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Abstract
Global coastlines potentially contain significant amounts of plastic debris, with harmful
implications for marine and coastal ecosystems, fisheries and tourism. However, the global
amount, distribution and origin of plastic debris on beaches and in coastal waters is currently
unknown. Here we analyze beaching and resuspension scenarios using a Lagrangian particle
transport model. Throughout the first 5 years after entering the ocean, the model indicates that at
least 77% of positively buoyant marine plastic debris (PBMPD) released from land-based sources is
either beached or floating in coastal waters, assuming no further plastic removal from beaches or
the ocean surface. The highest concentrations of beached PBMPD are found in Southeast Asia,
caused by high plastic inputs from land and limited offshore transport, although the absolute
concentrations are generally overestimates compared to field measurements. The modeled
distribution on a global scale is only weakly influenced by local variations in resuspension rates due
to coastal geomorphology. Furthermore, there are striking differences regarding the origin of the
beached plastic debris. In some exclusive economic zones (EEZ), such as the Indonesian
Archipelago, plastic originates almost entirely from within the EEZ while in other EEZs,
particularly remote islands, almost all beached plastic debris arrives from remote sources. Our
results highlight coastlines and coastal waters as important reservoirs of marine plastic debris and
limited transport of PBMPD between the coastal zone and the open ocean.

1. Introduction

Marine plastic debris is found in almost all mar-
ine habitats, specifically on coastlines worldwide [1].
Coastal ecosystems can be particularly sensitive to
plastic pollution [2], and plastic debris on beaches
can reduce the economic value of a beach by up to
97% [3]. Furthermore, while an estimated 1.15–12.7
million tons of plastic enter the ocean per year [4–6],
the amount of positively buoyant marine plastic
debris (PBMPD) found floating at the ocean surface
is estimated to be significantly lower [7–10]. Some
of the plastic entering the ocean likely immediately
sinks, as 34.5% of all plastics produced between 1950

and 2015 were made of neutrally or negatively buoy-
ant polymers [11, 12], yet a significant amount of
PBMPD is still unaccounted for. A large fraction of
this missing PBMPD is potentially distributed on
coastlines [12–14], with local concentrations varying
between 0 and 647 kg km−1 [15, 16]. However, given
the scarcity of measurements relative to the length
of coastlines, limited insight into local temporal and
spatial fluctuations in beached PBMPD concentra-
tions and the lack of a standardized sampling meth-
odology, it is currently not possible to estimate the
total amount of beached plastic debris from field
measurements alone, or to describe the global pattern
of beached plastic [1].
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Using a simple boxmodel, Lebreton et al [12] sug-
gest that 66.8% of PBMPD released into the ocean
since 1950 is stored on coastlines, however assum-
ing a very high beaching probability and a resuspen-
sion probability below the observed range [17]. More
complex global Lagrangian simulations of PBMPD
have either not included beaching at all [18, 19] or use
simple best guess implementations without consider-
ing resuspension [20–22]. Most of these studies have
focused on plastic debris in the open ocean [9, 18],
and do not report how global estimates of the amount
and distribution of beached plastic vary with different
beaching and resuspension parametrizations.

Here we present a series of idealized beaching
experiments, using a Lagrangian particle tracking
model with beaching and resuspension parameteriz-
ations. We estimate upper and lower bounds for the
fraction of positively buoyant terrestrial plastic debris
in coastal waters, on beaches and in the open ocean
within the first years of release into the marine envir-
onment. Additionally, we describe the global relative
distribution of beached plastic debris, and we analyze
the relative amount of plastic with local versus remote
origin.

2. Methods

2.1. Ocean surface current data
For the 2005–2015 global surface currents, we use
the HYCOM + NCODA Global 1/12◦ surface cur-
rent reanalysis [23] and the surface Stokes drift estim-
ates from the WaveWatch III hindcast dataset [24,
25]. The HYCOM + NCODA Global 1/12◦ reana-
lysis [23] has a temporal resolution of 3 h and a
equatorial spatial resolution of 1/12◦ (≈9.3 km). The
HYCOM+NCODAGlobal 1/12◦ reanalysis does not
incorporate Stokes drift, which has been shown to
play an important role in shoreward surface transport
[18]. Therefore, we add surface Stokes drift estim-
ates from theWaveWatch III hindcast dataset [24, 25],
which has a temporal resolution of 3 h and a spa-
tial resolution of 1/2◦. Comparison of Stokes drift
estimates from theWaveWatch III dataset with in situ
measurements from drifters have shown high correl-
ations [26, 27], where root mean square errors have
been on orders of centimeters per second [26]. Unless
otherwise mentioned, simulations discussed in this
paper have been done with surface currents obtained
by the sum of the HYCOM currents and Stokes
drift, as has been done in earlier modeling studies
[10, 28, 29]. Not including Stokes drift reduces the
amount of PBMPD that beaches by 6%–7% (supple-
mentary figure 3 (available online at stacks.iop.org/
ERL/16/064053/mmedia)) and reduces the trapping
of PBMPD near the coast (supplementary figure 4).
Stokes drift is thus an important component of the
ocean circulation to consider in global PBMPD trans-
port and beaching modeling.

PBMPD floating at the surface can be exposed to
winds, with the strength of this effect depending on
the size of the object that is exposed to winds above
the ocean surface [30]. However, for the open ocean,
the best model performance for modeling PBMPD is
without including a separate windage term [10]. Fur-
thermore, windage and Stokes drift are shown to be
similar on a global scale [18]. Given that we include
Stokes drift, we therefore do not consider an addi-
tional term for windage.

2.2. Lagrangian transport
We use Parcels [31, 32] to model plastic as virtual
particles which are advected using surface ocean flow
field data. A change in the position x⃗ of a particle is
calculated according to:

x⃗(t+∆t) = x⃗(t)+

ˆ t+∆t

t
v⃗(⃗x(τ), τ)dτ

+R

√
2dtKh

r
, (1)

where v⃗(⃗x(t), t) is the surface flow velocity at the
particle location x⃗(t) at time t,R∈ [−1, 1] is a random
process representing subgrid motion with a mean
of zero and variance r= 1/3, dt is the integration
timestep, and Kh is the horizontal diffusion coeffi-
cient. The seed value of the random number gener-
ator does not influence the amount of beached plastic
(supplementary figure 3). Equation (1) is integrated
with a 4th order Runge–Kutta scheme with an integ-
ration timestep of dt= 10 min, and particle positions
are saved every 24 h. We take Kh = 10 m2 s−1 [29, 33]
to parameterize sub-grid processes.

2.3. Plastic emissions into the ocean
Weuse a terrestrial plastic input estimate based on the
low end estimates of [4], where 15% of mismanaged
plastic from the population living within 50 km of
the coast enters the ocean. To obtain high-resolution
estimates we multiply the country-specific misman-
aged waste estimates with population densities [34]
for 2010. This results in estimates of total misman-
aged plastic for all cells on the HYCOM grid (supple-
mentary figure 2). Polypropylene, polyethylene and
polystyrene constitute 54% of primary plastic pro-
duction in 2010 [11], and we assume that this frac-
tion is indicative of how much mismanaged plastic
is initially buoyant. We acknowledge that this 54%
is a rough estimate, as it assumes that mismanaged
plastic inputs have the same composition as global
plastic production, whereas it has also been repor-
ted that heavier polymers can float with sufficient
trapped air bubbles [35] and light polymers have been
found submerged [36]. This leads to a total buoy-
ant plastic input of 2.16× 106 tons in 2010 (71.70%
Asia, 4.39% North America, 3.94% South America,
2.16% Europe, 17.36% Africa and 0.45% Oceania).
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The release of the virtual particles is scaled accord-
ing to the estimate of buoyant plastic entering the
ocean, where each particle represents up to 5.4 tons
of buoyant plastic. To save computational resources
we neglect sources smaller than 0.06 tons per year per
grid cell, which represent 0.007%of the total input. In
each run particles are released every 31 d during the
first year of the simulation starting in 2010 (628,236
particles in total) and advected for 5 years. Starting
the simulation in 2005 barely affects the amount of
beached plastic (supplementary figure 3). We refer to
this input scenario as the Jambeck input.

To test the model sensitivity to the plastic input,
we calculate one simulation using a low end estim-
ate of plastic waste entering the ocean from rivers [5].
Again assuming 54% of plastic entering the ocean is
initially buoyant, we have an input of 6.21× 105 tons
for 2010 (87.04% Asia, 0.78% North America, 4.58%
South America, 0.13% Europe, 7.45% Africa, 0.02%
Oceania). Due to the smaller total input, no sources
were neglected. We refer to this input scenario as the
Lebreton input.

Particles are released in the shore-adjacent ocean
cell nearest to the total mismanaged plastic cell in
question. Since it is unlikely that real plastic always
enters the ocean at exactly the same location, at
the first time step particles are distributed randomly
throughout the shore-adjacent ocean cell prior to the
start of advection by the ocean currents.

2.4. Beaching parametrizations
2.4.1. Stochastic beaching and resuspension
Many processes are hypothesized to influence the
amount of beached plastic on coastlines, such wind
direction and speed, coast angle, aspect and mor-
phology, local runoff, the proximity to urban cen-
ters and the degree of human usage of the beach
[1, 36–42]. Many of these factors have some limited
predictive power in statistical models that attempt to
explain patterns of beached plastic [38, 39]. However,
it is unclear from these studies whether these factors
influence beaching, resuspension or both. They can
also partially cancel each other out as theymight work
in opposite directions and in general it is unclear how
these factors should be parameterized. We therefore
decided to implement the simplest model possible,
where we assume that on a global average, the main
drivers of plastic beaching are the surface currents and
the location of plastic input.

To account for the uncertainty of the ocean cur-
rent data in land-adjacent ocean cells, we parametrize
beaching as a stochastic process in the coastal zone,
within which we consider the currents unreliable. For
any given time step, we calculate the beaching prob-
ability pB as:

pb =

{
if d⩽ D, pB = 1− exp(−dt/λB)

if d> D, pB = 0,
(2)

where d is the distance of particle to the nearest
coastal cell, D is a predefined distance to the shore
within which beaching can occur, dt is the integra-
tion timestep and λB is the characteristic timescale
of plastic beaching. Beaching is therefore only pos-
sible within a beaching zone set by D. To account for
the fact that global-scale ocean current datasets are
inaccurate in ocean cells adjacent to land (referred
to henceforth as coastal cells), we set D such that all
coastal cells are fully contained within the beaching
zone, resulting in a beaching zone of 10 km.

The probability of beaching is set by the beach-
ing timescale λB, where λB is the number of days
that a particle must spend within the beaching zone
such that there is a 63.2% chance that the particle has
beached. There is no experimental study to base the
value of λB on, nor how it might vary for different
types of plastic debris, so we selected a range of pos-
sibilities to investigate the sensitivity. For the sensitiv-
ity analysis we take λB ∈ [1, 2, 5, 10, 26, 35, 100] days.
Given the mean current speed in the coastal cells in
the HYCOM dataset, λB = 1 day is the time a particle
would require to travel 10 km in a straight line, rep-
resenting a lower bound for the beaching probabil-
ity. In the Mediterranean, analysis of GPS trajector-
ies of drifter buoys suggests λB = 76 days [43], and
an inverse modeling study suggests λB = 26 d for
plastic debris [43]. We consider λB = 100 d to repres-
ent scenarios in which particles have very low beach-
ing probabilities. A wooden drifter experiment in the
North Sea found 46.88% of drifters beached within
91 d, traveling geodesic distances between 452 and
559 km [44]. Given that the drifters crossed the North
Sea in this time and therefore spent time outside of
the coastal zone, this suggests that λB is less than
100 d. However, we acknowledge that the values for
λB remain a major source of uncertainty. Further-
more, unless specifically mentioned we parameter-
ize beaching (and also resuspension) rates as global
constants.

Particle resuspension is also implemented
stochastically, where the resuspension probability
pR of a beached particle is defined as:

pR = 1− exp(−dt/λR), (3)

where dt is the time step and λR is the characteristic
timescale of plastic resuspension. Hinata et al [17]
has experimentally studied the resuspension times-
cale of plastic objects with different sizes and found
λR = 69–273 d. For our sensitivity analysis we take
λR ∈ [69, 171, 273] d. When a particle beaches, we
save its last floating position, and when a particle
resuspends it continues its trajectory from this pos-
ition.

2.4.2. Coast-dependent resuspension
There have been a number of studies that have
tried to explain the pattern of beached plastic using
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statistical models that among others factors take
geomorphology into account [38, 39]. However, it
is unclear whether plastic beaching, resuspension or
both are affected by geomorphology, and the influ-
ence of geomorphology likely differs for different
types of plastic debris [45]. We are not aware of
any studies investigating how geomorphology affects
beaching probabilities. However, the dependence of
resuspension probabilities on beach types have been
studied with regard to the resuspension of oil [46].
Oil resuspension rates for sandy and rocky shores
were found to be 24 and 18 h, respectively, and while
these timescales are much shorter than the resuspen-
sion timescales for plastic [17], we use the ratio of the
timescales of different coast types as a starting point
for a sensitivity analysis.

For coastal geomorphology, we use data from
Luijendijk et al [47] to determine the relative amount
of sandy coastline s of each model cell of the HYCOM
grid, where s= 0 indicates a completely not-sandy
coastline while s= 1 indicates a completely sandy
coastline (supplementary figure 1). Note that ‘not
sandy’ covers multiple shore geomorphologies, such
as rocky shores, cliffs and shorelines covered by veget-
ation such as mangrove forests. The resuspension
timescale is determined by:

λR =

{
3:4 Dependence −→ λR = 69× (0.75+ 0.25× s)

1:4 Dependence−→ λR = 69× (0.25+ 0.75× s),

(4)

where with 3:4 Dependence we use the resuspension
timescale coastline dependence for oil [46], whereas
with 1:4 Dependence there a stronger dependence on
the coastline type to check the sensitivity. In both
cases we use λRT,s= 1 = 69 d.

There is currently little knowledge about how
resuspension timescales vary with the coastline type
and the classification of coastlines as sandy and not-
sandy is overly simplistic, as coastlines such as rocky
beaches, cliffs and mangroves are now considered
equivalent. However, to our knowledge there have not
been any studies that consider how plastic resuspen-
sion might depend on coastal geomorphology, and
therefore we consider these runs as a first exploration
of the potential role of coastal geomorphology on the
global beached plastic budget and distribution.

2.5. Model concentration units
Model concentrations are computed by binning
beached particle masses onto the same grid as the
HYCOM reanalysis data, and then dividing the total
beached mass in each cell by the length of model
coastline (sum of cell edges shared with land cells)
for that cell. This is because the beached plastic is
not distributed homogeneously over the entire cell,
but is instead concentrated on the shoreline interface
between land and water, such as beaches. Since there
is no global dataset of beach area, concentrations are

instead reported as the amount of plastic per length of
model coastline (kg km−1), which is commonly used
for reporting field measurements (see table 1). How-
ever, due to the coarse resolution of theHYCOMgrid,
the length of the model coastline is an approximation
of the true coastline length for a given cell.

3. Results

3.1. Global beached plastic budget
A systematic test of the effect of different beaching
and resuspension probabilities on the global plastic
budget is shown in figure 1. In all scenarios, the
model reaches an equilibrium between the beach-
ing and resuspension fluxes after the initial release
within less than two years. At the end of our 5 years
of simulations, between 31% and 95% of PBMPD is
beached depending on parameter values. High beach-
ing probabilities combined with small resuspension
probabilities lead to a large amount of plastic stored
on beaches and vice versa. With the Jambeck input,
and assuming 54% of the input is buoyant, this cor-
responds to 0.72–2.06× 106 tons of beached PBMPD
originating from plastic debris released in 2010
alone.

Rather than being a function of the absolute val-
ues of λB and λR, our model shows that the aver-
age beached fraction is dependent on the ratio λB/λR

(figure 2(a)). At very low ratios, i.e. high beach-
ing but low resuspension probabilities, up to 99%
of PBMPD is beached in the 5th year of the sim-
ulations. As the ratio increases, the beached frac-
tion decreases to 31%. However, at least 77% of the
PBMPD remains within 10 km of the model coast-
line in all scenarios (figure 2(a)) and only a small
fraction escapes to the open ocean. Multiple studies
report decreasing concentrations of floating PBMPD
with increasing distance from shore, which is com-
monly attributed to PBMPD being removed from
the ocean surface over time [35, 48–50]. However,
such trends could also be partially due to PBMPD
remaining trapped near-shore by the surface ocean
currents.

While PBMPD can leave and return to the coastal
zone, a large portion of PBMPD never travels far
from the coastline (figure 2(b)). Over 25%of PBMPD
mass never travels beyond 50 km from the nearest
coastline even with the lowest beaching probability
(supplementary table 1). The likelihood for plastic to
leave the coastal zone is not uniform worldwide, as
PBMPD that enters the ocean from island sources or
from sources close to energetic boundary currents is
more likely to travel further from shore (figure 2(c)).
However, there are long stretches of coastline where
most plastic remains near shore, as the median of the
maximum distances from shore reached by particles
released from those coastlines is less than 20 km off-
shore.
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Figure 1. The global percentage of beached PBMPD, using the Jambeck input. (a) The beached fractions as a function of the
beaching timescale λB in days. (b) The beached fractions as a function of the resuspension timescale λR in days.

3.2. Global beached plastic distribution
Across all simulations, the highest beached PBMPD
concentrations are found near regionswith the largest
PBMPD sources. These include areas such as South-
east Asia and theMediterranean Sea (figure 3(a)), and
have concentrations up to 106 kg km−1. The lowest
concentrations are in areas with low population dens-
ities, such as polar regions, the Chilean coastline and
parts of the Australian coast. No PBMPD reaches the
Antarctic mainland in any of our simulations. This is
largely in line with measurements of plastic in Ant-
arctica, which have been very low both on beaches
[15] and afloat [51]. The lack of PBMPD in Antarc-
tica is due to a lack of terrestrial input sources and the
Antarctic Circumpolar Current blocking transport of
PBMPD to Antarctic coastlines.

The global pattern of beached plastic is fairly
robust towards the choice of beaching and resus-
pension probabilities (supplementary figure 5) but
strongly depends on the plastic input distribution.
With the Lebreton input, the relative global fraction

of PBMPD that is beached over the last year of simu-
lation is 3% higher in comparison to using the Jam-
beck input (supplementary figure 3). However, abso-
lute beached PBMPD concentrations are significantly
lower, and a larger fraction of beached PBMPD is
concentrated in Southeast Asia (figure 3(b)), reflect-
ing higher inputs in this region. Therefore, detailed
knowledge of the distribution and size of marine
plastic debris sources are essential for understanding
the global distribution of beached PBMPD.

While the overall distribution of beached plastic is
largely shaped by the plastic input scenario, the ocean
currents can play an important local role for beached
PBMPD concentrations. For example, while higher
beaching probabilities lead to higher global beached
fractions, certain coastlines exhibit lower beached
concentrations, such as Kenya, the Indian west coast
and Libya (supplementary figure 5). More beached
PBMPD globally results in less PBMPD afloat, and
therefore reduced transport of PBMPD by the ocean
currents to these areas.
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Figure 2. (a) The global PBMPD budget of beached, coastal and coastal+ beached PBMPD as a percentage of the total of amount
of PBMPD that enters the ocean. The fractions are averages over the fifth year of the simulation. Coastal PBMPD is defined as
non-beached PBMPD floating within 10 km from shore. The lines indicate fits (a× exp(x ∗ k1)+ b× exp(x ∗ k2)+ c) for the
beached, coastal and coastal+ beached fractions. (b) The cumulative fraction of PBMPD as a function of the maximum distance
from land that particles reach during their entire trajectory. (c) The median maximum distance from shore reached by particles
over the course of their entire trajectories, with each point indicating an input location. The median is calculated over all
simulations shown in 2(a).

3.3. Local versus remote origin of beached plastic
debris
On a global average, 48.5% of beached PBMPD
within all exclusive economic zones (EEZ, [52]) is
local, in that it originates from a source within the
EEZ. However, the local fraction of beached PBMPD
is highly variable (figure 4). Generally, the local
fraction for island EEZs is relatively low, matching
recent reports for individual islands in various oceans
[36, 53–55]. This is likely since their location in the
open ocean exposes them to floating PBMPD ori-
ginating from a wide range of EEZ’s, while at the
same time, PBMPD originating from an island EEZ
itself is less likely to beach locally than on a main-
land shore due to the comparatively small coastline
of islands on which beaching can occur. In the field
the fraction from local sources is further reduced due

to the contribution of maritime sources [36, 54, 55],
which are not included in this model.

Higher local fractions of beached PBMPD are due
to a combination of factors. Large local inputs gener-
ally lead to a higher local fractions, as a large fraction
of PBMPD beaches close to its initial input. Examples
of such EEZ’s include China, Indonesia and Brazil. In
addition, the ocean currents can play a critical role
(see also figure 2(c)). Eastern Africa has relatively low
local beached fractions, partly due to receiving high
amounts of PBMPD from Indonesia transported by
the Indian Ocean South Equatorial Current (match-
ing observations byRyan [56]).Meanwhile, coastlines
such as the Russian Arctic and Chileanmainland have
high local fractions despite low local inputs, since the
prevailing local currents do not carry much PBMPD
from other regions.
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Figure 3. Average beached PBMPD concentrations over the final year of the simulation. (a) The beached PBMPD concentrations
with the Jambeck input. (b) The beached PBMPD concentrations with the Lebreton input. Both simulations use λB = 10 d and
λR = 69 d.

However, our local beached fraction estimates are
only based on PBMPD that enters the ocean and sub-
sequently beaches. Coastlines can also contain debris
that is littered onto the coastline directly and never
enters the ocean, and plastic debris that originates
from maritime sources. Furthermore, ocean surface
plastic removal processes such as sinking can further
reduce the non-local fraction, but it is uncertain how
large an effect this would have. As such, our estimates
are only approximations of the actual local fraction of
beached PBMPD.

4. Discussion

A systematic evaluation of ourmodel based on a large
number of field observations is currently impossible

due to the lack of a standardized measurement meth-
odology of beached plastic [1], which prevents com-
parisons of plastic debris concentrations reported by
different studies. Beached plastic concentrations are
reported either as counts or masses, per unit area
or unit length of coastline, and considering differ-
ent debris sizes. Furthermore, our parameterizations
do not account for beach cleanups, which are known
to occur at many study sites (table 1). Additionally
our simulations represent idealized scenarios: there is
only one year of input; we do not consider loss pro-
cesses such as sinking, ingestion, or burial in sediment
[70]; maritime sources of PBMPD and beach littering
are not considered.

Nevertheless, we compare the modeled relat-
ive distribution of beached plastic with studies that

7
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Figure 4. The percentage of beached PBMPD that originates from within the EEZ for each EEZ. (a) Global, (b) Europe,
(c) Central America and the Caribbean. The shown values are averages over all stochastic simulations, and over all beached plastic
over the course of each simulation. Data for EEZs are not shown if beaching did not occur in this EEZ in each considered
stochastic simulation. Some EEZs are split where one EEZ consisted of multiple distinct regions (e.g. the United States EEZ has
been split into the US East coast, West coast, Alaska and Hawaii).

measured beached plastic concentrations with a
standardized method over multiple study sites. The
modeled beached PBMPD distribution for South
Africa closely resembles the distribution from field
measurements [39], likewise our model captures
the very low concentrations found on the Aus-
tralian Northwestern coast [38]. However, the model
appears to over-predict the amount of beached plastic
on the Northeastern Australian coastline, potentially
due an overestimated input of plastic fromPolynesian
islands. In the United States, the concentration ratio
between the Northern Pacific coast and the Southern
California Bight is approximately equal to the ratio
reported in Ribic et al [62], but the relative amount of
beached plastic in Hawaii is underestimated (table 1).
PBMPD frommaritime sources is often an important
contributor of beached plastic on remote shores and
islands [1, 55], and the lack ofmaritime sources in the
input scenarios might partially account for this dis-
crepancy. The overall relative similarity of the meas-
ured and modeled distribution is encouraging and
indicates that we may have captured the dominant

drivers of beaching on a continental scale. However,
these studies only allow comparisons of the relative
patterns, as the model units (kg km−1) do not match
the field measurement concentrations. Compared to
studies that do report concentrations in terms of
mass, themodel generally overestimates field concen-
trations by a factor of 5–560 (table 1). This either
indicates that substantial losses of beached and float-
ing plastic occur on short timescales that our model
does not account for (such as burial within sediments
[55, 71], sinking [35, 72, 73] and beach cleanups
[74, 75]), and/or that the input estimates are too high.
The sites where beached concentrations are underes-
timated (both in absolute and relative terms) are all
islands, which could be due to neglecting maritime
sources in the model.

Our results depend strongly on the representa-
tion of the ocean currents, the accuracy of the plastic
input estimate, the beaching/resuspension paramet-
erizations and the relative importance of processes
that are not included. HYCOM has been shown to
represent circulation patterns well in various parts

8
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Table 1. A comparison of measurements of plastic debris with model simulations. The average, minimum and maximummodel outputs
are calculated over all stochastic simulations with the Jambeck input. Studies that do not report the occurrence of beach cleanups are
indicated by a hyphen.

Study Location
Concentration
(items km−1) Cleanup

Model mean [min
max] (kg km−1)

Barnes and Milner

[58]a,b
Iceland 40 — 3.28 [0.72 8.98]
Faeroe Islands 210 — 6.41 [0.04 30.58]
La Gomera, Canary
Islands

1910 — 69.58 [0.55 178.99]

Ascension 3400 — 0.45 [0.00 6.14]
Falkland Islands 430 — 2.49 [0.68 7.68]
Dominica 1500 — 124.54 [0.00 918.14]

Pieper et al [37]a Faial, Azores 4610 Regular during
summer, none during
the study period

93.59 [0.00 285.74]

Ryan [59]a Tristan da Cunha 240 — 16.31 [0.00 100.53]
Gough Island 100 — 9.12 [0.00 96.57]

Otley and Ingham
[60]a

Falkland Islands 370 — 2.49 [0.68 7.68]

Convey et al [15] Candlemas Island 31 None 0.00 [0.00 0.00]
Saunders Island 50 None 0.00 [0.00 0.00]
Adelaide Island 0 None 0.00 [0.00 0.00]

Ribic et al [61]b Northeast US Atlantic
Coast

102 — 12.46 [1.96 43.55]

Middle US Atlantic
Coast

429 — 106.09 [5.86 397.56]

Southeast US Atlantic
Coast

83 — 220.50 [64.85 683.85]

Ribic et al [62]b Northern US Pacific
Coast

56 Not regularly 56.65 [35.00 116.03]

Southern California
Bight

139 Not regularly 160.80 [43.92 623.58]

Hawaii 134 Not regularly 33.24 [4.90 120.65]

Study Location
Concentration
(kg km−1) Cleanup

Model mean [min
max] (kg km−1)

Corbin and Singh
[63]

Dominica 8 — 124.54 [0.00 918.14]
St. Lucia 3 — 110.18 [0.00 550.12]

Debrot et al [16] Bonaire 647 — 53.26 [0.00 285.57]
Debrot et al [40] Curaçao 506 Occasionally 43.12 [0.00 362.68]
Claereboudt [64] Northern Oman 15 Occur, but frequency

not specified
86.43 [10.08 449.02]

Ali and Shams [65] Clifton Beach,
Karachi, Pakistan

11 Periodically, but
frequency not
specified

4718.88 [167.62
55 688.46]

Hong et al [66] South Korea 262 Not regularly 970.65 [263.95
1611.52]

Pervez et al [67] Shilaoren Beach,
Qingdao, China

5 Daily 2721.28 [327.44
13 124.59]

Pervez et al [68] No. 1 Bathing Beach,
Qingdao, China

73 Daily 2721.28 [327.44
13 124.59]

Madzena and Lasiak
[69]

Transkei Coast, South
Africa

47 Not regularly 1383.42 [111.45
5084.47]

Study Location
Total Plastic
(metric tons) Cleanup

Model mean [min
max] (kg km−1)

Lavers and Bond [55] Henderson Island 17.6 Never 0.08 [0.00 0.49]
a Concentrations as reported in Monteira et al [57].
b Total of marine debris, not solely plastic.

of the world [76–78]. However, HYCOM does not
account for Stokes drift, which plays an important
role in shoreward surface transport [18]. In line with
earlier modeling studies [10, 28, 29], we take the

sum of the HYCOM currents and Stokes drift from
the WaveWatch III reanalysis [24, 25], and we con-
sider this the best available representation of global
scale circulation. Nevertheless, we acknowledge that
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trajectory modeling is more accurate in the open
ocean than on the coastal shelf, where we also miss
the effects of tidal currents [79–81].

With an estimated global beached fraction of
31%–95%, we show that the beached amount of
plastic is a lot less constrained than suggested in
Lebreton et al [12], whose simple 6-box model pre-
dicted that 69% of plastic that has entered the ocean
since 1950 is found beached. In this box model,
the authors assumed a 97% annual beaching rate of
coastal PBMPD (equivalent to λB = 104 d), which is
at the upper end of our tested range of plausible λB

values (1–100 d), and they tuned their resuspension
rate to match the global amount of floating PBMPD,
resulting in a 1% annual resuspension rate of beached
plastic (equivalent to λR = 36 317 d) that is much
slower than what is indicated by field experiments
(69–273 d, [17]). In addition, the boxmodel of Lebre-
ton et al [12] assumes uniform off-shore transport,
while we show that transport varies strongly in dif-
ferent regions (figure 2(c)).

Wemostly use the Jambeck input scenario for our
model [4]. There have been a number of estimates for
plastic inputs into the ocean [4–6, 82], but it is unclear
which are most accurate. Furthermore, all alternative
estimates also neglect contributions from maritime
sources and primary microplastics. There are indic-
ations that the amount of plastic entering the ocean
is lower than estimated in the Jambeck input [83, 84]
and given how strongly the modeled global distribu-
tion of PBMPD is influenced by the input scenario, it
is crucial to get better estimates of plastic debris input
sources, both terrestrial and maritime.

Themodel assumes that there are no PBMPD loss
processes, or at least that they do not play a significant
role during the first 5 years. For example, we assume
PBMPD remains at the ocean surface, but processes
such as biofouling can cause the density of PBMPD to
increase until it starts to sink [85]. PBMPDcan also be
removed through ingestion by wildlife [86]. Experi-
ments with tethered PBMPDbiofouling show sinking
of cm-sized plastic sheets after 17–66 d underneath a
floating dock [85], but it is unclear how this translates
to sinking rates for free floating PBMPD for differ-
ent sizes, shape and regions. PBMPD has been found
at the surface up to 50 years after its estimated pro-
duction date [10], and while this PBMPD might not
have floated at the ocean surface over this entire time
period, it does suggest biofouling requires more than
66 d to sink PBMPD in the open ocean. Given these
uncertainties, sinking was not included as PBMPD
removal process in this study. Plastic ingestion has
been found to occur with a wide range of species
[87], but it is unclear how much total plastic has
been ingested and at what rate this occurs. We also
assume beached PBMPD remains available for resus-
pension indefinitely, but PBMPD can be transported
towards the backshore [88] or be buried [1]. As a

consequence, the beached PBMPD budgets are upper
estimates given that PBMPD is unable to exit the cycle
of beaching and resuspension in our model.

Finally, we assume globally uniform beaching
and resuspension probabilities. Exploratory tests with
shore type dependent resuspension affects the global
budget and distribution of beached plastic only
minimally (supplementary figures 6 and 7), even
when applying substantial differences in resuspen-
sion probability. These results indicate that on a
global scale, local variations in resuspension prob-
ability driven by factors such as wind direction or
coastal geomorphology play only a minor role. Nev-
ertheless, more research is needed to understand how
both beaching and resuspension are influenced by
geomorphology and climatological factors, particu-
larly on local to regional scales.

5. Conclusion

Our results indicate that part of the discrepancy
between current plastic input estimates and estim-
ates of floating plastic debris in the open ocean is
due to high amounts of beached and coastal PBMPD.
We have also identified coastlines where PBMPD is
much more likely to reach the open ocean, such as
the Eastern United States, Eastern Japan and Indone-
sia. Here, cleanups would be particularly effective in
intercepting PBMPD before it escapes to the open
ocean. However, more work needs to be done invest-
igating the behavior of PBMPD in coastal waters, spe-
cifically the role of wind, waves, tides, and coastal
morphology in PBMPD transport, beaching and
resuspension. This would be strongly aided by stand-
ardized beached PBMPD field measurements, allow-
ing comparisons of PBMPD concentrations at differ-
ent measurement sites. Furthermore, future studies
ought to consider the influence of maritime sources
on beached PBMPD, as this study only considers ter-
restrial inputs.
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