number of cells examined during the greedy matching is O(nm∆
δ ) per triangle, so

O(nm∆(n+m)
δ ) in total. The part of the input remaining after greedy matching can be close

to each other everywhere, causing it to be subdivided into cells of size Θ( δ2√
nm

). There may

be O(nm∆
δ2

) cells that intersect the boundaries of a triangle, or O(nm∆(n+m)
δ2

) in total; the
other cells are interior to some triangle, and as the total area is one, there can be at most

O(
√
nm
δ2

) of them. The total number of cells is therefore at most O(nm∆(n+m)
δ2

). This gives
the following result:

Theorem 25. Let P be a set of n and S a set of m triangles in the plane, both having
equal total area and longest edge length at most ∆ after normalising their total areas to one,
let |µ∗| be the cost of an optimal transport plan, and let δ be any constant > 0. Given an
algorithm that constructs a (1 + δ)-approximation between weighted sets of k points in fδ(k)
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time, we can construct a transport plan between P and S with cost ≤ (1+c′δ)|µ∗|+O( δ√
nm

)

for some constant c′ can be constructed in O
(
fδ

(
nm∆(n+m)

δ2

))
time.

We can again calculate a (1 + δ)-approximation to ν in O(Nδ−O(1) polylogN) time
using the algorithm by Fox and Lu [5], giving the following corollary to the previous
theorem:

Corollary 26. For any constant ε > 0, a transport plan between P and S with cost

≤ (1 + ε)|µ∗|+O( ε√
nm

) can be constructed in O
(
nm∆(n+m)

εc polylog
(
nm∆
ε

))
time with high

probability.

9 Higher dimensions

In this section we show how our approach can be extended to work in d-dimensional space.
We discuss the case of transporting mass from points to d-dimensional simplices, and from
one set of simplices to another.

9.1 Points to simplices

The approach described here is a direct extension of the one detailed in Section 6. Let P
be a set of n weighted points in d dimensions with total mass one, and let S be a set of m
d-dimensional simplices with total volume one and longest edge length ∆. We start by
overlaying an infinite grid of size ∆ and identifying the cells intersected by any simplex
in O(dm log(m) + 6dd2ddm) time using compressed quadtrees [8]. We then repeatedly
subdivide each cell until the ratio between the shortest and longest distance is at most
1 + δ for all points in P , or until it is wholly within δ/(nm)1/d of any point in P . Call the
resulting set of cells Q. We can again show that picking one point in each cell of Q with
weight equal to the total volume of simplices contained in it, and then solving a transport
problem between P and the resulting set of points, approximates the transport problem
between P and S.

As the structure of the proof is very similar to that contained in Section 6, we omit
some of the intermediate lemmas here. We start with the lower bound on the cost of a
minimum cost flow W in the bipartite graph G = (P ∪Q,P ×Q):

Lemma 27. |W| ≥ δ

(nm)1/d
− δ(2(δ + δ2))d

(nm)1/d
.

Proof. For a given point-simplex pair (p, s) ∈ P × S, consider the cells in Q intersecting s
that have a point within distance δ/(nm)1/d of p. Such a cell has its furthest point at most
at distance (δ + δ2)/(nm)1/d. The total volume of these cells is then (2(δ + δ2))d/nm (the
volume of a d-dimensional hypercube with radius (δ + δ2)/(nm)1/d, which contains the
hypersphere with the same radius). Over all point-simplex pairs, this gives a volume of at
most (2(δ+ δ2))d, leaving 1− (2(δ+ δ2))d with distance at least δ/(nm)1/d in W . The cost
is therefore at least (1− (2(δ+ δ2))d) · δ/(nm)1/d = δ/(nm)1/d− δ(2(δ+ δ2))d/(nm)1/d.

We again approximate |W| by reducing the flow problem to a transportation problem
between two sets of weighted points. We do this by picking a point in each cell q ∈ Q and
giving it a weight equal to the total volume of simplices contained in q. Call this set of
points T :
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Lemma 28. The cost |ν| of an optimal transport plan ν between P and T satisfies

|W| ≤ |ν| ≤ (1 + δ)|W|+ δ(2(δ + δ2))d

(nm)1/d
.

Proof. The lower bound follows directly from the fact that none of the distances in ν are
smaller than the distances between the same objects in W (recall that the distances in
W are measured to the closest point on the cell). We can upper bound |ν| by measuring
all distances to the furthest point in each cell. By construction, those distances are at
most 1 + δ times the distance to the closest point when the furthest distance is at least
δ/(nm)1/d. We can therefore bound all parts of ν where the distance is at least δ/(nm)1/d

by (1 + δ)|W|. The total mass being moved over distance at most δ/(nm)1/d in ν is at
most (2(δ + δ2))d, giving a cost of δ(2(δ + δ2))d/(nm)1/d. The total cost when measuring
to the furthest point is therefore (1 + δ)|W|+ δ(2(δ + δ2))d/(nm)1/d.

As before, we turn ν into a valid transport plan µ between P and Q by spreading the
mass moved to each point in T out evenly over the parts of simplices contained in the cell
of Q the point was derived from. By the same argument used in Lemma 28, we obtain the
following bound on the cost of µ:

Lemma 29. |µ| ≤ (1 + δ)|ν|+ δ(2(δ + δ2))d

(nm)1/d
.

Putting this all together, we can show that |µ| approximates the cost of the optimal
transport plan |µ∗|:

Theorem 30. |µ| is a (1 + 21δ)-approximation to the Earth Mover’s Distance |µ∗| between
P and S for 0 < δ ≤ 1

5 .

Proof. We follow the same structure as Theorem 12, obtaining the following ratio, into
which we plug the lower bound from Lemma 27:

(1 + δ)2|W|+ 2δ(2(δ+δ2))d

(nm)1/d
+ δ2(2(δ+δ2))d

(nm)1/d

|W|

≤
(1 + 2δ + δ2)

(
δ

(nm)1/d
− δ(2(δ+δ2))d

(nm)1/d

)
+ 2δ(2(δ+δ2))d

(nm)1/d
+ δ2(2(δ+δ2))d

(nm)1/d

δ
(nm)1/d

− δ(2(δ+δ2))d

(nm)1/d

=
1 + 2δ + δ2 + (2(δ + δ2))d − δ(2(δ + δ2))d − δ2(2(δ + δ2))d

1− (2(δ + δ2))d

= 1 + δ +
δ + δ2 + 2(2(δ + δ2))d − δ2(2(δ + δ2))d

1− (2(δ + δ2))d

≤ 1 + δ +
δ + δ2 + 2(2(δ + δ2))((2(δ + δ2)))d−1

1− (2(δ + δ2))d

≤ 1 + δ +
δ + δ2 + 8δ

1− 1
2d

(Assuming (δ + δ2) ≤ 1
4)

≤ 1 + δ +
9δ + δ2

1
2

< 1 + 21δ

As |W| is also a lower bound for |µ| (Lemma 2), and µ can obviously not have lower
cost than the optimal transport plan, this gives a (1 + 21δ)-approximation.
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Note that the constant in our approximation is slightly worse than the one obtained in
Theorem 12; this is because we approximate the volume of a hypersphere by the volume of
its bounding cube, whereas before we could calculate the area of the disk exactly.

9.1.1 Running time analysis

We construct a structure similar to Section 6.1, then argue that the number of cells in
our actual subdivision is similar. Our construction is the direct generalisation of the one
described before: we build a layered structure of cells of increasing sizes. Let Rij be the set
of cells generated by point pi and simplex sj ; we now analyse how many cells are created.

Lemma 31. R =
⋃
Rij has O

(
ddd/2nm

δd
log

(nm)1/d∆

δ

)
cells.

Proof. We follow the structure of the proof of Lemma 14, again counting the number
of cells in one “quadrant”, and then multiplying by the number of quadrants (2d). The
number of cells in a quadrant is

(
β

γ

)d
+

k∑
i=0

dαi ·

(
β +

∑i−1
j=0 αj2

jγ

2iγ

)d−1

+ αdi

where αi is the number of layers of cells that have doubled in size i times, β is the
distance inside of which we use the smallest cell size (δ/(nm)1/d), γ is the smallest cell size
(δ2/(nm)1/d), and k is the number of times we need to double the cell size.

The value of each αi is 1/δ: this value is exact along any axis, and we can show that
all cells can be made to have the correct ratio with a given number of extra subdivisions.
For a given cell r ∈ Rij , let v be the vector from pi to the closest point on r, and let γ′ be
the edge length of cell q. W.l.o.g. assume that v0 = max vi; by construction this gives us
that (v0 + γ′)/v0 ≤ 1 + δ. Let u be the vector from the closest point on q to the furthest

point; we want to find a value x such that |v+u/x|
|v| ≤ 1 + δ. Through the triangle inequality,

we can upper bound the distance to the furthest point on q as |v|+ |u/x|. We can now
calculate the required value of x:

|v|+
∣∣u
x

∣∣
|v|

≤ 1 + δ

|u|
x|v|

≤ δ

γ′
√
d

x|v|
≤ δ

γ′
√
d

xv0
≤ δ

√
d

x
δ ≤ δ

x ≥
√
d

So all cells have the correct ratio if their edge length is reduced by a factor of at least
√
d,

which means each cell needs to be replaced by at most O(dd/2) cells.
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This gives us the following derivation for the number of cells:

1

δd
+

k∑
i=0

d

δ
·

 δ
(nm)1/d

+
∑i−1

j=0 2j δ
(nm)1/d

2i δ2

(nm)1/d

d−1

+
1

δd

=
1

δd
+
k

δd
+
d

δ

k∑
i=0

 δ
(nm)1/d

+ δ
(nm)1/d

(2i − 1)

2i δ2

(nm)1/d

d−1

=
1

δd
+
k

δd
+
d

δ

k∑
i=0

 δ
(nm)1/d

δ2

(nm)1/d

d−1

=
1

δd
+
k

δd
+
d

δ
· k

δd−1

=
1

δd
+
k

δd
+
kd

δd

∈ O

(
kd

δd

)
The value of k is derived in the same way as before, giving k ∈ O(log((nm)1/d∆/δ)).

This gives O( d
δd

log (nm)1/d∆
δ ) cells per point-simplex pair, where each cell needs to be

divided into O(dd/2) smaller cells, for a total of O(dd
d/2nm
δd

log (nm)1/d∆
δ ) cells.

Lemma 32. Q has O

(
5dddd/2nm

δd
log

(nm)1/d∆

δ

)
cells.

Proof. Consider any cell r ∈ R. As before, any cell q ∈ Q that overlaps with r has
|q| ≥ |r|/4d: otherwise q was subdivided unnecessarily. As the cells in Q are disjoint, it
follows that r can overlap with at most 5d cells in Q. As such, Q contains at most 5d times

more cells than R, which, by Lemma 31, is O
(
ddd/2nm

δd
log (nm)1/d∆

δ

)
.

Combined with the time required to build the quadtree that we use to find the starting
cells of our subdivision, this gives the following result:

Theorem 33. Let P be a set of n weighted points and S be a set of m simplices in Rd
with equal total weight, let ∆ be the longest edge length in S after normalising its total
volume to one, let |µ∗| be the cost of an optimal transport plan between P and S, and let δ
be any constant > 0. Given an algorithm that constructs a (1 + δ)-approximation between
weighted sets of k points in fδ(k) time, we can construct a transport plan between P and S

with cost ≤ (1 + 21δ)|µ∗| in O
(

6dd2ddm+ fδ

(
5dddd/2nm

δd
log (nm)1/d∆

δ

))
time.

Note that if we set d = 2, this is the same running time as the one obtained in Theo-
rem 15. We can again calculate a (1 + δ)-approximation to ν in O(Nδ−O(1) polylogN) time
using the algorithm by Fox and Lu [5]. Setting δ = ε/21, this gives a total running time of

O
(

6dd2ddm+ 105dddd/2nm
εd+c polylog

(
5ddnm∆

εd

))
∈ O

(
6dd2ddm+ 105dd2dd/2nm

εd+c polylog
(
dnm∆
εd

))
.

Corollary 34. For any constant ε > 0, a transport plan between P and S with cost

≤ (1 + ε)|µ∗| can be constructed in O
(

6dd2ddm+ 105dd2dd/2nm
εd+c polylog

(
dnm∆
εd

))
time with

high probability, where c is some constant.
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9.2 Simplices to simplices

The approach from Sections 7 and 8 can also be extended to work on d-dimensional
simplices in d dimensions. We take the same approach of overlaying a grid with cells
of size δ/(4(nm)1/d) onto the input and greedily matching the parts of P and S that
are close together. The maximum distance over which we greedily match weight is then√
dδ/(2(nm)1/d), and the remaining parts of P and S have minimum distance δ/(2(nm)1/d)

to each other. We then approximate the transport plan between the remaining cells with a
minimum cost flow. The same analysis still works, and we obtain a (1 + ε)-approximation
with an additive term of O(

√
dε/(nm)1/d).

9.2.1 Running time analysis

The number of cells examined during the greedy matching is O( (nm)1/d∆d

δ ) per simplex, so

O( (nm)1/d∆d(n+m)
δ ) in total (note that we simplify the analysis by simply considering the

volume of a d-dimensional cube of side length ∆). The part of the input remaining after
greedy matching can be close to each other everywhere, causing it to be subdivided into cells

of size Θ( δ2√
d(nm)1/d

). The total number number of these cells is then O(
√
d(nm)1/d∆d(n+m)

δ2
).

This gives the following result:

Theorem 35. Let P be a set of n and S a set of m d-dimensional simplices in Rd, both
having equal total volume and longest edge length at most ∆ after normalising their total
volumes to one, let |µ∗| be the cost of an optimal transport plan between them, and let δ
be any constant > 0. Given an algorithm that constructs a (1 + δ)-approximation between
weighted sets of k points in fδ(k) time, we can construct a transport plan between P

and S with cost ≤ (1 + c′δ)|µ∗| + O(
√
dδ

(nm)1/d
) for some constant c′ can be constructed in

O
(
fδ

(√
d(nm)1/d∆d(n+m)

δ2

))
time.

We can again calculate a (1 + δ)-approximation to ν in O(Nδ−O(1) polylogN) time
using the algorithm by Fox and Lu [5], giving the following corollary to the previous
theorem:

Corollary 36. For any constant ε > 0, a transport plan between P and S with cost

≤ (1+ε)|µ∗|+O(
√
dε

(nm)1/d
) can be constructed in O

(√
d(nm)1/d∆d(n+m)

εc polylog
(
d(nm)1/d∆d

ε

))
time with high probability.

10 Conclusion

We have provided approximation algorithms to the Earth Mover’s Distance between
sets of points, line segments, triangles and d-dimensional simplices. These are the first
combinatorial algorithms with a provable approximation ratio for this problem when the
objects are continuous rather than discrete points.

Here we described the case where the total mass is spread uniformly over the available
length or area. However, our approach also works when this is not the case. If the ratio of
densities is bounded, the same running times hold; otherwise, this ratio will show up in the
running times the same way that the longest edge length does for cases involving triangles.

We note that for points and line segments (in any dimension), the approximation
scheme is free from undesired parameters, whereas for points and triangles (or simplices),
the maximum edge length ∆ appears in the running time, and when neither set is a set of
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points, an additive term appears in the approximation. The most interesting open question
is whether either of these two artifacts can be avoided.
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