
Dev2PQ: Planar Quadrilateral Strip Remeshing of Developable Surfaces

FLOOR VERHOEVEN, ETH Zurich
AMIR VAXMAN, Utrecht University
TIM HOFFMANN, TU Munich
OLGA SORKINE-HORNUNG, ETH Zurich

(a) input mesh (b) locally estimated rulings (c) gradient direction field (d) optimized scalar field (e) remeshing result

Fig. 1. Developable shapes can be digitally acquired by 3D scanning or freeform modeling (a). In such scenarios, the meshing is typically not aligned to
principal curvature directions, which hampers practical applications, such as fabrication with flat polygonal panels (Fig. 2). Our method remeshes an input
mesh of a (piecewise) developable surface into a curvature-aligned, planar polygonal mesh (e) by computing a vector field (c), from which we integrate a
function (d) whose level sets align as well as possible to the locally estimated rulings (b). Our vector field contains a naturally-placed singularity in the planar
region, which automatically generates a triangular polygon.

ABSTRACT
We introduce an algorithm to remesh meshes representing developable sur-
faces to planar quad dominant meshes. The output of our algorithm consists
of planar quadrilateral (PQ) strips aligned to principal curvature directions
and closely approximating the curved parts of the input developable, along
with planar polygons representing the flat parts of the input. Such devel-
opable PQ-strip meshes are useful in many areas of shape modeling thanks
to the simplicity of fabrication from flat sheet material. However, they are
difficult to use in the modeling phase due to their restrictive combinatorics
and locking issues. Other representations of developable surfaces, such as
arbitrary triangle or quad meshes, are more suitable for interactive freeform
modeling but generally have non-planar faces or are not aligned to principal
curvature. Our method enables one to leverage the modeling flexibility of
non-ruling based representations of developable surfaces but still obtain
developable, curvature-aligned PQ-strip meshes. Our algorithm optimizes a
scalar function on the input mesh, such that its level sets are straight and
align well to the locally estimated ruling directions. The condition that guar-
antees straight level sets is nonlinear of high order and numerically difficult
to enforce in a straightforward manner. We devise a dedicated optimization
method that makes our problem tractable and practical to compute. Our
method works automatically on any developable input, including multi-
ple patches and curved folds, without explicit domain decomposition. We
demonstrate the effectiveness of our approach on a variety of developable
surfaces and show how our remeshing can be used alongside handle based
interactive freeform modeling of developable shapes.

1 INTRODUCTION
Developable surfaces are commonly used in architecture and prod-
uct design due to the simplicity of their fabrication. Such surfaces

Authors’ addresses: Floor Verhoeven, ETH Zurich, vfloor@inf.ethz.ch; Amir Vaxman,
Utrecht University, a.vaxman@uu.nl; Tim Hoffmann, TU Munich, tim.hoffmann@ma.
tum.de; Olga Sorkine-Hornung, ETH Zurich, sorkine@inf.ethz.ch.

are locally isometric to a planar domain, which means they can be
manufactured by mere bending of sheet material, such as metal.
Freeform developable surfaces form a rich and interesting shape
space, but they are notoriously hard to design due to their highly
constrained nature, which is why in practice, most of the time only
simple forms are used, such as cylinders and cones. The majority of
methods for developable surface modeling use rulings-based rep-
resentations (see, e.g., [Solomon et al. 2012; Tang et al. 2016]), or
isometry optimization (see, e.g., [Burgoon et al. 2006; Fröhlich and

Fig. 2. Developable meshes with planar faces have many applications in
fabrication and architecture. Rendering of our result from Fig. 1.

ar
X

iv
:2

10
3.

00
23

9v
1

 [
cs

.G
R

]
 2

7
Fe

b
20

21

2 • Floor Verhoeven, Amir Vaxman, Tim Hoffmann, and Olga Sorkine-Hornung

Fig. 3. Rendering of a result from Fig. 18 with two curved folds.

Botsch 2011]). Using such representations in the common handle-
based editing paradigm is hindered by locking issues that make the
exploration of the developable shape space difficult, as described in
[Alessio 2012; Chapelle and Bathe 1998; Rabinovich et al. 2018; Tang
et al. 2016]. The recently proposed discrete orthogonal geodesic nets
[Rabinovich et al. 2018] and the checkerboard pattern isometries
[Jiang et al. 2020], lift this limitation by representing developable
surfaces without explicitly accounting for principal curvature direc-
tions. These methods enable intuitive surface modeling via freeform
deformation, as if bending and manipulating a piece of paper.

While these discrete representations of developable surfaces are
excellently suited for creative exploration and design of freeform
developable shapes, they fall short of providing a suitable final rep-
resentation for manufacturing. For that purpose, it is especially
important to have planar mesh faces aligned to principal curvature
directions [Alliez et al. 2003; Liu et al. 2006; Tang et al. 2016]. A
curvature-line representation of a developable surface possesses
the desired properties for fabrication once the shape is fixed, since
the minimal curvature lines on a developable surface are rulings
with a constant normal along them, such that they can be easily
tessellated into planar polygons that approximate the surface shape
well. In fact, meshes comprised of planar quadrilateral strips (with
no interior vertices) constitute a well known model for discrete
developable surfaces, whose refinement and convergence properties
have been studied [Liu et al. 2006].
In this paper, we develop a method to convert a triangle mesh

representation of a developable surface into discrete curvature line
representation in order to reap the benefits of both worlds: the
support for unhindered developable shape creation provided by a
representation of choice, and the desirable properties for fabrication
offered by the curvature line representation. Our method produces
strips of planar quadrilaterals (PQ) aligned to principal curvature
directions and closely approximating the curved parts of a given
input mesh, along with planar polygons representing the flat parts
of the input (see Fig. 1). In particular, our method produces precisely
straight rulings, modeled as individual edges in the output mesh. If

desired, the long polygons can be further tessellated into circular
PQ elements by inserting the other family of parametric lines to
form trapezoids.
The past decade has seen a highly active stream of fruitful re-

search on field aligned quad meshing, where principal curvature
fields have naturally received special attention [Bommes et al. 2012;
Vaxman et al. 2016]. However, to the best of our knowledge, no
existing general remeshing method is guaranteed to perfectly align
to principal directions and produce edge flows that are entirely con-
sistent with curvature lines, which are often difficult to obtain fully
and faithfully for discrete meshes. In this work we exploit the spe-
cific constrained setting and the geometric structure of developable
shapes to reproduce straight minimum-curvature lines, as well as
automatically segment the input into curved and planar parts in
a robust manner that is consistent with the structure dictated by
developability.

Our method is based on fitting a scalar function on the input mesh,
such that its level sets are straight and align as best as possible to
the locally estimated rulings on non-planar regions (see Fig. 1). The
condition that guarantees straight level sets on developable surfaces
is simple to formulate: the normalized gradient of the scalar field
needs to be divergence free. This nonlinear and high order condition
is numerically difficult to enforce in a straightforward manner. We
therefore devise a dedicated optimization scheme that factors the
problem into a directional-field optimization and the fitting of a
scalar function to it. This makes our problem tractable and practical
to optimize.We extract the level sets of the obtained scalar field at the
desired resolution and remesh the input into strips of planar quads
whose chordal edges are the level sets, i.e., the rulings, supplemented
by planar polygonal faces that represent the planar patches of the
input surface. The flexibility of the field-to-function design allows
for the automatic inclusion of singularities, flat regions and curved
folds without explicitly segmenting different curvature regions on
the mesh.

We demonstrate the effectiveness of our approach on a variety of
input developable shapes represented by general triangle meshes
(and triangulated quad meshes) and show how our remeshing can
be used side-by-side with freeform modeling of developables.

2 RELATED WORK
Remeshing general meshes into (planar) quad meshes is an active
area of research. A comprehensive review is beyond the scope of
this paper, but we highlight the main features of existing approaches
most closely related to our work.

As stated in the introduction, the quadrilaterals in freeform mod-
els of developable surfaces are usually non-planar, and typically
neither triangle nor quad meshes are curvature aligned. Our goal
is to obtain a curvature-aligned remeshing with planar faces. Pla-
narization of general polygonal meshes has been explored in several
works [Alexa and Wardetzky 2011; Bouaziz et al. 2012; Diamanti
et al. 2014; Poranne et al. 2013; Tang et al. 2014]. These methods
take arbitrary shapes as input and are not specifically targeted at
developable surfaces. Typically, applying a general planarization
method to developable surfaces leads to poor results in terms of
curvature alignment and shape approximation (see Fig. 4).

Dev2PQ: Planar Quadrilateral Strip Remeshing of Developable Surfaces • 3

input ours ShapeUp

Fig. 4. Attempting to convert a quad mesh to a PQ mesh using a general-
purpose planarization technique (ShapeUp [Bouaziz et al. 2012]) signifi-
cantly alters the shape and makes it non-developable. This happens because
the edges of the input mesh are generally not aligned to principal curvature
directions. Our method is applied to a trivial triangulation of the input mesh.
The Hausdorff distance also indicates that our method approximates the
input better: for our result it is 0.67% of bounding box diagonal, and for the
ShapeUp result it is 9.74%.

A different approach to obtaining PQ meshes from general devel-
opable input meshes is to utilize the fact that PQ meshes are a dis-
crete model for conjugate nets and seek a remeshing that is aligned
to ruling directions. Many curvature-aligned or just conjugate quad
remeshing techniques for general shapes exist, see e.g. [Bommes
et al. 2012; Diamanti et al. 2014; Jakob et al. 2015; Liu et al. 2011;
Zadravec et al. 2010]. Similar to our method, these techniques rely
on numerical estimation of the principal curvature directions, but
they do not guarantee exact alignment or straight edge sequences
and may introduce unnecessary singularities on developable shapes.
Their optimization process might fail to create precise, straight rul-
ings on developable surfaces, unlike the algorithm we propose in
this work (see Fig. 6).

A more promising approach to PQmeshing of developable shapes
is a dedicated technique that utilizes their specific properties. Pe-
ternell [2004] converts a scan of a single torsal developable patch
into a PQ mesh by thinning its tangent space representation into
a one-dimensional object (a simple curve). This approach is not
immediately applicable to composite and possibly piecewise devel-
opable surfaces that consist of multiple torsal patches and planar
regions. Kilian and colleagues [2008] compute a torsal patch decom-
position for 3D scans of physical developable surfaces by estimating
flat regions and ruling directions. This approach may struggle with
developable meshes that are coarse in comparison to scans due to
insufficient data density for reliable fitting and the strict segmenta-
tion structure imposed by developable geometry. Locally estimated
rulings on developable meshes can be quite noisy and inaccurate,
as we discuss in Sec. 4. We avoid a direct domain decomposition
based on rulings employed in [Kilian et al. 2008] and instead devise
a global constrained optimization approach.
Wang and colleagues [2019] represent developable surfaces by

discrete parallel geodesic nets. This representation admits a local
estimate of ruling directions, which they use to approximate their
surfaces by thin, separate strips of nearly planar quadrilaterals. In
contrast, our method produces a complete, connected remeshing of
the input developable surface with globally consistent and straight
rulings.

While targeting geodesic fields, rather than planar quad remesh-
ing, the works by Vekhter et al. [2019] and Pottmann et al. [2010]
show parallels to our proposed method. They compute a unit curl-
free field, while we compute a divergence-free field — these two
kinds of fields are in fact duals. Nevertheless, our field has further
constraints in terms of ruling alignment, which we take into ac-
count. In addition, our optimization strategy is different, interlacing
integrability optimization with divergence reduction. We discuss
this in further detail in Sec. 3.

3 CONTINUOUS AND DISCRETE DEVELOPABLE
SURFACES

In this section, we summarize relevant facts about developable sur-
faces that inform our algorithm and offer a directional field based
definition of developable surfaces. We provide a discrete setup for
these fields in Sec. 4, and an optimization scheme in Sec. 5.

3.1 Developable surface parameterization
A 𝐶2-continuous surface S that has vanishing Gauss curvature
everywhere is a smooth developable surface. A general developable
comprises multiple developable patches {S𝑖 } ,

⋃S𝑖 = S, where
each such patch is either a torsal patch (a curved ruled surface with
constant normal along each ruling) or a planar patch. The rulings
are completely contained in each S𝑖 , i.e., they extend up to the
boundary 𝜕S𝑖 [Massey 1962]. The planar patches are regions with
vanishing mean curvature 𝐻 = ^2/2, where ^2 is the max curvature.
They are bounded by rulings of torsal patches and the boundary of
the surface, as shown in Fig. 5.

Non-smooth developables. We also consider more general, piece-
wise developable surfaces. One type are creased shapes, where sev-
eral smooth developable surfaces are joined along curves with only
𝐶0-continuity [Huffman 1976]. These curves are termed curved folds
when the surface is globally isometric to a planar domain (as in Fig.
18), and creases when this is not the case (e.g., Fig. 15). We treat
curved folds and creases identically in the rest of this paper and
refer to them as creases from now on. Another type is surfaces that
contain point singularities, such as cone apexes (see Fig. 16). These

Fig. 5. Developable surfaces (top row) and their decompositions into planar
and curved (torsal) patches, shown on the 2D development (bottom row).
We display the planar patches in white and the curved patches in different
colors. The rulings are illustrated as thin grey lines, with the borders between
curved and flat patches in thick black and inflection lines in blue.

4 • Floor Verhoeven, Amir Vaxman, Tim Hoffmann, and Olga Sorkine-Hornung

input our result Diamanti et al. [2014] Instant Meshes [Jakob et al. 2015]

Fig. 6. Remeshing an input developable surface using the vector field design of [Diamanti et al. 2014] does not result in globally straight edge sequences.
Instant Meshes, the curvature-aligned quad dominant remeshing technique of [Jakob et al. 2015], introduces singularities and does not always succeed in
finding the exact rulings. For Instant Meshes we use the following settings: 4-RoSy extraction, quad-dominant mesh extraction, no boundary alignment (to
ensure better curvature alignment; trimming can be done in a post-processing step).

surfaces are locally non-developable at the singularities; they can
be constructed by gluing parts of the boundary of a developable
surface together while allowing isometric deformation. The cone
apexes are easily identified, and to run our method we remove the
apex vertices together with their incident faces. If desired, they can
be added back in post-processing.

Conjugate nets. Consider a single torsal patch S𝑖 , where we pa-
rameterize the patch with coordinates S𝑖 (𝑢,𝑤) as follows:

𝑆𝑖 (𝑢,𝑤) = 𝑝 (𝑢) +𝑤 𝑟 (𝑢), (1)

where 𝑝 (𝑢) : R→ R3 is a generating curve, and every 𝑢-level-set is
a straight line with direction 𝑟 (𝑢) : R→ S2, i.e., a ruling. The Gauss
map 𝑛(𝑢,𝑤) must be constant on the 𝑢-level-sets in order for 𝑆𝑖 to
be developable: 𝑛(𝑢,𝑤) = 𝑛(𝑢). This means that the 𝑢-level-sets are
extrinsically flat; they constitute lines inR3.
The rulings are the minimum curvature lines of S𝑖 . The 𝑢𝑤-

parameterization constitutes a conjugate net [Liu et al. 2006]. In
particular, choosing 𝑝 (𝑢) to be a max curvature line (i.e., having

the 𝑝 (𝑢) curve intersect all rulings at right angles) makes 𝑆𝑖 (𝑢,𝑤) a
principal curvature line parameterization.

Conjugate nets are more versatile than is expressible by Eq. (1) for
torsal patches; by enforcing 𝑢 to be continuous between the patches
S𝑖 , and allowing for singularities to emerge, we obtain a single
conjugate parameterization for the entire surface S. If the surface
is 𝐶2-continuous, singularities must naturally be located in planar
regions (see Fig. 1). Furthermore, 𝑢, like rulings, is 𝐶0-continuous
across crease curves.

Order of symmetry. Note that the 𝑢 and𝑤 coordinates are distinct
in a single torsal patch, as the 𝑢-level-sets are rulings, and the 𝑤-
level-sets are generating curves. Sincewemaintain these roles on the
entire surface S, we get that 𝑢 and𝑤 are always separable, and each
is individually symmetric up to sign.While this is in accordance with
principal parameterizations, general conjugate nets typically allow
𝑢 and𝑤 to intermix when the goal is to obtain PQmeshes [Diamanti
et al. 2014; Liu et al. 2011]. According to the taxonomy in [Vaxman

Dev2PQ: Planar Quadrilateral Strip Remeshing of Developable Surfaces • 5

et al. 2016], separable sign-symmetric 𝑢 and 𝑤 are 22-symmetric,
and when intermixed they have 4-symmetry. In our work, we design
the 22 variant, as we are looking to generate PQ-strip meshes from
the 𝑢-level-sets, rather than a generic PQ discretization; in fact, we
only design 𝑢, defining a strip foliation on the mesh, and let𝑤 be a
dependent orthogonal coordinate.

3.2 Ruling fields
Our work focuses on designing directional fields that generate the
rulings of a developable surface from other representations, and
meshing accordingly. Consider the vector field ∇𝑢, which is by
definition orthogonal to the level sets of 𝑢. The geodesic curvature
of level sets is defined as: ^𝑔 (𝑢) = ∇ · ∇𝑢∥∇𝑢 ∥ [do Carmo 1976]. Since
the 𝑢-level-sets are extrinsically flat, and a developable is locally
isometric to the plane, we have ∀𝑢, ^𝑔 (𝑢) = 0.

Denote by 𝑟⊥ a unit-length vector field orthogonal to the ruling
directions 𝑟 in the tangent bundle of S, such that ∇𝑢

∥∇𝑢 ∥ = 𝑟⊥. Next,
consider a unit-length 2-directional field 𝛾 on a developable surface
S, which is the assignment of a tangent vector 𝛾 to every point
𝑝 ∈ S, and which is defined up to sign. If we align 𝛾 with 𝑟⊥, we
have by definition

∇𝑢 ∥ 𝛾 . (2)
For simplicity we first consider the case where 𝛾 does not have

singularities, and the surface S does not contain creases. We then
get:

∇ · 𝛾 = ∇ · ∇𝑢∥∇𝑢∥ = 0. (3)

This means that𝛾 is a divergence-free unit vector field. Our objective
is to design 𝛾 and integrate 𝑢 from it, which leads to the question:
for which divergence-free unit fields does such a𝑢 exist. Such a field
must be integrable up to a scalar. That is, there must exist a positive
scalar function 𝑠 (𝑝) > 0, ∀𝑝 ∈ S, for which:

∇ × (𝑠𝛾) = 0. (4)
The geometric meaning of the scalar function 𝑠 is the density of the
level sets of 𝑢 at point 𝑝 . Varying 𝑠 (𝑝) comes up naturally when
the level sets have a fan-like structure (for instance, the rulings of a
cone).

Singularities and combing. We design 𝛾 as a 2-directional field,
where it is only defined up to sign. Therefore, the divergence and
curl operators do not automatically apply. Rather, in every local
surface patch that does not contain singularities, 𝛾 can be combed
by consistently choosing one of the directions to obtain a smooth
single-vector field on which we adhere to conditions (3) and (4).
Since our field 𝛾 is 2-symmetric, singularities have indices that

are integer multiples of ± 1
2 . Therefore, the field 𝛾 is not defined

there, and neither is 𝑢. As a consequence, it is not divergence-free in
any neighborhood that contains the singularity, and the level sets of
𝑢 are not straight there. However, singularities cannot arise inside
torsal patches by definition, since the ruling field is well defined.
Therefore there are only two possible types of singularities: a) cone
apexes, of index 1; the parameter 𝑢 is undefined at such vertices,
and we avoid them in our formulation, as explained in Sec. 3.1;
b) singularities inside planar regions, where they compensate for
the different orientations of the neighboring torsal patches (see Fig.

1c). As such, the fact that the level sets are not straight in these planar
regions does not pose a subsequent problem in our discretization
(see Sec. 3.3).

Relation to geodesic fields. Vekhter et al. [2019] and Pottmann
et al. [2010] both apply the unit-length divergence property to de-
sign geodesic fields; more precisely, Vekhter et al. [2019] work with
the dual curl-free vector field 𝛾⊥ and define a similar integrability
measure. Nevertheless, our work handles further challenges, as it is
not enough to target geodesic fields to guarantee that they follow
rulings, even though rulings are geodesics. It is in fact theoreti-
cally impossible to characterize rulings of a developable merely as
geodesics, since they depend on the shape operator and are thus
extrinsic. Therefore, 𝛾 has to be designed such that 𝛾⊥ aligns to
prescribed rulings. As we see in Sec. 4, estimating and aligning to
reliable rulings is a challenging task that must include completion
in unreliable regions. Given the second fundamental form 𝐼 𝐼 , we
then also must have:

∀𝑝 ∈ S, 𝐼 𝐼
(
𝛾⊥ (𝑝), 𝛾⊥ (𝑝)

)
= 0. (5)

Ruling field at creases. Rulings on two developable patches adja-
cent to a crease typically do not form a single, intrinsically straight
line, but rather meet at an angle (see e.g. Fig. 17, 18). We therefore do
not require 𝛾 to be divergence-free near creases, effectively allowing
the vector field to break across them.

3.3 Discrete ruling-aligned developable meshes
A discrete sampling of the 𝑢,𝑤 level sets of a conjugate net creates
a quadrilateral mesh whose faces are planar up to second order
[Liu et al. 2006]. Sampling curvature-line parameterizations leads
to circular quad meshes up to second order [Bobenko and Pinkall
1999] (a quadrilateral is circular if it can be inscribed into a circle).
In discrete differential geometry, circular meshes constitute a model
of discrete curvature line nets [Bobenko and Suris 2008; Bobenko
and Tsarev 2018] and admit vertex offsets. Moreover, anisotropic
quadrilateral meshing aligned to principal directions is known to
have optimality properties in terms of approximation quality (see
e.g. [Alliez et al. 2003]). These facts motivate curvature-aligned
polygonal remeshing, in particular for fabrication purposes.
Since we design 𝑢 independently and leave 𝑤 as a dependent

coordinate, our discretization for a torsal patch is that of a mesh
comprising long planar polygons. These polygons are for the most
part quadrilaterals whose edges are two boundary curves and two
straight rulings; thus, a torsal patch is represented as a PQ-strip
model. Planar patches are represented as big flat polygons, where the
non-straight level sets are fully contained in the plane, and we are
therefore allowed to straighten them out. If the sum of singularity
indices in a planar region S𝑖 is 𝐼𝑖 , then the polygon will have 4+ 2𝐼𝑖
sides; for instance, in Fig. 8, the singularity is of index 1

2 , and the
planar polygon is a hexagon (with small boundary edges).

4 DISCRETIZATION
The input to our algorithm is a triangle meshM = {V, E, F } of the
(piecewise) developable surface. We define 𝑢 as a piecewise-linear
vertex-based function 𝑢 (𝑣), 𝑣 ∈ V , and consequently represent
𝑟 , 𝑟⊥, and ∇𝑢 as face-based piecewise-constant tangent fields; we

6 • Floor Verhoeven, Amir Vaxman, Tim Hoffmann, and Olga Sorkine-Hornung

denote this space as X. For convenience, we uniformly scale the
inputM such that its average edge length becomes 1. We use the
conforming discrete gradient 𝐺 : V → X and divergence 𝐷 :
X → V operators, and the non-conforming discrete curl operator
𝐶 : X → E. Their explicit expressions can be found in, e.g., [Brandt
et al. 2017].

Estimating rulings. We compute a ruling direction 𝑟 (𝑓), ∀𝑓 ∈
F , as the eigenvector corresponding to the minimal eigenvalue of
the face-based shape operator 𝑆 (𝑓), as defined in [De Goes et al.
2020]. Since we know the ruling only up to sign, we represent it
unambiguously using a power representation [Azencot et al. 2017;
Knöppel et al. 2013]: we first represent 𝑟 (𝑓) as a complex number in
a local coordinate system and then square this complex number to
have a representation that is invariant to the sign of the direction,
i.e., we store 𝑅(𝑓) = 𝑟2 (𝑓). We also define 𝑅⊥ (𝑖) = (𝑟⊥ (𝑖))2, the
power representation of the ruling locally rotated by 90 degrees.

Confidence weights. A clean domain decomposition into planar
and torsal regions would significantly simplify the fitting of indi-
vidual developable patches, but in reality we cannot obtain such
a clean segmentation directly, because the measure of curvedness
is noisy, like the ruling estimates, and does not delineate planar
and torsal patches nicely, as can be seen in Fig. 7. Therefore we
instead model the fact that the rulings are least reliable in planar or
near-planar regions, and mostly consistent in strongly curved areas
(see Figs. 1 and 8), by attaching a relative confidence weight𝑤 (𝑓) to
each face 𝑓 ∈ F , as a function of the discrete absolute max and min
curvatures ^1 (𝑓) and ^2 (𝑓):

𝑤 (𝑓) = \1
(
1 − 𝑒\2 (\3 (^1 (𝑓)−^2 (𝑓)))2

)
. (6)

For ^1 (𝑓) and ^2 (𝑓) we use the absolute largest and smallest eigen-
values of the shape operator S(𝑓), we set \1 = 0.8, \2 = −0.9 and
\3 = 5. The confidence function is a logistic curve, facilitating a
stronger distinction between confidence in planar and near-planar
regions (albeit still small compared to stronger curved regions). By
design𝑤 (𝑓) is capped at 0.8 (assigned when ^1 and ^2 differ by 0.5
or more), ensuring that we never fully rely on a ruling.

We defineV𝑏 to be all vertices on the boundary ofM and F𝑏 all
faces that contain a vertex in V𝑏 , and we set 𝑤 (𝑓) = 0 for these
faces.

Crease detection. As an optional step we identify a set of crease
edges E𝑐 by collecting all edges whose adjacent face normals differ
by more than a user-defined threshold. We defineV𝑐 as all vertices
that are incident on an edge in E𝑐 , and from this we define the
set of faces adjacent to them: F𝑐 is the set of all faces that have
one or more vertices inV𝑐 . We update the confidence weights by
setting 𝑤 (𝑓) = 0 for all faces in F𝑐 . This preprocessing step has
been included for all results in Figures 17 and 18. Alternatively, the
creases can be prescribed by a user to the same effect, as we did for
the examples in Fig. 15.

5 METHOD
We describe our approach to remeshing a (near-)developable in-
put triangle mesh to a curvature-aligned, planar polygonal mesh
consisting primarily of PQ strips.

Fig. 7. Level sets of the curvedness measure |^2−^1 | (middle) do not provide
a clean delineation between torsal and planar parts. However, our method
automatically places a planar polygon in this region, without being provided
with an explicit decomposition (right).

5.1 Optimization problem
We start by computing the face-based shape operator and the rul-
ing related quantities: 𝑆 (𝑓), 𝑟 (𝑓), 𝑟⊥ (𝑓), 𝑅(𝑓) = 𝑟2 (𝑓), 𝑅⊥ (𝑓) =
(𝑟⊥)2 (𝑓), as well as the confidence weights𝑤 (𝑓), as detailed in Sec.
4. We further consider the face-based mass matrix𝑀X holding the
face areas𝑚(𝑓) and an edge-based mass matrix𝑀E holding edge
masses 𝑚(𝑒) = ∥𝑒 ∥

∥𝑒dual ∥ (𝑚(𝑓) +𝑚(𝑔)) where ∥𝑒dual∥ is defined as
the summed length of the two dual edges from the midpoint of 𝑒 to
the barycenters of the adjacent faces 𝑓 and 𝑔. Finally, for a vector
field 𝛾 ∈ X we use the discrete divergence 𝐷𝛾 = 𝐺T𝑀X𝛾 (∈ R |V |),
where 𝐺 is the discrete gradient operator, which for a triangular
face 𝑓 consisting of vertices 𝑖, 𝑗, 𝑘 and scalar function 𝑢 is defined
as 𝐺𝑢𝑖 𝑗𝑘 (𝑓) = 1

2𝑚 (𝑓) (𝑒
⊥
𝑗𝑘
𝑢𝑖 + 𝑒⊥𝑘𝑖𝑢 𝑗 + 𝑒

⊥
𝑖 𝑗
𝑢𝑘).

Our method optimizes for a unit field𝛾 (𝑓) and its power represen-
tation Γ(𝑓) = 𝛾2 (𝑓), where Γ(𝑓) should align to the perpendicular
ruling power field 𝑅⊥ (𝑓) according to the confidence 𝑤 (𝑓), and
where 𝛾 is divergence-free away from singularities. Furthermore,
we optimize for a scalar field 𝑠 (𝑓), such that 𝑠 𝛾 is curl-free. For this,
we introduce the following terms.

Alignment objective. Our alignment term is

𝐸𝑎 (Γ) =
∑︁
𝑓 ∈F

𝑚(𝑓)𝑤 (𝑓) ∥Γ(𝑓) − 𝑅⊥ (𝑓)∥2, (7)

where𝑚(𝑓) is the face area of 𝑓 . This can be formulated in matrix
form as

𝐸𝑎 (Γ) =
(
Γ − 𝑅⊥

)𝐻
𝑀X𝑊X

(
Γ − 𝑅⊥

)
, (8)

where𝑊X is the diagonal matrix of per-face confidences for vectors,
and Γ and 𝑅⊥ are arranged as |F | × 1 complex vectors. Note the
conjugate transpose

(
Γ − 𝑅⊥

)𝐻 .

Unit-norm divergence-free objective. We ideally want the field to be
perfectly divergence-free and have unit norm everywhere. However,
this is impossible at singularities (Sec. 3.2) and in general would
only be meaningful on torsal patches. We follow [Viertel and Osting
2019] and [Sageman-Furnas et al. 2019] by using a Ginzburg-Landau
approach, introducing the following objective term:

𝐸𝑑 (𝛾) =
∑︁
𝑣∈V
|𝐷𝛾 (𝑣) |2 + 1

𝜖2

∑︁
𝑓 ∈F

(
∥𝛾 (𝑓)∥2 − 1

)
. (9)

When 𝜖 → 0, this is analogous to minimizing the divergence of a
unit-norm field after removing a ball of radius 𝜖 around singularities.
Since the unit-norm divergence-free condition is satisfiable on torsal

Dev2PQ: Planar Quadrilateral Strip Remeshing of Developable Surfaces • 7

(a) input meshM (b) input rulings 𝑟 (c) streamlines of 𝛾 (d) 𝑢 and its level sets (e) our resultM′

Fig. 8. Our remeshing pipeline: (a) The original inputM; (b) the noisy input rulings 𝑟 ; (c) our computed 𝛾 field, visualized with streamlines; (d) the optimized
function 𝑢 with its level sets; (e) the final remeshing resultM′. Note how the level sets in (d) bend inside the planar region, which gets meshed as one large
polygon, but are straight in the torsal regions, which result in PQ-strips.

patches, this will naturally locate singularities (if any) inside planar
regions, where they should be.

Smoothness regularizer. To encourage the field to smoothly tran-
sition from curved to planar parts, and in general to regularize low-
confidence regions, we add a small smoothness term that encodes
smoothness of the power vector field across edges. For each interior
edge 𝑒 adjacent to faces 𝑓 and 𝑔, the power smoothness [Knöppel
et al. 2013] is measured as:

∥Γ(𝑓) 𝑒2
𝑓
− Γ(𝑔) 𝑒2

𝑔 ∥2 . (10)

Here, 𝑒𝑓 is the conjugate of 𝑒𝑓 , which is the complex representa-
tion of the edge vector 𝑒 in the basis of 𝑓 , and similarly for 𝑔. Our
smoothness regularizer then becomes:

𝐸𝑠 (Γ) =
∑︁
𝑒∈E

𝑚(𝑒) (1 −𝑤 (𝑒)) ∥Γ(𝑓) 𝑒2
𝑓
− Γ(𝑔) 𝑒2

𝑔 ∥2, (11)

where𝑤 (𝑒) = 𝑤 (𝑓) +𝑤 (𝑔). In matrix form, we write this energy as
𝐸𝑠 (Γ) = Γ𝐻𝐿2Γ, where

𝐿2 = 𝐺𝐻
E𝑀E (𝐼 −𝑊E)𝐺E , (12)

where 𝐺E stacks the differences Γ(𝑓) 𝑒2
𝑓
− Γ(𝑔) 𝑒2

𝑔 from Eq. (10).

Integrability. We use the discrete curl operator 𝐶 to measure
integrability of the scaled field 𝑠𝛾 :

𝐶𝑠𝛾 (𝑒) = ⟨𝑠 (𝑓)𝛾 (𝑓) − 𝑠 (𝑔)𝛾 (𝑔), 𝑒⟩ . (13)
We constrain

𝐶𝑠𝛾 = 0. (14)
To constrain 𝑠 to be positive and prevent large density variations,
we further bound

𝑠low < 𝑠 < 𝑠high . (15)
We provide the values used for 𝑠low and 𝑠high in Sec. 5.2.

Branching and singularities. Generating Γ from 𝛾 is well-defined.
However, the inverse has a sign degree of freedom. We follow com-
mon practice by arbitrarily choosing a sign in each face, and relating
𝛾 values across faces by using principal matching [Diamanti et al.
2014]; in our context, this means we match vectors according to
the smallest rotation angle. The curl and divergence operators are
always understood to be defined with relation to the matching at
every edge and vertex, with the exception of singularities, creases,
and boundary vertices (where we do not optimize for divergence).

Full optimization problem. Our optimization problem can then be
finally formulated as follows:

(Γ, 𝛾, 𝑠) = arg min 𝜔𝑎𝐸𝑎 (Γ) + 𝜔𝑑𝐸𝑑 (𝛾) + 𝜔𝑠𝐸𝑠 (Γ), 𝑠 .𝑡 . (16)

∀𝑓 ∈ F , Γ(𝑓) = 𝛾2 (𝑓), (17)
𝐶𝑠𝛾 = 0, (18)
𝑠low < 𝑠 < 𝑠high . (19)

Here, 𝜔𝑎, 𝜔𝑑 , 𝜔𝑠 are scalar weights. Similar to [Sageman-Furnas
et al. 2019], we seek solutions where 𝜔𝑠

𝜔𝑑
→ 0 and 𝜔𝑠

𝜔𝑎
→ 0 to allow

the solution to converge to divergence-free unit-norm field aligned
to rulings away from planar regions and singularities.

5.2 Optimization algorithm
We now detail our numerical solution strategy for the optimization
problem described in Eqs. (16)-(19). As the optimization problem
is separable in the Γ, 𝛾 and 𝑠 variables, we optimize for them in
an alternating fashion, following the spirit of [Sageman-Furnas
et al. 2019]. We alternate between implicit Euler steps that decrease
the alignment and smoothness terms of the quadratic objective
(16), pointwise renormalizations as needed for the 𝐸𝑑 term and
projections onto the spaces of divergence-free and integrable vector
fields for the 𝐸𝑑 term and Eq. (18). Our method proceeds as described
in Algorithm 1.

ALGORITHM 1: Optimize vector field Γ

Initialize Γ0 = 𝑅⊥, 𝑘 = 0,V∗ = V \ (V𝑏 ∪ V𝑐)
repeat

𝑘 ← 𝑘 + 1
Γ𝑘𝑎 ← ImplicitAlign(Γ𝑘−1)
Γ𝑘𝑠 ← ImplicitSmooth(Γ𝑘𝑎)
∀𝑓 ∈ F, Γ𝑘𝑢 (𝑓) ←

Γ𝑘𝑠 (𝑓)Γ𝑘𝑠 (𝑓)
𝛾𝑘𝑢 ← LocalRawRepresentation(Γ𝑘𝑢)
V∗ ← UpdateSingularities(𝛾𝑘𝑢)
𝛾𝑘
𝑑
← ProjectDivFree(𝛾𝑘𝑢)

𝛾𝑘𝑐 ← ProjectCurlFree(𝛾𝑘
𝑑
)

Γ𝑘 ← PowerRepresentation(𝛾𝑘𝑐)
until max𝑓 ∥Γ𝑘 (𝑓) − Γ𝑘−1 (𝑓) ∥ < 10−3;

8 • Floor Verhoeven, Amir Vaxman, Tim Hoffmann, and Olga Sorkine-Hornung

Fig. 9. Several snapshots from an interactive editing session. The user deforms the DOG model by interacting with point handles at some selected vertices. At
any time during the interactive session, the user may invoke our remeshing algorithm and view the curvature-aligned remesh nearly instantaneously. Note
how the combinatorial structure of the ruled remeshing automatically changes to accommodate the changes in the surface geometry, without forcing the user
to specify the patch decomposition manually.

The function ImplicitAlign(Γ𝑘−1) solves the following linear
system: (

𝑀X +
𝜔𝑎

`𝑎
∇𝐸𝑎

)
Γ𝑘𝑎 = 𝑀X Γ𝑘−1 + 𝜔𝑎

`𝑎
𝑀X𝑊XΓ

0, (20)

where ∇𝐸𝑎 = 𝑀X𝑊X .
Similarly, the function ImplicitSmooth(Γ𝑘𝑎) solves the follow-

ing linear system:

(𝑀X +
𝜔𝑠

`𝑠
∇𝐸𝑠)Γ𝑘

′
𝑠 = 𝑀X Γ𝑘𝑎 , (21)

where ∇𝐸𝑠 is equal to 𝐿2 from Eq. (12).
The Euler step sizes 𝜔𝑎, 𝜔𝑠 are resized by `𝑎, `𝑠 , respectively,

where `𝑎, `𝑠 are the lowest nonzero generalized eigenvalues of ∇𝐸𝑎
and ∇𝐸𝑠 , respectively, with𝑀X as the mass matrix (i.e., ∃𝛽 ≠ 0 s.t.
∇𝐸𝑠 𝛽 = ` 𝑀X 𝛽). The step size 𝜔𝑎 is fixed to 0.1 and the step size
𝜔𝑠 starts as 0.005 and is halved every 30 iterations, to ensure that
the alternation with the renormalization of Γ converges.

After normalizing the current vector field and transforming it to a
local raw representation, the function UpdateSingularities(𝛾𝑘𝑢)
identifies current singularities in the vector field and updatesV∗
accordingly. Note that V𝑏 and V𝑐 always remain subsets of V∗.
Then the function ProjectDivFree(𝛾𝑘𝑢) solves the following linear
system:

arg min
𝛾𝑘
𝑑

∥𝛾𝑘
𝑑
− 𝛾𝑘𝑢 ∥2 s.t. 𝐷𝛾𝑘

𝑑

(
V∗

)
= 0, (22)

where 𝐷𝛾𝑘
𝑑
includes an encoding for the local principal matching

around the vertices and is only applied to vertices inV∗.
Finally, the function ProjectCurlFree(𝛾𝑘

𝑑
) solves the following

convex system:

arg min
𝛾𝑘𝑐 , 𝑠

∥𝛾𝑘𝑐 − 𝑠𝛾𝑘𝑑 ∥
2, (23)

𝑠 .𝑡 . 𝐶𝛾𝑘𝑐 = 0, (24)
0.4 ≤ 𝑠 ≤ 1.6, (25)

where 𝐶 also encodes the principal matching over edges. In our
experiments it typically takes 50 iterations or less for Γ to converge.

5.3 Vector field integration and meshing
Having an integrable𝛾 , we can use an off-the-shelf seamless function
integrator implemented inDirectional [Vaxman et al. 2017] to obtain
𝑢. The input triangle mesh is cut into a topological disc, where
the singularities are on the boundary, and then a corner-based 𝑢
function is extracted, which is seamless across the cuts, using integer
translations. We configure the integrator to produce 𝑢 ∈ 1

2Z values
around singularities, since then the level sets avoid meeting at these
singularities, subdividing the planar polygons.

To create the final PQ-strip mesh, we trace the integer level sets
of 𝑢 and then collapse all valence-2 vertices that are not on the
boundary. This effectively straightens the polylines of the level
sets, which has little effect in torsal regions, since the level sets are
almost straight by the optimization. However, the level sets in planar
regions become chords between boundary vertices. We illustrate
our remeshing pipeline in Fig. 8.

6 RESULTS AND DISCUSSION
We implemented our algorithm using libigl [Jacobson et al. 2018] and
Directional [Vaxman et al. 2017] on a machine with i7-8569U CPU
and 16GB RAM. Our typical input mesh resolution is 1800 faces, and
for this approximate input size the vector field design part of our
method takes 4–5 seconds, of which the majority of the time is spent
in the ProjectCurlFree step, i.e., solving the convex optimization
Eq. (23)-(25). We currently use CVX [Grant and Boyd 2014], but
this part can be optimized for better speed. Although we do not
have a formal convergence guarantee for our alternating algorithm,
we observe that it typically converges to our specified tolerance
level within 10–20 iterations for vector fields without singularities
and 40–50 iterations for shapes with planar parts that introduce
singularities in the vector field. We also test our method on inputs

Dev2PQ: Planar Quadrilateral Strip Remeshing of Developable Surfaces • 9

our result, 𝑝 = 11.84% after planarization, 𝑝 = 0.0034%

Fig. 10. Our result from Fig. 20 is planarized using ShapeUp [Bouaziz et al.
2012], achieving maximal face planarity error of 𝑝 = 0.0034%, compared
with 𝑝 = 11.84% in our initial result. The visual difference between the
results is negligible. The Hausdorff distances are reported in Table 2.

of up to 160k faces – for which the method also converges, albeit
slower (100 iterations). The parameterization part of our method
takes ca. 10-15 seconds.
A variety of our results can be seen in Fig. 20. Note that our

method preserves the input boundary vertices, and therefore our
output faces are quadrilateral-like higher degree polygons, rather
than actual quadrilaterals. Examples of our results with various
boundary shapes and non-disk topologies are included in Fig. 20.
Our method is applicable to developables with curved folds, as seen
in Fig. 3 and 18 (the inputmodels are from [Rabinovich et al. 2019]). It
can handle piecewise developable shapes, such as D-forms (shapes
obtained by gluing together two planar domains with the same
perimeter) from [Jiang et al. 2020] and sphericons from [Tang et al.
2016], see Fig. 15, as well as other shapes with creases from [Tang
et al. 2016], see Fig. 17. We successfully apply our method to glued
constructions from [Jiang et al. 2020], including point singularities,
see Fig. 16. We have physically fabricated some of our results, shown
in Fig. 19. Table 2 lists the most important statistics about our results.

Developable surface editing with dynamic connectivity. To demon-
strate the utility of our approach, we use the point handle-based
editing system of [Rabinovich et al. 2018] to interactively deform an
input discrete orthogonal geodesic net (DOG) and create a sequence
of a few developable surfaces, on which we run our algorithm after
trivial triangulation. See Fig. 9 and the accompanying video for some
examples of such editing sessions. Note the natural change in the
combinatorics that our algorithm induces to model exact developa-
bility, which can change considerably even for small deformations
in the input.

Planarity evaluation. Since our output meshes have no interior
vertices inside the developable patches, the ultimate accuracy mea-
sure for the developability of our results is the planarity of the mesh
faces. We measure planarity of each quadrilateral face by the ratio
of the distance between the diagonals to their average length, in per-
cent [Liu et al. 2006]. For higher-degree polygons, we compute the
root-mean-square (RMS) error of all consecutive quads. An accept-
able stringent tolerance for the planarity error is ≤ 1%. It is generally

inputM |F′ | = 23 |F′ | = 46 |F′ | = 90
ℎ = 0.47% ℎ = 0.41% ℎ = 0.41%
𝑝max = 0.52% 𝑝max = 0.54% 𝑝max = 0.32%
𝑝mean = 0.24% 𝑝mean = 0.16% 𝑝mean = 0.10%

Fig. 11. Sampling the level sets of our optimized function 𝑢 with increasing
density leads to finer remeshing of the input mesh, where the Hausdorff
distance to the input ℎ, as well as the maximal and mean polygon planarity
error, 𝑝max and 𝑝mean, decrease. The output resolution is denoted by the
number of faces |F′ |. The Hausdorff distance is reported relative to the
bounding box diagonal.

not expected for parameterization based methods to achieve pla-
narity to more than first-order, so that usually further planarization
post-processing is needed. We show the raw maximum and mean
planarity error values of our results without any post-processing
in Table 2. Even though our output meshes are quite coarse, our
planarity errors are typically very low, very close to the tolerance.
We planarize the example that has the worst maximum planarity
error (𝑝 = 11.84%) to perfection using ShapeUp [Bouaziz et al. 2012]
and reach a visually highly similar result, see Fig. 10. This demon-
strates the capability of our algorithm to utilize the information in
the original mesh effectively.

Effect of output resolution. We vary the number of isovalues and
extract varying amounts of level sets of 𝑢 to create output meshes
of different resolutions; we then measure their planarity and ap-
proximation quality w.r.t. the input mesh in terms of Hausdorff
distance, see Fig. 11. We note that the approximation quality and
the planarity improve with higher resolution, although even for the
coarsest resolution these metrics are already very good.

Comparison with analytical principal curvature direction. We test
our method on an input mesh sampled from an analytical clothoid
surface with varying resolution and compare the obtained vector
field 𝛾 with the analytical max curvature directions, see Fig. 12 and
Table 1. Note that the input to our method are numerically estimated
ruling directions 𝑟 , not their analytical values. These estimates can
have significant error w.r.t. to the true analytical value, as reported
in the second and third column of Table 1, whereas our method
achieves lower errors (fourth and fifth columns of Table 1). As the
data shows, upon refinement of the input mesh, our output field
converges towards the analytical solution.

Robustness. We observe robustness of our method with respect
to the parameters 𝜔𝑎 and 𝜔𝑠 . There is a range of values for these
parameters that leads to visually very similar results. As the relative
weight of 𝜔𝑠 with respect to 𝜔𝑎 increases, the vector field turns
into a more constant field, reducing alignment quality of the final

10 • Floor Verhoeven, Amir Vaxman, Tim Hoffmann, and Olga Sorkine-Hornung

|F | = 10k |F′ | = 68, ℎ = 0.31%
𝑝max = 1.08%, 𝑝mean = 0.34%

|F | = 40k |F′ | = 67, ℎ = 0.26%
𝑝max = 1.22%, 𝑝mean = 0.10%

|F | = 160k |F′ | = 66, ℎ = 0.24%
𝑝max = 0.25%, 𝑝mean = 0.02%

Fig. 12. As the input resolution |F | of a sampled analytical developable
surface increases, the approximation accuracy and the planarity of our
remeshed result increase. The meshing direction also aligns better with the
mesh boundaries that coincide with analytical ruling directions in this case
as the resolution increases.

Table 1. Difference between our optimized vector field and the analytical
principal curvature directions on the clothoid mesh shown in Fig. 12 (angular
difference reported in degrees).

Analytical vs. input Analytical vs. output

|F | max ° mean ° max ° mean °

10k 89.74 3.42 9.49 2.24
40k 89.82 1.86 4.80 1.19
160k 89.92 1.01 2.31 0.52

output mesh. For noisy inputs, as in Fig. 13 (right), our method does
not converge with our standard parameter settings, or it converges
but generates a vector field with a large amount of singularities.
For these cases, simply increasing 𝜔𝑠 ensures that the optimization
converges, although some small and noisy details may be lost (in
Fig. 13 (right) we use 𝜔𝑠 = 0.15). For optimal alignment the value
of 𝜔𝑠 should be chosen as small as possible; e.g., for the cone in
the second to last row of Fig. 20 we use 𝜔𝑠 = 0.00005 to emphasize
better alignment near the boundary. Our method is robust to some
noise on the input meshes, as can be seen in Fig. 13.

Limitations. Our method is not entirely triangulation indepen-
dent, as shown in Fig. 14. If the input meshing is at odds with the
principal curvature directions, this leads to poor ruling estimation
and diminished performance of our algorithm in terms of planarity
error. This is most noticeable near the corners of the given input,
where there is relatively little data for our algorithm to align to. In
order to minimize bias introduced by the triangulation, it is advis-
able to triangulate polygonal input meshes with higher valences by
inserting a new vertex at the face center and connecting it to the
vertices of the original polygon in a triangle fan.

Our method may struggle with thin features, e.g., as part of a
piecewise developable, as these can often provide no alignment

Fig. 13. Ourmethod is robust to noise on developable inputs. These examples
show our third example from Fig. 14, but with random vertex displacements
applied. Left: a displacement of maximally 12.5% of the average edge length
is applied, right: maximally 25% of the average edge length. Our method still
recovers a meshing that is compatible with the original principal directions.

Fig. 14. Different triangulations of a quad mesh lead to different remeshing
results, mainly in the near-planar regions. Nevertheless, all of the resulting
meshing directions on the planar region are valid.

information at all. In the future it would be interesting to see how
the vector field on surrounding developable pieces can be used to
add constraints to these thin features, since in the final meshing we
wish to guarantee continuity throughout the pieces. As shown in
Fig. 12, our output quality with respect to Hausdorff distance, as
well as mean and maximal planarity error increases as the input
resolution increases. Our method is therefore dependent on the
input resolution but still performs well on low resolution inputs.

7 CONCLUSION
We presented an algorithm that converts developable surfaces rep-
resented by triangle meshes to a discrete curvature line parameteri-
zation, i.e., polygonal meshes with planar faces, where all interior
edges correspond to rulings. As shown in previous works, interac-
tive deformation-based modeling with curvature-aligned meshes of
developable surfaces is limited by the necessity to explicitlymaintain
the combinatorics of decomposition into torsal and planar patches.
Using a non-curvature-aligned representation during the creative
modeling stage and invoking our method whenever a curvature-
aligned, easily refinable and fabricable representation is required,

Dev2PQ: Planar Quadrilateral Strip Remeshing of Developable Surfaces • 11

Fig. 15. Sphericons and D-forms are piecewise developable surfaces with
creases connecting the individual pieces, and therefore can be remeshed
with our method. The top two models are courtesy of [Jiang et al. 2020], the
bottom two are courtesy of [Tang et al. 2016].

Fig. 16. Our method applied to glued developable surfaces that include
cone apexes. These models are courtesy of [Jiang et al. 2020].

Fig. 17. Our method can handle piecewise developable surfaces with or
without boundary and of different genera. These models are courtesy of
[Tang et al. 2016].

12 • Floor Verhoeven, Amir Vaxman, Tim Hoffmann, and Olga Sorkine-Hornung

Fig. 18. For surfaces with curved folds our method produces meshes with faces that align well along the folds. Models courtesy of [Rabinovich et al. 2019].

Fig. 19. Our output meshes can be physically fabricated from planar sheets of stiff material. For this experiment, we parameterize our output mesh to the
plane and etch the flattened mesh edges into cardboard using a laser cutter. Appropriately bending the sheet of cardboard along the edges then gives a shape
that matches our output.

lifts this limitation and provides a useful tool for designing devel-
opable surfaces for fabrication and architectural design applications.
In future work, it would be interesting to explore the use of our

remeshing algorithm on non-developable input for the purpose
of developable approximation. Another venue for further study
would be the automatic tuning of the values 𝜔𝑠 and 𝜔𝑎 based on the
noise levels of the estimated input rulings. Another interesting topic
for future research would be the option to have adaptive output
mesh resolution based on the local curvature, allowing a denser
representation in more curved areas. Finally, it would be interesting
to explore the utility of feeding back our optimized rulings in order
to optimize or even subdivide the input discrete model.

ACKNOWLEDGMENTS
The authors would like to thank Michael Rabinovich and Helmut
Pottmann for illuminating discussions, and Caigui Jiang andChengcheng
Tang for providing us with models from their previous work.

REFERENCES
Quaglino Alessio. 2012. Membrane locking in discrete shell theories. Ph.D. Dissertation.

Niedersächsische Staats-und Universitätsbibliothek Göttingen.
Marc Alexa and Max Wardetzky. 2011. Discrete Laplacians on General Polygonal

Meshes. ACM Trans. Graph. 30, 4, Article 102 (July 2011), 10 pages. https://doi.org/
10.1145/2010324.1964997

Pierre Alliez, David Cohen-Steiner, Olivier Devillers, Bruno Lévy, and Mathieu Desbrun.
2003. Anisotropic Polygonal Remeshing. ACM Trans. Graph. 22, 3 (July 2003),
485–493. https://doi.org/10.1145/882262.882296

Omri Azencot, Etienne Corman, Mirela Ben-Chen, and Maks Ovsjanikov. 2017. Consis-
tent functional cross field design for mesh quadrangulation. ACM Transactions on
Graphics (TOG) 36, 4 (2017), 1–13.

Alexander I Bobenko and Ulrich Pinkall. 1999. Discretization of surfaces and integrable
systems. Oxford lecture series in mathematics and its applications 16 (1999), 3–58.

Alexander I. Bobenko and Yuri B. Suris. 2008. Discrete differential geometry: integrable
structure. Graduate studies in mathematics, Vol. 98. American Mathematical Society,
Providence (R.I.).

Alexander I Bobenko and Sergey Tsarev. 2018. The curvature line parametrization from
circular nets on a surface. J. Math. Phys. 59, 9 (2018), 091410.

D. Bommes, B. Lévy, N. Pietroni, E. Puppo, C. Silva, M. Tarini, and D. Zorin. 2012.
State of the Art in Quad Meshing. In Proc. EUROGRAPHICS, State-of-the-Art Reports
(STARs).

Sofien Bouaziz, Mario Deuss, Yuliy Schwartzburg, Thibaut Weise, and Mark Pauly. 2012.
Shape-up: Shaping discrete geometry with projections. Comput. Graph. Forum 31, 5
(2012), 1657–1667.

Christopher Brandt, Leonardo Scandolo, Elmar Eisemann, and Klaus Hilde-
brandt. 2017. Spectral Processing of Tangential Vector Fields. Computer
Graphics Forum 36, 6 (2017), 338–353. https://doi.org/10.1111/cgf.12942
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12942

Rob Burgoon, Zoë J. Wood, and Eitan Grinspun. 2006. Discrete Shells Origami. In
Computers and Their Applications.

Dominique Chapelle and Klaus-Jürgen Bathe. 1998. Fundamental considerations for
the finite element analysis of shell structures. Computers & Structures 66, 1 (1998),
19–36.

Fernando De Goes, Andrew Butts, and Mathieu Desbrun. 2020. Discrete Differential
Operators on Polygonal Meshes. ACM Trans. Graph. 39, 4, Article 110 (July 2020),
14 pages. https://doi.org/10.1145/3386569.3392389

https://doi.org/10.1145/2010324.1964997
https://doi.org/10.1145/2010324.1964997
https://doi.org/10.1145/882262.882296
https://doi.org/10.1111/cgf.12942
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12942
https://doi.org/10.1145/3386569.3392389

Dev2PQ: Planar Quadrilateral Strip Remeshing of Developable Surfaces • 13

Fig. 20. Various remeshing results obtained with our method.

14 • Floor Verhoeven, Amir Vaxman, Tim Hoffmann, and Olga Sorkine-Hornung

Olga Diamanti, Amir Vaxman, Daniele Panozzo, and Olga Sorkine-Hornung.
2014. Designing N-PolyVector Fields with Complex Polynomials. Com-
puter Graphics Forum 33, 5 (2014), 1–11. https://doi.org/10.1111/cgf.12426
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12426

Manfredo P. do Carmo. 1976. Differential Geometry of Curves and Surfaces. Prentice-
Hall.

Stefan Fröhlich and Mario Botsch. 2011. Example-Driven Deformations Based on
Discrete Shells. Comput. Graph. Forum 30, 8 (2011), 2246–2257.

Michael Grant and Stephen Boyd. 2014. CVX: Matlab Software for Disciplined Convex
Programming, version 2.1. http://cvxr.com/cvx.

David A. Huffman. 1976. Curvature and creases: a primer on paper. IEEE Trans.
Computers 25, 10 (1976), 1010–1019.

Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing
library. https://libigl.github.io/.

Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Instant
Field-Aligned Meshes. ACM Trans. Graph. 34, 6 (Nov. 2015). https://doi.org/10.1145/
2816795.2818078

Caigui Jiang, Cheng Wang, Florian Rist, Johannes Wallner, and Helmut Pottmann. 2020.
Quad-mesh based isometric mappings and developable surfaces. ACM Trans. Graph.
39, 4 (2020), 128:1–128:13.

Martin Kilian, Simon Flöry, Zhonggui Chen, Niloy J. Mitra, Alla Sheffer, and Helmut
Pottmann. 2008. Curved folding. ACM Trans. Graph. 27, 3 (2008), 75:1–75:9.

Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Globally optimal
direction fields. ACM Trans. Graph. 32, 4 (2013).

Yang Liu, Helmut Pottmann, Johannes Wallner, Yong-Liang Yang, and Wenping Wang.
2006. Geometric Modeling with Conical Meshes and Developable Surfaces. ACM
Trans. Graph. 25, 3 (July 2006), 681–689. https://doi.org/10.1145/1141911.1141941

Yang Liu, Weiwei Xu, Jun Wang, Lifeng Zhu, Baining Guo, Falai Chen, and Guoping
Wang. 2011. General Planar Quadrilateral Mesh Design Using Conjugate Direction
Field. ACM Trans. Graph. 30, 6 (Dec. 2011), 1–10. https://doi.org/10.1145/2070781.
2024174

William S Massey. 1962. Surfaces of Gaussian curvature zero in Euclidean 3-space.
Tohoku Mathematical Journal, Second Series 14, 1 (1962), 73–79.

Martin Peternell. 2004. Developable surface fitting to point clouds. Computer Aided
Geometric Design 21, 8 (2004), 785–803.

Roi Poranne, Elena Ovreiu, and Craig Gotsman. 2013. Interactive Planarization and
Optimization of 3D Meshes. Comput. Graph. Forum 32, 1 (2013), 152–163. https:
//doi.org/10.1111/cgf.12005

Helmut Pottmann, Qixing Huang, Bailin Deng, Alexander Schiftner, Martin Kilian,
Leonidas Guibas, and Johannes Wallner. 2010. Geodesic Patterns. ACM Trans.
Graphics 29, 3 (2010). http://www.geometrie.tugraz.at/wallner/geopattern.pdf to
appear.

Michael Rabinovich, Tim Hoffmann, and Olga Sorkine-Hornung. 2018. Discrete Ge-
odesic Nets for Modeling Developable Surfaces. ACM Trans. Graph. 37, 2 (2018),
16.

Michael Rabinovich, Tim Hoffmann, and Olga Sorkine-Hornung. 2019. Modeling
Curved Folding with Freeform Deformations. ACM Trans. Graph. 38, 6 (2019).

Andrew O. Sageman-Furnas, Albert Chern, Mirela Ben-Chen, and Amir Vaxman. 2019.
Chebyshev Nets from Commuting PolyVector Fields. ACM Trans. Graph. 38, 6,
Article 172 (Nov. 2019), 16 pages. https://doi.org/10.1145/3355089.3356564

Justin Solomon, Etienne Vouga, Max Wardetzky, and Eitan Grinspun. 2012. Flexible
developable surfaces. Comput. Graph. Forum 31, 5 (2012), 1567–1576.

Chengcheng Tang, Pengbo Bo, Johannes Wallner, and Helmut Pottmann. 2016. Inter-
active design of developable surfaces. ACM Trans. Graph. 35, 2, Article 12 (2016),
12 pages.

Chengcheng Tang, Xiang Sun, Alexandra Gomes, Johannes Wallner, and Helmut
Pottmann. 2014. Form-finding with Polyhedral Meshes Made Simple. ACM Trans.
Graph. 33, 4 (2014). https://doi.org/10.1145/2601097.2601213

Amir Vaxman et al. 2017. Directional: A library for Directional Field Synthesis, Design,
and Processing. https://doi.org/10.5281/zenodo.3338174

Amir Vaxman, Marcel Campen, Olga Diamanti, Daniele Panozzo, David Bommes, Klaus
Hildebrandt, and Mirela Ben-Chen. 2016. Directional field synthesis, design, and
processing. Comput. Graph. Forum 35, 2 (2016), 545–572.

Josh Vekhter, Jiacheng Zhuo, Luisa F Gil Fandino, Qixing Huang, and Etienne Vouga.
2019. Weaving Geodesic Foliations. ACM Trans. Graph. 38, 4, Article 34 (July 2019),
22 pages. https://doi.org/10.1145/3306346.3323043

Ryan Viertel and Braxton Osting. 2019. An Approach to Quad Meshing Based on
Harmonic Cross-Valued Maps and the Ginzburg–Landau Theory. SIAM Journal on
Scientific Computing 41, 1 (2019), A452–A479. https://doi.org/10.1137/17M1142703
arXiv:https://doi.org/10.1137/17M1142703

Hui Wang, Davide Pellis, Florian Rist, Helmut Pottmann, and Christian Müller. 2019.
Discrete Geodesic Parallel Coordinates. ACM Trans. Graph. 38, 6, Article 173 (Nov.
2019), 13 pages. https://doi.org/10.1145/3355089.3356541

Mirko Zadravec, Alexander Schiftner, and Johannes Wallner. 2010. Design-
ing Quad-dominant Meshes with Planar Faces. Computer Graphics Fo-
rum 29, 5 (2010), 1671–1679. https://doi.org/10.1111/j.1467-8659.2010.01776.x
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2010.01776.x

https://doi.org/10.1111/cgf.12426
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12426
http://cvxr.com/cvx
https://doi.org/10.1145/2816795.2818078
https://doi.org/10.1145/2816795.2818078
https://doi.org/10.1145/1141911.1141941
https://doi.org/10.1145/2070781.2024174
https://doi.org/10.1145/2070781.2024174
https://doi.org/10.1111/cgf.12005
https://doi.org/10.1111/cgf.12005
http://www.geometrie.tugraz.at/wallner/geopattern.pdf
https://doi.org/10.1145/3355089.3356564
https://doi.org/10.1145/2601097.2601213
https://doi.org/10.5281/zenodo.3338174
https://doi.org/10.1145/3306346.3323043
https://doi.org/10.1137/17M1142703
https://arxiv.org/abs/https://doi.org/10.1137/17M1142703
https://doi.org/10.1145/3355089.3356541
https://doi.org/10.1111/j.1467-8659.2010.01776.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2010.01776.x

Dev2PQ: Planar Quadrilateral Strip Remeshing of Developable Surfaces • 15

Table 2. Statistics of our results, reported by figure number (in scanline order within figures that show multiple results). We record the number of output
mesh vertices |V′ | and faces |F′ |, as well as the maximum and mean face planarity error 𝑝 (in percentage of the average diagonal length of the face). We
also report the Hausdorff distance between the input and output mesh. Many of our meshes meet the common planarity tolerance of ≤ 1% without any
planarization optimization.

Fig. |V ′ | |F ′ | 𝑝max [%] 𝑝mean [%] ℎ[%]

1 204 63 1.26 0.28 0.78
4 270 74 1.80 0.41 0.67
6 180 51 1.53 0.28 0.45
6 206 44 0.59 0.15 0.85
6 218 50 0.88 0.18 1.07
6 190 48 0.95 0.19 2.55
8 190 48 0.95 0.19 2.55
9 208 45 0.41 0.11 0.66
9 206 44 0.59 0.15 0.85
9 210 46 0.54 0.16 0.41
9 208 45 0.45 0.17 1.39
9 218 50 0.88 0.18 1.07
10 288 107 11.84 1.98 0.48
10 288 107 0.00 0.00 0.95
11 164 23 0.52 0.24 0.47
11 210 46 0.54 0.16 0.41
11 298 90 0.32 0.10 0.41
12 384 68 1.08 0.34 0.31
12 632 67 1.22 0.10 0.26
12 1130 66 0.25 0.02 0.24
13 176 29 3.64 1.04 0.56
13 156 19 5.42 2.51 1.34
14 254 68 3.83 0.42 0.63
14 254 68 3.82 0.42 0.66
14 258 70 3.34 0.48 0.21
15 202 100 0.14 0.05 0.20
15 324 100 0.46 0.14 0.22
15 858 274 1.66 0.09 1.15
15 966 272 1.14 0.08 0.13
16 306 54 0.15 0.04 0.15
16 438 54 0.14 0.04 1.91
16 578 93 2.55 0.30 1.09

Fig. |V ′ | |F ′ | 𝑝max [%] 𝑝mean [%] ℎ[%]

17 288 170 0.19 0.05 0.09
17* 1970 567 0.82 0.05 0.04
17** 1947 636 0.26 0.05 0.01
17 738 211 0.84 0.10 0.14
18 258 98 1.16 0.24 0.23
18 243 80 0.67 0.20 0.62
18 280 115 1.98 0.16 0.35
18 232 82 2.24 0.32 0.42
18 672 134 0.34 0.06 0.52
19 196 52 2.39 0.37 0.26
19 210 28 3.49 0.43 1.47
20 254 68 3.63 0.41 0.65
20 210 46 1.25 0.19 0.23
20 204 43 7.18 0.50 0.34
20 212 47 0.56 0.33 0.60
20 390 70 3.93 0.31 0.67
20 204 43 0.69 0.14 0.10
20 422 88 3.35 0.56 0.85
20 208 45 0.43 0.10 0.46
20 226 63 0.40 0.12 0.18
20 328 75 0.78 0.18 0.69
20 1033 71 1.72 0.34 0.38
20 218 50 2.35 0.20 0.32
20 242 58 0.80 0.36 1.29
20 288 107 11.84 1.98 0.48
20 208 45 0.38 0.11 0.20
20 214 48 0.15 0.05 0.08
20 502 53 0.32 0.06 0.09
20 194 45 1.19 0.24 0.40
20 609 47 2.89 0.60 0.21
20 204 43 0.49 0.13 0.39
20 288 67 1.31 0.20 0.82

* Same model displayed from 3 viewing angles.
** Same model displayed from 2 viewing angles.

	Abstract
	1 Introduction
	2 Related Work
	3 Continuous and Discrete Developable Surfaces
	3.1 Developable surface parameterization
	3.2 Ruling fields
	3.3 Discrete ruling-aligned developable meshes

	4 Discretization
	5 Method
	5.1 Optimization problem
	5.2 Optimization algorithm
	5.3 Vector field integration and meshing

	6 Results and discussion
	7 Conclusion
	Acknowledgments
	References

