
LETTER • OPEN ACCESS

Integrated assessment model diagnostics: key indicators and model
evolution
To cite this article: Mathijs Harmsen et al 2021 Environ. Res. Lett. 16 054046

 

View the article online for updates and enhancements.

This content was downloaded from IP address 131.211.12.11 on 03/06/2021 at 15:06

https://doi.org/10.1088/1748-9326/abf964


Environ. Res. Lett. 16 (2021) 054046 https://doi.org/10.1088/1748-9326/abf964

OPEN ACCESS

RECEIVED

23 December 2020

REVISED

25 March 2021

ACCEPTED FOR PUBLICATION

19 April 2021

PUBLISHED

10 May 2021

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

LETTER

Integrated assessment model diagnostics: key indicators and
model evolution
Mathijs Harmsen1,2, Elmar Kriegler3,21, Detlef P van Vuuren1,2, Kaj-Ivar van der Wijst1,2,
Gunnar Luderer3,20, Ryna Cui4, Olivier Dessens5, Laurent Drouet6, Johannes Emmerling6,
Jennifer Faye Morris7, Florian Fosse8, Dimitris Fragkiadakis9, Kostas Fragkiadakis9,
Panagiotis Fragkos9, Oliver Fricko10, Shinichiro Fujimori11, David Gernaat1,2, Céline Guivarch12,
Gokul Iyer13, Panagiotis Karkatsoulis9, Ilkka Keppo14, Kimon Keramidas8, Alexandre Köberle15,
Peter Kolp10, Volker Krey10, Christoph Krüger1,2, Florian Leblanc12, Shivika Mittal15,
Sergey Paltsev7, Pedro Rochedo16, Bas J van Ruijven10, Ronald D Sands17, Fuminori Sano18,
Jessica Strefler3, Eveline Vasquez Arroyo16, Kenichi Wada18 and Behnam Zakeri10,19
1 PBL Netherlands Environmental Assessment Agency, Bezuidenhoutseweg 30, 2594 AV The Hague, The Netherlands
2 Copernicus Institute for Sustainable Development, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
3 Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam D-14412, Germany
4 Center for Global Sustainability, University of Maryland, 3101 VanMunching Hall, College Park, MD 20742, United States of America
5 University College London, London, United Kingdom
6 RFF-CMCC European Institute on Economics and the Environment (EIEE), Centro Euro-Mediterraneo sui Cambiamenti Climatici,
Via Bergogne 34, 20144 Milan, Italy

7 MIT Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA, United States
of America

8 European Commission, Joint Research Centre, Seville, Spain
9 E3Modelling S.A., Panormou 70-72, Athens, Greece
10 International Institute for Applied Systems Analysis, Schlossplatz-1, A-2361 Laxenburg, Austria
11 Department of Environmental Engineering, Kyoto University, Kyoto, Japan & National Institute for Environmental Studies, Center

for Social and Environmental Systems Research, Tsukuba, Ibaraki 305-8506, Japan
12 Ecole des Ponts ParisTech, CIRED, 45bis avenue de la Belle Gabrielle, Nogent-sur-Marne, France
13 Joint Global Change Research Institute, Pacific Northwest National Laboratory and University of Maryland, 5825 University Research

Court, Suite 3500, College Park, MD 20740, United States of America
14 Department of Mechanical Engineering, School of Engineering, Aalto University, Otakaari 4, Espoo 02150, Finland
15 Grantham Institute, Imperial College London, Exhibition Road, London SW7 2AZ
16 Energy Planning Program, COPPE, Universidade Federal do Rio de Janeiro (UFRJ), PO Box 68565, 21941-914 Rio de Janeiro, RJ,

Brazil
17 USDA Economic Research Service, Kansas City, MO, United States of America
18 Research Institute of Innovative Technology for the Earth (RITE), 9-2, Kizugawadai, Kizugawa-Shi, Kyoto 619-0292, Japan
19 Sustainable Energy Planning Research Group, Aalborg University, A. C. Meyers Vnge 15, Copenhagen 2450, Denmark
20 Global Energy Systems Analysis, Technische Universität Berlin, Straße des 17. Juni 135, Berlin 10623, Germany
21 Faculty of Economics and Social Sciences, University of Potsdam, August-Bebel-Str. 89, Potsdam 14482, Germany

E-mail: mathijs.harmsen@pbl.nl

Keywords: diagnostics, integrated assessment models, climate policy, 6th Assessment Report IPCC, renewable energy, mitigation, AR6

Supplementary material for this article is available online

Abstract
Integrated assessment models (IAMs) form a prime tool in informing about climate mitigation
strategies. Diagnostic indicators that allow comparison across these models can help describe and
explain differences in model projections. This increases transparency and comparability. Earlier,
the IAM community has developed an approach to diagnose models (Kriegler (2015 Technol.
Forecast. Soc. Change 90 45–61)). Here we build on this, by proposing a selected set of well-defined
indicators as a community standard, to systematically and routinely assess IAM behaviour, similar
to metrics used for other modeling communities such as climate models. These indicators are the
relative abatement index, emission reduction type index, inertia timescale, fossil fuel reduction,
transformation index and cost per abatement value. We apply the approach to 17 IAMs, assessing
both older as well as their latest versions, as applied in the IPCC 6th Assessment Report.
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The study shows that the approach can be easily applied and used to indentify key differences
between models and model versions. Moreover, we demonstrate that this comparison helps to link
model behavior to model characteristics and assumptions. We show that together, the set of six
indicators can provide useful indication of the main traits of the model and can roughly indicate
the general model behavior. The results also show that there is often a considerable spread across
the models. Interestingly, the diagnostic values often change for different model versions, but there
does not seem to be a distinct trend.

1. Introduction

Integrated assessment models (IAMs) are widely
used for climate policy and climate change ana-
lysis (van Beek et al 2020). They offer the means to
assess the linkages between long-term climate policy
goals and near-term policy choices. They can also
look into mitigation strategies taking into account
cross-sectoral and, cross-regional and systems inter-
actions (energy, land, economy, climate). As such,
they form a key information source feeding into
the climate change mitigation policy process, e.g. via
IPCC Assessment Reports (ARs) (Halsnæs et al 2000,
IPCC 2014). Within IAMs, a distinction can be made
between cost-benefit IAMs (mostly highly stylized)
and detailed process IAMs that are mostly used to
explore different pathways to reach selected policy
goals. The latter comprise a diverse group of models
with different functional structures.

A thorough understanding of how IAM struc-
ture and assumptions affect IAM behavior is critic-
ally important for assessing IAMbased policy analysis
and advice. For both policy makers and researchers,
it can provide insights into why results differ between
models and link projections to policy-relevant model
assumptions and structure. It is the goal of diagnostic
tools to foster such understanding. In fact, such tools
can serve key functions: (a) characterizing model
behavior by use of stylized diagnostic experiments,
and (b) relating model behavior patterns to model
structure and input assumptions.We focus mostly on
the first in this study, but aim to cover the second,
where possible. A subsequent function, but beyond
the limits of this study is to qualify the model beha-
vior and assess models’ policy applicability.

In other modeling disciplines, similar diagnostic
tools have been developed. For instance, in climate
research, diagnostic metrics have been applied to
compare climate models and to evaluate their per-
formance (Andrews et al 2012, Flato et al 2013, Eyring
et al 2016). Such indicators, for instance, include cli-
mate sensitivity (indicating the temperature increase
for a doubling of the CO2 concentration) and the
transient climate response (indicating warming over
a more limited time period). These tools are not only
used to regularly compare models and thus qualify
their behavior, but even in validation experiments,
leading to assessment of the quality ofmodels for spe-
cific experiments and their evaluation over time.

Also the IAM community has undertaken sev-
eral model diagnostic activities in the past (Gaskins
and Weyant 1993, Weyant 2004, 2010, van Vuuren
et al 2009, Wilkerson et al 2015) resulting in the most
recent and comprehensive diagnostic assessment by
Kriegler et al (2015). Here, we propose an updated
and expanded set of widely applicable, key diagnostic
indicators to be used as a community standard.
We determined these by revisiting the approach by
Kriegler et al (2015) and improving them in terms
of precision, simplicity and completeness. In partic-
ular, we propose a novel, standardized approach to
compare different model versions to assess and mon-
itormodel differences over time. The approach is ana-
logous to the climate model diagnostics in the sense
that they are based on stylized scenarios with exogen-
ous assumptions. It has been tested on 17 IAMs and
32 model versions, as part of two EU model devel-
opment projects, ADVANCE (www.fp7-advance.eu/)
and NAVIGATE (https://navigate-h2020.eu/), thus
providing coverage of all main process-based IAMs
(and much higher than in preceding studies), includ-
ing all latest model versions. Especially the latter is
highly needed in light of the forthcoming AR6.

A standard set of diagnostics for the community
has obvious advantages. It provides a tool to system-
atically and consistently assess model behavior in all
future studies. Model diagnostic results can be part
of model documentation that can be referenced and
highlighted in papers. Futuremodel-intercomparison
projects could require participating models to reg-
ularly run the core set of diagnostics, to analyze
model behavior of newly developed models or model
versions. Ultimately, this will lead to greater trans-
parency and comprehensibility of IAM applications,
together withmodel documentation. It will also allow
tracking the development of IAMs over time—and
possibly, in the future, confronting the outcomes with
empirical information or information from other sci-
ence disciplines.

An important innovation of the present study is
the introduction of two diagnostic indicators in addi-
tion to the ones established by Kriegler et al (2015),
namely inertia timescale (IT) and fossil fuel reduc-
tion (FFR). IT provides a measure of themodels’ level
of inertia in response to the introduction of climate
policy, a crucial determining factor in deep mitiga-
tion projections. FFR highlights the models tendency
to reduce fossil fuels as part of climate policy, a key
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element in model studies that examine the energy
transition.

Here, we present the results for six key indicators,
adding IT and FFR to the original set of indicators
from Kriegler et al (2015); relative abatement index
(RAI), carbon intensity over energy intensity (CoEI),
transformation index (TI) and cost per abatement
value (CAV). The indicators have been simplified to
make them more suitable to be used as a community
standard, namely with a focus on one strong mitig-
ation case and one benchmark year, 30 years in the
future (here 2050, but later in post-2020 assessments).
The latter allows for comparability with future dia-
gnostic assessments. To ensure precision in the dia-
gnostic results, we define single, unique values to
indicate model behavior.

In method section 2, we explain the study design
and list the participatingmodels. The results are split-
up in subsections for each of the indicators and con-
clude with an overview table to classify all the par-
ticipating models. In the section 4, we reflect on
the research questions: Can these indicators be eas-
ily used as diagnostic tools for IAMs, including their
development over time? Andwhat insights do these tools
provide?

2. Methods

2.1. Diagnostic experiments and indicators
The experiments described in this study form a small
selection from a larger set of stylized, diagnostic scen-
arios that have originally been developed as part of
the EU FP7 ADVANCE project (www.fp7-advance.
eu/). These are: Base (a zero carbon tax, i.e. a no-
climate policy baseline) and C80-gr5 (a run with
an exponential carbon equivalent price growth of
5% per year starting in 2020 and a price level of
80 (2010)$/tCO2 eq. reached in 2040). C80-gr5 is
used for each key indicator presented here. For
two indicators (RAI and IT) extra scenarios were
used, as will be explained in the next section. Note
that the C80-gr5 scenario represents a 1.5–2 degree
case in most models (see supplement S7 (available
online at stacks.iop.org/ERL/16/054046/mmedia)),
in line with the Paris agreement’s climate ambi-
tions. This makes it a highly relevant showcase for
assessing model behavior in frequent deep mitiga-
tion scenarios. Preferably, model groups used SSP2,
the middle-of-the-road socioeconomic projection
baseline scenario (Riahi et al 2017) for all assump-
tions, including population and economic growth.

The indicators are originally chosen and adapted
here based on criteria set by Kriegler et al (2015):

• Identification of heterogeneity in model responses
• Diagnosis of relevant features for climate policy
analysis

• Applicability to diverse models
• Accessibility and ease of use

Here, we add the following criteria:

• Standardization and comparability between dia-
gnostic studies

• Precision/quantifiability

Based on these criteria, we derive a set of six
indictors that describe model responses to climate
policy. These indicators go beyond the work of
Kriegler et al, because we provide a standardized
formulation—in each case leading to a single value
that characterizes the model. We specify set rules
(benchmark year, scenario used, socio-economic
assumptions) to allow for comparability between
studies in a quantitative way. Themain focus is on the
year 2050 as it is (a) policy relevant and (b) provides
a reasonable indication of model behavior through-
out the century. For future use of the indicators, we
define all indicators based onC80-gr5, using the value
30 years after the introduction of the tax (here 2020).
While the focus is on 2050, we also show the 2100 res-
ults in the supplement (S3) to assess if the 2100 num-
bers would lead to different conclusions.

Table 1 gives an overview of the key diagnostic
indicators proposed and assessed in this study. Below,
we shortly summarize the setup and rationale behind
the indicators and particularly indicate differences
with and additions to the Kriegler et al (2015)
approach. The combination of the indicators, focuses
on (a) the responsiveness of themodel, (b) the type of
mitigation, (c) the scale of the transformation of the
energy system, and (d) mitigation costs as a function
of the carbon price signal.

As in earlier diagnostic exercises, the indicators
are based on global totals to assess the overall behavior
related to global climate policy. A regional assessment
would be possible in a follow-up study. All emis-
sion indicators are based on CO2 energy and indus-
trial process (E&I) emissions. This allows for all mod-
els to participate (the land-use system and non-CO2

emissions are modeled by about half of the models).
Moreover, CO2 E&I makes out more than two thirds
of all GHG emissions (Olivier and Peters 2020).

The RAI characterizes the emission reductions in
a carbon tax scenario relative to the baseline. It can
be considered the main indicator in the sense that
it measures the overall response to a climate policy
incentive and correlates with elements from the other
indicators (demand and supply side emission reduc-
tions, transformation rate, FFRs and limited inertia).
Hence, it can also be considered a ‘mitigation sens-
itivity’ indicator, analogous to the ‘climate sensitiv-
ity’ in climate models. In order to assess mitigation of
the full suite of GHGs, we also provide a full Kyoto
GHG analysis in the supplement (S4). In addition, an
additional scenario (C30-gr5, with a two thirds lower
tax) is used to visualize a stylized ‘derivedMAC curve’
from the RAI, by connecting the projected relative
abatement at∼0, 50 and 130 $/tCO2.
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Table 1. Key diagnostic indicators. For further explanation, see main text.

The ERT indicates the share of supply side meas-
ures (e.g. renewable energy) in bringing down emis-
sions. 1 minus ERT shows the share of the RAI
that that can be attributed to reduced final energy
demand. Values higher than 0.5 imply supply mod-
els (=most common), lower than 0.5 imply demand
models. This indicator replaces the CoEI indicator
from Kriegler et al 2015): CI (as a fraction of CI in
the baseline) over energy intensity, which did not
strongly reflect reductions in energy intensity (e.g. a
model with no energy efficiency at all could still be
classified as a demand focused model).

Two energy system transformation indicators
have been assessed: FFR, which is new in this study

and transformation index (TI, from Kriegler et al
2015). FFR is a simple, policy relevant indicator that
shows the relative reduction of fossil energy compared
to the base year (2020). The FFR indicator was
added to the transformation analysis, since it repres-
ents a less abstract alternative to TI and relates dir-
ectly to recent studies aimed at fossil fuel phase out
and renewable integration (in in the result section,
we also compare FFR to TI to understand what
drives transitions in models). TI shows the extent
of transformation in the energy system (2 = max,
0 = none). Note that in table 1, the shares of energy
sources in primary energy system (S), are based
on the following aggregated energy sources: fossil,
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Table 2. Participating models, types and versions. Latest model version indicated in bold. For detailed model documentation see:
www.iamcdocumentation.eu/(IAMC wiki). See supplement (S1) for an overview of all scenarios and submissions by the different
models.

non-bioenergy renewables, bioenergy, nuclear, since
these are reported by all models, thus allowing for a
complete comparison.

In this study, we adopt a new indicator that
describes the level of inertia (i.e. persistence of path
dependency) in themodels: IT. Path dependencies are
of particularly relevance for the energy system, due to
long-lived capital stocks, technological learning, and
other sources of inertia in the upscaling of new tech-
nologies, as well as behavioral inertia on the demand
side. They are also highly policy-relevant in the con-
text of delayed climate policy adoption and carbon
lock-in, as analyzed in several scenario studies (Riahi
et al 2015, Luderer et al 2018). We here introduce
a new diagnostic indicator that captures inertia in
response to the introduction of climate policy as a
crucial characteristic of IAMs. It is based on a newly
introduced diagnostic carbon price shock scenario to
quantify model representation of inertia. In our scen-
ario set, the shock scenario follows baseline develop-
ments with zero carbon prices until 2040, followed by
an instantaneous carbon price of 80$/tCO2 in 2040, as
in the default scenario, with an exponentially grow-
ing carbon price thereafter. For the shock scenarios,
models with perfect foresight were instructed to dis-
able the anticipation of future carbon pricing. The
difference between the shock scenario and the default
scenario can be measured in terms of the 2040 ‘emis-
sions gap’. After 2040, the shock scenarios and cor-
responding early pricing scenarios can be expected to
converge, since they are subject to the same carbon
prices. However, during a transition period, the shock
scenarios will continue to have higher emission levels

than the corresponding early pricing scenarios, due
to the systems inertia. The IT (in units of years) is
defined as the ratio between the cumulative emission
difference between the two scenarios after 2040, and
the ‘emissions gap’ in the model year prior to 2040.
For more information and visualization see supple-
ment (S2).

The CAV is a dimensionless measure of economic
implications of emissions abatement at a certain car-
bon price. It shows the ratio between the policy costs
and marginal abatement costs (MACs). For PE mod-
els, this can be seen as an indicator for the shape
of the (implicit) MAC curve. The closer to 1 this
indicator is, the more concave the MAC curve and
the higher the projected policy costs. In other words, a
low value indicatesmoremitigation potential at lower
carbon prices. For GEmodels, macro-economic feed-
backs are also factored in. Here, a value higher than
1 implies that these feedbacks are a dominant factor
in the costs. We simplified the original indicator
by looking at a benchmark year (2050) instead of
discounting to a net present value. Note that for this
indicator, we include all greenhouse gases represen-
ted by the models (this differs per model), since that
corresponds with the model’s projected policy costs.
Reported policy cost metrics also differ per model
type. We used consumption loss compared to the
baseline for all GE models and area under the MAC
for all PE models, except for PROMETHEUS and
TIAM-Grantham where the additional total energy
system costs were applied. Although the metrics dif-
fer, they are comparable in the sense that they (at
least) factor in first-order economic expenditures,
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which make out a considerable part of the policy
costs.

2.2. Models
In total 17 IAMs, of which 32 unique model ver-
sions have participated in the diagnostic exercise, see
table 2. The models have been broadly grouped based
on their typology. One dimension in this typology
is the coverage of the economy. Partial equilibrium
(PE) models describe parts of the economy (e.g.
such as the energy or agriculture sector) in detail,
while having exogenous assumptions for the rest of
the economy. PE models typically calculate climate
mitigation policy costs as first order sector costs,
such as area under the MAC curve for reducing
greenhouse gases. General equilibrium (GE) mod-
els represent the full economy with varying levels of
detail in the representation of sectors. GEs typically
express policy costs in terms of consumption losses
or GDP losses. The second dimension in the typo-
logy is the level of foresight in the solution func-
tion (for reaching climate targets), which is either
high (‘inter-temporal optimization’ (ITO))) or low/
myopic (‘recursive dynamic’ (RD)). RD models do
not attempt to optimize costs over time, but use
another set of rules for this. Dynamic recursive com-
putational GEs (CGEs, see table 2) are a subgroup of
GEs that follow such a myopic approach. These have
a more detailed representation of sectors than ITO-
GEs and derive costs based on deviation from mar-
ket equilibria in individual years. The classification in
table 2 is applied in all the analyses in this study, to
determine any correlations between model type and
behavior.

3. Results

3.1. RAI
Figure 1 shows the RAI in 2050 for different price
levels (essentially showing a stylized derived MAC
curve per model, 1a) and the RAI per model in
the default scenario (1b). Models generally show
the same characteristic at different price levels in
1a. As a result the RAI (1b) can be considered as
representative for model response. When consid-
ering latest model versions, high RAI models (i.e.
one standard deviation from mean) are IMAGE,
REMIND-MAgPIE and AIM/Hub and low RAImod-
els are POLES, IMACLIM and TIAM-Grantham. The
high-low order in models generally persists at higher
prices in 2100 (supplement S3) andwhen considering
all greenhouse gases (supplement S4), implying that
the 2050 CO2-based benchmark is a relatively robust
indicator. There is some indication that GE-ITO and
PE-RD models have a relatively high response, while
GE-RD models are generally lower—but there are
large variations in each group.

There are considerable differences in RAI between
model versions (notably of GEM-E3, MESSAGE,

FARM and POLES) that can be traced back to specific
model developments. However, there seems to be
no consistent trend across the models towards either
higher or lower abatement in newer model ver-
sions. The higher emission reduction achieved in
the latest version of GEM-E3 is a result of improve-
ments in representation of the energy system, espe-
cially in transport and in power generation. The new
model version also captures the recent cost reduc-
tion of low-carbon technologies (e.g. photovoltaics
(PV), wind, electric vehicles) thus enabling accel-
erated diffusion of these options. The lower abate-
ment in the latest MESSAGE-GLOBIOM version res-
ults from model calibration (lowering the baseline
emissions), reduced sustainable bioenergy poten-
tial and more pessimistic techno-economic assump-
tions on carbon capture and storage (CCS) deploy-
ment, despite more optimistic assumptions on non-
bio renewables. Higher abatement in FARM res-
ults from more favorable CCS assumptions, both
for fossil-electricity and bio-electricity. Lower abate-
ment in the most recent POLES version is pre-
dominantly caused by slower deployment of CCS in
power, industry and energy transformation (hydro-
gen, biofuels production). This outweighs several
developments that increased abatement potential
(inclusion of direct air capture, e-fuels and a more
detailed representation ofmitigation potential in final
demand sectors (buildings, aviation, maritime and
road transport). The low abatement potential in
IMACLIM results from a persistence in fossil fuel use
(see section 3.3).

3.2. Emission reduction strategy
Figure 2 shows the ERT in 2050 (2b) and underly-
ing reductions in carbon intensity (CI) and energy
intensity (EI) in the default scenario (2a). Note that
all models can be considered supply models, i.e. that
emission reductions are realized more via changes in
energy supply (e.g. renewable energy) than in energy
demand. This is indicated by all models being loc-
ated right from the x = y line in 2a and the >0.5 ERT
values in 2b. Compared to the model mean, TIAM-
UCL, GCAM, DNE21+ and IMACLIM can be con-
sidered high ERT models (strongly preferring sup-
ply side options) and POLES, MESSAGE-GLOBIOM
and WITCH low ERT models (more demand-side
focused). There is no apparent effect of model type
on ERT.

At higher carbon prices (in 2100), supply side
mitigation becomes more dominant for all models,
indicated in 2a by the strong reduction in CI in 2100
compared to 2050, and higher ERT values in 2100
(see supplement S3). In IMAGE, higher prices also
invoke a strong demand response, which is smaller
for other models. In the case of REMIND, high prices
even lead to an increase in energy intensity, caused
by an increased energy demand for direct air capture
and storage of CO2 (DACCS, included in the last two
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Figure 1. RAI in 2050. Left: RAI in 2050 for∼50 and 130 $/tCO2. Coloured lines represent latest model versions. Right: RAI value
for 130 $/tCO2 based on default model run. Stars represent the latest model versions. Model are grouped based on type (see
section 2). See supplement (S4) for the RAI based on the full suite of Kyoto GHGs.

Figure 2. EI reduction vs CI reduction in 2050 and 2100 in the default scenario (left panel). Coloured lines represent latest model
versions. Areas are 2-sigma confidence ellipses. Right: ERT in default run. Stars represent the latest model versions. Model are
grouped based on type (see section 2).

versions) and to a lesser extent by higher electricity
demand. The effect is magnified due to the exponen-
tially growing carbon price and is less common in less
extreme REMIND projections.

POLES and MESSAGE-GLOBIOM both show a
large decrease in ERT compared to earlier versions.
For both models, this is mainly caused by a decrease
in supply side mitigation options (see description for
RAI indicator). However, both models have a larger
demand response in the latest versions.

3.3. Energy system transformation
The energy system transformation assessment in
this study is based on two indicators: fossil fuel
reduction (FFR, see figure 3(b)) and transforma-
tion index (TI, see supplement S5). Here we describe
FFR and indicate large differences with TI, which

signify a different level of transformation in the non-
fossil parts of the primary energy system (renew-
ables, bioenergy, nuclear). There is a large spread
in FFR, varying from 43% reduction to an increase
of 23%. Figure 3(a) (primary energy decomposi-
tion) shows that for most models, a considerable
share of the remaining fossil energy consists of fossil
energy without CCS. GE-ITO models generally seem
to favor relatively high FFR. High FFR-models are
REMIND-MAgPIE, iPETS, MESSAGE-GLOBIOM,
TIAM-UCL, TIAM_Grantham and WITCH, Low-
FFR models are IMACLIM, DNE21+, COFFEE and
FARM. There is a high correlation between FFR and
TI, as would be expected. A notable exception is COF-
FEE, which has amediumTI, due to large increases in
bioenergy and to a lesser extent non-bio renewables.
The high-low order of FFR and TI in models is very
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Figure 3. FFR indicator. Left: primary energy composition in 2050 in default run (only newest model versions). Note: where ‘with
CCS data’ is missing, total fossil or bioenergy represents a combination of both with and without CCS. Note: iPETS nuclear and
RE not shown (= 127 EJ in total). Right: relative FFR. Stars represent the latest model versions. Model are grouped based on type
(see section 2). See underlying data, including the TI indicator in supplement (S5).

Figure 4. IT indicator. Right panel: IT per model. Stars represent the latest model versions. Model are grouped based on type
(see section 2). Left panel: underlying components used to determine IT. X-axis: ‘Additional emissions due to inertia’ (i.e.
cumulative CO2 E&I difference between C80-gr5 and C0to80-gr5 in 2040–2100 period). Y-axis: difference in emissions between
C80-gr5 and C0to80-gr5 in 2040. Colored dots represent latest model versions.

similar at higher prices in 2100 (see supplement S3
and S5) implying that the 2050 benchmark is robust.

Several large differences in model versions can be
explained by model developments. The recent ver-
sion of MESSAGE-GLOBIOM has more pessimistic
assumptions about CCS, leading to stronger carbon
price induced reduction in fossil fuel consumption.
The increase of FFR in TIAM-UCL is caused by a
reduction in capital expenditure for solar and wind
and reduced growth constraints for renewables and
CCS. High FFR in REMIND-MAgPIE is largely the
result of a strong natural gas phase out and high
renewables integration in the power sector. Simil-
arly, in WITCH, it is due to updated renewables

learning rates, and more costly assumptions about
CCS storage. In contrast, COFFEE projects a large
increase of natural gas, implemented as a mitigation
option in industry sector, leading to a small increase
of fossil fuels (= negative FFR). In DNE21+, fossil
fuel persists due to an increase in oil demand and
cost-effective mitigation via gas power generation,
including CCS. Fossil fuel persistence is largest in
IMACLIM, due to large capital inertia and myopic
expectations of future carbon prices.

3.4. Inertia
Figure 4 shows the IT indicator for the models that
took part in the inertia experiment (with 4b= IT and

8
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Figure 5. Policy costs vs relative abatement in 2050 and 2100 in default scenario (left panel). Coloured lines represent latest model
versions. 2050 and 2100 areas are 2-sigma confidence ellipses. Relative cost (CAV) indicator by model in 2050 (right panel). Stars
represent the latest model versions. Model are grouped based on type (see section 2).

4a = underlying data). Note that models with a 2050
time horizon are excluded, since IT is based on a full-
century integral. There are large differences across
models, with most showing IT in the 10–20 year
range. iPETS is an extreme low-inertia scenario, with
instantaneous convergence of the price shock and
default scenario. TIAM-UCL and POLES also show a
relatively low IT. WITCH and IMACLIM indicate the
highest inertia. There is no apparent effect on model
type on IT. Note that a sensitivity analysis in the sup-
plement (S6) shows that the results are largely similar
when the IT is based on a lower carbon price, imply-
ing that the default approach yields robust results.

Several large differences between model ver-
sions are the result of model developments. The
more recent REMIND-MAgPIE versions favor elec-
tricity production from renewables, making it easier
to reduce emissions in a short timeframe. Simil-
arly, TIAM-UCL has reduced growth constraints for
renewables and CCS, leading to a strong decrease in
the IT. For theWITCHmodel, the current version has
seen several updates based on latest insights: update
of CCS storage potential (leading to less reliance on
CCS in the second half of the century), renewables
learning rates, short-term fossil fuel demand for India
and China, introduction of time-varying elasticities
of substitution and a reduction of the social discount
rate to 2%–3%. This results in more stickiness of
investments in the short term.

3.5. Policy costs
In figure 5, the policy CAV indicator is shown (5b)
and a plot to visualize the policy costs (in % of GDP)
versus the relative abatement in 2050 and 2100 (5a).
The 2050 CAV is relatively comparable formostmod-
els, being in the 0.3–0.5 range, implying that the pro-
jected policy costs are around 30%–50% of the mar-
ginal costs. There is no clear trend towards either

more costly or less costly mitigation in recent model
versions. By design, GE models can produce higher
CAV values, due to inclusion of macro-economic
feedbacks. High CAV-models are IMACLIM and to
a lesser extent AIM-Hub. In the case of IMACLIM,
this results from assumed market imperfections in
combination with imperfect foresight, leading to
substantial GDP losses in a mitigation scenario. Not-
able low-CAV models are FARM and MESSAGE-
GLOBIOM. The low-high model order in 2050 is
almost identical to the order in 2100 (supplement
S3), implying that the 2050 CAV provides a robust
representation of the mitigation costs, also at high
prices. Note however that the actual projected costs
in a budget scenario (e.g. a 2 degree scenario) also
depends on the assumedmitigation potential and car-
bon price.

Large CAV differences between model versions
can be explained by the following model develop-
ments. The considerably lower CAV in GEM-E3 is
mainly due to capturing of recent trends of cost
reduction of low-carbon technologies (e.g. PV, wind,
EV, batteries) as well as recalibration, which captures
new trends of lower energy and carbon intensities.
In the latest version of AIM/Hub, which represents
an exception from the similar 2050–2100 behavior
(showing a strong relative decrease in CAV in 2100),
policy costs in 2050 are projected to be relatively high
compared to 2100 due to limited availability of CCS
(main factor) and bioenergy (the latter due to high
population and lower yields).

3.6. Overview
Table 3 summarizes the classification of the models.
Each model is indicated by a specific combination of
six values that highlight its general responsiveness, the
type of response and the responsiveness of the overall
costs indicator.
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Table 3. Overview of indicators & classification. All indicators are based on 2050 results (exception IT). 2100 results are shown in the
supplement. Indicator acronyms from left to right: RAI, emission reduction type, FFR, TI, IT, CAV. Models are clustered based on type
(general or partial equilibrium, recursive dynamic or intertemporal solution approach). Classification can be read as: (1) response based
on RAI (2) emission reductions relatively high via energy demand (SD), supply (S), relatively strong supply (S+) based on ERT (3)
policy CAV. High or low in the classification implies more than one standard deviation from mean. Grey is no data. Green/yellow
highlight indicates: higher/lower value in a newer model version.

4. Discussion & conclusions

Stylized diagnostic runs prove to be a useful tool to
classify models (as in earlier studies) and to mon-
itor model evolution, as we have shown here. There
is a high demand for an approach to systematic-
ally and routinely assess model behavior in a stand-
ardized way. The method proposed here, with a
focus on one benchmark year and standard scenario,

allows for comparability between diagnostic stud-
ies over time with quantitative metrics. This study
shows that the present+30 years benchmark provides
a robust representation of model behavior over the
century. We further showed that comparing dif-
ferent model versions based on the same experi-
mental setup helps to understand model behavior,
since changes can be traced back to specific model
developments.
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The focus here has been on the key indicators.
However, the approach can be extended to second-
ary indicators that could provide sectoral or regional
diagnostics and non-CO2 greenhouse gases. Next to
providing quantitative estimates of different aspects
of model behavior, several key general conclusions
can be drawn from this study’s results:

• There is a considerable spread in outcomes for all
indicators. This implies that the choice of a model
in a study matters and that it is crucial to under-
stand these differences.

• There is, however, no direct relationship between
model type and model behavior (with some excep-
tion for GE models with intertemporal optimiza-
tion that seem slightly more responsive).

• There does not seem to be a distinct trend in how
models change in time with respect to the analyzed
key indicators.
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