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Abstract: We investigate the combined effects of anisotropy and a magnetic field in
strongly interacting gauge theories by the gauge/gravity correspondence. Our main moti-
vation is the quark-gluon plasma produced in off-central heavy-ion collisions which exhibits
large anisotropy in pressure gradients as well as large external magnetic fields. We explore
two different configurations, with the anisotropy either parallel or perpendicular to the
magnetic field, focusing on the competition and interplay between the two. A detailed
study of the RG flow in the ground state reveals a rich structure where depending on
which of the two, anisotropy or magnetic field, is stronger, intermediate geometries with
approximate AdS4×R and AdS3×R2 factors arise. This competition is also manifest in the
phase structure at finite temperature, specifically in the dependence of the chiral transition
temperature on anisotropy and magnetic field, from which we infer the presence of inverse
magnetic and anisotropic catalyses of the chiral condensate. Finally, we consider other
salient observables in the theory, including the quark-antiquark potential, shear viscosity,
entanglement entropy and the butterfly velocity. We demonstrate that they serve as good
probes of the theory, in particular, distinguishing between the effects of the magnetic field
and anisotropy in the ground and plasma states. We also find that the butterfly velocity,
which codifies how fast information propagates in the plasma, exhibits a rich structure as
a function of temperature, anisotropy and magnetic field, exceeding the conformal value in
certain regimes.
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1 Introduction

Studies of the quark-gluon plasma produced in heavy-ion collisions at RHIC and LHC have
revealed an accepted description of this plasma as a strongly interacting relativistic fluid,
see [1] for a recent review. In particular, anisotropies in soft particle distributions detected
in off-central collisions played a central role in establishing this description early on [2–4].
According to the picture that emerged from these studies, the initial almond shape of the
plasma created in off-central collisions leads to different pressure gradients building up in
the two directions — which we denote by x1 ≡ x (short axis of the almond) and x3 ≡ z

(long axis of the almond), see figure 1 — that are transverse to the beam direction —
which we denote by x2 ≡ y, and these different pressure gradients in turn yield different
multiplicities of hadrons detected in these directions. This anisotropy can be quantified
by introducing the so-called elliptic flow coefficient v2{2}. Matching of this parameter in
the experiment to viscous hydrodynamics simulations results in a relativistic fluid with
extremely small shear viscosity to entropy ratio [5–16] consistent with the universal value
that follows from the AdS/CFT correspondence [17].

In this accepted hydrodynamic picture, the plasma also expands mainly in the x2
direction, see figure 1. This brings in another anisotropy in the system, that is present also
in central collisions, which stems from the pressure in the x2 direction being different from
the transverse pressures on the interaction plane). In an off-central collision, in general, the
spatial components of the stress-energy tensor in all directions, hence, are different from
each other.

This picture is further complicated by the strong magnetic fields produced in off-
central collisions mainly sourced by the positively charged “spectator” ions that fly off
without participating in plasma formation (figure 1) [18, 19]. Thus, this anisotropic plasma
is also produced in the presence of an external magnetic field in the x3 direction in our
conventions. Magnetic fields lead to interesting effects in QCD. First, there is anomaly
induced transport of electric and chiral charge [20] sourced by magnetic fields (and also
vorticity). These chiral magnetic and vortical effects are proposed as possible solutions to
the strong CP problem [21, 22]. Having already been observed in Dirac semimetals [23], the
Chiral Magnetic Effect (CME) is yet to be seen in heavy ion collisions. The main difficulty
in its experimental detection precisely lies in disentangling the similar effects that result
from the anisotropies in the transverse x1x3 plane that we mentioned above. Therefore,
a distinguishing signature of dynamics due to anisotropies and magnetic fields is quite
important in this quest, and it is one of the motivations behind our work.

Second, there are the so-called magnetic catalysis (MC) and the inverse magnetic
catalysis (IMC) effects, which are respectively the strengthening and weakening of the
chiral condensate in the hadronic phase by a magnetic field. Which one is realized depends
on the magnitude of the magnetic field and the temperature. While the physical mechanism
behind the former is relatively well understood [24], the IMC, which was first observed on
the lattice [25] remains an open question. In a recent work [26], based on the holographic
model we discuss below and following the earlier insights of [27], we observed that a similar
effect results directly from anisotropy in a holographic QFT. Thus, once again, it becomes
crucial to distinguish the signatures of anisotropy from that of the magnetic field.
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Figure 1. Schematic picture of an off-central heavy-ion collision. The beam direction is denoted
by x2. Red and blue circles represent the colliding gold/lead nuclei moving in the +x2 and −x2
directions respectively. They produce an almond shaped plasma here shown in orange. The amount
of anisotropy in the stress-energy tensor is represented by the χ vectors, drawn in purple. χ‖ controls
the amount of anisotropy in the interaction plane (x1, x3) and χ⊥, which is present also in central
collisions, distinguishes plasma pressure in the x2 direction — in which it expands faster — and the
interaction plane. A magnetic field in the x3 direction (drawn in green) is also produced (only in
off-central collisions) mostly by the nucleons that do not participate in the formation of the plasma
but fly away (here represented by the non-overlapping portions of the blue and red circles).

In this paper, we take on this task and employ a holographic effective theory for large-
N QCD to explore the interplay between anisotropy and magnetic field. As mentioned
above both are naturally present in heavy ion collisions. In particular, anisotropy in the
pressure gradients is realized parallel to a magnetic field in the transverse plane in the
off-central collisions, while an additional anisotropy which results from expansion of the
plasma in the beam direction is realized perpendicular to the magnetic field. Two extreme
instances of anisotropy without magnetic field are i) anisotropy in the beam direction in the
central collisions and ii) anisotropy both in the transverse and the beam directions in the
central collisions of Uranium ions which are naturally almond shaped. We will investigate
in this paper the intricate interplay in these settings in an idealized setup where we treat
the plasma as completely equilibrated and with infinite extent.

The holographic setup that we consider in this paper is based on an extension of the
bottom-up model called improved holographic QCD (ihQCD) [28, 29] that includes fermion
flavors, known as V-QCD [30]. It provides a detailed effective description of both the con-
fined and the deconfined phases of large-N confining gauge theories realizing the salient
qualitative features of QCD such as linear confinement of quarks, running of the gauge cou-
pling with IR slavery, confinement-deconfinement and chiral phase transitions. Moreover,
it involves a sufficient number of parameters that can be fitted to the available lattice data
to provide a quantitative description of the theory. As we argue in this paper, a further
extension of this model that includes a magnetic field and anisotropy will have predictive
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value for the quark-gluon plasma that results in off-central heavy ion collisions and will lead
to interesting qualitative insights and understanding of the underlying strong dynamics.

The magnetic field B is introduced in the model in the spatial components of the di-
agonal U(1)L+R gauge field on the space-filling flavor branes. We take B constant and in
the x3 direction throughout this paper. We further introduce anisotropy through a bulk
scalar field, ‘axion’ χ, whose profile is chosen to be linear either in the x3, χ‖ = ax3 or
in the x2, χ⊥ = ax2 (see figure 1) direction, where a is a parameter that measures the
magnitude of anisotropy. This axion is dual to the topological charge operator in the dual
gauge theory, hence these choices correspond a space dependent θ angle that breaks the
rotation symmetry in the boundary theory. One can rotate θ away by a chiral transfor-
mation, producing a constant external axial gauge field which couples to the fermions in
the theory similar to the magnetic field [26] and hence competes with it. We probe this
competition between anisotropy and magnetic field by varying the value of a and B and
studying the resulting effects on physical observables, i.e. the chiral transition temperature,
quark-antiquark potential, string tension, entanglement entropy and the butterfly velocity.
Definitions of these quantities and their holographic representations are detailed in the
respective sections.

The paper is organized as follows. In the next section we present the holographic
model in detail. In section 3 we study the RG flow in the theory. The competition between
anisotropy and magnetic field manifests itself in the holographic RG flow by approximate
AdS4 and AdS3 bulk regions which respectively arise when anisotropy dominates over the
magnetic field, and vice versa. The far IR regime of our solutions is dominated by an AdS4
(up to logarithmic corrections in the holographic coordinate) as the flavor branes decouple
in the IR, hence the magnetic field gets screened but anisotropy prevails. In section 4 we
study how the phase structure of the theory depends on a and B. In particular we study
how the chiral transition temperature depends on these parameters and show that the
theory exhibits both inverse magnetic and anisotropic catalyses at low temperatures. Sec-
tion 5 is devoted to study of other observables, i.e. the quark-anti-quark potential, string
tension, shear viscosities, entanglement entropy and the butterfly velocity. These observ-
ables turn out to be useful probes of phenomena associated to anisotropy and magnetism,
and are used to study the competition between the two. We show that linear confine-
ment in the ground state in the absence of anisotropy and magnetic field is broken in the
presence of the former but not the latter. Shear viscosities on the three separate planes
monotonically decrease from UV to IR from the universal holographic value corresponding
to the isotropic theory toward substantially smaller values. We observe that entanglement
entropy, in addition to the quark-antiquark potential, can be used as a good order param-
eter for confinement/deconfinement. Finally the butterfly velocity, which codifies how fast
information propagates in the plasma, exhibits a rich structure as a function of tempera-
ture, anisotropy and magnetic field, exceeding the conformal value in certain regimes. We
summarize and discuss our results in section 6, also providing an outlook. Details of our
calculations are given in two appendices.
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2 Holographic setup

2.1 Gravitational action

The holographic model we consider includes the backreaction of quark flavors to glue
dynamics. The gravity action is composed of two sectors:

S = Sg + Sf . (2.1)

The glue sector Sg is formally given by the improved holographic QCD (ihQCD) model [28,
29] which will be deformed here by an extra dimension-4 operator Oχ that is responsible
for the breaking of the spatial SO(3) symmetry [26]. The flavor sector Sf is based on
a generalized tachyonic Dirac-Born-Infeld action that arises from a pair of space filling
D4 − D4 branes [31, 32]. This sector controls the physics of chiral symmetry breaking
and also allows for the introduction of a background magnetic field. The two sectors fully
backreact in the Veneziano limit where Nf → ∞ and Nc → ∞ and Nf/Nc ≡ xf is fixed.
This backreacted model is known as V-QCD [30].

The ihQCD action for the glue sector is given explicitly as

Sg = M3N2
c

∫
d5x
√
−g

(
R− 4

3
(∂λ)2

λ2 + Vg(λ)− 1
2Z(λ)(∂χ)2

)
, (2.2)

whereM is an effective Planck mass that is fixed by the UV asymptotics of the free energy.
In this sector we have three bulk fields that are dual to relevant or marginal operators that
dictate the IR dynamics: the stress-energy tensor Tµν , dual to the metric gµν , the glueball
operator Oλ ∼ TrF 2 dual to the dilaton λ and a pseudo-scalar operator Oχ ∼ TrF ∧ F
dual to the axion field χ. As mentioned above, the latter operator is introduced in order to
break rotational symmetry, as in [26] (see also [27, 33, 34] where this mechanism was first
implemented in other holographic models). This breaking is achieved by adding a source
that depends on one of the field theory directions explicitly breaking the SO(3) → SO(2)
spatial symmetry. We note that a proper implementation of the QCD axial anomaly would
require coupling of axion to the flavor sector, which enters at leading order in the Veneziano
limit [35, 36]. However, since we only introduce the axion as a means to break isotropy, such
couplings will not be essential for our purposes and we choose to omit them for simplicity.

The action of the flavor sector reads

Sf = −xf M3N2
c

∫
d5xVf (λ, τ)

√
−det (gµν + κ(λ) ∂µτ ∂ντ + w(λ)Vµν) , (2.3)

where we only wrote down explicitly the terms in the DBI sector which are relevant for
the analysis in this article (see [32, 35] for a complete description). This sector includes
two additional fields, the tachyon τ , dual to the quark bilinear operator q̄q, and the field
strength Vµν = ∂µVν − ∂νVµ. The presence of the tachyon is crucial to our model since it
serves as an order parameter for chiral symmetry breaking [32], whereas the field strength
will be used to introduce a boundary magnetic field B.
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Considering the above, we take the following ansatz for the metric and bulk fields:

ds2 = e2A(r)
[
−f(r)dt2 + dx2

1 + e2U(r)dx2
2 + e2W (r)dx2

3 + dr2

f(r)

]
, (2.4)

λ = λ(r) , τ = τ(r) . (2.5)

The gauge field is chosen such that it generates an external magnetic field in the x3 direction
at the boundary:

Vµ = (0,−x2B/2, x1B/2, 0, 0) . (2.6)

Notice that we did not introduce flavor dependence in the action (2.3): we only have a
single type of quark flavors and all quarks have the same mass. Therefore the magnetic
field couples in the same way to all flavors, i.e., it couples to the baryon number rather
than the electric charge. We stress that in our construction the magnetic field B enters
through the flavor sector, in contrast to many other simpler models, e.g. [37–40], where B
is introduced via a Maxwell term which couples directly to the geometry. For the field χ

we consider two qualitatively different options:1

χ = χ‖ ≡ a x3 or χ = χ⊥ ≡ a x2 . (2.7)

This ansatz automatically satisfies the equations of motion for the axion χ and the gauge
field Vµ, while introducing anisotropy in the x3 direction (in the parallel case χ = χ‖)
or both in the x2 and x3 directions (in the perpendicular case χ = χ⊥). The amount of
anisotropy is controlled by the parameters a and B. The metric functions W and U , on
the other hand, codify the dependence of the anisotropy along the RG flow. For a detailed
account of the non-trivial equations of motion see appendix A.1.

2.2 Choice of potentials

Constraints to the potential functions and couplings in the action from various sources
have been discussed in detail in earlier literature [28–30, 35, 36, 41–45]. In the current
study, the coupling Z(λ) between the dilaton and the axion is taken from [42, 46] while
the other potentials Vg(λ), Vf (λ, τ), κ(λ) and w(λ) are taken from [43, 47, 48]. We work at
xf = Nf/Nc = 1 in this article, corresponding roughly to Nf = 3 dynamical light quarks
at Nc = 3. The potentials are given explicitly in appendix A.2; we comment here on their
general properties.

We require generic agreement with qualitative features of QCD such as asymptotic
freedom, confinement, and linear meson trajectories. That is, at the boundary (UV) we
require that λ → 0 (asymptotic freedom) and τ → 0 for all solutions, which is obtained
simply if near λ = 0 all potentials take constant values up to O(λ) corrections [28–30, 35].
The asymptotic values are among other things fixed by the canonical dimensions of the
dual operators.

1The most general case would be χ = a sin(θ)x2 + a cos(θ)x3 ≡ a2x2 + a3x3. However, this generates
an off-diagonal term in the Einstein equations, requiring a non-diagonal metric ansatz. We will therefore
focus on the two cases above, i.e., parallel and perpendicular to the magnetic field, for simplicity.
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The UV behavior acts as a boundary condition for the more interesting and rich
strongly coupled IR dynamics. The IR dynamics in the model is to a large extent deter-
mined by the asymptotic behavior of the potentials as λ→∞, which is in turn constrained
by confinement, linear radial glueball and meson trajectories, regular IR behavior of the
bulk solutions, mass gap of the meson spectrum at large quark mass, and regularity of the
solutions at finite θ-angle [28–30, 35, 36, 44]. Interestingly, these considerations seem to
point towards asymptotics which match with the expectations from string theory (certain
power laws of λ) up to logarithmic corrections [29, 35, 36].

With the asymptotics of the potentials determined both as λ → 0 and as λ → ∞, it
remains to fix their behavior in the middle. In the end this needs to be done by comparing
to QCD data from experiments or from lattice, as in [41, 45, 49]. However, in a model
with such a large number of parameters as the current model, the potentials need to be
regular monotonic functions in practice in order to avoid unphysical behavior. Therefore
there is relatively little freedom left to fit in the middle. The main parameter is the rough
value of λ where one moves from the UV region to the IR region for each potential. For
magnetic phenomena, the coupling of the gauge field, w(λ), is particularly important. For
this potential, the location of the UV to IR “transition” is controlled through the parameter
c (which does not affect the asymptotics), defined through

w(λ) = κ(cλ) . (2.8)

This Ansatz was studied in [48], and it was found that the parameter c affects the
strength of the inverse magnetic catalysis, i.e., how the chiral condensate is suppressed with
increasing magnetic field at temperatures around the chiral and deconfinement transitions
of the model. Agreement with lattice data was found at relatively small values of c such
as c = 0.4 and c = 0.25. The model was independently fitted to lattice data for QCD
thermodynamics in [45] using a slightly different Ansatz from the current article, which
anyhow implements the same asymptotic behavior for all functions. It was found that the
baryon number susceptibility

χB = d2P

dµ2

∣∣∣∣∣
µ=0

(2.9)

is sensitive to the choice of w. Interestingly, a good fit to the lattice data required2 that
c ≈ 1/3, i.e., a value in agreement with the results of [48]. In this article, we will discuss
additional observables which agree with QCD data for similar values of c.

3 RG flow: from the UV to the IR

In this section, we discuss the basic structure of the (vacuum, zero temperature) geometry
for various values of a and B. We analyze the asymptotic UV (small coupling) geometry,
the asymptotic IR (large coupling) geometry, and the RG flow in between. As we shall
see, for large values of a and/or B there are also interesting intermediate scaling regions
in the flow.

2The parameter which maps to c of this article was denoted as ws in [45].
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3.1 UV asymptotics

We start by checking the UV asymptotics. As it turns out, it is only affected by the
inclusion of a and/or B in highly subleading terms. That is, the “source” terms in the
asymptotic behavior of the coupling and the metric are independent of both a and B.

The UV structure is set up [28–30] such that

V1λ(r) = − 8
9 log(rΛ) +

log [− log(rΛ)]
[

46
81 −

128V2
81V 2

1

]
log[rΛ]2 +O

( 1
log(rΛ)3

)
A(r) = − log r

`
+ 4

9 log(rΛ)

+
1

162

[
95− 64V2

V 2
1

]
+ 1

81 log [− log(rΛ)]
[
−23 + 64V2

V 2
1

]
log(rΛ)2 +O

( 1
log(rΛ)3

)
, (3.1)

where the coefficients are defined by

Veff(λ) = Vg(λ)− xfVf (λ, 0) = 12
`2

[
1 + V1λ+ V2λ

2 + · · ·
]
. (3.2)

The other functions f , exp(W ), and exp(U) tend to constants in the UV up to highly
suppressed corrections, and without loss of generality these constants can be set to one.
See appendix B.1 for the expansions and the discussion of the normalizable terms in the
expansions. In analogy to the dimensional transmutation of QCD, the expansions (3.1)
define the characteristic scale Λ, which we will use to normalize dimensional quantities
below.

3.2 IR asymptotics at a 6= 0

We then discuss the IR behavior of the vacuum (zero temperature) solutions. The IR
asymptotics depends on the choice of potentials, and we only discuss here the results for
the potentials used in this article (see section 2.2 and appendix A.2), which were determined
by comparing with QCD. At zero magnetic field the asymptotics has been analyzed in the
literature [26, 28–30, 35]. In particular, the IR asymptotics of the thermodynamically
preferred, chirally broken solution in the presence of a nonzero anisotropic parameter a
was studied in detail in [26]. The geometry was seen to be asymptotically AdS4 ×R up to
logarithmic corrections. The IR geometry therefore changes drastically as any nonzero a is
turned on.3 We show here that the same geometry is found also when the magnetic field
is nonzero.

We consider the asymptotics of the full system, i.e., xf > 0, a 6= 0, and possibly B 6= 0.
We first assume that the tachyon diverges fast enough so that it decouples the flavor from
the glue in the IR, which will be verified below by using the final result. In the absence
of the flavor sector and for nonzero a the metric is asymptotically AdS4 ×R. For the case

3Notice that at finite charge (baryon number) there is a similar change in the IR geometry, which in
that case is AdS2 × R3 [47].
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a = a‖, for example, the geometry is given by [26]

eA ∼ 1
r
e−
√

(log r)/6−(log log r)/8 , eW+A = eW̃ ∼ e
√

(2 log r)/3−(log log r)/8 , φ∼
√

(3 log r)/8 ,
(3.3)

so that W̃ and φ vary much slower than A while f and U approach constants in the IR,
up to highly suppressed corrections. It is useful to write the tachyon equation of motion in
a different form than (A.10). Assuming4 Vf (λ, τ) = Vf0(λ)e−a0τ2 , it can be rearranged as

G

e5A+W+UVf0(λ)Q
d

dr

[
e3A+W+Ufκ̃(λ)Vf0(λ)Qτ̇

G

]
= −2τ , (3.4)

where κ̃ ≡ κ/a0. Since λ evolves slowly in the IR and the tachyon diverges, we may
approximate G ' e−A

√
κ(λ)τ̇ . Neglecting derivatives of λ and f we find that

fκ̃(λ)τ̇
e6A+W+UQ

d

dr

[
e4A+W+UQ

]
' −2τ . (3.5)

For B 6= 0, we find Q ' e−2A−Uw(λ)|B|, and when B = 0 we have Q = 1 and also
f = 1 since we are studying the zero temperature solution. We further insert the rough
approximation e−A ' r/q where q is constant, and approximate W ∼ −A, U ∼ const for
a = a‖ and U ∼ −A, W ∼ const for a = a⊥. We obtain

3κ̃(λ)rτ̇
2q2 ' τ , (B = 0)

fκ̃(λ)rτ̇
2q2 ' τ , (B 6= 0 , a = a‖) (3.6)

fκ̃(λ)rτ̇
q2 ' τ , (B 6= 0 , a = a⊥) .

The solution is therefore

τ ∼ r2q2/(3κ̃(λ)) , (B = 0) ; τ ∼ r2q2/(fκ̃(λ)) , (B 6= 0 , a = a‖)

τ ∼ rq2/(fκ̃(λ)) , (B 6= 0 , a = a⊥) . (3.7)

For the (approximately) AdS4 IR asymptotics, q2Vg ∼ const [26], when q is promoted into
a slowly varying field. Moreover because f = const and we have chosen the potentials
such that Vgκ̃ ∼ const at large λ, we find that q2/(fκ̃(λ)) ∼ const. Therefore the tachyon
indeed obeys a power law in the IR. This is enough for the tachyon to decouple and for
the assumptions we made above to be valid.

3.3 IR asymptotics at a = 0 and B 6= 0

For completeness, we also discuss the IR asymptotics of the model in the absence of
anisotropy (so that U = 0). Again first assuming that the flavor sector is asymptoti-
cally decoupled in the IR, which we will verify below, the asymptotics of the geometry are
given by [30]

A = −r2 + 1
2 log r +Ac +O

( 1
r2

)
, log λ = 3

2r
2 + λc +O

( 1
r2

)
(3.8)

4See appendix A.2 for the definition of constant a0.
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where we set the scale of expansions to one. The constants Ac and λc have complicated
expressions in terms of the IR expansions of the potentials which we have omitted for
simplicity. The functions W (r) and f(r) tend to constants in the IR up to highly sup-
pressed corrections.

As above, it is then enough to study the asymptotic behavior of the tachyon, deter-
mined by (3.4), and check that the tachyon indeed grows fast enough to decouple the
flavor action from the metric. As above, we may approximate G ' e−A

√
κ(λ)τ̇ . Then the

tachyon equation of motion can be approximated as

e−2Afκ̃(λ)τ̇ d
dr

log
[
e4A

√
κ̃(λ)Vf0(λ)Q

]
' −2τ . (3.9)

The result for quite generic choices of κ̃, Vf0, and w can be obtained by integrating this
equation (see [35] for a detailed analysis at zero magnetic field). Here we restrict to the
potentials used in this article. For the choice of w in (A.32), we note that Q → 1 in the
IR, so that the dependence on the magnetic field in the asymptotic tachyon equation only
appears through the IR value of the function f . Inserting the asymptotics for the other
potentials and the background from (3.8) we obtain that τ ∼ exp(#r2) with a positive
coefficient in the argument of the exponential, which is enough to decouple the flavors in
the IR.

3.4 Intermediate energies at large B

It may appear surprising that while in the presence of finite a the IR geometry is strongly
modified with respect to the solution at a = 0, for finite B (and zero a) the IR asymptotics
are the same as for B = 0. This happens because the anisotropic term in (2.2) couples
directly to the geometry, but the magnetic field is included as part of the flavor action (2.3),
which decouples in the IR. Therefore it is natural that the IR geometry is insensitive to
the value of the magnetic field.

However, when the magnetic field is large, there is a region in the bulk geometry where
the coupling of the magnetic field to the geometry is large but the IR decoupling of the
flavors has not yet started. In this region, as we shall argue below, the geometry is roughly
AdS3 × R2 in analogy to the IR geometry AdS4 × R of finite a.

The AdS3 × R2 geometry can actually be found as a constant scalar solution to the
V-QCD action in a (double) scaling limit. For the tachyon we set τ = 0 indicating that the
chiral symmetry is fully intact and the decoupling of the flavors is absent. For simplicity we
set a = 0 so that U = 0. Because boosts in the direction of the magnetic field are unbroken,
and we are looking for a zero temperature solution, we also take f = e2W . Keeping terms
up to O

(
B0) the relevant Einstein equations simplify to

1
2x|B|e

−2WVf (λc, 0)w(λc)− 3ȦẆ − 3Ȧ2 − 2Ẇ 2 + 3Ä = 0 , (3.10)
1
2e

2A−2WVg(λc)−
1
2x|B|e

−2WVf (λc, 0)w(λc)− 6ȦẆ − 6Ȧ2 − Ẇ 2 = 0 , (3.11)

where λc is the constant value of the dilaton. A precise way of deriving this set of equations
is to take the double scaling limit with xf → 0 and |B| → ∞ with xf |B| fixed. There is a
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unique “scaling” solution which satisfies these equations, given by

A(r) = A0 , W (r) = log(r) +W0 (3.12)

where the constants are defined in terms of the equations

e2W0 = 1
4x|B|Vf (λc, 0)w(λc) , e2A0 = 3x|B|Vf (λc, 0)w(λc)

2Vg(λc)
. (3.13)

The geometry becomes

ds2 = e2A0+2W0r2(−dt2 + dx2
3) + e2A0−2W0r−2dr2 + e2A0(dx2

1 + dx2
2) , (3.14)

which is indeed recognized as AdS3 × R2.
For this solution to be exact in the double scaling limit, the dilaton equation of motion

imposes the further condition

3 d

dλ
log Vg(λ)− 2 d

dλ
logw(λ)− 2 ∂

∂λ
log Vf (λ, 0)

∣∣∣∣
λ=λc

= 0 , (3.15)

which is analogous to the condition found in the case of anisotropic IR asymptotics for
a 6= 0 in [26] (see eq. (3.7) in this reference). The potentials used in this article do not
admit a solution to this condition. However, an AdS3 × R2 region may still appear as
an approximation in the geometries at large B. Indeed, as we discuss below, a clearly
recognizable AdS3 × R2 region is found in the numerical solutions of the full RG flows at
large values of the magnetic field. In this region, as expected from the constant scalar
analysis, the tachyon is small while the dilaton flows much slower than W .

3.5 The overall structure of the RG flow

The results from the above analysis can then be combined to draw the holographic RG
flows for the zero temperature flows for various values of a and B. The sketch in figure 2,
where B is the absolute value of the magnetic field, covers all possible scenarios. Notice
that all of these flows are divided into separate UV sections (where the scalars λ and τ are
both � 1) and IR sections (where the scalars are both � 1). For the first three flows, (a),
(b), and (c), the transition from the UV to the IR takes place at r ∼ 1/Λ.

The flows on the top row are for small values of the B field. In this case the mag-
netic field does not affect the qualitative features of the flow: the terms involving B are
suppressed both in the UV (where they are ∼ r4B2) and in the IR (where the growth of
the tachyon decouples the flavors, including the effect of the magnetic field). Therefore the
flow is qualitatively similar to the case of zero magnetic field, studied in [26]. Notice the
flow (d) at large a/Λ� 1 where the geometry has separate AdS4 sections at intermediate
energies and in the IR. The intermediate section is analogous to the intermediate B geom-
etry discussed in section 3.4, and we have verified its existence also numerically. We note
that the AdS4 geometries here are always approximate: even the asymptotic IR geometry
given in (3.3) has multiplicative logarithmic corrections.

For large values of the magnetic field, B/Λ2 � 1, an intermediate AdS3 scaling dis-
cussed in section 3.4 emerges as sketched for the flows (e), (f), and (g) on the bottom row.
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B ≫ Λ2 B ≫ Λ2 B ≫ Λ2 B ≫ Λ2

AdS5

AdS5 AdS5 AdS5 AdS5

∼
√

−0.5 log a/Λ/Λ

Figure 2. The holographic RG flow in the model. We sketch the geometry for different values
of a and B, as indicated in the plot, as a function of the holographic coordinate r from the UV
(r = 0) to the IR (r = ∞). The red, gray, blue, and magenta sections show the AdS5, “standard
IR”, AdS4 × R, and AdS3 × R2, given in (3.1), in (3.8), in (3.3), and (approximately) in (3.14),
respectively. We observe that non-vanishing a removes the typical singularity at the origin of the
geometry (r = ∞) [26]. Transition between different regions are marked by the value of r or the
scalars λ and τ . The two (approximate) AdS4 × R regimes in (d) have different radii. Effects of a
and B compete in the intermediate regime in (h).

We note that this (as well as the intermediate AdS4 behavior of the flow (d)) happens in
the UV regime in the sense that the values of the scalars are small, λ� 1 and τ � 1. The
IR behavior of the geometry is independent of B even at large values of the field due to the
rapid decoupling of the flavors as τ grows towards the IR. We stress that the geometries
are only approximately AdS3: λ is not exactly constant (which would be required for the
geometry to be exactly AdS3) but flows slowly. These AdS3 regimes can nevertheless be
clearly identified also in the numerical solutions at large B.

Finally, in figure 2 (h) we present the flow when both a and B are large. In this case
the AdS3 and AdS4 geometries “compete” in the intermediate section of the geometry. We
have not tried to carry out a detailed analysis of this competition, in part because we
are mostly interested in the behavior of the theory up to moderate values of a and B. It
also turns out that constructing the RG flow numerically when both a and B are large is
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very demanding. This does not, however, imply little competition between a and B in our
analysis: on the contrary, as we shall see below, there are interesting interference effects in
most of the observables we study. The competing results just arise from the regime where
λ ∼ 1 and τ ∼ 1. In this transition region the flow of the scalars is fast and they couple
nontrivially to the metric, so the metric cannot be approximated by a simple geometry.

Notice also that the RG flows of figure 2 only cover the flows which are chirally broken.
In particular we implicitly assumed that the ratio xf = Nf/Nc is not small. All zero
temperature backgrounds studied in the rest of the article (where we use xf = 1) fall into
the classification of figure 2. However, in [26] we also found chirally symmetric vacua for
xf = 1/3, for which the RG flow ends at a fixed point with exact AdS4×R geometry in the
IR. This RG flow is roughly analogous to the UV part of the flow in figure 2 (d). Detailed
analysis of chirally symmetric flows is left for future work.5

4 Thermodynamics

The thermodynamics of the model has been studied extensively in previous works, as a
function of T and the chemical potential µ for the baryon number [43, 47], as a function
of T and B (and µ) [48, 50], and as a function of T and a [26, 27].6 For vanishing a a typical
phase diagram contains, at low temperatures a confined thermal gas phase which is dual to a
singular geometry without a horizon, and at high temperatures a deconfined phase which is
dual to a black hole geometry. Chiral symmetry breaking is realized through condensation
of the tachyon field in the bulk. Typically the transition from the confined phase to the
deconfined phase coincides with the restoration of chiral symmetry, but depending on the
values of B, xf , and the precise choice of potentials, deconfinement and chiral transition
may also be separate [48, 50].

For finite values of the anisotropy parameter a, however, the low temperature thermal
gas solution is replaced by a small black hole [26, 27]. This structure reflects a drastic
change in the IR structure of the theory: the zero temperature asymptotic IR geometry
becomes AdS4×R at finite a. This remains true also in the presence of a magnetic field, see
section 3. For the values of anisotropy parameter we study here (excluding the case a = 0
which we include for reference), the geometry has a black hole at all nonzero temperatures,
and the only finite temperature transition is a (second order) chiral transition realized by
disappearance of the tachyon condensate in the bulk.

4.1 Thermodynamic potentials

We start by reviewing the relevant thermodynamic potentials and their relations (see
also [34, 54]). For details see appendix B.1.

5The chirally symmetric fixed point observed in [26] entails appearance of a (quantum) critical behavior
for a particular value of “doping”, which may be interesting for condensed matter applications.

6The phase diagram in the presence of anisotropy resembles that of a charged black hole in the canonical
ensemble, with a swallow tail in the free energy and an associated Van der Waals like transition [51–53].
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First, we define magnetization MB and the analogous quantity for anisotropy Ma such
that the first law of thermodynamics reads

dF = −sdT −MBdB −Mada . (4.1)

One finds the following expressions for these quantities in terms of bulk fields [26, 48]

MB = −M3NcNfB

∫ rh

ε
dr
G(r)eA(r)+W (r)w(λ(r))2Vf (λ(r), τ(r))

Q(r) , (4.2)

Ma = −M3N2
c a

∫ rh

ε
dr e3A(r)−W (r)Z(λ(r)) , (4.3)

where
G =

√
1 + e−2Afκ(λ)τ̇2 , Q =

√
1 + w2(λ)B2e−4A−2U . (4.4)

The free energy F , as well as MB, and Ma are also subject to UV divergences and need to
be renormalized [55]. For our purposes it is enough to do this by subtracting a reference
background — see appendix B.1 as well as [26, 48] for details.

Recall that the anisotropy is either in the direction of the magnetic field (a‖) or per-
pendicular to it (a⊥). Let us first discuss the thermodynamics in the former case, a = a‖.
Then the (non-renormalized) free energy density may be expressed in terms of boundary
and horizon data as (see appendix B.1), see appendix B.1.

F = M3N2
c e

3A(ε)+W (ε) (6f(ε)A′(ε) + 2f(ε)W ′(ε)
)
− sT (4.5)

where ε is a UV cutoff. Notice that the first term on the right hand side in this equation
equals the energy density E = T00 = F + sT . Denoting the pressures, pi = Tii, parallel and
perpendicular to the magnetic field as p‖ = p3 and p⊥ = p1 = p2, we find that

E + p⊥ = sT −BMB , E + p‖ = sT − aMa (4.6)

so that the relation between the free energy and pressure is

F = −p⊥ −BMB = −p‖ − aMa . (4.7)

Moreover, we note that the pressure anisotropy can be expressed in terms of the (normal-
ized) magnetization and Ma:

p‖ − p⊥ = BMB − aMa . (4.8)

In the latter case, a = a⊥, the free energy density can be expressed in terms of boundary
data only:

F = M3N2
c e

3A(ε)+U(ε)+W (ε) (6f(ε)A′(ε) + 2f(ε)U ′(ε) + f ′(ε)
)
. (4.9)

As the magnetic field and the anisotropic parameter act in different directions, all compo-
nents of the pressure are independent. We find that

E + p1 = sT −BMB , E + p2 = sT −BMB − aMa , E + p3 = sT (4.10)
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so that the relation between the free energy density and the pressure components reads

F = −p1 −BMB = −p2 −BMB − aMa = −p3 . (4.11)

The pressure differences can again be expressed in terms of MB and Ma:

p3 − p1 = BMB , p2 − p1 = −aMa . (4.12)

4.2 Phase structure and the chiral transition

We now study the phase diagram when the effects of the magnetic field B and the anisotropy
parameter a compete. We fix xf = 1, which corresponds to the large N analog of real
QCD with Nc = 3 colors and Nf = 3 light flavors. Small values of the parameter c
give qualitative agreement with lattice QCD data in the presence of B [25, 56, 57] which
exhibits inverse magnetic catalysis as we discussed in the previous section. Specifically,
we will use either of c = 0.25 and c = 0.4. Then (except for very small values of a), as
mentioned above, the only nontrivial feature of the phase diagram is the chiral transition.
This was shown at zero B and at c = 0.4 in [26], and continues to hold at finite B as
well as for c = 0.25. We also note that in a related model [58, 59], where chiral symmetry
breaking arises as in V-QCD through a tachyonic brane action but backreaction is not
considered, only magnetic catalysis was found [60]. This result agrees with our earlier
work, where backreaction was seen to be essential for inverse magnetic catalysis [48]. In
the next section we explore other observables that help characterize the c-dependence and,
possibly, help single out a preferable value once first principles (lattice-QCD) calculations
of these observables become available.

We recall that the behavior of the chiral transition temperature Tχ as a function of
B can be used as a proxy for (inverse) magnetic catalysis,7 where decrease of Tχ with
increasing B signals inverse magnetic catalysis [25]. As noted in [48, 50, 61], using the first
law of thermodynamics one can rewrite the derivative dTχ/dB in terms of differences in
entropy and magnetization between the chirally symmetric and asymmetric phases. This
quantity can in turn be used as an order parameter to diagnose (I)MC. One can derive
an analogous result in the case of anisotropy, where inverse anisotropic catalysis can be
detected by looking at the differences in entropy and ‘anisotropization’ between the two
phases8 [26].

The results for the chiral transition temperature are shown in figure 3. Each curve is
normalized to the transition temperature at B = 0. We observe that the transition tem-
perature decreases (inverse catalysis) with increasing B for almost all the curves. Inverse
catalysis is slightly weaker for c = 0.4 (left plot) than for c = 0.25 (right plot), in agreement
with the results of [48]. There is a small interval at intermediate B and small a where the
transition temperatures increase (weakly) with B for c = 0.4, thus alternating between

7Which we abbreviate by (I)MC below.
8In principle, one could also derive a two-dimensional analog of these arguments, where one can see

the behavior of the chiral transition temperature as a function of both a and B. However, since we only
look at slices through the phase diagram at fixed a, we will not explicitly perform this computation. This
corresponds to specifying a particular ensemble where we fix a in the dual field theory.
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Figure 3. Chiral transition temperature for c = 0.4 (left panel) and c = 0.25 (right panel) as
a function of the magnetic field for various values of the anisotropic parameter and for different
orientation choices as indicated in the legend.

IMC and ordinary MC. This is a feature of our model for this particular value of c and
it is absent for c = 0.25. However, we still need to benchmark our model against lattice
data to determine which value would be favored while comparing other observables of this
model with QCD (see section 5 below).

For both values of c, the characteristic scale of B for which the transition temperature
starts to deviate from its B = 0 value grows with a. We also note that at small B, curves
with nonzero a‖ are lower than the curves with nonzero a⊥ (for the same numerical value of
the parameter). These observations are in agreement with the idea (anisotropic catalysis)
that the inverse magnetic catalysis may be due to the anisotropy created by the magnetic
field [26, 27]: the effect is stronger when the anisotropy created by the two different sources
is in the same direction, and for the effect to be visible, B needs to be comparable to a.
Moreover, we observe that the transition temperatures for nonvanishing a⊥ and a‖ with
the same magnitude always cross as B varies. The value of B where the crossing takes
place is roughly B ∼ a, except at a⊥/Λ = 0.1 = a‖/Λ, for which the crossing (not visible
in the plots) takes place at B/Λ2 & 1. Finally, we note that in the c = 0.4 case turning on
anisotropy (both when parallel and perpendicular to B) increases (decreases) the transition
temperature for small (large) B. This alternating behavior is absent in the case c = 0.25.9

5 Other observables

5.1 Quark-antiquark potential

In this section we will study in detail an important observable of physical interest, namely
the quark-antiquark potential.10 We emphasize that some lattice results are available for
this observable in the presence of a magnetic field [66], providing a good opportunity to
benchmark our model and study in more detail the dependence on the parameter c.

9Rather the turning point seems to be pushed to much larger values of B outside the range of these plots.
10Heavy quark observables were first studied in simpler anisotropic models in [62–65].
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Akin to quantum chromodynamics, the ihQCD model is engineered to exhibit linear
confinement in the low-temperature phase: the quark-antiquark potential V (L) grows lin-
early with the separation of the probe quark-antiquark pair for large enough L. Such a
potential acts as a barrier that prevents colored particles from escaping their bound states
and become free. On the other hand, as we discussed above, anisotropic deformation in the
ihQCD model substantially modifies the deep IR of the theory [26]: the geometry becomes
AdS4×R up to small corrections, indicating an emergent approximate conformal symmetry
in one dimension lower. As a result, linear confinement will only persist up to a certain
length scale. This is evident from the behavior of the quark-antiquark potential, which
shows signs of instability at large enough separations [26]. Related to this, it was observed
in the same reference that mesons and glueballs indeed fail to be absolutely stable but
instead develop narrow widths, indicating the possibility of decaying to the AdS4 vacuum.

Even though the presence of a magnetic field induces an intermediate AdS3×R2 region
(see section 3), the effect of B on the quark-antiquark potential is qualitatively different
from that of a. The reason for this is that in our setup B enters through the flavor sector,
in contrast to simpler models, e.g. [37, 38], where B is introduced by means of a Maxwell
term. Since the flavor sector decouples in the deep IR, the effect of B on the geometry
is negligible, and in absence of a the IR geometry is the same as when B = 0. As a
consequence of this, linear confinement is not lost in the presence of B. The purpose of
this section is to investigate the interplay between the two sources of anisotropy, a and B,
in the behavior of the quark-antiquark potential11.

In the context of holography, the quark-antiquark potential can be computed as a sum
over saddle points, with several terms contributing [69]. In the approximation that we are
working in, i.e., the α′ → 0 (infinite coupling) limit, only the term with the smallest action
survives.12 This term can be computed by evaluating the Nambu-Goto action on-shell, for
a static string in the 5D bulk spacetime (in the string frame) with its endpoints reaching
the AdS boundary [70, 71]. We focus on string configurations with boundary conditions
defining a rectangular loop with t ∈ [−T

2 ,
T
2 ], xi ∈ [−L

2 ,
L
2 ] and xj = 0 for j 6= i. In the

limit T →∞ the quark-antiquark potential can be extracted from∫
DΣ e−SNG(Σ) = e−TVi(L) , SNG = Tf

∫
Σ

√
− det gab , (5.1)

where Tf ≡ (2πα′)−1 is the string tension. Since our system is completely anisotropic, we
have defined Vi(L) (i = 1, 2, 3) as the binding energy, or quark-antiquark potential, of the
pair when they are separated along the xi-direction. In principle, one could also look at the
potential in arbitrary directions, but due to the lack of symmetry, the calculation would
be a bit more demanding. We will therefore refrain from showing these results here. We
also have two physically distinct configurations, namely when the anisotropic deformation
is parallel or perpendicular to the magnetic field; we refer to these two cases as V ‖i and
V ⊥i , respectively.

11We refer to [67, 68] for an analysis of the potentials in slightly simpler anisotropic models.
12We neglect the graviton exchange contribution, among others, which maintains the smoothness of the

Polyakov loop two-point function as a function of L [69]. However, this contribution does not qualitatively
change our results.
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Now, instead of computing Vi directly as a function of L, in practice it is easier to
obtain both Vi and L as functions of the worldsheet turning point rF , as follows [29, 72]:

Vi(rF )
Tf

= e2AS(rF )+Xi(rF )L(rF ) + 2
∫ rF

0

dr
eXi(r)

√
e4AS(r)+2Xi(r) − e4AS(rF )+2Xi(rF )

− 2
∫ ∞

0
dr e2AS(r) , (5.2)

L(rF ) = 2
∫ rF

0

dr
eXi(r)

1√
e4AS(r)+2Xi(r)−4AS(rF )−2Xi(rF ) − 1

, (5.3)

where AS = A + 2
3 log λ is the string frame scale factor. We have also defined collectively

Xi(r) = {0, U(r),W (r)} for ease of notation. In general, the on-shell Nambu-Goto action is
divergent, because the worldsheet reaches the boundary of AdS, where the volume element
blows up. This can be easily understood from the field theory perspective, since the mass
of the probe quark-antiquark pair is infinite. In order to regulate the result, we have added
the last term in (5.2) which equals twice the action of a straight string hanging from the
boundary to the IR. This term effectively subtracts the rest energy of two isolated quarks.

Following [29, 72], it is easy to show that at large L, (a branch of) the quark-antiquark
potential Vi grows linearly with L if AS +Xi/2 has a minimum. However, while this indeed
gives some indication of confinement, it does not capture the full picture. The issue is that,
even for very small anisotropy, the deep IR of the theory develops an approximate AdS4×R
geometry, which allows bound states to decay. One of the effects of that AdS4 geometry
is that one of the directions pinches off in the IR and this allows for strings to end there.
This enables unbound states to exist, which means that there is always a Vi = 0 branch
that corresponds to two disconnected strings. For large enough separations, this branch
will always dominate over the linear branch, which indicates that linear confinement will
only be present up to a certain length scale. The situation is quite dissimilar for the case of
magnetic field only (in absence of axion anisotropy), since in that case the IR develops only
an intermediate AdS3 × R2, while crucially the deep IR is unmodified. For completeness,
we will show first this latter case (a = 0, B 6= 0), since it has not been studied so far for
the ihQCD model with backreacted flavors. Results of the full computation in this case
are shown in figure 4.

In figure 4 (left panel) we have plotted the quark-antiquark potential for two cases,
labeled as B‖ and B⊥. The first one corresponds to separation of the quark-antiquark pair
in the same direction as the magnetic field, i.e., V3, while the second one corresponds to
separation orthogonal to the magnetic field, i.e., V1,2, both with a = 0 and c = 0.25. It
is interesting to compare the string tensions (slopes) of this confining regime with lattice
QCD calculations [66], at least at the qualitative level. In figure 4 (right panel) we plot
such tensions (normalized by the B = 0 value) for choices of the parameter c. Strikingly,
only the c = 0.25 case agrees qualitatively with the results of [66] (monotonically increas-
ing/decreasing functions of B for the perpendicular/parallel cases, respectively), in the
range of magnetic fields considered there eB ∼ 0 − 1.2GeV. This qualitative agreement
reinforces the comparison originally observed in [48] based purely on IMC and also agrees
qualitatively with the results obtained in the models where magnetic field is introduced
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Figure 4. Quark-antiquark potentials and string tensions for a = 0. The plots present two cases,
corresponding to the qq̄ pair separated along the direction of the magnetic field (B‖) or one of the
directions orthogonal to it (B⊥), all in units of Λ ∼ 1GeV. The potentials themselves (left panel)
are shown together with the asymptotic behavior of the potentials for large separation (shown
dashed). The string tensions (right panel) represent the slope of the potentials in the confining
regime. For these plots we varied the parameter c introduced in (2.8), which controls the region of
intermediate energy scales. The c = 0.25 case displays both IMC and agrees qualitatively with the
results of [66], in the range of magnetic fields considered there eB ∼ 0− 1.2GeV.

through a Maxwell term [73, 74]. On the other hand, it is worth noticing that for stronger
magnetic fields, the string tensions for the parallel case behave non-monotonically. It would
be interesting to see whether the qualitative agreement discussed above continues to hold
for larger magnetic fields as well. This requires extension of the study of [66] to lattices
with larger B which, on the other hand, may be technically quite challenging. The above
results should be contrasted with the behavior of the quark-antiquark potential in the pres-
ence of anisotropy (with zero magnetic field), investigated in [26]. Surprisingly, behavior of
string tensions in the parallel and perpendicular cases with non-vanishing a are swapped
compared to the non-vanishing B case plotted in figure 4. In [26] it was found that, in the
parallel case, the slope of the potential prior to the transition is monotonic in the strength
of the anisotropy a, while in the perpendicular case it exhibited a non-monotonic behavior,
first growing and then decreasing, to ultimately disappear for strong enough anisotropy.
The explanation for this change in behavior is the fact that the effects of the AdS4 and
AdS3 geometries are exactly opposite to each other: in the anisotropic case, the dynam-
ics are confined to the plane orthogonal to the direction of the anisotropy, while in the
magnetic case, the dynamics are confined to the direction of the magnetic field.

It is then interesting to consider the case where both effects are turned on, which
we investigate in figure 5. We focus on a situation where a = 1 and B = 1 (in units of
Λ ∼ 1GeV) so the two effects have similar strengths and have a chance to compete with
each other. We also fix c = 0.25 (from here on) since this is the value that seems more
favorable from the comparison with the lattice [66]. We recall here that B is aligned with the
z-direction while the anisotropic deformation can be along the z- or y-directions (parallel
and perpendicular configurations, respectively). In both cases we plot the quark-antiquark
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Figure 5. Quark-antiquark potential in the presence of anisotropy and magnetic field, for a = 1
and B = 1 (in units of Λ ∼ 1GeV) and c = 0.25. The magnetic field B is aligned along the
z-direction while the anisotropic deformation is introduced along the z- or y-direction (parallel and
perpendicular configurations, respectively). In general, the combined effects of a and B push the
transition to shorter distances, while increasing the tensions. However, two cases do not follow this
pattern: Vz in the case where a and B are perpendicular/parallel to each other. In these situations
the effects of a and B are completely constructive/destructive in the IR and as a result, the main
effects are enhanced. This is described more in detail in the main text.

potential along independent directions and find a transition to the disconnected solution
at large enough distances. This represents the melting of mesons at the relevant scale.
In general, we observe that the combined effect of a and B tends to push the transition
to shorter distances, while increasing the tension/slope at the moment of the transition.
However, there are two cases that do not follow this pattern and are worth mentioning. The
most visible counterexample is the potential Vz in the case where a and B are perpendicular
to each other. In this case, the effects of a and B act constructively and strongly constrain
the dynamics precisely along the z-direction. Instead of the normal trend, the transition in
this case is pushed to larger distances, while the slope decreases significantly. The second
case that does not follow the above rule, is the potential Vz in the cases where a and B are
parallel to each other. In this case the effects of a and B are completely opposite to each
other, both trying to constrain the dynamics along different directions. The net effect in
the potential is that the transition is still pushed to smaller distances but the slope/tension
decreases. Altogether, we believe that these results are intuitive and physically sound; they
arise due to a constructive/destructive interplay between the effects of a and B.
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5.2 Anisotropic shear viscosity

Besides the thermodynamic phase structure, holography is also a powerful tool to explore
transport properties of QCD-like theories. We remark that first-principles methods such
as lattice-QCD are not suitable to study real time dynamics at finite temperature, as com-
putation of real-time Green’s functions requires analytic continuation from the Euclidean
ones, a transformation which itself requires the knowledge of the entire spectral density. In
contrast, these properties can be accessed with relative ease in theories with holographic
duals, often by perturbing a static solution and solving simple differential equations.13

One of the most interesting observables in this context is the ratio between the shear
viscosity and entropy density, which takes the universal value of η/s = 1/4π for conformal
plasmas at infinite coupling [17, 75] and is in remarkable agreement with experimental
data [76]. This universal value is violated in holographic theories with higher curvature
gravity duals [77–81] (i.e. away from the infinite coupling limit) and even in Einstein gravity
by spontaneously or explicitly breaking space-time symmetries such as translations [82–86]
or rotations [27, 87–93], as in our case. In all these cases the ratio exhibits interesting
dependence on temperature and other scales in the theory, which is interesting from a
phenomenological point of view and reproduces better the behavior of real-world fluids.

In practice, the shear viscosity tensor can be computed via the standard Kubo formula,

ηij = − 1
ω
= 〈Tij(ω,~k1)Tij(ω,~k2)〉

∣∣
ω→0, ~k1,2→0 , (5.4)

where the limit on the right is taken first. For theories that break rotations, there are
various independent components of the shear viscosity tensor. For example, for our specific
theory, when anisotropic deformation is perpendicular to the magnetic field, a = a⊥, we
find that (see appendix B.2)

ηxy
s

= 1
4π

g11
g22

∣∣∣∣
r=rh

= 1
4πe

−2U(rh) , (5.5)

ηxz
s

= 1
4π

g33
g11

∣∣∣∣
r=rh

= 1
4πe

2W (rh) , (5.6)

ηyz
s

= 1
4π

g33
g22

∣∣∣∣
r=rh

= 1
4πe

2W (rh)−2U(rh) . (5.7)

We emphasize that, although these expressions seem to naively depend only on the back-
ground geometry, they are not general expressions that can be applied for any bulk theory:
indeed the way the anisotropy is introduced does affect the formulas, in particular, giving
rise to the sign difference between (5.5) and (5.6) due to our particular setting. More-
over recall that the shear viscosity tensor is symmetric, ηij = ηji. In the parallel case the
result for the shear viscosities cannot be expressed in terms of background only, see ap-
pendix B.2. Since their analysis therefore needs more extensive numerical study, we leave
it for future work.

13Of course, one should keep in mind that holographic calculations when applied to QCD, are only meant
to provide qualitative insights that are trustworthy in the IR. These are still crucial in the absence of
other tools.
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Figure 6. Ratio between the components of the shear viscosity tensor and the entropy density in
the chirally symmetric phase for the case where the magnetic field (aligned along the z-direction)
is perpendicular to the anisotropic deformation (introduced along the y-direction). All the plots
are given as a function of temperature (in units of Λ ∼ 1GeV) and correspond to c = 0.25.
Furthermore, the curves are cut off at the chiral transition temperature so they correspond to the
chirally symmetric phase. In all cases, we observe a monotonic flow from ηij/s = 1/4π in the UV
to a lower, non-zero value in the IR, before the transition kicks in. We observe a clear distinction in
behaviors among the different components: i) The magnetic field B raises ηxy and lowers ηxz and
ηyz. ii) The anisotropic parameter a lowers ηxy and ηyz and raises ηxz. And iii) B affects mostly
ηxz, while a affects mostly ηxy. The two effects are equally strong for ηyz so there is no clear pattern
for this component.

In figure 6 we plot the results of this calculation for the case when the anisotropic
deformation is perpendicular to the magnetic field. As we can see, all the components of
the shear viscosity tensor decrease monotonically from the UV to the IR as is the case for
other anisotropic backgrounds [27, 87–90, 92]. Our results show that the same trend is
followed by realistic holographic models of anisotropic QCD as well. We observe that in
the UV the several components attain the universal value for standard holographic CFTs,
i.e., ηij/s = 1/4π, which can be explained by the fact that our solutions are asymptotically
AdS. In the IR they attain a smaller, non-zero value. The fact that the value in the IR
is non-vanishing is because these plots correspond to the chirally symmetric phase so, for

– 21 –



J
H
E
P
0
3
(
2
0
2
1
)
1
8
0

every curve, we have cut the line at the chiral transition temperature. A couple of further
observations are in order: first, notice that in this configuration, the effects of a and B

should reinforce each other along the z- and y-directions but compete along the x-direction,
as expected from the AdS4 and AdS3 geometries. This is indeed observed in the figures.
In particular we notice that:

• The magnetic field B generally raises ηxy and lowers ηxz and ηyz. This can be
explained by the fact that the AdS3 constrains the dynamics along the z-direction.

• The anisotropy a lowers ηxy and ηyz and raises ηxz. This can be explained by the
fact that the AdS4 constrains the dynamics along the xz-plane.

• B affects mostly ηxz, while a affects mostly ηxy. The two effects are equally strong
for ηyz and there is no clear pattern for this component.

These results are phenomenologically interesting. We have seen that, for thermodynamics
and the physics of the chiral transition, a and B result in similar effects e.g. IMC. On
the other hand, transport seems to distinguish the two, exhibiting specific behaviors as we
increase/decrease one or another, with no reference to external probes. Therefore, one can
argue that anisotropic shear viscosity constitutes an example of a dynamical observable that
discriminates between the two origins of SO(3) breaking: geometry or by charge dynamics.
It would be interesting to measure the magnetic field dependence of the shear viscosity,
perhaps in Bayesian analysis14 of the heavy-ion data [5–16]; or by adapting the techniques
proposed in [94, 95] for a condensed matter setting to the case of heavy-ion collisions.

5.3 Entanglement entropy

Another robust observable that can help understanding the RG flow is entanglement en-
tropy. Entanglement entropy is an important concept in quantum information theory that
measures the amount of correlation between sub-systems in a given quantum state. It has
been used extensively in quantum field theory and quantum many-body systems as a pow-
erful tool to characterize states of matter with long range correlations, diagnose quantum
phase transitions and identifying topological order. In this section, we will study the inter-
play between magnetic field and anisotropy in the behavior of holographic entanglement
entropy, and compare the results against those for the quark-antiquark potential.

In the context of holography, the prescription to compute entanglement entropy was
first proposed by Ryu and Takayanagi in their seminal paper [96]. According to it, to
leading order in 1/Nc, entanglement entropy can be computed as an area,

SA = min A(γA)
4GN

, (5.8)

14The simulation still needs to be advanced by including magnetic fields.
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generalizing the well-known Bekenstein-Hawking formula for black hole entropy. Here
SA denotes the entanglement entropy of a spacelike region A in the boundary theory:
SA ≡ −tr(ρA ln ρA), with ρA ≡ trAcρ, where Ac denoting the complement of A, being
the reduced density matrix associated with A. The minimization in (5.8) is with respect
to all areas A(γA) of codimension-two bulk surfaces γA that are homologous to A (with
∂γA = ∂A). Thus, similar to the quark-antiquark potential, the entanglement entropy also
follows from a similar minimization procedure although in the Einstein frame, as opposed
to the string frame, and of a higher dimensional surface.

The study of entanglement entropy in confining theories was first addressed in [97].
This paper proposed a generalization of the RT prescription to non-conformal field theories
and found that, for gravity backgrounds which are holographically dual to confining gauge
theories, the entanglement entropy generically exhibits a first order phase transition upon
varying the size of the entangling surface. Typically, holographic backgrounds dual to
confining gauge theories have an internal cycle that contracts smoothly and approaches
zero size in the deep IR. This shrinking cycle leads to a “cigar geometry”, with the IR
end of space corresponding to the tip of the cigar. In these geometries, there are multiple
local minima of the area A(γA) for a given size and shape of the region A. Among these,
two exchange dominance as one varies the size: a connected surface that hangs at a finite
radial distance from the boundary, and a disconnected one, that extends all the way to the
IR (meeting at the tip of the cigar). We emphasize that the disconnected surface does in
fact satisfy the homology condition, due to the existence of the contractible cycle.

We recall that the introduction of the anisotropic deformation to the ihQCD model
leads to an IR geometry that takes the form of AdS4 × R, up to small corrections, so
one of the spatial directions effectively pinches off. In terms of the entanglement entropy
calculation, this has the same effect as the cigar geometry. Indeed, RT surfaces that are
disconnected and reach the deep IR (Poincaré horizon of the AdS4) effectively connect via
the contracted coordinate, and therefore satisfy the homology condition. Hence, even in
this theory, there are multiple branches that exchange dominance as we vary the size of
the region [26]. We remark that the same observation holds true in the mere presence of
a magnetic field, since in that situation the geometry develops an AdS3 × R2 region, also
reducing the dimensionality (by two in this case) in the range of relevant energy scales.
See [40] for a study of entanglement entropy in the presence of magnetic fields, where
similar results were found. It will therefore be very interesting to study the competition
of these two effects, anisotropy and magnetic field, in the behavior of the holographic
entanglement entropy.

We will compute the entanglement entropy for strips Ai defined as follows: xi ∈
[−Li

2 ,
Li
2 ] (i = 1, 2, 3) and xj ∈ [−L⊥

2 ,
L⊥
2 ] (with L⊥ → ∞) for j 6= i. We also have two

physically distinct configurations, namely when the anisotropic deformation is parallel or
perpendicular to the magnetic field; we will refer to all the possible cases as SAi,‖ and
SAi,⊥, respectively. We subtract the UV divergences in the same way as was done for the
quark-antiquark potential, i.e., subtracting the area of two disconnected vertical surfaces.15

15With this regularization, we have that SA → 0 as L→∞.
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Figure 7. Entanglement entropy as a function of the strip length (in units of Λ ∼ 1GeV) when
the anisotropic deformation is turned off (a = 0) and c = 0.25. The various plots correspond
to different orientations of the strip with respect to the magnetic field and different values of B.
In all cases we observe a transition to a disconnected configuration at large distances, signaling a
disentangling transition, analogous to the confinement-deconfinement transition of [97]. The effect
of the magnetic field is always monotonic: as we increase B the transition is pushed to smaller
values of the strip length, in qualitative agreement with other holographic models with a magnetic
field [40].

The final expressions for SAi (both parallel and perpendicular) and Li as functions of the
turning point rF are:

SAi(rF )
4πL2

⊥M
3N2

c

= e3A(rF )+
∑

i
Xi(rF )L(rF )+2

∫ rF

0

dr
eXi(r)

√
e6A(r)+2

∑
i
Xi(r)−e6A(rF )+2

∑
i
Xi(rF )

−2
∫ ∞

0

dr
eXi(r)

e3A(r)+
∑

i
Xi(r) , (5.9)

Li(rF ) = 2
∫ rF

0

dr
eXi(r)

1√
e6A(r)+2

∑
i
Xi(r)−6A(rF )−2

∑
i
Xi(rF )−1

, (5.10)

where we have defined collectively Xi(r) = {0, U(r),W (r)}.
The results of these computations are shown in figures 7 and 8 below. In figure 7

we show the result for the entanglement entropy in the presence of a magnetic field B

but without the anisotropic deformation, a = 0. Generically, we observe that at very
large distances or, equivalently, when the RT surface probes the AdS3 region (where two
of the directions pinch off), there is a transition to the disconnected solution, signaling a
disentangling transition. This is equivalent to the confinement-deconfinement transition
as in [97]. The results smoothly interpolate between the case without magnetic field and
large magnetic field, with the increase in B pushing the transition to smaller distances,
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Figure 8. Entanglement entropy in the presence of both anisotropy and magnetic field, for a = 1
and B = 1 (in units of Λ ∼ 1GeV), and c = 0.25. The magnetic field B is aligned along the
z-direction while the anisotropic deformation is introduced along the z- or y-direction (parallel and
perpendicular configurations, respectively). For the parallel case, we still find the disentangling
transition regardless the orientation of the strip, which is inherited from the purely magnetic case.
Conversely, for the perpendicular case, the transition is replaced by swallow tail behavior and the
entanglement entropy is never dominated by the disconnected solution. This behavior is inherited
from the purely anisotropic case [26], specifically, for the case of strips orthogonal to the anisotropic
deformation. Thus, the effects of a andB dominate depending on the physical configuration (parallel
or perpendicular case).

in qualitative agreement with the results of [40] in a simpler model with a magnetic field
(see also [98]). This happens for both the parallel and perpendicular configurations, as
opposed to the case with only anisotropic deformation and no magnetic field [26], where
the result strongly depends on the orientation of the strip. This can be explained by the
fact that increasing B moves the AdS3 region more towards the UV, while the effects of a
are constrained more or less in the same IR region. In this latter case, it was found that
for a strip aligned perpendicular to the anisotropy, the transition eventually disappears
for large enough a. Thus, it is interesting to study the interplay between a and B in
our model. In figure 8 we consider a situation where a = 1 and B = 1 (in units of
Λ ∼ 1GeV), so the two effects have similar strengths and can compete with each other.
We recall here that B is aligned along the z-direction while the anisotropic deformation can
be along the z- or y-direction (parallel and perpendicular configurations, respectively). In
both cases we plot the entanglement entropy along the independent directions and observe
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distinct behaviors depending on the configuration. For the parallel case, we still find the
disentangling transition regardless of the orientation of the strip. This is opposed to the
behavior we find for the perpendicular case, where the transition is replaced by swallow tail
behavior and the entanglement entropy is never dominated by the disconnected solution.
This behavior is inherited from the purely anisotropic case [26], specifically, for the case of
strips orthogonal to the anisotropic deformation.

5.4 Butterfly velocity

Another interesting observable that has been borrowed from quantum information theory
and that can help to characterize the RG flow of the theory is the so-called butterfly velocity
vB. This quantity appears in the study of many-body quantum chaos and measures the
response of the system to local perturbations. Specifically, vB is defined through the
commutator [99]

C(t, ~x) = −〈[W (t, ~x), V (0, 0)]2〉 , (5.11)

which, for chaotic systems, is expected to grow as

C(t, ~x) ∼ 1
N2 exp

[
λL

(
t− |~x|

vB

)]
, |~x| >> β , t >> β , (5.12)

for generic hermitian operators W and V . The quantum Lyapunov exponent λL diagnoses
fast scrambling, and has an upper bound in general quantum systems [100],

λL ≤
2π
β
. (5.13)

Remarkably, this bound is saturated for quantum field theories with gravity du-
als16 [104, 105] as well as ensemble theories such as the Sachdev-Ye-Kitaev model and
its cousins [106–108]. The butterfly velocity vB characterizes the rate of expansion of V
in space, due to a local perturbation caused by W . This quantity defines an emergent
light cone ∆t = |~x|/vB such that within the cone C(t, ~x) ∼ O(1), whereas outside the cone
C(t, ~x) ≈ 0. Based on this observation, [109] argued that, in holographic theories, vB acts
as a low-energy Lieb-Robinson velocity vLR which sets a bound for the rate of transfer of
quantum information.

Now, for theories that are anisotropic the emergent light cone is not expected to be
invariant under rotations. In fact, the butterfly velocity defines now a vector viB that
constrains the propagation of information along the several directions. It is interesting to
note that anisotropy can in certain cases enhance the effective light-cone, at least along
a subset of the components of viB [27, 110, 111], thus, improving the efficiency rate for
transfer of quantum information attained in isotropic theories. It will therefore be very
interesting to compute this quantity in our model and study how it behaves in the IR.
In particular, it will be enlightening to understand the dependence on the two different
sources of anisotropy that we consider, the axion deformation a and the magnetic field B.
We note that this will be the first calculation of this type in a realistic model of anisotropic
holographic QCD.

16Owing to open-closed string duality, that the bound is also saturated in the open string sector [101–103].
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Figure 9. Components of the butterfly velocity as a function of temperature (in units of Λ ∼ 1GeV)
for the perpendicular configuration. For all the plots we have fixed c = 0.25. The magnetic field B is
aligned along the z-direction while the anisotropic deformation is introduced along the y-direction.
The component vz

B is enhanced in the IR and exceeds the bound found in [27]. This is due to a
constructive effect between a and B.

The formula for the components of the butterfly velocity viB in general anisotropic
theories is derived in detail in appendix B.3. Here we will only write the final result,
equation (B.67), which specialized to our metric ansatz (2.4) yields:

viB =
√

f ′(rh)e−2Xi(rh)

2[3A′(rh) + U ′(rh) +W ′(rh)] , (5.14)

where Xi(r) = {0, U(r),W (r)}.
The results of these computations are shown in figures 9 and 10, for the perpendicular

and parallel configurations, respectively. The various plots correspond to the independent
components of viB in the different configurations, as a function of the temperature (in units
of Λ ∼ 1GeV). All of them approach the conformal value in the UV, vB =

√
2/3 ≈ 0.816,

which can be explained by the fact that the geometries are all asymptotically AdS. However,
they flow to a different value in the IR that can be either smaller or higher than the
conformal value. It is interesting to note that the flow to the IR is in some cases non-
monotonic, which clearly shows the competition between a and B at different energy scales.
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Figure 10. Components of the butterfly velocity as a function of temperature (in units of Λ ∼
1GeV) for the parallel configuration. For all the plots we have fixed c = 0.25, but in this case both
the magnetic field B and the anisotropic deformation are introduced along the z-direction. The
component vz

B is also enhanced in the IR and exceeds the bound found in [27], although it is slightly
smaller than in the perpendicular case. This is due to a constructive effect between a and B.

On general grounds, we expect that in the deep IR (specifically, before the chiral transition)
the result should be mostly dominated by a; this is because the most relevant effect in the
IR is the anisotropy, as explained in section 3. However, the non-monotonicity seems to
indicate that at intermediate energies B can have a dominant effect in some cases. This can
be explained by the appearance of the AdS3 geometry that develops because of B. It is also
interesting to point out that vzB (in both cases, parallel and perpendicular) can exceed the
conformal value in the IR, attaining a maximum value of vzB ≈ 0.942 in the perpendicular
case. This is precisely the configuration where both a and B act constructively. In the
parallel case the maximum is not much lower, which makes sense since vzB attains its highest
value in a regime where B � aΛ. We also note that these maxima do not appear in the
deep IR: the curves have a small bump so the maximum is attained at some finite value of
T/Λ before the chiral transition. We emphasize that this maximum is slightly higher than
the upper bound found in [27], viB ≤

√
3/4 ≈ 0.866, for scaling geometries with the same

kind of anisotropic deformation. This implies that the combined effect of a and B does
indeed act constructively to raise this value. The violation of this bound is not inconsistent
with [27], because our metric does not belong to the same universality class. It would be
interesting, however, to derive new bounds in scaling geometries of the type of [27] where
both the anisotropic deformation and the magnetic field are turned on [112].
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6 Discussion and outlook

In this article, we studied the interplay between anisotropy and magnetic field in QCD by
employing gauge/gravity duality. We considered a setup, where we can control the effects
due to the magnetic field and anisotropy separately by tuning two different sources: an
anisotropic parameter a and the external magnetic field B. Non-central heavy-ion collisions
create quark-gluon plasma both with a high degree of anisotropic pressure gradients and
large magnetic fields. Distinguishing the effects of these two sources is important both
for the physics related to chiral transport that is expected to be realized in heavy ion
collisions [21, 22] and for the phenomena observed in QCD in anisotropic states such as
inverse magnetic catalysis [25], i.e., suppression of the chiral condensate with increasing
magnetic field near the deconfinement crossover temperature.

When inverse magnetic catalysis was found in lattice simulations, it came as a surprise,
and its dynamical origin still remains mysterious. It was conjectured in [27], based on
a simple model calculation, that the inverse catalysis is not due to the magnetic field
directly, but rather an effect arising from the anisotropy created by the magnetic field. We
studied this in a holographic setup (V-QCD) tuned to match closely with general features
of QCD, and in particular the lattice data for the inverse catalysis. In [26] we showed
that it is possible to create a similar effect, “inverse anisotropic catalysis” by introducing
an anisotropy through a bulk axion field but in the absence of a magnetic field, therefore
providing convincing evidence for the conjecture of [27].

In the current article, we carried out a detailed analysis of the more demanding and
rich case where the system is coupled both to the anisotropic axion field and the external
magnetic field. Apart from basic thermodynamics, we analyzed several observables probing
the interplay of the anisotropy and the magnetic field. This provided, among other things,
additional evidence for the conjecture that the inverse magnetic catalysis is an effect due to
the anisotropy caused by the magnetic field: our findings for the dependence of the chiral
transition temperature on the magnetic field and anisotropy parameter seems to support
this conjecture.

Interestingly, gauge/gravity duality also provides a geometric interpretation for the
interplay between the two effects (finite B and finite a). As we showed in [26], at finite a
the IR geometry is approximately AdS4 ×R. In this article we demonstrated that at large
magnetic fields, the geometry contains a section which is roughly AdS3×R2. This section is
analogous to the geometry found in simpler models based on Einstein-Maxwell actions [37].
There is, however, one important difference: in the Einstein-Maxwell models the B field
couples directly to the geometry, whereas in V-QCD, it couples through the flavor sector,
and the whole flavor sector is suppressed in the IR for the vacuum geometries due to chiral
symmetry breaking. Consequently our AdS3×R2 appears in the middle of the flow, whereas
for the Einstein-Maxwell models one obtains this geometry asymptotically in the IR. De-
pending on the values of a and B, combinations of these AdS3 and AdS4 geometries lead to
rich possibilities for the complete holographic RG flow, as we have discussed in section 3.

The geometry and the RG flow are probed by the various observables which we have
analyzed. Perhaps the best example of this is the quark-antiquark potential, which is found
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by computing the Nambu-Goto string action for a string hanging between two heavy quark
sources. Notice that the directions in which the sources, a and B, create anisotropy can
be chosen independently, which leads to a further rich set of possibilities. We considered
the cases where the anisotropies are in the same (a‖) or orthogonal (a⊥) directions. Notice
that there is an interesting difference between a and B which is particularly clear in terms
of the geometries. Namely, for example in the parallel case a‖, the flat (R) direction of the
AdS4×R geometry is the z-direction whereas the flat directions for the AdS3×R2 geometry
are x and y. Therefore, somewhat counterintuitively, in order to obtain strong interference
one needs to look at the case a⊥. This is exactly what we observed: the quark-antiquark
potential in the z-direction showed a very strong interference effect.

We also studied a closely related observable, the entanglement entropy for strips with
various alignments. Similar interference effects were observed, albeit clearly weaker. This
is in agreement with the observation we made in [26]: the string configurations for the
quark-antiquark potential extend further in the IR than the minimal surface for an anal-
ogous entanglement entropy. Therefore the quark-antiquark potential is more sensitive to
the IR geometry than the entanglement entropy and a better probe for IR phenomena
(see also [113]).

Other observables we explored in this article include the shear viscosity and the but-
terfly velocity. This fills some gap in the literature in which these observables have not
been studied in a realistic and well motivated anisotropic holographic model for QCD.
For the shear viscosity we obtained values which are, for some components, lower than
the “universal” value of s/4π even by an order of magnitude at temperatures close to the
chiral transition temperature. We intuitively understand this by the fact that response
of the plasma to a shear deformation is smaller in an already anisotropic state, that is
response to a linear anisotropic perturbation is easily “screened” in an already anisotropic
state. However we cannot, at this moment, provide a robust argument to support this
intuition. An important observation was that while (for non-zero a) a and B affect the
transition temperatures and quark-antiquark potentials in a qualitatively similar way, they
have clearly distinct effects on the shear viscosity. The anisotropy affects strongly the
butterfly velocities. With the B field in the z-direction, we found that both vxB and vyB
typically run towards parametrically smaller values at low temperatures, well below the
conformal value of

√
2/3 ≈ 0.816 for both the parallel and perpendicular configurations.

For vzB, however, we found an interesting non-monotonic behavior, reaching a maximum of
vzB ≈ 0.942 in the perpendicular case, thus exceeding the conformal value. We note that
this maximum is above the bound vB ≤

√
3/4 ≈ 0.866 found in [27], however, this can

be explained because our IR metric does not belong to the class of metrics considered in
this reference.

Our results are particularly sensitive to a parameter, c, that enters in the flavor sector
of the holographic model, see eqs. (2.3) and (2.8). In particular we compared how the
phase structure and the quark-antiquark potential are influenced for two different choices
c = 0.4 and c = 0.25 in sections 4.2 and 5.1. The reason we chose these observables to
investigate the c dependence was motivated by the availability of lattice data [56, 66, 114] for
comparison. We concluded that the choice for c = 0.25 agrees better with lattice findings.
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In particular the non-monotonic dependences of the chiral transition temperature and the
string tension on B which arise for c = 0.4 are absent both in the lattice studies and
for our choice of c = 0.25. Therefore, we set c = 0.25 in our study for the rest of the
observables, i.e. the entanglement entropy and the butterfly velocity. We caution however
that an exhaustive comparison of holography and lattice requires the inclusion of other
observables such as the hadron spectra, Euclidean correlators, etc., and this is expected to
modify the choice of parameters in our potentials.

Let us comment on other possible future directions. An extension in a somewhat
orthogonal direction would be to understand better the chirally symmetric vacuum which
was found for xf = 1/3 and for a range of values of a in [26]. This is a fixed point solution
where the dilaton runs to a constant value in the IR while the geometry is asymptotically
AdS4×R (without the logarithmic corrections of (3.3)). That is, there is a quantum critical
region and two zero temperature chiral phase transitions as a varies. The nature of these
phase transitions merits further study. It is tempting to interpret a as a “doping” parameter
and study if this configuration can be applied to condensed matter, where quantum critical
regions/points are observed e.g. in the context of high temperature superconductors.

From a general point of view, we note that despite the fact that the holographic model
considered in this article is one of the most realistic holographic approaches available for
QCD — that compares well with QCD data in the various sectors [115, 116] — there is
room for improvement. For applications at finite magnetic field, it would be important to
implement up and down type quarks in the model, so that the magnetic field would couple to
the physical charge rather than baryon number. As discussed above, there is also additional
lattice data available at finite magnetic field which could be compared to the predictions
of the model more precisely. Notice that after implementing the correct coupling of the
magnetic field to the flavor sector, it would make sense to carry out precise quantitative fits
(e.g. to the equation of state and to quark-antiquark potentials) rather than the qualitative
comparisons done so far. We also note that incorporation of anisotropy in the holographic
model is done here through adding an axion field which corresponds to the topological
charge operator. To complete this topological charge sector in the holographic dual, in
particular to realize invariance under extended chiral transformations (that simultaneously
shifts θ and an external axial gauge field) one needs to add a Stückelberg scalar [36] which
we omitted, as we are only interested in realizing the anisotropic state in this paper.

Note added. While we were at the final stages of writing up this article we became
aware of [117] which also considers the combined effects of magnetic field and anisotropy
in a holographic model of large-N QCD. Their study is based on a slightly simpler bulk
theory based on an Einstein-Maxwell-Dilaton action, however, they also analyze the effects
of a finite chemical potential.
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A Details of the model

A.1 Equations of motion

A.1.1 Field equations

First, we define the following quantities:

Q =
√

1 + w2(λ)B2e−4A−2U , (A.1)

G =
√

1 + e−2Afκ(λ)τ̇2 . (A.2)

To unify the notation between the parallel and perpendicular cases, we define χ =
a sin(θ)x2+a cos(θ)x3 = a2x2+a3x3, so that a2 ≡ a sin(θ) and a3 ≡ a cos(θ). In practice we
set one of the two ai’s to zero (i.e., we choose either θ = 0 or θ = π/2). We further define:

Y2 = a2
2e
−2A−2U , Y3 = a2

3e
−2A−2W , Y = Y2 + Y3 . (A.3)

With these notations in mind, we can now write down the Einstein’s equations as follows:

Ä+Ȧ

(
3Ȧ+ U̇+Ẇ + ḟ

f

)
− e

2AVg(λ)
3f + e2AxfVf (λ,τ)

6QGf
(
Q2 +2Q2G2−G2

)
= 0 , (A.4)

Ü+ U̇

(
3Ȧ+ U̇+Ẇ + ḟ

f

)
+ e2AY2Z(λ)

2f = 0 , (A.5)

Ẅ +Ẇ

(
3Ȧ+ U̇+Ẇ + ḟ

f

)
− e

2AGxfVf (λ,τ)
(
Q2−1

)
2Qf + e2AY3Z(λ)

2f = 0 , (A.6)

f̈+(3Ȧ+ U̇+Ẇ )ḟ− xfVf (λ,τ)e2AG
(
Q2−1

)
Q

= 0 , (A.7)

2
3
λ̇2

λ2 −6Ȧ2−3Ȧ
(
U̇+Ẇ

)
− U̇Ẇ − ḟ

2f
(
3Ȧ+ U̇+Ẇ

)
+e2AVg(λ)

2f − e
2AY Z(λ)

4f − e
2AxfVf (λ,τ)Q

2fG = 0 . (A.8)
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The equations for the dilaton λ, and the tachyon τ , give respectively:

0 = λ̈− λ̇
2

λ
+λ̇

(
3Ȧ+U̇+Ẇ+ ḟ

f

)
+ 3e2Aλ2

8f

(
∂λVg(λ)−Y2 ∂λZ(λ)

)
(A.9)

− 3e2AxfVf (λ,τ)λ2

8f

[
GQ∂λ logVf (λ,τ)+Q(G2−1)

2G ∂λ logκ(λ)+G(Q2−1)
Q

∂λ logw(λ)
]

and

0 = τ̈ − e2AG2

fκ(λ) ∂τ log Vf (λ, τ) +G2τ̇

[(
1 + (G2 − 1)

G2 + 2
Q2

)
Ȧ+ U̇

Q2 + Ẇ + (G2 + 1)
2G2

ḟ

f

+ λ̇

(
∂λ log Vf (λ, τ) + (G2 + 1)

2G2 ∂λ log κ(λ) +
(
Q2 − 1
Q2

)
∂λ logw(λ)

)]
. (A.10)

A.1.2 Scaling symmetries

There are four scaling symmetries, useful to solve numerically the above system:

• Scaling of A:

A 7→ A+ δA, r 7→ re−δA , B 7→ Be2δA , a2 7→ a2e
δA , a3 7→ a3e

δA . (A.11)

• Scaling of U :
U 7→ U + δU , B 7→ BeδU , a2 7→ a2e

δU . (A.12)

• Scaling of W :
W 7→W + δW , a3 7→ a3e

δW . (A.13)

• Scaling of f :

f 7→ f

δ2
f

, r 7→ r

δf
. (A.14)

The parameters δf , δA, δU , δW impose the appropriate boundary conditions.

A.1.3 Horizon boundary conditions

Imposing regularity of the solutions at the horizon r = rh, and assuming Ah = 0, ḟh = 1,
Wh = 0 and Uh = 0 before rescaling, the following boundary conditions can be obtained:

Ȧh = Vg(λh)
3 − xfVf (λh, τh)

(
3Q2

h − 1
)

6Qh
, (A.15)

U̇h = −a
2
2Z(λh)

2 , (A.16)

Ẇh = xfVf (λh, τh)
(
Q2
h − 1

)
2Qh

− a2
3Z(λh)

2 , (A.17)
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λ̇h = 3λ2
h

8

[
−∂λVg(λh) + Yh∂λZ(λh)

2

+ xfVf (λh, τh)
(
Qh∂λ log Vf (λh, τh) + Q2

h − 1
Qh

∂λ logw(λh)
)]

, (A.18)

τ̇h = ∂τ log Vf (λh, τh)
κ(λh) . (A.19)

These leave as free parameters to choose λh, τh and B, as well as either a2 or a3.

A.1.4 Extraction of quantities

Temperature, entropy, quark mass and chiral condensate can be extracted the usual way:17

T

Λ = ḟh
4π = eδA

4πδf
df̃
dr̃ = eδA

4πδf
. (A.20)

S

4πM3N2
c Λ3 = exp (3Ah + Uh +Wh) = exp

(
3Ãh + 3δA + Ũh + δU + W̃h + δW

)
= exp (3δA + δU + δW ) , (A.21)

mq

Λ = lim
A→∞

τL−2
UVe

Ã+δA
(
Ã+ δA − log(LUVΛ)

)γ0/b0
. (A.22)

〈q̄q〉
Λ3 = lim

A→∞

exp(2A) (A− log(LUVΛ))−γ0/b0

2L3
UV

(
γ0
b0
−A+ log(LUVΛ)

) (A.23)

×
[
exp(A)

(
γ0
b0

+A− log(LUVΛ)
)
τ + LUV(−A+ log(LUVΛ))τ ′

]
, (A.24)

where b0 and γ0 are respectively the first coefficient of the large-N QCD beta function and
the leading coefficient of the anomalous dimension of the quark condensate. The magnetic
field and the magnetization can be obtained as follows:

B

Λ2 = B̃e2δA+δU , (A.25)

4πM
Λ2 = B

∫ rb

rh

dr e
A−U+WxfVf (λ, τ)w(λ)2G

Q
,

= e2δA+δU B̃
e−δU+δW

δf

∫ rb

rh

dr̃ e
Ã−Ũ+W̃xfVf (λ, τ)w(λ)2G

Q
,

= e2δA+δU B̃
e−δU+δW

δf

∫ Ab

Ah

dÃ q̃e
−Ũ+W̃xfVf (λ, τ)w(λ)2G

Q
.

The axion is given by

a2 = eδA+δU ã2, (A.26)
a3 = eδA+δW ã3. (A.27)

The horizon value of the derivative of AS = A+ 2
3 log λ, which is important for confinement,

is given by
dAS,h

dr = dr̃
dr

dAS,h
dr̃ = δfe

δA
dAS,h

dr̃ . (A.28)
17Throughout this section, tildes denote quantities which are not rescaled, enabling us to express every-

thing in terms of the nonrescaled variables.

– 34 –



J
H
E
P
0
3
(
2
0
2
1
)
1
8
0

A.2 Choice of potentials

The potentials used in this article are given by [42, 43, 47, 48]

Vg(λ) = 12
L2

0

[
1 + 88λ

27 + 4619λ2

729

√
1 + ln(1 + λ)
(1 + λ)2/3

]
, (A.29)

Vf (λ, τ) = 12
xfL2

UV

[L2
UV

L2
0
− 1 + 8

27

(
11L

2
UV

L2
0
− 11 + 2xf

)
λ

+ 1
729

(
4619L

2
UV

L2
0
− 4619 + 1714xf − 92x2

f

)
λ2
]
e−a0τ2

, (A.30)

κ(λ) = [1 + ln(1 + λ)]−1/2

[1 + 3
4(115−16xf

27 − 1
2)λ]4/3

, (A.31)

w(λ) = κ(c λ) , (A.32)

Z(λ) = 1 + λ4

10 , (A.33)

where
a0 = 3

2L2
UV

, L3
UV = L3

0

(
1 + 7xf

4

)
. (A.34)

The parameter L0 is the AdS radius for xf = 0, which we set to one in our numerics. In
a similar fashion, LUV is the AdS radius for xf 6= 0. Notice that we have set the overall
constant in Z(λ) (Z0 in the notation of [42]) to unity, since it can be reabsorbed in the
normalization of χ.

B Details of the anisotropic observables

B.1 Holographic thermodynamics

In this appendix we discuss how the thermodynamics in the presence of the anisotropic
parameter and the magnetic field is computed in the holographic model. This analysis
should be compared to the isotropic analysis in [118].

We start with the case where a = a‖ is turned on, such that χ = ax3 so that the
magnetic field and the axion field generate an anisotropy in the same spatial direction. We
also need to take into account the Gibbons-Hawking term, which in this case becomes

SGH = −2M3N2
c

∫
d4x
√
− dethK

= −M3N2
c βV3e

3A(ε)+W (ε)(8f(ε)A′(ε) + 2f(ε)W ′(ε) + f ′(ε)) , (B.1)

where V3 is the volume of the space. Evaluating the on-shell action using equations of
motion, we find for the (nonrenormalized) free energy density

F = −β−1V −1
3 (Sg + Sf + SGH)

∣∣
on−shell (B.2)

= M3N2
c e

3A(ε)+W (ε) (6f(ε)A′(ε) + f ′(ε)
)
− aMa (B.3)

= M3N2
c e

3A(ε)+W (ε) (6f(ε)A′(ε) + 2f(ε)W ′(ε)
)
− sT (B.4)

= M3N2
c e

3A(ε)+W (ε) (6f(ε)A′(ε) + 2f(ε)W ′(ε) + f ′(ε)
)
−BMB (B.5)
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where ε is a UV cutoff. Here MB is the magnetization and Ma is its analogue for the
anisotropic parameter, defined in (4.3) and (4.2), respectively. Notice that the free energy
can be expressed solely in terms of the boundary geometry if a = 0, T = 0, or B = 0, but
not in general. Moreover those terms in the various expressions, which are not boundary
data, correspond to Legendre transformations. The equivalence of the expressions (B.3)–
(B.5) reflect the equations

d

dr

[
e3A(r)+W (r)(f ′(r)− 2f(r)W ′(r))

]
= a2e3A(r)−W (r)Z(λ(r)) (B.6)

d

dr

[
e3A(r)+W (r)f ′(r)

]
= B2xfG(r)eA(r)+W (r)w(λ(r))2Vf (λ(r), τ(r))

Q(r)
(B.7)

which follows from the Einstein equations. One of them can be immediately integrated
once if either a = 0 or B = 0.

We then discuss the case a = a⊥, where χ = ax2 so that (assuming B 6= 0) all rotation
symmetries are broken. In this case we find for the Gibbons-Hawking term

SGH = −M3N2
c βV3e

3A(ε)+U(r)+W (ε)(8f(ε)A′(ε) + 2f(ε)U ′(ε) + 2f(ε)W ′(ε) + f ′(ε)) . (B.8)

The free energy density can again be written in various forms, for example

F = M3N2
c e

3A(ε)+U(ε)+W (ε) (6f(ε)A′(ε) + 2f(ε)U ′(ε) + f ′(ε)
)

(B.9)
= M3N2

c e
3A(ε)+U(ε)+W (ε) (6f(ε)A′(ε) + 2f(ε)U ′(ε) + 2f(ε)W ′(ε)

)
− sT (B.10)

= M3N2
c e

3A(ε)+W (ε) (6f(ε)A′(ε) + f ′(ε)
)
− aMa (B.11)

= M3N2
c e

3A(ε)+W (ε) (6f(ε)A′(ε) + 2f(ε)U ′(ε) + 2f(ε)W ′(ε) + f ′(ε)
)
−BMB (B.12)

by using the identities

d

dr

[
e3A(r)+U(r)+W (r)(f ′(r)−2f(r)W ′(r))

]
= 0 (B.13)

d

dr

[
e3A(r)+U(r)+W (r)f(r)W ′(r)

]
=B2 xfG(r)eA(r)+W (r)−U(r)w(λ(r))2Vf (λ(r), τ(r))

2Q(r)
(B.14)

d

dr

[
e3A(r)+U(r)+W (r)f(r)U ′(r)

]
=−1

2a
2e3A(r)+W (r)−U(r)Z(λ(r)) . (B.15)

We continue by discussing the holographic renormalization, which we carry out by
subtracting a reference background, following [118]. The renormalization can be worked
out independently of the direction of a and B since the relevant potential, i.e., the energy
density takes the same form for both cases defined above. First we recall that the UV
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asymptotics of the background are given by

b0λ = − 1
log rΛ +O

( 1
(log rΛ)2

)
− 45

8 G
r4

`3

(
1 +O

( 1
log rΛ

))
(B.16)

eA = `

r

[
1 + 4

9 log rΛ +O
( 1

(log rΛ)2

)
+ G r

4

`3

(
1 +O

( 1
log rΛ

))]
(B.17)

f = 1 +O(B2r4 log r)− Cf
4
r4

`3

(
1 +O

( 1
log rΛ

))
(B.18)

U = source term + CU
4
r4

`3

(
1 +O

( 1
log rΛ

))
(B.19)

W = source term + CW
4
r4

`3

(
1 +O

( 1
log rΛ

))
, (B.20)

where we omitted the a and B dependent source terms which we will not need. The
reference background needs to be subtracted at the UV cutoff with the same values for
the scalar fields λ and τ , keeping also the four-volume fixed. We restrict here to zero
quark mass, so τ will not enter the UV asymptotics and can be neglected (see [44] for the
discussion of the dependence on quark mass). Taking into account the renormalization
conditions18 for the reference volume and temperature [118], we obtain

Eren = M3N2
c e

3A(ε)+U(ε)+W (ε) (6f(ε)A′(ε) + 2f(ε)U ′(ε) + 2f(ε)W ′(ε)
)

(B.21)

−M3N2
c e

4A(ε)−Ã(ε̃)+U(ε)+W (ε)
√
f(ε)
f̃(ε̃)

(
6f̃(ε̃)Ã′(ε̃) + 2f̃(ε̃)Ũ ′(ε̃) + 2f̃(ε̃)W̃ ′(ε̃)

)
(B.22)

where the fields with tildes are those of the reference background and the cutoff ε̃ is deter-
mined by the condition λ(ε) = λ̃(ε̃), which gives

ε̃

ε
= 1− 45

8 G
ε4

`3
(− log εΛ)2

(
1 +O

( 1
log εΛ

))
. (B.23)

Inserting the UV expansions and taking ε→ 0 gives

Eren
M3N2

c

= 3
4
(
Cf − C̃f

)
+ 15

(
G − G̃

)
+ 2

(
CU − C̃U

)
+ 2

(
CW − C̃W

)
(B.24)

where the tilded coefficients are those of the reference background. Choosing the zero
value of the energy density to match with the reference, we therefore define the final
energy density as

E = M3N2
c

(3
4Cf + 15G + 2CU + 2CW

)
. (B.25)

The renormalized free energy density is then

F = E − sT . (B.26)
18The reference values of a and B also need to be chosen correctly in order to ensure cancellation of UV

divergences. In the case of a this is a bit subtle because apart from the O
(
a2) term also the O

(
a4) term

in the UV expansions creates a divergence, see [26]. This subtlety does not affect directly the analysis here.
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We proceed by computing the complete stress-energy tensor by using the dictio-
nary, i.e.,

Tµν = 2
V4

δSren

δγ
(0)
µν

(B.27)

where V4 is the four-volume and γ
(0)
µν are the source terms for the spatial components of

the metric. To do this explicitly, we may first start by reparameterizing the metric as

ds2 = e2Ā(r)
(
dr2 − ft(r)dt2 +

3∑
k=1

fk(r)dx2
k

)
(B.28)

where each of the fi has a constant source term; the variations to compute the stress-energy
tensor are taken with respect to them. All other sources, including the temperature, are
to be held fixed when varying. After obtaining the result, we may revert back to the
original definitions for the metric. As the dust clears we find that (with the normalization
convention that the contributions from the reference background are dropped

T00 = E = M3N2
c

(3
4Cf + 15G + 2CU + 2CW

)
(B.29)

T11 = p1 = M3N2
c

(1
4Cf − 15G − 2CU − 2CW

)
(B.30)

T22 = p2 = M3N2
c

(1
4Cf − 15G − 2CW

)
(B.31)

T33 = p3 = M3N2
c

(1
4Cf − 15G − 2CU

)
. (B.32)

The pressure anisotropy is, as expected, given in terms of the VEVs for U and W :

p2 − p1 = 2M3N2
cCU , p3 − p1 = 2M3N2

cCW . (B.33)

Let us then write down the results which depend on the orientation of the asymmetry.
For the first case (parallel, a = a‖), we have CU = 0 and the equations (B.6) and (B.7)
imply

M3N2
cCf = sT −BMB , 2M3N2

cCW = BMB − aMa (B.34)

where MB and Ma are the renormalized quantities with respect to the reference back-
ground. Denoting p1 = p2 = p⊥, p3 = p‖, we find that

E + p⊥ = sT −BMB , E + p‖ = sT − aMa (B.35)

or in terms of the free energy density and pressure

F = −p⊥ −BMB = −p‖ − aMa , p‖ − p⊥ = BMB − aMa . (B.36)

For the second case (perpendicular, a = a⊥) equations (B.13)–(B.15) imply

M3N2
cCf = sT −BMB , 2M3N2

cCU = −aMa , 2M3N2
cCW = BMB (B.37)
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so that

E + p1 = sT −BMB , E + p2 = sT −BMB − aMa , E + p3 = sT (B.38)

or equivalently
F = −p1 −BMB = −p2 −BMB − aMa = −p3 . (B.39)

The pressure differences satisfy

p3 − p1 = BMB , p2 − p1 = −aMa . (B.40)

When a = 0 (B = 0), our results are consistent with those of [54] ([34]), respectively.

B.2 Shear viscosity

In this appendix we sketch the computation of the shear viscosity in anisotropic back-
grounds. As it turns out, it is necessary to discuss separately the cases where the anisotropy
due to the bulk axion field is perpendicular (a⊥) and parallel (a‖).

We start with the perpendicular case, where, somewhat counterintuitively, the results
can be written in a simpler form. We write the fluctuations as

δg12 = e2A(r)e−iωtζ12(r) , δg13 = e2A(r)+2W (r)e−iωtζ13(r) , δg23 = e2A(r)+2W (r)e−iωtζ23(r) .
(B.41)

Then the fluctuation equations may be written as follows:

d

dr

[
f(r)e3A(r)+W (r)−U(r)ζ ′12(r)

]
+ ω2 e

3A(r)+W (r)−U(r)

f(r) ζ12(r) = 0 , (B.42)

d

dr

[
f(r)e3A(r)+3W (r)+U(r)ζ ′13(r)

]
+ ω2 e

3A(r)+3W (r)+U(r)

f(r) ζ13(r) = 0 , (B.43)

d

dr

[
f(r)e3A(r)+3W (r)−U(r)ζ ′23(r)

]
+ ω2 e

3A(r)+3W (r)−U(r)

f(r) ζ23(r) = 0 . (B.44)

where we used the Einstein equations (A.5) and (A.6) to simplify the result. We see that the
only difference with respect to the isotropic case is a slight modification of the warp factors
appearing in these equations. The rest of the computation proceeds as in the isotropic
case, and recalling that s = 4πM3N2

c e
3A(rh)+W (rh)+U(rh), we find the formulas (5.5)–(5.7).

Notice that these formulas agree with the literature for the case when either a = 0 or
B = 0 [88, 92].

We then discuss the parallel case, a = a‖. Now U(r) = 1 and by symmetry η13 = η23
so it is enough to study the following fluctuations:

δg12 = e2A(r)e−iωtζ12(r) , δg13 = e2A(r)+2W (r)e−iωtζ13(r) = e2A(r)e−iωtζ̄13(r) . (B.45)

The first fluctuation equation reads simply

d

dr

[
f(r)e3A(r)+W (r)ζ ′12(r)

]
+ ω2 e

3A(r)+W (r)

f(r) ζ12(r) = 0 (B.46)
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and analyzing this leads to the standard result,

η12
s

= 1
4π . (B.47)

For the second fluctuation equation we find two equivalently complicated forms:

d

dr

[
f(r)e3A(r)+3W (r)ζ ′13(r)

]
+ω2 e

3A(r)+3W (r)

f(r) ζ13(r) = a2e3A(r)+W (r)Z(λ(r))ζ13(r) , (B.48)

d

dr

[
f(r)e3A(r)−W (r)ζ̄ ′13(r)

]
+ω2 e

3A(r)−W (r)

f(r) ζ̄13(r)

=B2xfe
A(r)−W (r)Vf (λ(r), τ(r))w(λ(r))2G(r)

Q(r) ζ̄13(r) . (B.49)

Notice that, unlike in the perpendicular case above, the only relevant Einstein equa-
tion (A.6) now depends explicitly on both a and B and is therefore not useful to simplify
the fluctuation equations further. Following [119] we find the following formulas

η13
s

= 1
4πe

2W (rh)c2
a = 1

4πe
−2W (rh)c2

B . (B.50)

Here the real coefficients ca,B are defined as

ca = ζ
(0)
13 (rh)
ζ

(0)
13 (0)

, cB = ζ̄
(0)
13 (rh)
ζ̄

(0)
13 (0)

, (B.51)

where ζ(0)
13 (r) and ζ̄(0)

13 (r) are the IR regular solutions to (B.48) and (B.49), respectively, at
ω = 0. Notice that when a = 0 (B = 0) we have that ca = 1 (cB = 1) respectively, because
the regular solution to the relevant fluctuation equation is constant. This ensures that the
result (B.50) is consistent with (5.5)–(5.7).

B.3 Butterfly velocity

In this appendix we derive a formula for the components of the butterfly velocity viB for
general anisotropic backgrounds, using ideas of subregion duality [120].

We start with a generic (d+ 1)−dimensional black brane metric

ds2 = −gtt(r)dt2 + grr(r)dr2 +
d−1∑
i=1

gii(r)dx2
i , (B.52)

where d is the number of dimensions in the dual CFT (including time). We assume that
in this coordinate system the boundary (UV) is located at r = 0, and the horizon (IR) is
located at r = rh. For our particular case, we have that d = 4 and

gtt(r) = e2A(r)f(r) , grr(r) = e2A(r)

f(r) , gii(r) = e2A(r)+2Xi(r) , (B.53)

where Xi(r) = {0, U(r),W (r)}. However, we will do these replacements only at the end of
the calculation. For now we will continue assuming a metric of the form (B.52) with the
intention of obtaining a more generic formula for viB.
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Following [120], we now specialize to the near-horizon geometry, where

gtt(r) ' c0(rh − r) , grr(r) '
c1

rh − r
, gii(r) ' gii(rh)− g′ii(rh)(rh − r) , (B.54)

so that

ds2 ' −c0(rh − r)dt2 + c1
rh − r

dr2 +
d−1∑
i=1

[
gii(rh)− g′ii(rh)(rh − r)

]
dx2

i . (B.55)

Here c0 and c1 are two positive constants, in terms of which the inverse Hawking temper-
ature reads

β = 4π
√
c1
c0
. (B.56)

Now, we define a Rindler coordinate ρ according to

(rh − r) =
(2π
β

)2 ρ2

c0
(B.57)

so that the near-horizon metric becomes

ds2 ' −
(2π
β

)2
ρ2dt2 + dρ2 +

d−1∑
i=1

[
gii(rh) + g′ii(rh)

g′tt(rh)

(2π
β

)2
ρ2
]
dx2

i . (B.58)

In the last term we have identified c0 = −g′tt(rh).
Next, we consider an infalling particle that arises as a result of a local perturbation.

The particle gets blue shifted and approaches the horizon exponentially

ρ(t) = ρ0e
− 2π
β
t
. (B.59)

The butterfly velocity vB can then be computed by finding the smallest entanglement wedge
that contains the particle at late times [120]. We parametrize the embedding function as
ρ(xi), and pick local coordinates ξi = xi. The area functional in the near-horizon region
(small ρ) then becomes

Area(γA) =
√

det gij(rh)
∫
dd−1x

[
1 + 1

2

(2π
β

)2 ρ2

g′tt(rh)

d−1∑
i=1

g′ii(rh)
gii(rh) + 1

2

d−1∑
i=1

(∂iρ)2

gii(rh)

]
.

(B.60)
Notice that since the metric (B.52) is diagonal, we can replace several factors in the de-
nominators using the inverse metric, e.g., 1/gii(r) = gii(r). From this functional we can
derive the following equation for the embedding function:

d−1∑
i=1

gii(rh)∂2
i ρ(xi) = µ2ρ(xi) , µ2 ≡ (2π/β)2

g′tt(rh)

d−1∑
i=1

gii(rh)g′ii(rh) . (B.61)

Now, we rescale the coordinates xi =
√
gii(rh)σi, so that the metric becomes locally

isotropic at leading order. The above equation then becomes:

(∇σ)2ρ = µ2ρ , (∇σ)i = ∂

∂σi
. (B.62)
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This equation has the following solution:

ρ(σi) = ρmin
Γ(n+ 1)
2−nµn

In(µ|σ|)
|σ|n

, n ≡ d− 3
2 , (B.63)

where ρmin is the radius of closest approach to the horizon (located at ρ = 0) and In is a
modified Bessel function of the second kind. As argued in [120], when ρ & β, the surface
exits the near-horizon region and approaches the boundary very fast (almost perpendic-
ularly, since an RT surface that probes the near-horizon geometry corresponds to a very
large boundary region A). We can then estimate the size of the region A in terms of ρmin
by solving the equation

β ' ρmin
Γ(n+ 1)
2−nµn

In(µRσ)
Rnσ

, (B.64)

where Rσ is the size of region A in the coordinates σi. The solution at large Rσ is:

ρmin ' e−µRσ . (B.65)

Next, we go back to the original coordinates. For anisotropic theories, the size of region
A is different along the different directions xi, and so is the associated component of the
butterfly velocity viB. We denote Ri as the size of the region A along the xi direction, which
is given by Ri =

√
gii(rh)Rσ. Requiring that the infalling particle is contained inside the

entanglement wedge, ρmin ≤ ρ(t), implies

µ
√
gii(rh)Ri ≥

2π
β
t , (B.66)

which leads to

Ri ≥ viBt , viB ≡
2π/β√
gii(rh)µ

=

√√√√ gii(rh)g′tt(rh)∑d−1
k=1 g

kk(rh)g′kk(rh)
. (B.67)

This is the final formula that we were after. Notice that in the isotropic limit it coincides
with the formula for the butterfly velocity derived in [120]. It is also consistent with previous
results for anisotropic theories, where only one direction is anisotropic, including the scaling
solutions of [27] and various other models [110, 111, 121, 122]. Finally, specializing to our
metric (2.4) we obtain the formulas reported in (5.14).

B.4 Results for c = 0.4

In section 5 we showed that our results for the string tensions strongly favoured c = 0.25
after comparing with the lattice data of [66]. However, it is known that our model can
exhibit IMC for even slightly higher values of c. It is then interesting to explore the effects
of this parameter on the behavior of the other observables of interest, and investigate how
robust our findings and predictions are. Throughout this appendix we will study in detail
this issue for c = 0.4, which is also known to display both IMC [48] and IAC [26].

In figure 11 we plot the results for the quark-antiquark potentials in a situation where
both a and B are turned on and can compete with each other. In general, we observe the
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Figure 11. Quark-antiquark potential in the presence of anisotropy and magnetic field, for a = 1
and B = 1 (in units of Λ ∼ 1GeV). The magnetic field B is aligned along the z-direction while
the anisotropic deformation is introduced along the z- or y-direction (parallel and perpendicular
configurations, respectively). The solid lines depict results for c = 0.25, which we have kept for
comparison, while dashed lines show the corresponding results for c = 0.4. We find the same
qualitative features in both cases, perhaps with the only difference that the increase in c pushes the
transition to slightly higher values of the separation, making the bound states a bit more stable.

same qualitative features between the two values of c: the tendency to push the transition
to shorter distances when both effects are present while increasing the tensions, and the
two special cases — Vz in the case where a and B are perpendicular/parallel to each other
— where a and B act completely constructively/destructively in the IR. Perhaps the
only distinction that is worth pointing out is the slight increase in the transition distance
as we increase c, which make the bound states a bit more stable in comparison to the
c = 0.25 case.

In figure 12 we plot the components of the shear viscosity in the case where the magnetic
field is perpendicular to the anisotropic deformation. We observe all the same qualitative
features for the two values of c: in all cases, the plots exhibit a monotonic flow from
ηij/s = 1/4π in the UV to a lower, non-zero value in the IR, before the chiral transition
kicks in. Moreover, the three main conclusions reached for c = 0.25 hold true for c = 0.4 as
well: i) The increase in magnetic field B raises ηxy and lowers ηxz and ηyz. ii) The increase
in the anisotropic parameter a lowers ηxy and ηyz and raises ηxz. And iii) B affects mostly
ηxz, while a affects mostly ηxy. Finally, the two effects seem equally strong for ηyz so there
is no clear pattern for this component. The only visual differences between the two values
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Figure 12. Ratio between the components of the shear viscosity tensor and the entropy density for
the case where the magnetic field (aligned along the z-direction) is perpendicular to the anisotropic
deformation (introduced along the y-direction). All the plots are given as a function of temperature,
in units of Λ ∼ 1GeV, and cut off at the chiral transition temperature so they correspond to the
chirally symmetric phase. The solid lines depict results for c = 0.25, which we have kept for
comparison, while dashed lines show the corresponding results for c = 0.4. We observe all the same
qualitative features for the two values of c, with some small visual distinction along the flow from
the UV to the IR: while ηxy generally decreases with the increase of c, both ηxz and ηyz increase
at an intermediate regime of energies, while approaching roughly the same constants in the IR.

of c are small differences in values along the flow from the UV to the IR: while ηxy generally
decreases with the increase of c, both ηxz and ηyz increase at an intermediate regime of
energies, while approaching roughly the same constants in the IR.

Finally, in figures 13 and 14 we plot the components of the butterfly velocity in various
situations of interest. Both c = 0.25 and c = 0.4 show qualitatively similar results; crucially,
that the component vzB is enhanced in the IR and exceeds the bound found in [27]. However,
the maximum value decreases with the increase of c, vzB ≈ 0.907 for c = 0.4 while vzB ≈ 0.942
for c = 0.25. In both cases, parallel and perpendicular configurations, the remaining
components show a weak dependence on c, with a tendency of slightly increasing the
values of vxB and vyB. As explained in the main text, the violation of the bound on the
butterfly velocity does not contradict the results of [27] because the IR theory in our case
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Figure 13. Components of the butterfly velocity as a function of temperature (in units of Λ ∼
1GeV) for the perpendicular configuration. The magnetic field B is aligned along the z-direction
while the anisotropic deformation is introduced along the y-direction. The solid lines depict results
for c = 0.25, which we have kept for comparison, while dashed lines show the corresponding results
for c = 0.4. In both cases we observe that the component vz

B is enhanced in the IR and exceeds
the bound found in [27], although its maximum value decreases with the increase of c. On the
other hand, the other components vx

B and vy
B show a slight increase with respect to the results

for c = 0.25.

does not belong to the same universality class of those in [27]. We will present a more
thorough analysis of these bounds in a more generic class of backgrounds in our upcoming
publication [112].
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Figure 14. Components of the butterfly velocity as a function of temperature (in units of Λ ∼
1GeV) for the parallel configuration. In this case both the magnetic field B and the anisotropic
deformation are introduced along the z-direction. The solid lines depict results for c = 0.25, which
we have kept for comparison, while dashed lines show the corresponding results for c = 0.4. The
component vz

B is also enhanced in the IR and exceeds the bound found in [27], although it is slightly
smaller than in the perpendicular case. In this case, the increase in c also makes vz

B smaller, while
there is no clear pattern for the other component, vx

B .

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] W. Busza, K. Rajagopal and W. van der Schee, Heavy Ion Collisions: The Big Picture, and
the Big Questions, Ann. Rev. Nucl. Part. Sci. 68 (2018) 339 [arXiv:1802.04801] [INSPIRE].

[2] U. Heinz and R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions,
Ann. Rev. Nucl. Part. Sci. 63 (2013) 123 [arXiv:1301.2826] [INSPIRE].

[3] D. Teaney, J. Lauret and E.V. Shuryak, Flow at the SPS and RHIC as a quark gluon
plasma signature, Phys. Rev. Lett. 86 (2001) 4783 [nucl-th/0011058] [INSPIRE].

[4] P. Romatschke and U. Romatschke, Viscosity Information from Relativistic Nuclear
Collisions: How Perfect is the Fluid Observed at RHIC?, Phys. Rev. Lett. 99 (2007) 172301
[arXiv:0706.1522] [INSPIRE].

– 46 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1146/annurev-nucl-101917-020852
https://arxiv.org/abs/1802.04801
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1802.04801
https://doi.org/10.1146/annurev-nucl-102212-170540
https://arxiv.org/abs/1301.2826
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1301.2826
https://doi.org/10.1103/PhysRevLett.86.4783
https://arxiv.org/abs/nucl-th/0011058
https://inspirehep.net/search?p=find+EPRINT%2Bnucl-th%2F0011058
https://doi.org/10.1103/PhysRevLett.99.172301
https://arxiv.org/abs/0706.1522
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0706.1522


J
H
E
P
0
3
(
2
0
2
1
)
1
8
0

[5] J. Novak, K. Novak, S. Pratt, J. Vredevoogd, C. Coleman-Smith and R. Wolpert,
Determining Fundamental Properties of Matter Created in Ultrarelativistic Heavy-Ion
Collisions, Phys. Rev. C 89 (2014) 034917 [arXiv:1303.5769] [INSPIRE].

[6] S. Pratt, E. Sangaline, P. Sorensen and H. Wang, Constraining the eq. of State of
Super-Hadronic Matter from Heavy-Ion Collisions, Phys. Rev. Lett. 114 (2015) 202301
[arXiv:1501.04042] [INSPIRE].

[7] E. Sangaline and S. Pratt, Toward a deeper understanding of how experiments constrain the
underlying physics of heavy-ion collisions, Phys. Rev. C 93 (2016) 024908
[arXiv:1508.07017] [INSPIRE].

[8] J.E. Bernhard, J.S. Moreland, S.A. Bass, J. Liu and U. Heinz, Applying Bayesian parameter
estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial
state and quark-gluon plasma medium, Phys. Rev. C 94 (2016) 024907 [arXiv:1605.03954]
[INSPIRE].

[9] J.E. Bernhard, J.S. Moreland and S.A. Bass, Bayesian estimation of the specific shear and
bulk viscosity of quark-gluon plasma, Nature Phys. 15 (2019) 1113.

[10] D. Devetak et al., Global fluid fits to identified particle transverse momentum spectra from
heavy-ion collisions at the Large Hadron Collider, JHEP 06 (2020) 044
[arXiv:1909.10485] [INSPIRE].

[11] J. Auvinen, K.J. Eskola, P. Huovinen, H. Niemi, R. Paatelainen and P. Petreczky,
Temperature dependence of η/s of strongly interacting matter: Effects of the equation of
state and the parametric form of (η/s)(T ), Phys. Rev. C 102 (2020) 044911
[arXiv:2006.12499] [INSPIRE].

[12] J.S. Moreland, J.E. Bernhard and S.A. Bass, Bayesian calibration of a hybrid nuclear
collision model using p-Pb and Pb-Pb data at energies available at the CERN Large Hadron
Collider, Phys. Rev. C 101 (2020) 024911 [arXiv:1808.02106] [INSPIRE].

[13] JETSCAPE collaboration, Phenomenological constraints on the transport properties of
QCD matter with data-driven model averaging, arXiv:2010.03928 [INSPIRE].

[14] G. Nijs, W. van der Schee, U. Gürsoy and R. Snellings, A transverse momentum differential
global analysis of Heavy Ion Collisions, arXiv:2010.15130 [INSPIRE].

[15] G. Nijs, W. Van Der Schee, U. Gürsoy and R. Snellings, A Bayesian analysis of Heavy Ion
Collisions with Trajectum, arXiv:2010.15134 [INSPIRE].

[16] JETSCAPE collaboration, Multi-system Bayesian constraints on the transport coefficients
of QCD matter, arXiv:2011.01430 [INSPIRE].

[17] G. Policastro, D.T. Son and A.O. Starinets, The Shear viscosity of strongly coupled N = 4
supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066]
[INSPIRE].

[18] K. Tuchin, Particle production in strong electromagnetic fields in relativistic heavy-ion
collisions, Adv. High Energy Phys. 2013 (2013) 490495 [arXiv:1301.0099] [INSPIRE].

[19] V. Skokov, A.Y. Illarionov and V. Toneev, Estimate of the magnetic field strength in
heavy-ion collisions, Int. J. Mod. Phys. A 24 (2009) 5925 [arXiv:0907.1396] [INSPIRE].

[20] K. Fukushima, D.E. Kharzeev and H.J. Warringa, The Chiral Magnetic Effect, Phys. Rev.
D 78 (2008) 074033 [arXiv:0808.3382] [INSPIRE].

– 47 –

https://doi.org/10.1103/PhysRevC.89.034917
https://arxiv.org/abs/1303.5769
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1303.5769
https://doi.org/10.1103/PhysRevLett.114.202301
https://arxiv.org/abs/1501.04042
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1501.04042
https://doi.org/10.1103/PhysRevC.93.024908
https://arxiv.org/abs/1508.07017
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1508.07017
https://doi.org/10.1103/PhysRevC.94.024907
https://arxiv.org/abs/1605.03954
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.03954
https://doi.org/10.1038/s41567-019-0611-8
https://doi.org/10.1007/JHEP06(2020)044
https://arxiv.org/abs/1909.10485
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.10485
https://doi.org/10.1103/PhysRevC.102.044911
https://arxiv.org/abs/2006.12499
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.12499
https://doi.org/10.1103/PhysRevC.101.024911
https://arxiv.org/abs/1808.02106
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.02106
https://arxiv.org/abs/2010.03928
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.03928
https://arxiv.org/abs/2010.15130
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.15130
https://arxiv.org/abs/2010.15134
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.15134
https://arxiv.org/abs/2011.01430
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.01430
https://doi.org/10.1103/PhysRevLett.87.081601
https://arxiv.org/abs/hep-th/0104066
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0104066
https://doi.org/10.1155/2013/490495
https://arxiv.org/abs/1301.0099
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1301.0099
https://doi.org/10.1142/S0217751X09047570
https://arxiv.org/abs/0907.1396
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0907.1396
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://arxiv.org/abs/0808.3382
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0808.3382


J
H
E
P
0
3
(
2
0
2
1
)
1
8
0

[21] D.E. Kharzeev, J. Liao, S.A. Voloshin and G. Wang, Chiral magnetic and vortical effects in
high-energy nuclear collisions — A status report, Prog. Part. Nucl. Phys. 88 (2016) 1
[arXiv:1511.04050] [INSPIRE].

[22] S. Shi, Y. Jiang, E. Lilleskov and J. Liao, Anomalous Chiral Transport in Heavy Ion
Collisions from Anomalous-Viscous Fluid Dynamics, Annals Phys. 394 (2018) 50
[arXiv:1711.02496] [INSPIRE].

[23] Q. Li et al., Observation of the chiral magnetic effect in ZrTe5, Nature Phys. 12 (2016) 550
[arXiv:1412.6543] [INSPIRE].

[24] V.A. Miransky and I.A. Shovkovy, Quantum field theory in a magnetic field: From quantum
chromodynamics to graphene and Dirac semimetals, Phys. Rept. 576 (2015) 1
[arXiv:1503.00732] [INSPIRE].

[25] G.S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S.D. Katz and A. Schafer, QCD quark
condensate in external magnetic fields, Phys. Rev. D 86 (2012) 071502 [arXiv:1206.4205]
[INSPIRE].

[26] U. Gürsoy, M. Järvinen, G. Nijs and J.F. Pedraza, Inverse Anisotropic Catalysis in
Holographic QCD, JHEP 04 (2019) 071 [Erratum ibid. 09 (2020) 059] [arXiv:1811.11724]
[INSPIRE].

[27] D. Giataganas, U. Gürsoy and J.F. Pedraza, Strongly-coupled anisotropic gauge theories
and holography, Phys. Rev. Lett. 121 (2018) 121601 [arXiv:1708.05691] [INSPIRE].

[28] U. Gürsoy and E. Kiritsis, Exploring improved holographic theories for QCD: Part I, JHEP
02 (2008) 032 [arXiv:0707.1324] [INSPIRE].

[29] U. Gürsoy, E. Kiritsis and F. Nitti, Exploring improved holographic theories for QCD: Part
II, JHEP 02 (2008) 019 [arXiv:0707.1349] [INSPIRE].

[30] M. Jarvinen and E. Kiritsis, Holographic Models for QCD in the Veneziano Limit, JHEP
03 (2012) 002 [arXiv:1112.1261] [INSPIRE].

[31] F. Bigazzi, R. Casero, A.L. Cotrone, E. Kiritsis and A. Paredes, Non-critical holography
and four-dimensional CFT’s with fundamentals, JHEP 10 (2005) 012 [hep-th/0505140]
[INSPIRE].

[32] R. Casero, E. Kiritsis and A. Paredes, Chiral symmetry breaking as open string tachyon
condensation, Nucl. Phys. B 787 (2007) 98 [hep-th/0702155] [INSPIRE].

[33] D. Mateos and D. Trancanelli, The anisotropic N = 4 super Yang-Mills plasma and its
instabilities, Phys. Rev. Lett. 107 (2011) 101601 [arXiv:1105.3472] [INSPIRE].

[34] D. Mateos and D. Trancanelli, Thermodynamics and Instabilities of a Strongly Coupled
Anisotropic Plasma, JHEP 07 (2011) 054 [arXiv:1106.1637] [INSPIRE].

[35] D. Areán, I. Iatrakis, M. Järvinen and E. Kiritsis, The discontinuities of conformal
transitions and mass spectra of V-QCD, JHEP 11 (2013) 068 [arXiv:1309.2286] [INSPIRE].

[36] D. Arean, I. Iatrakis, M. Jarvinen and E. Kiritsis, CP-odd sector and θ dynamics in
holographic QCD, Phys. Rev. D 96 (2017) 026001 [arXiv:1609.08922] [INSPIRE].

[37] E. D’Hoker and P. Kraus, Quantum Criticality via Magnetic Branes, Lect. Notes Phys. 871
(2013) 469 [arXiv:1208.1925] [INSPIRE].

[38] R. Rougemont, R. Critelli and J. Noronha, Anisotropic heavy quark potential in
strongly-coupled N = 4 SYM in a magnetic field, Phys. Rev. D 91 (2015) 066001
[arXiv:1409.0556] [INSPIRE].

– 48 –

https://doi.org/10.1016/j.ppnp.2016.01.001
https://arxiv.org/abs/1511.04050
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.04050
https://doi.org/10.1016/j.aop.2018.04.026
https://arxiv.org/abs/1711.02496
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.02496
https://doi.org/10.1038/nphys3648
https://arxiv.org/abs/1412.6543
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.6543
https://doi.org/10.1016/j.physrep.2015.02.003
https://arxiv.org/abs/1503.00732
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1503.00732
https://doi.org/10.1103/PhysRevD.86.071502
https://arxiv.org/abs/1206.4205
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1206.4205
https://doi.org/10.1007/JHEP04(2019)071
https://arxiv.org/abs/1811.11724
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.11724
https://doi.org/10.1103/PhysRevLett.121.121601
https://arxiv.org/abs/1708.05691
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1708.05691
https://doi.org/10.1088/1126-6708/2008/02/032
https://doi.org/10.1088/1126-6708/2008/02/032
https://arxiv.org/abs/0707.1324
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0707.1324
https://doi.org/10.1088/1126-6708/2008/02/019
https://arxiv.org/abs/0707.1349
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0707.1349
https://doi.org/10.1007/JHEP03(2012)002
https://doi.org/10.1007/JHEP03(2012)002
https://arxiv.org/abs/1112.1261
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1112.1261
https://doi.org/10.1088/1126-6708/2005/10/012
https://arxiv.org/abs/hep-th/0505140
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0505140
https://doi.org/10.1016/j.nuclphysb.2007.07.009
https://arxiv.org/abs/hep-th/0702155
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0702155
https://doi.org/10.1103/PhysRevLett.107.101601
https://arxiv.org/abs/1105.3472
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1105.3472
https://doi.org/10.1007/JHEP07(2011)054
https://arxiv.org/abs/1106.1637
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1106.1637
https://doi.org/10.1007/JHEP11(2013)068
https://arxiv.org/abs/1309.2286
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1309.2286
https://doi.org/10.1103/PhysRevD.96.026001
https://arxiv.org/abs/1609.08922
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1609.08922
https://doi.org/10.1007/978-3-642-37305-3_18
https://doi.org/10.1007/978-3-642-37305-3_18
https://arxiv.org/abs/1208.1925
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1208.1925
https://doi.org/10.1103/PhysRevD.91.066001
https://arxiv.org/abs/1409.0556
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1409.0556


J
H
E
P
0
3
(
2
0
2
1
)
1
8
0

[39] R. Rougemont, R. Critelli and J. Noronha, Holographic calculation of the QCD crossover
temperature in a magnetic field, Phys. Rev. D 93 (2016) 045013 [arXiv:1505.07894]
[INSPIRE].

[40] D. Dudal and S. Mahapatra, Confining gauge theories and holographic entanglement
entropy with a magnetic field, JHEP 04 (2017) 031 [arXiv:1612.06248] [INSPIRE].

[41] U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Improved Holographic Yang-Mills at Finite
Temperature: Comparison with Data, Nucl. Phys. B 820 (2009) 148 [arXiv:0903.2859]
[INSPIRE].

[42] U. Gürsoy, I. Iatrakis, E. Kiritsis, F. Nitti and A. O’Bannon, The Chern-Simons Diffusion
Rate in Improved Holographic QCD, JHEP 02 (2013) 119 [arXiv:1212.3894] [INSPIRE].

[43] T. Alho, M. Järvinen, K. Kajantie, E. Kiritsis and K. Tuominen, On finite-temperature
holographic QCD in the Veneziano limit, JHEP 01 (2013) 093 [arXiv:1210.4516]
[INSPIRE].

[44] M. Jarvinen, Massive holographic QCD in the Veneziano limit, JHEP 07 (2015) 033
[arXiv:1501.07272] [INSPIRE].

[45] N. Jokela, M. Järvinen and J. Remes, Holographic QCD in the Veneziano limit and neutron
stars, JHEP 03 (2019) 041 [arXiv:1809.07770] [INSPIRE].

[46] T. Drwenski, U. Gürsoy and I. Iatrakis, Thermodynamics and CP-odd transport in
Holographic QCD with Finite Magnetic Field, JHEP 12 (2016) 049 [arXiv:1506.01350]
[INSPIRE].

[47] T. Alho, M. Järvinen, K. Kajantie, E. Kiritsis, C. Rosen and K. Tuominen, A holographic
model for QCD in the Veneziano limit at finite temperature and density, JHEP 04 (2014)
124 [Erratum ibid. 02 (2015) 033] [arXiv:1312.5199] [INSPIRE].

[48] U. Gürsoy, I. Iatrakis, M. Järvinen and G. Nijs, Inverse Magnetic Catalysis from improved
Holographic QCD in the Veneziano limit, JHEP 03 (2017) 053 [arXiv:1611.06339]
[INSPIRE].

[49] M. Panero, Thermodynamics of the QCD plasma and the large-N limit, Phys. Rev. Lett.
103 (2009) 232001 [arXiv:0907.3719] [INSPIRE].

[50] U. Gursoy, M. Jarvinen and G. Nijs, Holographic QCD in the Veneziano Limit at a Finite
Magnetic Field and Chemical Potential, Phys. Rev. Lett. 120 (2018) 242002
[arXiv:1707.00872].

[51] A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and
catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170].

[52] E. Caceres, P.H. Nguyen and J.F. Pedraza, Holographic entanglement entropy and the
extended phase structure of STU black holes, JHEP 09 (2015) 184 [arXiv:1507.06069].

[53] J.F. Pedraza, W. Sybesma and M.R. Visser, Hyperscaling violating black holes with spherical
and hyperbolic horizons, Class. Quant. Grav. 36 (2019) 054002 [arXiv:1807.09770].

[54] M. Ammon, V.G. Filev, J. Tarrio and D. Zoakos, D3/D7 Quark-Gluon Plasma with
Magnetically Induced Anisotropy, JHEP 09 (2012) 039 [arXiv:1207.1047] [INSPIRE].

[55] I. Papadimitriou, Holographic Renormalization of general dilaton-axion gravity, JHEP 08
(2011) 119 [arXiv:1106.4826] [INSPIRE].

[56] G.S. Bali et al., The QCD phase diagram for external magnetic fields, JHEP 02 (2012) 044
[arXiv:1111.4956] [INSPIRE].

– 49 –

https://doi.org/10.1103/PhysRevD.93.045013
https://arxiv.org/abs/1505.07894
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1505.07894
https://doi.org/10.1007/JHEP04(2017)031
https://arxiv.org/abs/1612.06248
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.06248
https://doi.org/10.1016/j.nuclphysb.2009.05.017
https://arxiv.org/abs/0903.2859
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0903.2859
https://doi.org/10.1007/JHEP02(2013)119
https://arxiv.org/abs/1212.3894
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1212.3894
https://doi.org/10.1007/JHEP01(2013)093
https://arxiv.org/abs/1210.4516
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1210.4516
https://doi.org/10.1007/JHEP07(2015)033
https://arxiv.org/abs/1501.07272
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1501.07272
https://doi.org/10.1007/JHEP03(2019)041
https://arxiv.org/abs/1809.07770
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.07770
https://doi.org/10.1007/JHEP12(2016)049
https://arxiv.org/abs/1506.01350
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.01350
https://doi.org/10.1007/JHEP04(2014)124
https://doi.org/10.1007/JHEP04(2014)124
https://arxiv.org/abs/1312.5199
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1312.5199
https://doi.org/10.1007/JHEP03(2017)053
https://arxiv.org/abs/1611.06339
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.06339
https://doi.org/10.1103/PhysRevLett.103.232001
https://doi.org/10.1103/PhysRevLett.103.232001
https://arxiv.org/abs/0907.3719
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0907.3719
https://doi.org/10.1103/physrevlett.120.242002
https://arxiv.org/abs/1707.00872
https://doi.org/10.1103/physrevd.60.064018
https://arxiv.org/abs/hep-th/9902170
https://doi.org/10.1007/JHEP09(2015)184
https://arxiv.org/abs/1507.06069
https://doi.org/10.1088/1361-6382/ab0094
https://arxiv.org/abs/1807.09770
https://doi.org/10.1007/JHEP09(2012)039
https://arxiv.org/abs/1207.1047
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1207.1047
https://doi.org/10.1007/JHEP08(2011)119
https://doi.org/10.1007/JHEP08(2011)119
https://arxiv.org/abs/1106.4826
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1106.4826
https://doi.org/10.1007/JHEP02(2012)044
https://arxiv.org/abs/1111.4956
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1111.4956


J
H
E
P
0
3
(
2
0
2
1
)
1
8
0

[57] M. D’Elia, Lattice QCD Simulations in External Background Fields, Lect. Notes Phys. 871
(2013) 181 [arXiv:1209.0374] [INSPIRE].

[58] I. Iatrakis, E. Kiritsis and A. Paredes, An AdS/QCD model from Sen’s tachyon action,
Phys. Rev. D 81 (2010) 115004 [arXiv:1003.2377] [INSPIRE].

[59] I. Iatrakis, E. Kiritsis and A. Paredes, An AdS/QCD model from tachyon condensation: II,
JHEP 11 (2010) 123 [arXiv:1010.1364] [INSPIRE].

[60] A. Ballon-Bayona, J.P. Shock and D. Zoakos, Magnetic catalysis and the chiral condensate
in holographic QCD, JHEP 10 (2020) 193 [arXiv:2005.00500] [INSPIRE].

[61] A. Ballon-Bayona, M. Ihl, J.P. Shock and D. Zoakos, A universal order parameter for
Inverse Magnetic Catalysis, JHEP 10 (2017) 038 [arXiv:1706.05977] [INSPIRE].

[62] D. Giataganas, Probing strongly coupled anisotropic plasma, JHEP 07 (2012) 031
[arXiv:1202.4436] [INSPIRE].

[63] M. Chernicoff, D. Fernandez, D. Mateos and D. Trancanelli, Drag force in a strongly
coupled anisotropic plasma, JHEP 08 (2012) 100 [arXiv:1202.3696] [INSPIRE].

[64] M. Chernicoff, D. Fernandez, D. Mateos and D. Trancanelli, Jet quenching in a strongly
coupled anisotropic plasma, JHEP 08 (2012) 041 [arXiv:1203.0561] [INSPIRE].

[65] D. Giataganas, Observables in Strongly Coupled Anisotropic Theories, PoS Corfu2012
(2013) 122 [arXiv:1306.1404] [INSPIRE].

[66] C. Bonati, M. D’Elia, M. Mariti, M. Mesiti, F. Negro and F. Sanfilippo, Anisotropy of the
quark-antiquark potential in a magnetic field, Phys. Rev. D 89 (2014) 114502
[arXiv:1403.6094] [INSPIRE].

[67] I. Aref’eva and K. Rannu, Holographic Anisotropic Background with
Confinement-Deconfinement Phase Transition, JHEP 05 (2018) 206 [arXiv:1802.05652]
[INSPIRE].

[68] I. Aref’eva, K. Rannu and P. Slepov, Orientation Dependence of
Confinement-Deconfinement Phase Transition in Anisotropic Media, Phys. Lett. B 792
(2019) 470 [arXiv:1808.05596] [INSPIRE].

[69] D. Bak, A. Karch and L.G. Yaffe, Debye screening in strongly coupled N = 4
supersymmetric Yang-Mills plasma, JHEP 08 (2007) 049 [arXiv:0705.0994] [INSPIRE].

[70] J.M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998) 4859
[hep-th/9803002] [INSPIRE].

[71] S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large N gauge theory and
anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].

[72] Y. Kinar, E. Schreiber and J. Sonnenschein, QQ̄ potential from strings in curved
space-time: Classical results, Nucl. Phys. B 566 (2000) 103 [hep-th/9811192] [INSPIRE].

[73] H. Bohra, D. Dudal, A. Hajilou and S. Mahapatra, Anisotropic string tensions and
inversely magnetic catalyzed deconfinement from a dynamical AdS/QCD model, Phys. Lett.
B 801 (2020) 135184 [arXiv:1907.01852] [INSPIRE].

[74] H. Bohra, D. Dudal, A. Hajilou and S. Mahapatra, Chiral transition in the probe
approximation from an Einstein-Maxwell-dilaton gravity model, arXiv:2010.04578
[INSPIRE].

– 50 –

https://doi.org/10.1007/978-3-642-37305-3_7
https://doi.org/10.1007/978-3-642-37305-3_7
https://arxiv.org/abs/1209.0374
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1209.0374
https://doi.org/10.1103/PhysRevD.81.115004
https://arxiv.org/abs/1003.2377
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1003.2377
https://doi.org/10.1007/JHEP11(2010)123
https://arxiv.org/abs/1010.1364
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1010.1364
https://doi.org/10.1007/JHEP10(2020)193
https://arxiv.org/abs/2005.00500
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.00500
https://doi.org/10.1007/JHEP10(2017)038
https://arxiv.org/abs/1706.05977
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.05977
https://doi.org/10.1007/JHEP07(2012)031
https://arxiv.org/abs/1202.4436
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1202.4436
https://doi.org/10.1007/JHEP08(2012)100
https://arxiv.org/abs/1202.3696
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1202.3696
https://doi.org/10.1007/JHEP08(2012)041
https://arxiv.org/abs/1203.0561
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1203.0561
https://doi.org/10.22323/1.177.0122
https://doi.org/10.22323/1.177.0122
https://arxiv.org/abs/1306.1404
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1306.1404
https://doi.org/10.1103/PhysRevD.89.114502
https://arxiv.org/abs/1403.6094
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1403.6094
https://doi.org/10.1007/JHEP05(2018)206
https://arxiv.org/abs/1802.05652
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1802.05652
https://doi.org/10.1016/j.physletb.2019.04.012
https://doi.org/10.1016/j.physletb.2019.04.012
https://arxiv.org/abs/1808.05596
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.05596
https://doi.org/10.1088/1126-6708/2007/08/049
https://arxiv.org/abs/0705.0994
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0705.0994
https://doi.org/10.1103/PhysRevLett.80.4859
https://arxiv.org/abs/hep-th/9803002
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9803002
https://doi.org/10.1007/s100520100799
https://arxiv.org/abs/hep-th/9803001
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9803001
https://doi.org/10.1016/S0550-3213(99)00652-5
https://arxiv.org/abs/hep-th/9811192
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9811192
https://doi.org/10.1016/j.physletb.2019.135184
https://doi.org/10.1016/j.physletb.2019.135184
https://arxiv.org/abs/1907.01852
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.01852
https://arxiv.org/abs/2010.04578
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.04578


J
H
E
P
0
3
(
2
0
2
1
)
1
8
0

[75] P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: Diffusion on
stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [INSPIRE].

[76] J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann,
Gauge/String Duality, Hot QCD and Heavy Ion Collisions, Cambridge University Press,
(2014).

[77] M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity Bound Violation in
Higher Derivative Gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [INSPIRE].

[78] M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The Viscosity Bound and
Causality Violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [INSPIRE].

[79] X.O. Camanho, J.D. Edelstein and M.F. Paulos, Lovelock theories, holography and the fate
of the viscosity bound, JHEP 05 (2011) 127 [arXiv:1010.1682] [INSPIRE].

[80] S. Cremonini, The Shear Viscosity to Entropy Ratio: A Status Report, Mod. Phys. Lett. B
25 (2011) 1867 [arXiv:1108.0677] [INSPIRE].

[81] S. Cremonini, U. Gürsoy and P. Szepietowski, On the Temperature Dependence of the Shear
Viscosity and Holography, JHEP 08 (2012) 167 [arXiv:1206.3581] [INSPIRE].

[82] P. Burikham and N. Poovuttikul, Shear viscosity in holography and effective theory of
transport without translational symmetry, Phys. Rev. D 94 (2016) 106001
[arXiv:1601.04624] [INSPIRE].

[83] S.A. Hartnoll, D.M. Ramirez and J.E. Santos, Entropy production, viscosity bounds and
bumpy black holes, JHEP 03 (2016) 170 [arXiv:1601.02757] [INSPIRE].

[84] L. Alberte, M. Baggioli and O. Pujolàs, Viscosity bound violation in holographic solids and
the viscoelastic response, JHEP 07 (2016) 074 [arXiv:1601.03384] [INSPIRE].

[85] Y. Ling, Z.-Y. Xian and Z. Zhou, Holographic Shear Viscosity in Hyperscaling Violating
Theories without Translational Invariance, JHEP 11 (2016) 007 [arXiv:1605.03879]
[INSPIRE].

[86] M. Baggioli and W.-J. Li, Universal Bounds on Transport in Holographic Systems with
Broken Translations, SciPost Phys. 9 (2020) 007 [arXiv:2005.06482] [INSPIRE].

[87] J. Erdmenger, P. Kerner and H. Zeller, Non-universal shear viscosity from Einstein gravity,
Phys. Lett. B 699 (2011) 301 [arXiv:1011.5912] [INSPIRE].

[88] A. Rebhan and D. Steineder, Violation of the Holographic Viscosity Bound in a Strongly
Coupled Anisotropic Plasma, Phys. Rev. Lett. 108 (2012) 021601 [arXiv:1110.6825]
[INSPIRE].

[89] K.A. Mamo, Holographic RG flow of the shear viscosity to entropy density ratio in strongly
coupled anisotropic plasma, JHEP 10 (2012) 070 [arXiv:1205.1797] [INSPIRE].

[90] S. Jain, N. Kundu, K. Sen, A. Sinha and S.P. Trivedi, A Strongly Coupled Anisotropic Fluid
From Dilaton Driven Holography, JHEP 01 (2015) 005 [arXiv:1406.4874] [INSPIRE].

[91] R. Critelli, S.I. Finazzo, M. Zaniboni and J. Noronha, Anisotropic shear viscosity of a
strongly coupled non-Abelian plasma from magnetic branes, Phys. Rev. D 90 (2014) 066006
[arXiv:1406.6019] [INSPIRE].

[92] S. Jain, R. Samanta and S.P. Trivedi, The Shear Viscosity in Anisotropic Phases, JHEP 10
(2015) 028 [arXiv:1506.01899] [INSPIRE].

– 51 –

https://doi.org/10.1088/1126-6708/2003/10/064
https://arxiv.org/abs/hep-th/0309213
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0309213
https://doi.org/10.1103/PhysRevD.77.126006
https://arxiv.org/abs/0712.0805
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0712.0805
https://doi.org/10.1103/PhysRevLett.100.191601
https://arxiv.org/abs/0802.3318
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0802.3318
https://doi.org/10.1007/JHEP05(2011)127
https://arxiv.org/abs/1010.1682
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1010.1682
https://doi.org/10.1142/S0217984911027315
https://doi.org/10.1142/S0217984911027315
https://arxiv.org/abs/1108.0677
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1108.0677
https://doi.org/10.1007/JHEP08(2012)167
https://arxiv.org/abs/1206.3581
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1206.3581
https://doi.org/10.1103/PhysRevD.94.106001
https://arxiv.org/abs/1601.04624
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1601.04624
https://doi.org/10.1007/JHEP03(2016)170
https://arxiv.org/abs/1601.02757
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1601.02757
https://doi.org/10.1007/JHEP07(2016)074
https://arxiv.org/abs/1601.03384
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1601.03384
https://doi.org/10.1007/JHEP11(2016)007
https://arxiv.org/abs/1605.03879
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.03879
https://doi.org/10.21468/SciPostPhys.9.1.007
https://arxiv.org/abs/2005.06482
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.06482
https://doi.org/10.1016/j.physletb.2011.04.009
https://arxiv.org/abs/1011.5912
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1011.5912
https://doi.org/10.1103/PhysRevLett.108.021601
https://arxiv.org/abs/1110.6825
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1110.6825
https://doi.org/10.1007/JHEP10(2012)070
https://arxiv.org/abs/1205.1797
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1205.1797
https://doi.org/10.1007/JHEP01(2015)005
https://arxiv.org/abs/1406.4874
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1406.4874
https://doi.org/10.1103/PhysRevD.90.066006
https://arxiv.org/abs/1406.6019
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1406.6019
https://doi.org/10.1007/JHEP10(2015)028
https://doi.org/10.1007/JHEP10(2015)028
https://arxiv.org/abs/1506.01899
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.01899


J
H
E
P
0
3
(
2
0
2
1
)
1
8
0

[93] S.I. Finazzo, R. Critelli, R. Rougemont and J. Noronha, Momentum transport in strongly
coupled anisotropic plasmas in the presence of strong magnetic fields, Phys. Rev. D 94
(2016) 054020 [Erratum ibid. 96 (2017) 019903] [arXiv:1605.06061] [INSPIRE].

[94] R. Samanta, R. Sharma and S.P. Trivedi, Shear viscosity in an anisotropic unitary Fermi
gas, Phys. Rev. A 96 (2017) 053601 [arXiv:1607.04799] [INSPIRE].

[95] R. Samanta, R. Sharma and S.P. Trivedi, A proposal for measuring Anisotropic Shear
Viscosity in Unitary Fermi Gases, arXiv:1611.02720 [INSPIRE].

[96] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,
Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[97] I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl.
Phys. B 796 (2008) 274 [arXiv:0709.2140] [INSPIRE].

[98] D. Dudal and S. Mahapatra, Interplay between the holographic QCD phase diagram and
entanglement entropy, JHEP 07 (2018) 120 [arXiv:1805.02938] [INSPIRE].

[99] A.I. Larkin and Y.N. Ovchinnikov, Quasiclassical method in the theory of superconductivity,
JETP 28 (1969) 1200.

[100] J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106
[arXiv:1503.01409] [INSPIRE].

[101] J. de Boer, E. Llabrés, J.F. Pedraza and D. Vegh, Chaotic strings in AdS/CFT, Phys. Rev.
Lett. 120 (2018) 201604 [arXiv:1709.01052] [INSPIRE].

[102] K. Murata, Fast scrambling in holographic Einstein-Podolsky-Rosen pair, JHEP 11 (2017)
049 [arXiv:1708.09493] [INSPIRE].

[103] A. Banerjee, A. Kundu and R.R. Poojary, Strings, Branes, Schwarzian Action and Maximal
Chaos, arXiv:1809.02090 [INSPIRE].

[104] S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067
[arXiv:1306.0622] [INSPIRE].

[105] S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132
[arXiv:1412.6087] [INSPIRE].

[106] J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94
(2016) 106002 [arXiv:1604.07818] [INSPIRE].

[107] Y. Gu, X.-L. Qi and D. Stanford, Local criticality, diffusion and chaos in generalized
Sachdev-Ye-Kitaev models, JHEP 05 (2017) 125 [arXiv:1609.07832] [INSPIRE].

[108] R.A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen and S. Sachdev, Thermoelectric
transport in disordered metals without quasiparticles: The Sachdev-Ye-Kitaev models and
holography, Phys. Rev. B 95 (2017) 155131 [arXiv:1612.00849] [INSPIRE].

[109] D.A. Roberts and B. Swingle, Lieb-Robinson Bound and the Butterfly Effect in Quantum
Field Theories, Phys. Rev. Lett. 117 (2016) 091602 [arXiv:1603.09298] [INSPIRE].

[110] V. Jahnke, Delocalizing entanglement of anisotropic black branes, JHEP 01 (2018) 102
[arXiv:1708.07243] [INSPIRE].

[111] D. Avila, V. Jahnke and L. Patiño, Chaos, Diffusivity, and Spreading of Entanglement in
Magnetic Branes, and the Strengthening of the Internal Interaction, JHEP 09 (2018) 131
[arXiv:1805.05351] [INSPIRE].

[112] D. Giataganas, U. Gursoy and J.F. Pedraza, Work in progress.

– 52 –

https://doi.org/10.1103/PhysRevD.94.054020
https://doi.org/10.1103/PhysRevD.94.054020
https://arxiv.org/abs/1605.06061
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.06061
https://doi.org/10.1103/PhysRevA.96.053601
https://arxiv.org/abs/1607.04799
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.04799
https://arxiv.org/abs/1611.02720
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.02720
https://doi.org/10.1103/PhysRevLett.96.181602
https://arxiv.org/abs/hep-th/0603001
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0603001
https://doi.org/10.1016/j.nuclphysb.2007.12.017
https://doi.org/10.1016/j.nuclphysb.2007.12.017
https://arxiv.org/abs/0709.2140
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0709.2140
https://doi.org/10.1007/JHEP07(2018)120
https://arxiv.org/abs/1805.02938
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.02938
https://doi.org/10.1007/JHEP08(2016)106
https://arxiv.org/abs/1503.01409
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1503.01409
https://doi.org/10.1103/PhysRevLett.120.201604
https://doi.org/10.1103/PhysRevLett.120.201604
https://arxiv.org/abs/1709.01052
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.01052
https://doi.org/10.1007/JHEP11(2017)049
https://doi.org/10.1007/JHEP11(2017)049
https://arxiv.org/abs/1708.09493
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1708.09493
https://arxiv.org/abs/1809.02090
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.02090
https://doi.org/10.1007/JHEP03(2014)067
https://arxiv.org/abs/1306.0622
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1306.0622
https://doi.org/10.1007/JHEP05(2015)132
https://arxiv.org/abs/1412.6087
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.6087
https://doi.org/10.1103/PhysRevD.94.106002
https://doi.org/10.1103/PhysRevD.94.106002
https://arxiv.org/abs/1604.07818
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1604.07818
https://doi.org/10.1007/JHEP05(2017)125
https://arxiv.org/abs/1609.07832
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1609.07832
https://doi.org/10.1103/PhysRevB.95.155131
https://arxiv.org/abs/1612.00849
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.00849
https://doi.org/10.1103/PhysRevLett.117.091602
https://arxiv.org/abs/1603.09298
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1603.09298
https://doi.org/10.1007/JHEP01(2018)102
https://arxiv.org/abs/1708.07243
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1708.07243
https://doi.org/10.1007/JHEP09(2018)131
https://arxiv.org/abs/1805.05351
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.05351


J
H
E
P
0
3
(
2
0
2
1
)
1
8
0

[113] N. Jokela and J.G. Subils, Is entanglement a probe of confinement?, JHEP 02 (2021) 147
[arXiv:2010.09392] [INSPIRE].

[114] G.S. Bali et al., The finite temperature QCD transition in external magnetic fields, PoS
LATTICE2011 (2011) 192 [arXiv:1111.5155] [INSPIRE].

[115] U. Gursoy, E. Kiritsis, L. Mazzanti and F. Nitti, Holographic Techniques For
Asymptotically-free Gauge Theories, in 43rd Rencontres de Moriond on Electroweak
Interactions and Unified Theories, Paris, France, Moriond, (2008), pp. 143–150.

[116] U. Gürsoy, Improved Holographic QCD and the Quark-gluon Plasma, Acta Phys. Polon. B
47 (2016) 2509 [arXiv:1612.00899] [INSPIRE].

[117] I.Y. Aref’eva, K. Rannu and P. Slepov, Holographic Anisotropic Model for Heavy Quarks in
Anisotropic Hot Dense QGP with External Magnetic Field, arXiv:2011.07023 [INSPIRE].

[118] U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Holography and Thermodynamics of 5D
Dilaton-gravity, JHEP 05 (2009) 033 [arXiv:0812.0792] [INSPIRE].

[119] S.S. Gubser, S.S. Pufu and F.D. Rocha, Bulk viscosity of strongly coupled plasmas with
holographic duals, JHEP 08 (2008) 085 [arXiv:0806.0407] [INSPIRE].

[120] M. Mezei and D. Stanford, On entanglement spreading in chaotic systems, JHEP 05 (2017)
065 [arXiv:1608.05101] [INSPIRE].

[121] W. Fischler, V. Jahnke and J.F. Pedraza, Chaos and entanglement spreading in a
non-commutative gauge theory, JHEP 11 (2018) 072 [Erratum ibid. 02 (2021) 149]
[arXiv:1808.10050] [INSPIRE].

[122] G.A. Inkof, J.M.C. Küppers, J.M. Link, B. Goutéraux and J. Schmalian, Quantum critical
scaling and holographic bound for transport coefficients near Lifshitz points, JHEP 11
(2020) 088 [arXiv:1907.05744] [INSPIRE].

– 53 –

https://doi.org/10.1007/JHEP02(2021)147
https://arxiv.org/abs/2010.09392
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.09392
https://doi.org/10.22323/1.139.0192
https://doi.org/10.22323/1.139.0192
https://arxiv.org/abs/1111.5155
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1111.5155
https://doi.org/10.5506/APhysPolB.47.2509
https://doi.org/10.5506/APhysPolB.47.2509
https://arxiv.org/abs/1612.00899
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.00899
https://arxiv.org/abs/2011.07023
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.07023
https://doi.org/10.1088/1126-6708/2009/05/033
https://arxiv.org/abs/0812.0792
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0812.0792
https://doi.org/10.1088/1126-6708/2008/08/085
https://arxiv.org/abs/0806.0407
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0806.0407
https://doi.org/10.1007/JHEP05(2017)065
https://doi.org/10.1007/JHEP05(2017)065
https://arxiv.org/abs/1608.05101
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.05101
https://doi.org/10.1007/JHEP11(2018)072
https://arxiv.org/abs/1808.10050
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.10050
https://doi.org/10.1007/JHEP11(2020)088
https://doi.org/10.1007/JHEP11(2020)088
https://arxiv.org/abs/1907.05744
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.05744

	Introduction
	Holographic setup
	Gravitational action
	Choice of potentials

	RG flow: from the UV to the IR
	UV asymptotics
	IR asymptotics at a != 0
	IR asymptotics at a = 0 and B != 0
	Intermediate energies at large B 
	The overall structure of the RG flow

	Thermodynamics
	Thermodynamic potentials
	Phase structure and the chiral transition

	Other observables
	Quark-antiquark potential
	Anisotropic shear viscosity
	Entanglement entropy
	Butterfly velocity

	Discussion and outlook
	Details of the model
	Equations of motion
	Field equations
	Scaling symmetries
	Horizon boundary conditions
	Extraction of quantities

	Choice of potentials

	Details of the anisotropic observables
	Holographic thermodynamics
	Shear viscosity
	Butterfly velocity 
	Results for c = 0.4 


