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Time glass: A fractional calculus approach
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Out-of-equilibrium states in glasses and crystals have been a major topic of research in condensed-matter
physics for many years, and the idea of time crystals has triggered a flurry of new research. Here, we provide
a description for the recently conjectured time glasses using fractional calculus methods. An exactly solvable

effective theory is introduced with a continuous parameter describing the transition from liquid through normal
glass and time glass into the Gardner phase. The phenomenological description with a fractional Langevin
equation is connected to a microscopic model of a particle in a sub-Ohmic bath in the framework of a generalized

Caldeira-Leggett model.
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Introduction. The concept of time crystals, i.e., materials
with an emergent periodicity in time [1,2] has attracted much
attention recently [3]. After no-go theorems were proven for
several systems [4,5], it was understood that time crystals
may actually occur in open [6,7], driven [8], and long-range
interaction [9] systems, and many experimental and theoreti-
cal activities followed this novel idea. By now, time crystals
have been conceived and observed [10-14]. Recently, a novel
system was conjectured, a time glass, which would have
periodic intermediate glass states [15]. It was claimed that
they should appear in static many-body localized systems ex-
hibiting incommensurate local frequencies and no long-range
spatiotemporal order [3].

The microscopic states of glasses have been puzzling re-
searchers for many years [16-21]. Microscopically, glasses
look like liquids because their molecules do not show any kind
of structural order. These amorphous materials exhibit com-
pletely different phase transitions in comparison to ordered
solids, and often they do not even have a thermodynamic
ground state. Hence, equilibrium physics cannot be used for
their description [22]. A common understanding is that they
correspond to the occupation of a set of metastable states in
the free-energy landscape.

One promising approach to describe the glass transition
is the random first-order transition theory [23]. It describes
a hard-sphere model in which the spheres can get caged by
their neighbors, thus, restricting their movement. This leads
to a mean-square displacement (MSD) that corresponds to a
free particle at small timescales, until it hits the cage size (see
Fig. 1), where the MSD saturates, indicating a glassy state
[24,25] (for a discussion on glass states, see the Supplemental
Material (SM) [25-31]). In the free-energy landscape, this
is the moment at which the particle has explored the entire
basin. This theory, however, can only be solved exactly in
an infinite dimension with a questionable connection to its
finite-dimensional counterpart [32].

More recently, a richer phase diagram was proposed
for glasses, including the so-called Gardner phase [33,34].
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Although the Gardner phase was first discovered in the de-
scription of spin glasses as a solution that breaks one replica
symmetry [35], it was later understood to occur in many
materials [36]. This marginal glass phase has a free energy in
which basins transform into metabasins [37] and is known to
have a fractal structure [38] (see Fig. 1). In the Gardner phase,
there is a hierarchy of cages inside cages [39], reminiscent
of the fractal structure in the energy landscape. Therefore, as
time goes by, the system explores larger cages, thus, triggering
an infinite staircaselike behavior of the MSD.

Here, we propose a unified picture where liquid, glass,
time glass, and the Gardner phase can be understood as a
(sub-)diffusive Brownian motion described by a fractional
Langevin equation with white noise. Previously, the frac-
tional Langevin equation had been studied for colored noise
[40-51], but the features described here occur exclusively for
the case of white noise. At very low temperatures, the equipar-
tition theorem breaks down, and a white-noise fractional
Langevin equation arises as the semiclassical description of
a particle coupled to a two-level systems (TLS) bath in the
subohmic regime. Our unified procedure has a single varying
generic s-derivative friction (with s integer or fractional) to
describe the different states of matter. Moreover, we show that
for 0 < s < 0.1, a time glass emerges with a periodicity of
w(M/n)"/ 29, where M is the mass of the “Brownian” par-
ticle and 7 is a type of viscoelasticity. Within our mean-field
description, the time glass shows an emergent frequency and
periodically passes through many metastable states before it
gets to a final frozen glassy state. Therefore, our Letter sets
a mathematical framework for the description and realization
of a time glass, thus, furthering our understanding of “time
materials.”

Fractional calculus. Fractional differential equations have
been used in physics, engineering, material science, control
systems, protein folding [40], and more [52], but there are still
many new opportunities to be explored [41]. Different defi-
nitions were proposed by Riemann-Liouville, Caputo, Weyl,
etc. (see the SM [26,53-59] for a short historical overview).
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FIG. 1. Left: Sketch of a free-energy landscape with fractal-like
metastable minima. Right: A hierarchy of cages inside cages. The
energy landscape (purple) has four local minima, corresponding
to the total number of large orange cages. Zooming in on one of
these minima, we see five smaller local minima (green cages) inside
this orange cage. Moreover, inside one green cage there are three
red cages. Depending on the number of nested cages we find four
differing phases: Liquid (no cage), normal glass (one cage), time
glass (finite number of cages), and marginal glass (infinite number
of cages).

From a mathematical perspective, there is still a discussion
on which of the various fractional derivative definitions [60]
should be used for each kind of problem. Concerning the
Caputo definition, the idea is to rewrite a repeated integral
into a generalizable form. As factorials often appear in con-
ventional integrals, one uses the I" function as their noninteger
generalization. The Caputo derivative is then given by taking
an integer derivative before doing a fractional integral,

o _ 1 ! _ n—a—1 p(n)
D;f(t)——r(n_a)/o(t 7) fP(mdr, (D)

where n is an integer such that n — 1 < @ < n. Since the
Caputo definition is nonlocal, we have chosen the left-handed
definition for the boundary of the integral to retain causality,
once we apply this time derivative to our system. One ben-
efit of the Caputo definition compared to other definitions is
that we can keep integer-order boundary conditions; however,
continuity in the order is lost on the integers. When this
noninteger derivative is applied to an exponential, we find the
Mittag-Leffler function, defined by

E, = _, 2
20 ; T(ak + B) @
which is a generalized exponential that appears regularly in
solutions of fractional differential equations. For different
parameters, this function can show many features related to
exponentials, such as damped oscillations and exponential-
like growth.

Fractional Langevin equation. The fractional Langevin
equation was recently used to describe a system exhibiting
Lévy flights [42]. Lévy flights are often used for modeling
the spreading of viruses as they include a description of the
long (and fast) journeys that people make by plane as well as

a more local random motion. Brownian motion only has one
typical time and length scale associated with it, whereas Lévy
flights have many different time and length scales [40,61].
The equipartition theorem implies a relation between the
fluctuation and the dissipation terms [62]; hence, previous ref-
erences used either colored noise with the fractional Langevin
equation [40—46] or a white noise associated with a fractional
kinetic term and normal friction [63] which, after fractional
integration, is equivalent to the fractional Langevin equation
with colored noise. However, none of these models exhibit the
plateaus in the MSD characterizing a glassy behavior, which
we will describe below. The features that we will discuss here
are inherent to a fractional Langevin equation with white noise
and occur only at low temperatures when the equipartition
theorem breaks down. Later, in the Microscopic model sec-
tion, we present a microscopic description corresponding to a
physical realization of our phenomenological model.

Let us start by considering the fractional Langevin
equation,

d?x(t)
dr?
with f(¢#) as a white-noise force with average (f(¢)) =
0 and correlation (f(t)f (")) = K8(t —t'), where K =
2 sin (B )nt]~kgT, and 1, = (M/n)"/* ) is the timescale of
the system. Introducing these fractional derivatives as friction,
scaling with the sth order derivative, yields a model for both
subdiffusion (s < 1) and superdiffusion (s > 1) in addition to
the usual Langevin equation, which is retrieved when s = 1.
The motivation for this change in friction compared to the
Langevin equation is first to introduce a general nonlocal
operator that knows about the history of a system and allows
one to study non-Markovian processes. The choice to take
fractional derivatives can then be illustrated with a thought
experiment: Suppose a particle is moving at a constant speed
for a certain time. Then, ordinary friction is constant in time,
whereas friction of this fractional form scales as ¢!'~. This
means that for s > 1 the friction will fall off quickly, allowing
for Lévy flights, whereas for s < 1 the friction will increase

in time, thus, reducing the probability for large jumps [64].

The strength of this theory is that it is exactly solvable,
which makes possible the calculation of statistical properties,
such as the MSD. For 0 < s < 1, the MSD is given by (see
the SM [26,65,66] for details)

(x(t)?) = 1\% /Ot [zEz,x,z(—A%zz—f)]zdr
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where vy = (x'(0))t,/Ly is dimensionless. The short-time ex-
pansion for ¢ < t; yields a ballistic behavior,

2
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whereas the long-time expansion is logarithmic for s = 0.5,
and otherwise given by
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FIG. 2. The exact MSD for different values of s, regularized by the typical time and length scales ¢, and L. The analytical asymptotes for
t — 0 and ¢t — oo are drawn next to the plots. The delocalized states are shown at the top and the localized states at the bottom, whereas the
labeling order follows the decreasing value of s. (a) A liquid, described by regular Brownian motion. (b) A normal glass, exhibiting ballistic
motion at short times and localization at longer times. (c) A time glass, displaying ballistic motion at short times, but also an intermediate
regime with a set of small plateaus before the long-time plateau sets in. (d) A marginal glass, characterized by a driven particle in a quadratic
potential. Here, the friction term vanishes and an infinite collection of plateaus appear. The overall slope is however finite, reminiscent of a

liquid behavior.

where, for s < 1/2, the exponent of the second term in the
MSD becomes negative and, therefore, the MSD converges to
the typical final cage size A2 for 1 — oc.

In Fig. 2, the MSD has been plotted for several values of
s from one to zero. We introduced the typical length scale
of the system, which can be found by dimensional analysis
to be Ly = \/Kt3/M?. The MSD shows ballistic short-time
behavior in all cases. For s = 1, we retrieve the conventional
Langevin equation, which describes Brownian motion. The
MSD also shows a crossover from a ballistic (~¢?) to a
linear dependence in time, characteristic of a liquid [Fig. 2(a)].
For s < 0.5, instead, the MSD saturates at long times, thus,
describing a glass [Fig. 2(b)]. We find that a particularly inter-
esting regime is provided by small values of s in the interval
0 < s <0.1. In this case, a sequence of small metastable
plateaus characterizes a finite-depth fractal glass phase be-
fore the conventional glass regime is reached at longer times
[Fig. 2(c)]. For s = 0, the “marginal glass” phase, proposed
by Gardner, is realized with an infinite number of metastable
plateaus and finite average slope (~¢), typical of liquids. This
is an asymptotic phase in which the fractal glass acquires
infinite depth [Fig. 2(d)].

Time glass. Recently conjectured [15], time glass is a phase
in which the MSD periodically repeats a glasslike plateau in
an overall glassy phase (see the SM [26] for a comparison
between definitions of time glass). Now, we concentrate on
the region 0 < s < 0.1, which describes a finite-depth fractal
glass, reminiscent of the Gardner phase (see Fig. 1). The
evolution of the MSD upon varying s is depicted in Fig. 3

and discloses many interesting traits: (i) At short times (0 <
t < mty), there exists a universal regime in which all curves
collapse into a single one; (ii) the small plateaus regime sets
in afterwards, but the overall slope of the intermediate-time
behavior increases as s is reduced, thus, showing a grad-
ual transition from an overall glass to liquid phase; (iii) at
sufficiently long times, there is saturation for all s # 0, but
this freezing occurs on increasingly longer timescales as s is
reduced; (iv) these plateaus appear at fixed intervals in time as
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FIG. 3. The MSD for several small values of s, regularized by
the typical time and length scales #; and L,. The inset shows a linear
scale plot to highlight the periodicity in the anomalous glass phase,
characterizing a time glass.
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promptly visualized in a linear scale plot (inset of Fig. 3). Put
together, all these features closely resemble (see the SM [26])
the marginal glass phase that has recently been observed in
colloidal glass experiments [67] and the emergent frequency
that we obtain indicates that we are describing a time glass
phase. These results are further corroborated by calculations
of the position and velocity autocorrelation functions, which
show the same periodicity (see the SM [26]).

To find the coefficient of the timescale such that we have
the period of the system, we concentrate on the case s = 0 and
put vo = 0 for simplicity. As this case is just a driven harmonic
oscillator, we get

=sin® (ﬁt)

K 1 M . 2\/7 .
_Mt+§ ;sm( M[)’ @)

where the relation between the Mittag-Leffler function and the
sine can be seen using their Taylor expansions. This yields
a periodicity of m+/M/n in time, thus, providing the general
period P = w(M/n)"/?=% = xt, of the system. For nonzero
s, this period applies only in a finite time window before
freezing.

Microscopic model. Now, we aim at identifying an un-
derlying microscopic model, which is phenomenologically
described by the fractional Langevin equation. We will con-
sider an open quantum system, upon which we perform a
mean-field approximation to obtain an effective model. Since
Hamiltonian dynamics relies on conservation of energy, we
have to couple a system undergoing friction to a bath, which
exerts that force. Inspired by a generalization of the Caldeira-
Leggett model [68—73], we consider a Hamiltonian,

H = Hs + Hp + Hin, ®)
where
p\Z
Hs = EYYi +Vx) 9

is a Hamiltonian describing a Brownian particle with mass M,
momentum p, coordinate x, and subject to a potential V (x),

hw;j
Hy =) =0 (10)
J

describes a TLS bath (i.e., truncated harmonic oscillators)
with natural frequencies w; and

Hi = —x)_Jjoy (11)
J

is the interaction between the bath and the Brownian system
[68]. The degrees of freedom in the bath are then integrated
out to describe quantum dissipation in the system. The spec-
tral function is given by the imaginary part of the Fourier
transform of the retarded dynamical susceptibility of the TLS
bath, namely,

J(w) :=Im F(—i®@ — t[F @), F()]), (12)

and it is crucial for connecting the microscopic parameters
of the Hamiltonian with the phenomenological viscoelasticity
coefficient n appearing in the Langevin equation. Here, F (¢)
is the force produced by the particle on the bath. For an Ohmic
bath of harmonic oscillators, the spectral function is given by
J(w) = nw for v < @, where Q denotes a cutoff frequency
and is zero otherwise [74]. Such a bath will then be effec-
tively described by the Langevin equation where the friction
is proportional to the velocity (first derivative of position) of
the system. However, for our choice of sub-Ohmic TLS bath
[69,75], the spectral function is given by

. (TSN hw
J(w,T) =7 sin (—)a) tanh ( )@(Q —w), (13)
2 2kgT
where 0 < s < 1 and € is a cutoff frequency. The hyper-
bolic tangent is important for the quantum description where
it allows the temperature to select which bath components
are more relevant, namely, the ones with frequencies w >
2kgT /h. In our semiclassical approach, however, we take the
limit kg7 <« hS2, which reduces it to the Caldeira-Leggett
model, apart from losing equipartition. We can, therefore,
rescale the TLS energies by ' ™5#!~* to retain a white-noise
correlation. The friction force is then given by

ndt{/ / —cos[a)(t —t)lg (t/)da)dt/},

(14)

which, after a reparametrization w — w/(t —t’), becomes
proportional to a fractional derivative in the limit kg7 < hS2.
The proportionality constant is then calculated by a complex
contour integral, which results in a finite value for 0 < s < 1
(see the SM [26] for details of the calculation). This then leads
to a friction term given by

Frr = nDjq(t). (15)

Therefore, a particle interacting with a sub-Ohmic two-level
systems bath is well described by the fractional Langevin
equation with white noise in the low-temperature limit.

Conclusion. Making use of fractional Caputo derivatives,
we have shown that a semiclassical system coupled to a
low-temperature sub-Ohmic bath of two-level systems can
be described by the fractional Langevin equation with white
noise. We have solved this equation analytically and analyzed
the anomalous diffusion.

Different behaviors were observed, depending on s, from
ordinary Brownian motion for s = 1 to glassy behavior for
s < 0.5, atime glass for 0 < s < 0.1, and a marginal glass for
s = 0. Our Letter extends the use of fractional derivatives to
the realm of subdiffusion by linking the formalism to the de-
scription of the Gardner transition. We identified a new regime
between the Gardner phase and the usual glass and showed
that it is a realization of the long sought time glass. Further
extensions of this model using the techniques applied to the
fractional Langevin equation with colored noise [47—49] are
anticipated.
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