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Abstract: We measure the dynamics of the thermo-optical nonlinearity of both a mode-gap
nanocavity and a delocalized mode in a Ga0.51In0.49P photonic crystal membrane. Wemodel these
results in terms of heat transport and thermo-optical response in the material. By step-modulating
the optical input power we push the nonlinear resonance to jump between stable branches of
its response curve, causing bistable switching. An overshoot of the intensity followed by a
relaxation tail is observed upon bistable switching. In this way, the thermal relaxation of both the
localized resonance and the delocalized resonance is measured. Significant difference in decay
time is observed and related to the optical mode profile of the resonance. We reproduce the
observed transient behavior with our thermo-optical model, implementing a non-instantaneous
nonlinearity, and taking into account the optical mode profile of the resonance, as experimentally
measured.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Resonators on photonic crystal (PhC) membranes are promising candidates for switchable and
programmable optical communication devices as well as for fundamental physics exploration, as
they combine high field enhancement with strong optical nonlinearity. Intentional waveguide
defects on these membranes form nanocavities with a high-quality factor (high-Q) and small mode
volume [1] that can be connected into coupled-resonator optical waveguides [2,3]. The optical
nonlinearities in these PhCs are fundamental in the development of all-optical high-bandwidth
functionalities like optical switches [4–9], optical memory [10], slow light [11–14] and quantum
networks [15,16]. It is known that these nonlinearities can give rise to bistable behavior at powers
of only a few µW [17,18], and the timescale of the dominating nonlinearity will ultimately limit
the bandwidth of possible devices. The strong optical nonlinearity of PhC cavities can also be
used to investigate the physics of dissipative phase transitions [19–22], and to probe the interplay
of disorder and nonlinearity which is expected to strongly impact transport properties of cavity
arrays [23,24].
Specifically in PhC membranes, the interplay between resonances and their 2D optical

mode profiles can produce a strong thermo-optical nonlinearity that enables bistable switching.
Measurements of the transient behavior brought about by bistable switching is usually controlled
with an optical pump, either by pumping a second optical mode [25], or by using an out-of-plane
optical pump pulse [26–28]. However, when there is absorption of the probe the optical mode
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itself becomes a source of heat, eliminating the need for an optical pump and enabling bistable
switching with a single source of drive light.
In this paper, we study the effect of the spatial mode profile on the thermo-optical response

time of PhC resonances. Thermo-optical bistability induced by resonances have been observed
before [29–31]. Yet, to our best knowledge, an investigation of different resonances involving
their optical mode profiles and profile-specific dynamics has not been reported before. We
measure two modes in a Ga0.51In0.49P (GaInP) PhC slab by experimentally investigating the
temporal behavior in the bistable regime of both a mode-gap cavity resonance and a delocalized
waveguide resonance, demonstrating significantly different decay times. Additionally, we present
a thermo-optical model that takes into account the obtained optical mode profile of the resonance.
Although many models, formulating the resonator as a single temperature thermal object, have
been shown throughout the literature [9,26,27,29,32,33], a model employing the measured mode
profile of the resonance has not been demonstrated before to the best of our knowledge.

2. Characterization of the PhC

The air-suspended GaInP membrane, schematically depicted in Fig. 1, is 180 nm thick with air
holes on a hexagonal lattice with a lattice constant of a = 485 nm. An injection waveguide is
used to evanescently couple infrared light into the barrier waveguide on which the mode-gap
cavity is positioned. The mode-gap cavity consists of a local width modulation of the barrier
waveguide. In addition to the mode-gap cavity, high-Q delocalized modes spanning the barrier
waveguide occur. The fabrication method is described in detail in Ref. [34]. The PhC is mounted
in a nitrogen filled dust-free box to prevent oxidation.

Fig. 1. Schematic overview of the photonic crystal membrane. The mode-gap cavity
consists of a broadened waveguide; the air holes lining the waveguide are shifted outwards
from their lattice position with 0.0124
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The sample is driven with infrared light from a tunable CW laser, injected with a polarization
maintaining lensed fiber. A 10 GHz bandwidth Mach-Zehnder electro-optic modulator (EOM)
controls the input power. We measure the cavity response using the out-of-plane scattering light
collected through a 0.4 NA objective and detect with an InGaAs photodiode (PD) (Hamamatsu
G8605-21). An aperture in the conjugate plane removes background scattering. The signal is
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amplified (Femto dlpca-200) at a bandwidth of 7 kHz for the mode profiles (Fig. 2) and at 1
kHz, 7 kHz, and 400 kHz for the spectral scans at low input power (Fig. 3(a)), high input power
(Fig. 3(b)), and input power modulation measurements (Fig. 4, Fig. 5 and Fig. 6), respectively.
An analog-to-digital converter board (NI USB-6356) acquires the spectral scans with a resolution
of 1 pm. For the high-bandwidth power modulation measurements we use an oscilloscope at a
sample rate of 2 MHz.

In addition to the infrared driving light, a second 405 nm diode laser (OBIS 405LX) provides
out-of-plane pump light, focused on the sample by the objective. Due to absorption by the PhC
membrane [35], the pump applies a local heat source. Using a fast scanning mirror we can
spatially scan the PhC membrane with the pump and probe the thermo-optical profile of any PhC
resonance [36]. With this method we identify the modes and measure their profile [37].

2.1. Thermo-optically measured mode profile

In Figs. 2(a-b) we show the thermo-optically measured mode profiles of the two resonances of
interest, detected via the out-of-plane scattered light. The corresponding images of the PhC
membranes are shown beneath the mode profiles in Figs. 2(c-d). The mode profile is measured
by scanning the barrier waveguide with the pump, positioning the pump spot in consecutive steps
along the x-axis of the waveguide. For each pump position a wavelength scan is taken with the
drive light. Due to the thermo-optical effect of the semiconductor material, local heating induces
a redshift of the resonance wavelength when the thermal profile of the pump overlaps with the
optical mode. In this way, plotting the wavelength redshift versus pump position reveals the
mode profile.

Fig. 2. Optical mode profile of (a) the localized mode-gap resonance and (b) the delocalized
waveguide resonance, obtained with wavelength scans while pumping with a weak pump
spot over a range of pump positions on the waveguide. Pump positions are indicated by
the black arrows on the image of (c) the PhC membrane holding the mode-gap resonance
and (d) the PhC membrane holding the delocalized resonance. The membrane holding the
mode-gap resonance has a barrier waveguide length of 24.7 µm, an overlap between barrier
and injection/extraction waveguide of 6.1 µm in the x-direction and a distance between the
waveguides of 1.7 µm in the y-direction. For the membrane holding the delocalized mode
these dimensions are 28.1 µm, 6.3 µm and 1.3 µm respectively.
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In Fig. 2(a) a range of 12 µm is scanned in steps of 0.13 µm with a pump power of 7 µW. This
shows a localized mode positioned at the center of the barrier waveguide with a FWHM of 3
µm. We thus identify this resonance as a a mode-gap resonance. Figure 2(b) is measured over a
wider pump range of 33 µm, taken with pump position steps of 0.26 µm and a pump power of 6
µW. This shows a profile that spans the barrier waveguide between the ends of the injection and
extraction waveguide, with a maximum redshift over a 14-µm range. We therefore identify this
resonance as a delocalized mode.

2.2. Spectral Scan

In Fig. 3 we show the spectral response of the mode-gap nanocavity measured via the out-of-plane
scattered intensity. Spectral scans of the delocalized mode show a similar response and are
therefore not depicted. Figure 3(a) shows the spectral response at low input power demonstrating
the lineshape in the linear response regime. A Lorentzian lineshape fit yields the bare resonance
λ0 = 1534.144 nm and cold cavity linewidth Γ = 30 pm. For the delocalized mode we find a
bare resonance of λ0 = 1527.736 nm and linewidth of Γ = 11 pm in the same way.

Fig. 3. Spectral response of the mode-gap resonance in the (a) linear regime and (b)
nonlinear regime as measured via the out-of-plane scattered light. In the nonlinear regime,
the response depends on the wavelength scan direction, as indicated by the arrows for the
forward (purple) and backward (blue) scans. For the nonlinear response we fit the Duffing
equation to the upper steady-state branch (solid black curve) to find nonlinear parameter β
and then plot the corresponding solutions for the lower steady-state branch (dashed) and the
unstable branch (dotted). Scan rates were selected to obtain a good signal to noise ratio,
with 0.5 nm/s for the low intensity linear regime and 1 nm/s for the high intensity nonlinear
regime.

In Fig. 3(b) we show the spectrum in the nonlinear regime with a bidirectional scan at high
input power. The nonlinear behavior is characterized by a resonance peak that is skewed towards
longer wavelengths, exhibiting a bistable response that depends on the direction of the scan. The
forward scan follows the upper steady-state branch until, at large detuning, the system reaches the
end of the branch and jumps down discontinuously, demarcating the edge of the bistable regime.
For the backward scan the system follows the lower steady-state branch, undercutting the upper
branch, until it reaches the other edge of bistability and jumps back up. In this way a hysteresis
loop that easily spans 100 pm is formed, demonstrating strong nonlinearity in the cavity.
To fit the spectral response in the nonlinear regime we solve the Duffing equation [38],

describing a resonator with an instantaneous third-order nonlinearity, using the λ0 found in
Fig. 3(a). The equation will return both stable and unstable solutions that form a tilted peak with
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an upper and lower branch that are connected by the unstable branch. We fit the upper steady-state
branch and use the result to plot the solutions for both the lower branch and the unstable branch.
The fit yields the linewidth of the hot cavity, heated by absorption near resonance, Γhot = 24 pm,
and a negative nonlinear parameter, which is in accordance with a redshift of the resonance in the
bistable regime. We keep the hot cavity linewidth a free fit parameter because the temperature
affects the resonance frequency, and indirectly through that, the mode profile and the losses to
the injection and extraction waveguides [39,40]. For the delocalized mode we find qualitatively
the same nonlinear behavior with a negative nonlinear parameter, except here we have a slightly
broader heated linewidth of Γhot = 14 pm.

2.3. Input Power Scan

To characterize the hysteresis behavior we measure out-of-plane scattering light versus input
power. In Fig. 4(a) we scan the input power for the mode-gap resonance with a 100 Hz triangular
wave while keeping the wavelength fixed at a positive detuning of ∆ ≡ λ − λ0 = 106 pm. The
measured out-of-plane scattering light is averaged over 100 modulation periods. The resulting
cavity response shows the hysteresis loop: a region of bistability with discontinuous jumps at the
ends of the upper and lower steady-state branch.

Fig. 4. (a) Hysteresis loop in the nonlinear regime of the mode-gap resonance for fixed
detuning ∆ = 106 pm and a 100 Hz triangle wave input power modulation. Arrows indicate
the power scan direction. The out-of-plane scattered light is averaged over 100 modulation
periods. Solutions for the Duffing equation are plotted for the both stable and unstable
solutions as a guide to the eye. The inset (b) shows the details of an overshoot of the upper
steady-state branch.

As a guide to the eye we plot the steady-state solutions of the Duffing equation versus input
power, using the parameters found by the spectral fits of Section 2.2, using Γ for both the lower
branch and unstable branch and Γhot for the upper branch. As the bare cavity resonance slightly
drifts, we adjust λ0 found in Section 2.2 to correct for drift between and during scans, with a
maximum correction of 42 pm. We attribute this slow shift to a thin water layer on the membrane,
as explained elsewhere [41–44], and corresponds to the evaporation of a <1 nm thick water layer.
The S-shaped steady-state solutions of the Duffing equation are qualitatively consistent with the
data – predicting both stable steady-state branches and the loop edges at the unstable turning
points – except for the observation of an intensity overshoot.
Figure 4(b) shows this intensity overshoot in detail. It is induced at the moment the system

reaches the end of the lower steady-state branch and is forced into the upper steady-state branch.
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We perform a control measurement to rule out the overshoot being an artifact of the apparatus.
With a step response measurement of the EOM-amplifier-oscilloscope chain a clean 10% − 90%
rise time of 1.5 µs is observed, showing no overshoot. Since the Duffing equation describes an
oscillator with instantaneous nonlinearity, it cannot describe the dynamics of the thermo-optical
nonlinearity causing the overshoot. An adequate model is presented in Section 3.
We note that the parameters we chose for our experiments are such that our hysteresis

measurements can be compared with a stationary solution [21]. Two considerations are made, the
relevant timescale of the spectral and power scans are longer than the thermo-optical relaxation
time. Furthermore, the scan timescale is short compared to the characteristic time at which
fluctuations induce stochastic switching between bistable states. The input power scans of the
delocalized mode result in similar hysteresis loops, with an even more pronounced overshoot of
the upper steady-state branch.

2.4. Time-resolved Measurement of Thermo-optical Dynamics

In Fig. 5(a) we show the time-resolved relaxation of the intensity overshoot of the mode-gap
resonance measured via the out-of-plane scattered power, averaged over 100 cycles. The overshoot
is obtained by step-modulating the input power with a lead edge of 1.5 µs, as depicted in Fig. 5(b).
In this way we drive the system across the hysteresis loop beyond the end of the lower steady-state
branch and thus force a jump to the upper steady-state branch. We do this for six different
detunings where each measurement is aligned at the peak intensity, showing the relaxation
behavior right after the peak of the overshoot is independent of detuning. The emerging plateau
preceding the overshoot for large detunings is the only part of the behavior that is affected by
varying the detuning. The increasing duration of the plateau for larger detunings is behavior we

Fig. 5. (a) Relaxation of the thermal overshoot at six different detunings measured in the
out-of-plane scattered intensity. (b) Input power used to obtain the overshoot at ∆ = 86
pm. All other relaxation curves have time offsets between 0 and -8 µs such that the peak
intensities are aligned. (c-e) Illustration of a typical instantaneous cavity response at the
three different stages of the power step: (c) at the initial steady-state before the overshoot
when we have low input power, (d) at the moment of jumping states when the input power
steps up, (e) at the final steady-state when we have high input power.
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have seen in computations with our model described in Section 3. However, a detailed discussion
of the physics preceding the overshoot lies beyond the scope of this paper. Note that the timescale
of the overshoot is too fast to be detected in the spectral scans, and therefore could only be
observed in the high-bandwidth power sweep measurements.
In Figs. 5(c-e) we illustrate the instantaneous cavity resonance corresponding to different

moments in the power step to explain the physical mechanism of the intensity overshoot, as it
helps to separate the resonant behavior of the cavity from its thermo-optical shift. At the start
of the scan the cold cavity resonance lies on the blue side of the driving wavelength (Fig. 5(c)).
When the driving power is increased, the resonance wavelength will shift towards the red due to
absorption of the drive light. This pulls the system through resonance (Fig. 5(d)), momentarily
maximizing the intensity inside the cavity. This is manifested in the sharp intensity peak. The
resonance shifts further to the red due to more absorption until the cavity reaches its steady
state temperature. The hot cavity resonance is now on the red side of the driving wavelength,
stabilized in the upper steady-state branch (Fig. 5(e)). A similar non-instantaneous response
is expected when the system falls from the upper steady-state branch onto the lower one while
sweeping in the opposite direction.

3. Thermo-optical Model

In this section we will focus on the dynamics of the transient. We consider the relaxation of the
overshoot including the peak, meaning the stages of the power step depicted in Figs. 5(d,e). To
describe the resonance shifts and the thermal diffusion in the PhC membrane, we solve a set of
coupled equations relating the optical resonance to a modified heat equation. The electromagnetic
response of the cavity is assumed to be on the timescale of the cavity photon lifetime of order 100
ps. Therefore, the electromagnetic response is effectively decoupled from the thermal diffusion
in the PhC, which happens on a timescale of order 100 ns. Neglecting the z-dependence in the
thin semiconductor slab, the optical energy density inside the cavity is

Uopt(x, y, t) = τinPin(t)Umode(x, y)
Γ2

Γ2 + (∆ − δth(t))2
, (1)

where τin is the input coupling efficiency, Pin is the input power of the drive light, Umode is the
energy density of the optical mode profile, and δth(t) is the thermal resonance shift that causes a
dynamic detuning.
The energy density of the optical mode is normalized over the xy-plane of the membrane∫

Umode(x, y)dxdy = 1. (2)

For our experimental conditions the resonance frequency shifts linearly with temperature [45].
The thermal resonance shift is then given by

δth(t) =
∫

ηUmode(x, y)T(x, y, t)dxdy, (3)

where η is the thermo-optical coefficient of the semiconductor material and T the temperature
profile. We consider the two cooling processes that dissipate heat into the substrate: in-plane
heat dissipation that eventually reaches the bridge connecting the PhC with the substrate, and
dissipation via the thin gas layer separating the membrane and the substrate beneath the PhC.
Conductance through the gas on the top side of the membrane is neglected as it is likely to
represent only a small fraction of the dissipation. Then, the dynamics of the temperature profile
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are described by the heat equation,

C2D
∂T(x, y, t)

∂t
= −K2D∇

2T(x, y, t) − Kgas(T(x, y, t) − T0) + αΓUopt(x, y, t), (4)

with the boundary condition that T = T0 at the edges of the PhC membrane where there is
a high thermal conductivity link with the substrate. Here, C2D is the 2D specific heat of the
PhC membrane, K2D is the 2D thermal conductivity of the PhC membrane, Kgas is the thermal
conductance of the gas layer between the PhC membrane and the substrate, and α the absorption
fraction, i.e., the probability a cavity photon is absorbed rather than scattered or leaked out of the
cavity.
The 2D specific heat is given by

C2D = hφρCsp, (5)

with h the slab thickness of the PhC membrane, φ the filling fraction of the PhC, ρ the density
and Csp the specific heat of the semiconductor material. The thermal conductivity K2D is
approximated as hφκ where κ is the thermal conductivity of the semiconductor. Out-of-plane
conductance through the gas layer is modeled by Kgas = κgas/dgas, where dgas is the distance
between the membrane and the substrate. The contribution of the gas to the in-plane thermal
conductance is neglected, as it is much smaller than the membrane conductance.

The system of equations, composed of Eq. (4), the heat equation which is a partial differential
equation, and Eq. (1), the resonance condition, is solved using Euler’s method [46] on an (x, y, t)
grid. While not efficient, Euler integration is extremely robust as long as the step sizes fulfill the
appropriate Courant-Friedrichs-Lewy condition [47].

4. Dynamics of Different Mode Profiles

In Fig. 6 we show the response of the two different modes shown in Fig. 2. Figure 6(a) shows
the measured relaxation behavior of the intensity overshoot of both modes in response to the
step-modulated input power shown in Fig. 6(b). The delocalized mode has a longer 90%−10%
decay time of τ90−10 = 10.1±1.8 µs compared to the mode-gap cavity with τ90−10 = 7.7±2.2 µs,
where the 3σ error limits have been estimated by considering the spread of the decay times
observed in different subsets of our data. In high-thermal conductivity platforms, like Si [25,48]
or GaAs [49], the thermo-optics are typically much faster.
We compare the experimental data to our thermo-optical model and do a fit on both modes,

using the appropriate measured mode profile Umode in each case. The fitted model is shown in
Fig. 6(a), using the specific heat of GaInP Csp = 310 J/kgK [50], GaInP density ρ = 4.81 × 103
kg/m3 [51], a fill fraction of 0.714 for the membrane to account for the air holes, and an estimated
value of α = 0.1 for the absorption fraction. This absorption fraction is the highest value that is
compatible with the sharpest observed resonances in these samples. We stress that the model is
only sensitive to the product of the three parameters ατinPin. Hence the fit does not depend on
our estimate for α.

Since we focus on the dynamics starting around the peak of the overshoot, we start the fit one
data point before the peak intensity. The detuning we fix at ∆ = 0 to assure we start modeling
from the moment the drive light is at resonance with the mode (see Fig. 5(d)). We fit three
parameters: the input energy τinPin which is the electromagnetic energy inside the cavity on
resonance, a scaling factor relating the intracavity power to the normalized detected out-of-plane
scattering light, and an offset parameter accounting for the bias current of the photodiode. For
the input energy we find 0.5 fJ for the mode-gap resonance and 1.5 fJ for the delocalized mode.
These values lie within reasonably expected input powers and incoupling rates. We conclude that
the delocalized mode, existing in a thermally identical environment as the localized mode, shows
significantly slower dynamics. Our model, using the measured mode profiles as input, reproduce
the behavior accurately.
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Fig. 6. (a) The transient behavior upon bistable switching showing thermal relaxation of
both the mode-gap resonance and the delocalized resonance, at small but positive detunings
of 3.5Γ and 1Γ respectively. The response was measured via the out-of-plane scattered
intensity, obtained by step-modulating the input power as shown in (b). Theoretical fits
are plotted in solid lines with dashed curves in the extrapolation regions. Error bars are
indicated for both data sets.
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5. Discussion

To understand the difference in decay time we look at which cooling processes dominate. Both
mode profiles have negligible overlap with the edges of the PhC, therefore we assume we are in
the regime where virtually all of the cooling happens via the gas. This is confirmed by our model,
as for both fitted curves more than 99.9% of the heat is dissipated via the gas layer. Hence the
dimensions of the membrane and the distances to heat sinks such as the bridge to the substrate
play no role here, unlike in the case of more highly thermally conductive materials like Si and
GaAs crystals [17,26–28]. We note that the larger delocalized resonance has approximately two
times the effective volume to surface ratio, and therefore a larger ratio of heat capacity to heat
loss rate. This explains its longer relaxation time and slower dynamics.

6. Conclusion

In conclusion, we measured the response of two different modes in a PhCmembrane by measuring
the transient behavior upon bistable switching. We found that for the localized mode the thermal
relaxation is 1.3 times faster than for a delocalized, elongated mode. The experimentally
obtained thermo-optical dynamics are modeled using a heat equation that takes into account the
optical mode profile of the resonance. This showed that, in the regime where heat dissipation
predominantly happens through gas cooling via the PhC surface, the aspect ratio of the mode
profile determines the resonance’s thermo-optical relaxation time.
The influence of the mode profile on the temporal behavior is relevant also in other semi-

conductor materials, as the mode profile can be used to optimize optical switches for speed or
stability. Targeted heat sinks customized to serve specific modes, designing resonances with
different decay times, can serve a number of applications. Different time scales available in one
PhC combined with nonlinearities of other origins, like charge-carrier density or the Kerr effect,
open the doors to excitability [52] and constitutes to tunable all-optical delay lines.
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