
The Journal of Systems & Software 178 (2021) 110970

M
a

b

c

c
e
s
t
b
W
s
o
e
h
d

✩

N

m
s

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

In practice

An empirical characterization of event sourced systems and their
schema evolution— Lessons from industry✩,✩✩

ichiel Overeem a,b,∗, Marten Spoor a, Slinger Jansen b,c, Sjaak Brinkkemper b

AFAS Software, Inspiratielaan 1, Leusden, The Netherlands
Utrecht University, Princetonplein 5, Utrecht, The Netherlands
School of Engineering Science, LUT University, Finland

a r t i c l e i n f o

Article history:
Received 7 March 2020
Received in revised form 1 February 2021
Accepted 1 April 2021
Available online 9 April 2021

Keywords:
Event sourcing
CQRS
Event-driven architecture
Schema evolution
Software architecture patterns
Grounded theory

a b s t r a c t

Event sourced systems are increasing in popularity because they are reliable, flexible, and scalable. In
this article, we point a microscope at a software architecture pattern that is rapidly gaining popularity
in industry, but has not received as much attention from the scientific community. We do so through
constructivist grounded theory, which proves a suitable qualitative method for extracting architectural
knowledge from practitioners.

Based on the discussion of 19 event sourced systems we explore the rationale for and the context
of the event sourcing pattern. A description of the pattern itself and its relation to other patterns
as discussed with practitioners is given. The description itself is grounded in the experience of 25
engineers, making it a reliable source for both new practitioners and scientists. We identify five
challenges that practitioners experience: event system evolution, the steep learning curve, lack of
available technology, rebuilding projections, and data privacy. For the first challenge of event system
evolution, we uncover five tactics and solutions that support practitioners in their design choices
when developing evolving event sourced systems: versioned events, weak schema, upcasting, in-place
transformation, and copy-and-transform.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Software systems are increasing in complexity, used in in-
reasingly critical processes, and serve increasing numbers of
nd-users. Architectural patterns enable engineers to built these
ystems using knowledge acquired by other engineers. Influen-
ial books such as Patterns of Enterprise Application Architecture
y Fowler (2002) and Enterprise Integration Patterns by Hohpe and
oolf (2004) demonstrate the impact of pattern descriptions on

oftware engineering. Architectural patterns are part of the trend
f knowledge based architecture design; Li et al. (2013). Kassab
t al. (2018), Taibi et al. (2018), and Harrison et al. (2007) show
ow patterns are instrumental in the capturing of architectural
esign decisions. In this article, we describe such a pattern in

✩ This research was supported by the NWO AMUSE project (628.006.001):
a collaboration between Vrije Universiteit Amsterdam, Utrecht University, and
AFAS Software in the Netherlands.

✩ Editor: Marcos Kalinowski.
∗ Corresponding author at: AFAS Software, Inspiratielaan 1, Leusden, The
etherlands.

E-mail addresses: michiel.overeem@afas.nl (M. Overeem),
arten.spoor@afas.nl (M. Spoor), slinger.jansen@uu.nl (S. Jansen),
.brinkkemper@uu.nl (S. Brinkkemper).
ttps://doi.org/10.1016/j.jss.2021.110970
164-1212/© 2021 The Author(s). Published by Elsevier Inc. This is an open access a
detail and provide the design decisions that were employed in
practice, with the goal of providing a comprehensive source of
knowledge for practitioners.

Recently, the event sourcing pattern has become a popular
answer to the challenges of complex, mission-critical, scalable
systems. Examples of organizations that apply event sourcing are
Netflix (Avery and Reta, 2017), and Walmart’s Jet.com (Gorodin-
ski, 2017), with the goal of creating scalable and reliable critical
systems. Event sourcing is informally described by Fowler (2005)
as a pattern that ‘‘ensures that all changes to application state are
stored as a sequence of events’’. Flexibility, debug-ability, and re-
liability are given by Avery and Reta (2017) as rationale for using
event sourcing. Debski et al. (2017) and Erb and Hauck (2016)
show how event sourcing can be applied to achieve scalable,
reactive systems. Kabbedijk et al. (2012) describes event sourcing
as a sub pattern of Command Query Responsibility Segregation
(CQRS) in his work on the improved variability and scalability of
systems applying CQRS.

The events in event sourcing, as opposed to general event-
driven architectures (EDAs) (Fowler, 2017), are stored as an
append-only log of all state changes. Two key characteristics
separate event sourcing from event-driven approaches, such as
stream processing, transactional processing, and blockchain. First,

events in Event Sourced Systems (ESSs) are stored as the state of

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2021.110970
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2021.110970&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:michiel.overeem@afas.nl
mailto:marten.spoor@afas.nl
mailto:slinger.jansen@uu.nl
mailto:s.brinkkemper@uu.nl
https://doi.org/10.1016/j.jss.2021.110970
http://creativecommons.org/licenses/by/4.0/


M. Overeem, M. Spoor, S. Jansen et al. The Journal of Systems & Software 178 (2021) 110970

t
w
s
o
s
D
a
(

he application. Other approaches use the events to communicate,
hile the communication aspect comes second in ESSs. The
econd difference is that events are closely related to events
ccurring in real world business processes. This allows event
ourcing to be also used as a design approach. Domain-Driven
esign (DDD), as described by Evans (2003), advocates events as
design tool for the process flow of a software system. Brandolini
2018) proposes event storming (analogous to brainstorming), a
group design process that focuses on the events that take place in
a software system. Further details on these analogous approaches
are found in Section 3.

Although event sourcing is related to existing ideas such as
EDAs, the pattern itself has not yet been thoroughly studied. Most
knowledge exists in so-called ‘grey literature’: practitioner blogs,
and anecdotal experience reports. In previous work (Overeem
et al., 2017), that focused on the evolution of ESSs, we experi-
enced this lack of literature. This work fills this gap by deriving an
integral description of event sourced systems through interviews
with 25 engineers. Together with this description we identify
four categories of rationale for the application of event sourcing,
such as a decrease of complexity. In this ‘‘In Practice’’ submission,
we also identify five engineering challenges around the pattern,
with schema evolution being one of the most complex challenges.
With the pattern description and its liabilities presented in this
article, we enable engineers to make a considered choice. Our
work is not dissimilar to the work of Musil et al. (2015), who
conducted an extensive study on collective intelligence system
pattern variations, with the goal of enabling architects to pre-
dict the outcomes of different design decisions. Similarly, Slotos
(2016) describes the Star pattern for enabling flexible business
applications, also with the goal of supporting software archi-
tecture researchers and practitioners and promoting the pattern
itself.

Our study regards a new research area, therefore, we apply
Grounded Theory (GT). Adolph et al. (2011) describe GT as a use-
ful approach for research in areas that have not previously been
studied. A GT explains how people resolve their main concern
by employing a certain process. That process is called the ‘core
category’ of the GT. The core category of the work presented in
this article is the process of designing and implementing event
sourced systems, as performed by software engineers. The the-
oretical definition of event sourcing helps both researchers and
practitioners to understand, reason about, and teach the pattern
and its consequences. Section 2 explains how we applied GT to
form a basis for conceptualization of ESSs from 25 interviews, and
how the three essential elements are covered. From the gathered
data we distill the pattern description and its consequences. This
work has the following contributions:

• Section 3 contrasts ESSs with other existing architectural
patterns, such as EDAs and blockchain, and shows that ESSs
are insufficiently described in existing literature.

• Section 4 describes the rationale for using ESSs: they provide
audit functionality, are highly flexible and scalable, enable
the development of highly complex systems, and are a cur-
rent trend. The overview of 19 different ESSs elaborates
on the context of the pattern, showing that event sourc-
ing is applied in different kinds of systems, from small to
extremely large.

• Section 5 provides a thorough description of ESSs based on
the findings of the interviews, presenting the pattern itself
including its relation to CQRS. It also reflects on the role of
the (implicit) schema present in ESSs.

• Section 6 presents the engineering challenges surrounding
the use of the pattern, that engineers encounter during the
development of ESSs, such as a steep learning curve, poor
ESSs performance, and dealing with privacy regulations such

as the General Data Protection Regulation (GDPR).

2

• Section 7 focuses on of the most prominent challenge en-
countered in ESSs: schema evolution. Five empirically es-
tablished methods are presented that support ESS evolution.
We advise that systems should start out using versioned
events and weak schema, while later evolving to upcasting
and even copy-and-transform techniques.

The validity threats of this work, such as the fact that the inter-
viewees were pragmatically collected, are discussed in Section 9.
We conclude that ESSs enable complex scalable systems with
auditing capabilities and that our theoretical definition enables
further research and development of these systems.

2. Research approach: Constructivist grounded theory

In our early literature search, we identified that there is lit-
tle academic material available when it comes to the topic of
event sourcing. Grounded Theory (GT) is defined as a system-
atic methodology involving the construction of theories through
methodical gathering and analysis of data. Adolph et al. (2011)
explain how GT is particularly useful for research in areas that
have not been studied before. Our investigation of ESSs has an
exploratory nature, therefore, we use GT to structure our re-
search approach. Furthermore, we aim to inspire researchers
to experiment with novel approaches to gathering architecture
knowledge.

GT is a common research strategy in software engineering
research and induces theory from empirically collected material,
such as through interview or case studies. For instance, Hoda et al.
(2012) explore the practices of self-organizing agile teams using
GT. Greiler et al. (2012) apply GT to improve the understanding
of testing practices for plug-in systems. Tamburri and Kazman
(2018) recover software architectures by applying GT. Last, San-
tos et al. (2019) study common vulnerabilities in plug-and-play
architectures through GT.

Similarly, we use GT to explore event sourcing, and improve
our understanding of the pattern, the applications, and the chal-
lenges. Constructivist GT assumes that neither data nor theories
are discovered, but are constructed by the researchers out of
the interactions with the field and its participants. Data are co-
constructed by researchers and participants, and colored by the
researchers’ perspectives, and values. Within this approach, a
literature review is used in a constructive and data-sensitive
way without forcing it on data. We have employed constructivist
GT (Charmaz, 1996) in our research; we knew we would find
a description of the pattern, but were not aware what other
concepts, challenges, and motivations would be identified.

2.1. Research questions and motivation

The motivation of our research is formed by five years ex-
perience in the development of an event sourced system and
earlier research on schema evolution in ESSs (Overeem et al.,
2017). This experience guided our research and the direction of
our exploration. Effectively, our previous work is also part of the
GT data set, and has been translated directly into the research
protocol. The main goal of the research project was to come to a
cohesive theory around the event sourcing architecture pattern.
The research questions guided the research and were formulated,
as per constructivist GT, a priori, but evolved to the following final
set:

RQ1 What types of systems apply event sourcing and why?

RQ2 How can event sourced systems be defined?
RQ3 How can event sourced data structures be evolved?



M. Overeem, M. Spoor, S. Jansen et al. The Journal of Systems & Software 178 (2021) 110970

R

g
i
e
w
i
c

Q4 What are the challenges faced by practitioners in applying
event sourcing?

Our previous study in the domain (Overeem et al., 2017)
ained significant industry interest, which led us to attend many
ndustry events, where we were often invited as keynote speak-
rs. This provided us extensive access to practitioners in the field,
ho would offer their support and advice. Through these rich

nteractions it became obvious that an extensive interview study
ould lead to new results and research challenges in the domain.
Foundations for the study. While in GT it is recommended

that the researchers do not perform an extensive literature study
before the research project, many have acknowledged that this
is almost impossible and at times even impractical (Stol et al.,
2015; Charmaz, 1996). As little academic literature was avail-
able, it was easy to fulfill this major GT guideline. This research
project was started after we had already published in this do-
main (Overeem et al., 2017) ourselves. We made our previous
work part of the initial data set and also included the works of
Fowler, e.g. Fowler (2017). The main concepts were extracted
from these works and subsequently used to create an interview
protocol. Throughout the project, as we gathered new evidence
and encountered new concepts, we performed exploratory liter-
ature study projects for each. Furthermore, if the interviewees
mentioned an academic paper, it became part of our literature set.
New concepts were extracted from this literature and integrated
with the interview protocol where necessary. The literature was
explored by snowballing forward and backward one level.

2.2. Sampling and interviewees

The interviewed engineers volunteered to contribute to our
research after being invited through different channels. Based on
our experience in developing ESSs in the past years we iden-
tified the primary locations through which the event sourcing
and DDD community communicates. We invited the engineers
through channels such as Google Groups and Slack channels.
In addition to this open invitation, we explicitly contacted and
invited a number of well known community members. We exe-
cuted interview snowballing, a process similar to snowballing in
systematic literature studies (Wohlin, 2014): we explicitly asked
every interviewee for further references. The interviewees were
not compensated for their cooperation.

Our direct and indirect invitations resulted in interviews with
25 engineers. The engineers are event sourcing practitioners in
the roles of developers, architects, and product owners. A number
of these engineers were consulting with the company, while
others were employed by the company. The consultants operate
as external advisers (in addition to being hired as developer or
architect) and are hired by multiple companies because of their
experience. Table 1 summarizes the engineers, including their
role, years of experience with ESSs, the number of ESSs they
worked on. Combined they have 103 years of experience, with
an average of four years per engineer. For two of the engineers
(E14, E16) it is hard to tell how many systems they worked on
over the years, because their consultancy work exposed them to
many different systems. A number of the engineers worked on the
same system(s), and were interviewed together. We conducted
22 distinct interviews with the 25 engineers. Three interviews
were conducted with two engineers together as these engineers
worked on the same system. In the case of E4 and E5, and E20
and E21 the engineers had a different role, and their experiences
complemented each other during the interview. Engineers E9 and
E10 shared their role, and their answers showed more overlap.
The systems are discussed in Section 4. We will refer to the
engineers by the number given to them in Table 1.
3

Table 1
Summary of the interviewed engineers. We list roles (all technical except one),
location, years of experience with ESSs and number of ESSs worked on.

Role Location Experience
(years)

Nr ESSs

E1 Architect, Developer North America 4 3
E2 Developer Europe 2 1
E3 Developer North America 2 1
E4 Architect Europe 2 1
E5 Developer Europe 2 1
E6 Architect, Developer Asia 15 3
E7 Architect, Developer Europe 4 3
E8 Consulting Developer Europe 2 1
E9 Consulting Developer Europe 3 2
E10 Consulting Developer Europe 3 2
E11 Architect, Developer North America 9 3
E12 Developer Europe 3 1
E13 Developer Europe 2 1
E14 Consulting Architect Europe 10 multi
E15 Developer Europe 1 1
E16 Consulting Architect,

Developer
Europe 7 multi

E17 Architect Europe 2 1
E18 Architect Europe 2 1
E19 Architect North America 3 1
E20 Product Manager Europe 2 1
E21 Architect Europe 2 1
E22 Architect Asia 5 1
E23 Architect Europe 9 1
E24 Architect Asia 5 3
E25 Developer Europe 2 1

2.3. Interview techniques and GT

Each interview took 30-90 min, either in person or via video
conference. The protocol presented in Appendix was created us-
ing the guidelines of Castillo-Montoya (2016). During the inter-
views, we asked open-ended questions exploring event sourced
systems. The questions asked during the interviews were based
on a protocol that is downloadable with the interview tran-
scripts (Overeem et al., 2021).

The protocol was followed freely: the answers given by the en-
gineers guided the interviews. The four protocol parts remained
stable over the interviews. Some of the interview questions were
sharpened and added as the interviews progressed, a technique
encouraged by practitioners of GT. The protocol used at the last
interview is presented in the appendix. The first part of the
interview focuses on the context of the event sourced system
and the engineer: what are the characteristics of the system,
and why is event sourcing applied. Versioning of event sourced
systems is discussed in the second part of the interviews, based
on our experience in this topic we identified this as an important
challenge. The third part deals with the relation of event sourcing
with CQRS, DDD, and other challenges. Finally, we discuss what-
ever the engineers thinks should be discussed in relation to event
sourcing.

2.4. Coding, analysis, and creativity

Each interview transcript was analyzed, as part of the GT
approach, through an open coding process. The interviews were
conducted by the first author, the transcripts were reviewed
by another author after creation. The first and second author
performed the codification and categorization, while the third
author validated and confirmed the steps. The authors maintained
a sharedmemo-ing document where ideas and emerging concepts
were noted for discussion with all co-authors. Disagreements in
the codification and categorization were resolved through dis-
cussions among the authors until agreement was found, while



M. Overeem, M. Spoor, S. Jansen et al. The Journal of Systems & Software 178 (2021) 110970

o
d

c
t
‘
.
w
M
a
a
t
b
t
s
a

p
l
s
s
s
t
e
t
p
s

t
f
t
o
c
b
d
a
t
d
o
s
e
t
p
f
a
c
S

t
a

3

a
D
V
o
a
c
t
t
e
r

a
s

f
d
b
a
s
e
r
i
E
p
i
r
r

m
s
w
a
a

c
(
o
a
s
b
E
t
C
a
a
t
c
p
l
(
t
d

t
s
b
c
h
a
l
E
H
b

4

o
t
c
1
T
r
t
n
i
c

b

lder versions of concepts were maintained in the memo-ing
ocument. The coding process was both organic and methodical.
We provide an example of the coding process. One of the

oncepts that was discussed extensively was that of auditing and
he ability to have a change log for all events in the system. E2: it
‘has saved the finger of blame from pointing at us so many times
. . that bit is worth its weight in gold to me’’. E4, translated: ‘‘I
ould save the old version forever . . . for if we end up in court’’.
any of the interviewees put equal emphasis of the role of the
udit log. The paragraphs from the transcripts mentioning the
udit log were first coded and linked to the concept audit. From
hose codes audit emerged as one of the prevalent rationales
ehind the pattern. After further grouping the statements linked
o audit we added more detailed codes, particularly addressing
pecializations of this rationale such as customer service support
nd regulations.
This example explains how we started with highlighting im-

ortant paragraphs and sentences in the transcripts. Those high-
ights were coded with short summary sentences. After that the
entences were grouped by linking them to codes: topics de-
cribed by a few words. From those codes we derived concepts,
uch as the before mentioned audit, which was later related to
he category rationale. During this process we iterated until we
nded with simplified categories and concepts (also known as
he parsimony principle) that reflected the linked paragraphs. This
rocess was iterative and organically executed until the first and
econd authors agreed on the categories and concepts.
While we cannot claim that saturation was reached, this ar-

icle is a presentation of the coherent concepts that emerged
rom the research. The nature of our study is exploratory and
he research questions are broad on purpose. To reach saturation
n such a large topic one would have to conduct, transcribe, and
odify an impractical number of interviews. Although saturation
ased on the codes and concepts was not reached, we are confi-
ent that the results we present represent the overall sentiment
mong practitioners. While we always had the concepts of how
o present an architecture pattern in the back of our minds, we
ecided to structure the presentation according to the results
f the GT concepts and codes. The guidelines as, for instance,
tated by Gamma et al. (1995) on describing a pattern through the
lements problem, solution, and consequences were used during
he memo sorting process to match our concepts, but not as a
redefined framework in which our concepts were painstakingly
ramed. Section 8 discusses the relation between our concepts
nd the guidelines of Gamma et al. (1995). The categories, con-
epts, and codes found during the interviews are presented in
ections 4–7. Tables 2–7 summarizes the results.
The interview protocol, the anonymized transcripts of the in-

erviews, and the classification codes with links to the interviews
re made available as data package (Overeem et al., 2021).

. Background

The foundational idea of event sourcing is the domain event
s described by Evans (2015). His seminal book on Domain-
riven Design (DDD), however, does not mention the pattern.
ernon (2013) describes event sourcing only briefly in his book
n the implementation of various DDD patterns. Young (2017),
s one of the original proposers of event sourcing, discusses the
hallenge of versioning ESSs. Event sourcing is also discussed in
he context of CQRS (Young, 2010), a pattern strongly related
o event sourcing. Recent academic literature (Erb, 2019; Zhong
t al., 2019) shows an interest in applying event sourcing for
esearch projects.

Three related areas and their differences with respect to ESSs
re discussed: transactional processing and database systems,
tream processing and EDAs, and blockchain.
4

Event sourcing is related to database systems techniques used
or persistence guarantees and replication. Gray and Reuter (1992)
escribe how transaction logs can be used to replicate state
etween database systems. Every state change is recorded as
transaction, which is similar to event sourcing where every

tate change is recorded as an event. Kleppmann (2017) discusses
vent sourcing in the context of data-intensive applications, he
elates the pattern to the change data capture approach, often used
n Extract-Transform-Load (or ETL) processes (Vassiliadis, 2009).
TL solutions are often used for creating data warehouses. The
rimary difference between event sourcing and these techniques
s that a transaction or a data change is a technical entity without
elation to the real world, while an event in event sourcing
esembles an event in the real world.

Kleppmann also relates event sourcing to the chronical data
odel described by Jagadish et al. (1995), Time series, as de-
cribed by Dreyer et al. (1994), is another data model that deals
ith the temporal aspects of data. Both techniques are only used
s a data modeling technique, while event sourcing is a software
rchitecture pattern.
Event sourcing also shares commonalities with stream pro-

essing (Wu et al., 2006), applied in for instance Internet of Things
IoT) systems to process sensor events. Events in IoT systems are
ften used to communicate between different (sub)-systems, and
re not stored as the state of the system. Also, the events repre-
ent technical events such as sensor data as opposed to real world
usiness domain events. Another closely related topic is Complex
vent Processing (CEP) as described by Luckham (2011). In CEP
he focus is on pattern recognition within a stream of events.
EP itself could be applied in the processing components within
n ESS, similar as the event calculus formalism. Event calculus,
s described by Sadri and Kowalski (1995), is a logical language
hat represents the effects of events. This language, however,
annot be used to describe event sourcing as an architectural
attern. Similarly, process mining deals with the analysis of event
ogs from process-driven systems. The work of de Murillas et al.
2015) shows the complexity of mining processes from systems
hat do not record historical data. ESSs support process mining by
efault, which makes them suitable for enterprise systems.
Anh et al. (2018) describes another append-only data struc-

ure: blockchain. While the data structure is similar to event
ourcing, the goals of the two techniques are different. A
lockchain focuses on solving problems related to distribution,
onsensus, and trust, while event sourcing solves problems with
istory, temporal complexity, and audit trails. The blockchain
pproach enforces the immutability of the data to solve its prob-
ems, while in event sourcing this immutability is self imposed.
vent sourced systems could be build using a blockchain solution.
owever, the distribution and consensus features offered by
lockchain do not improve the goals targeted by event sourcing.

. Event sourcing in practice

The 25 interviewed engineers have an accumulated experience
f at least 35 event sourced systems (ESSs). However, a number of
hose systems were either not yet in production, or the engineer
ould not recall enough details of the system. Of the 35 systems,
9 ESSs were discussed in more detail and are summarized in
able 2. Still, the experts experience on all of these systems is
eflected in the answers that they gave, and is thus reflected in
he challenges, the definitions, and the schema evolution tech-
iques. The categories in this characterization are based on the
nterviews, and were selected based on the categorization of the
oncepts deduced from the interviews.
Event sourcing is applied in enterprise applications, either

usiness-to-business or business-to-consumer, as illustrated by



M. Overeem, M. Spoor, S. Jansen et al. The Journal of Systems & Software 178 (2021) 110970

T
C
o

i
t
n

4

f
e
S
i
a
w
i
a

r
i

able 2
haracterization of the ESSs under study, including the technology platform, the rationale for event sourcing and the chosen degree of immutability. The application
f Domain-Driven Design (DDD), the Microservice Architecture (MSA) style, and Command Query Responsibility Segregation (CQRS) is also indicated.
System Code Engineers Type of application Technology platform Rationale Degree of

immutability
DDD MSA CQRS

MarketingSys E22 Marketing automation .NET, DynamoDB audit strict ✓ ✓ ✓

HealthSys E23 Health record management JVM, MySQL audit, flexibility cut-off
moments

✓ ✓

WebBuildSys E24 Website building Scala, MySQL audit strict ✓ ✓

B2CSys E1 B2C communication JVM, MongoDB flexibility strict ✓

EmailSys E2 E-mail template management .NET, MSSQL audit strict ✓ ✓

LendingSys E3 Micro-lending Ruby flexibility mutable ✓ ✓

ObjectSys E4, E5 Object registration JVM, Oracle audit, flexibility strict ✓ ✓

VideoSys E6 Streaming video JVM, EventStore, Neo4J flexibility mutable ✓ ✓ ✓

CMSys E7 Content management PHP, CouchDB, PostgreSql complexity mutable ✓ ✓

PaymentSys E9, E10 Payment processing JVM, Groovy, MongoDB, MySQL trending mutable ✓

ApproveSys E13 Approval processing .NET, RavenDB complexity mutable ✓ ✓

MeetSys E15 Appointment management .NET flexibility, complexity mutable ✓ ✓

ProjectSys E17 Project administration .NET, RavenDB, PostgreSql audit, flexibility cut-off
moments

✓ ✓

IdentitySys E20, E21 Identity management PHP, MariaDB audit, flexibility strict ✓ ✓

P-PaySys E25 Payment platform Golang, PostgreSql trending, flexibility strict ✓ ✓ ✓

DocumentSys E19 Document automation .NET, MongoDB audit, flexibility cut-off
moments

✓ ✓ ✓

Advert1Sys E8 Classified advertising JVM, MongoDB audit, flexibility mutable ✓ ✓

Advert2Sys E12 Classified advertising .NET, MSSQL trending strict ✓ ✓ ✓

InventorySys E11 Inventory management .NET, LMDB flexibility, complexity mutable ✓ ✓ ✓
Table 3
The rationales given by the engineers, categorized in four concepts: audit,
complexity, flexibility, and trend.
Concepts Codes

Audit Regulations (E4, E5, E14, E17, E19, E20, E21);
Customer service support (E2, E4, E5, E7, E8, E9, E10, E12,
E17, E18, E22, E23);
Explanation (E14, E23, E24)

Complexity Decoupling (E2, E11, E13, E16);
Distribution (E1, E3, E6, E12, E13);
Temporal logic (E2, E3, E13, E15, E16, E18, E24);
Process versus data (E4, E5, E7, E8, E9, E10)

Flexibility Multiple views on data (E3, E6, E7, E8, E14, E15, E17, E19,
E20, E21, E23, E25);
Data is not discarded (E11, E24);
Data replication (E1, E4, E5, E6, E24);
Scalability (E2, E4, E5, E11)

Trend Experiment (E2, E12, E14, E25);
Learn (E1, E9, E10, E25)

the interviews. We did not encounter systems using event sourc-
ing for IoT systems, or other stream processing systems. This is
in accordance with the community from which event sourcing
originated, which focuses on enterprise applications.

The systems overview shows that the event sourcing pattern
s not tied to a particular technology stack. This diversity in
echnology confirms that event sourcing is indeed a pattern, and
ot a technology.

.1. Rationale for ESSs

The reasons for applying event sourcing can be grouped into
our categories. Remarkably, all systems under study benefit from
vent sourcing, and no system returned to a current state model.
till, most engineers state that they would not apply event sourc-
ng in every system. The reason given for this opinion is the
dded complexity of introducing event sourcing. Engineer E2
ould apply event sourcing by default, because of the benefits

t gives. The different rationales as discussed with the engineers
re summarized in Table 3.
One of the main benefits of applying event sourcing is the

etention of all state changes. According to E24, event sourc-
ng prevents prematurely data deletion: ‘‘as a software developer
5

building a data-driven system and you are modifying data, you are
essentially destroying your older copy of the data. And who told you
are allowed to delete data?’’ We classified this group of rationale
with the category audit (Van Der Aalst et al., 2010) (9/19 sys-
tems). Compliance with regulations (such as system ProjectSys) is
one of the reasons in this category. Improving customer support
(ProjectSys, Advert1Sys) is another reason. In those systems the
state changes are used to explain the system and its behavior to
customers. Finally, simply explaining why and by whom data is
changed (in debug scenarios for instance) is given as reason too
(EmailSys).

The second category is flexibility (Lassing et al., 1999) (12/19
systems). These systems chose event sourcing (and CQRS), be-
cause of the flexibility it provides in the architecture of the
system. Examples of this flexibility are the creation of secondary
indexes for search (VideoSys), building and refreshing caches
(B2CSys), replacing event queues (MarketingSys, WebBuildSys,
LendingSys), and scaling out to multiple read databases
(VideoSys). Section 5 explains how this flexibility is achieved
through the implementation of different projections and projec-
tors.

The third category is complexity (Biemans et al., 2001) (4/19
systems). These applications were considered to contain complex
business logic, heavily process driven instead of data driven.
Therefore, the architects designed the system as an event-driven
system, starting out with the modeling of processes instead of
data.

The final category, and only the rationale for three of the
19 systems, is trending (Clements, 1997) (3/19 systems). The
systems PaymentSys, P-PaySys and Advert2Sys started with event
sourcing, because the (lead) architects picked up on a trend.
They were curious to the details of the pattern, and started to
implement it in the new system. In hindsight, the systems did
benefit from this decision, although E9, E10, and E12 ascribe this
to luck, and not to the design practices.

4.2. Characteristics of event sourced systems

The core category of the GT process is the process of designing
and implementing event sourced systems, as performed by software
engineers. As we needed to make sure that event sourced sys-
tems are not a technology but a technology agnostic pattern, we



M. Overeem, M. Spoor, S. Jansen et al. The Journal of Systems & Software 178 (2021) 110970

w
p
s
a
k
a
a
p
a
s
a
a

i
s
s
e
o
s
t
m
c
o
c
t
s
k
a
s
8
t
a
a
e
i
a
o

a
a

anted to assure the types of applications and the technology
latforms used to realize the implemented systems. Three dimen-
ions, the size of the event store, the workload handled by the
pplication, and the size of the schema, are listed to indicate what
ind of systems benefit from event sourcing. These dimensions
ssure that event sourcing is not biased towards systems of
certain size. Three related topics emerged during the coding
rocess: DDD as software design approach, CQRS being a related
rchitecture pattern, and the Microservice Architecture (MSA)
tyle. Together with the degree of immutability and the type of
pplication, these different aspects from the characteristics that
re listed in Table 2.
Event sourcing is a pattern that stores every state change,

mmutability is thus at the core of the pattern. Helland (2015)
tates that immutability of data is a crucial aspect for distributed
ystems. Although often seen as the defining characteristic of
vent sourcing, immutability is not enforced in any manner, as
pposed to a blockchain. In a number of the systems under
tudy, immutability is sacrificed for a simpler schema evolution
echnique (see Section 7). We observed different degrees of im-
utability. The first degree is strict, 8 out of the 19 ESSs never
hange an event. The second degree of immutability is used by 3
ut of 19 systems, which allow for cut-off moments. In such a
ut-off moment, the event store is changed, but back-ups guaran-
ee that no information is deleted. The goal of these back-ups is to
atisfy regulations or service-level agreements, therefore, they are
ept around forever. This degree of immutability still guarantees
n audit trail, because the back-ups can be used to retrieve all the
tate changes. The last degree level of immutability is mutable,
out of 19 systems allow events to change. In these systems,

he event store is changed on some occasions, and the back-ups
re not kept forever. These systems do not satisfy the goal of
complete audit trail. However, the events can still be used to
xplain how the current state was reached. None of the ESSs lose
nformation regarding the current state of a system. Events that
re changed, or transformed, are in most cases changed because
f technical reasons.
In 14 of the 19 ESSs under study DDD is used as the design

pproach. DDD is an approach to software development that aims
t tackling complexity in the heart of software (as the subtitle

of the seminal book by Evans (2003) states). DDD focuses on
the explicit modeling of the domain, including its boundaries
and events. However, only four of the 25 engineers argue that
DDD is a prerequisite for event sourcing. Although the other
engineers do not see DDD as a prerequisite, without a doubt DDD
inspired the design of many ESSs. Events, as expressed by E11,
‘‘should represent real world business events’’. This is different from
transactional processing, or stream processing. In those systems
events can have a more technical nature. An ESS that contains
events not representing real world business domain events will
undergo more changes to the software according to E11. E11
explains: ‘‘You align the events with real world events, so you are
dealing with changes that have a native equivalence. Doing DDD
leads to a less fragile design’’. For E16, the understanding of the
domain is a prerequisite for doing event sourcing: ‘‘A high level of
maturity of the domain knowledge is a prerequisite. When the do-
main knowledge is still evolving, applying event sourcing introduces
more risk’’.

CQRS is a closely related pattern that also originated from
the community around the DDD approach (the pattern itself will
be explained in more detail in Section 5). Although engineer
E14 has seen a few solutions that apply CQRS without event
sourcing, they are almost always used together. All of the systems
that we discussed with the engineers applied both CQRS and
event sourcing. The interviews give no explanation for this co-

appearance. A possible explanation, based on the experience of

6

the authors, could be the fact that they are often ‘advertised’
together in the community.

Also closely related to event sourcing is the MSA (Dragoni
et al., 2017) style. Similar to DDD, the MSA style also attacks
the complexity of large software systems. This is confirmed by
8 of the 19 systems that were discussed in the interviews. They
implement microservices to break up a large application and
control complexity by spreading the business logic over these ser-
vices. We observed two approaches in the systems that combine
MSA and event sourcing. The first approach uses event sourcing
as an implementation detail of the microservices. In the second
approach, the events are not only used to store state changes, the
event store is also used to communicate these events between
microservices.

Unfortunately, the experts could not uniformly report on event
store size, traffic, and schema size of the characterized ESSs. Some
of them could not disclose these details due to commercial rea-
sons, while others no longer had access to the discussed system.
Table 4 summarizes the details that were reported per discussed
system. The systems have a size ranging from smaller than three
gigabytes, up to 250 GB (or more than a billion events). Eleven
systems (including HealthSys that reports a growth rate of 4
million events per day) have more than a million events in the
store, representing more than half of the systems. Two systems
(WebBuildSys and InventorySys) even report sizes over a billion
events. Advert2Sys shows a small event store size, but that is due
to the active pruning that they do. The growth of 4 million events
per day shows that the total number of events is much higher
than the reported five million. The growth rate of the systems
shows that a number of systems report a growth that passes the
million events per day (HealthSys, Advert2Sys, and InventorySys),
but most show a number far less than a million new events per
day. The schema sizes shows that none of the reported systems
passes the 500 event types, but is rather spread out between 20
and 450 types. Overall, Table 4 shows a wide variety of event
store sizes, handled traffic, and event store schema sizes. Systems
VideoSys, PaymentSys, ApproveSys, and InventorySys show that
ESSs are not only used for small business domains. And the event
store size shows that event sourcing can be used for both small
and large systems.

5. Event stores and event sourced systems

This section defines key concepts and operations in an event
sourced system (ESS). These definitions are based on our expe-
rience building ESSs, and confirmed by the interviews that were
conducted. They are used to conceptualize event sourcing and the
identified challenges. When coding the interviews, different char-
acteristics and variability of the concepts and operations were
identified, which are described in this section. These concepts and
operations should be used in discussing, and teaching ESSs.

5.1. The event store

We propose the following definitions for the concepts and op-
erations related to an event store. First the concepts are defined,
starting with events all the way up to the store. After that the
operations on the event store are given.

Event. An event is a discrete data object specified in domain terms
that represents a state change in an ESS.

An example of an event from the Netflix case (Avery and Reta,
2017) that represents a real world business event is given in JSON
format:



M. Overeem, M. Spoor, S. Jansen et al. The Journal of Systems & Software 178 (2021) 110970

T
T

b

e
d
f
p
M
e
o
s

E
n
t

E
c

s

T
w

s
T
c
e
o
t

E
f

able 4
he size and growth of the event store and the schema size of the ESSs under study, as reported by the experts. Empty cells represent unknown data points.
System Code Event store size Growth of the store Schema size

MarketingSys ⩾ 50,000,000 events 10,000 events per day
HealthSys 4,000,000 events per day
WebBuildSys More than 100,000,000 active sites, every site owns hundreds or

maybe even thousands of events
A single event stream type
per site

B2CSys ⩽ 5 gigabyte 50 event types
EmailSys ‘‘It is probably approaching the half a million events mark by now’’ ⩽ 50 or 60 events per day
LendingSys ‘‘We processed I think half a million account transactions’’ 6 microservices
ObjectSys 200,000,000 events 50 event types
VideoSys 7,000,000 events 400 event types
CMSys ⩽ 3 gigabyte
PaymentSys 5,000,000 events 300 event types
ApproveSys 1,000,000 events 100,000 events per 2 months 300 event types
MeetSys 100,000 events 1,000 events per day 20 event types
ProjectSys 10 events per minute
IdentitySys 50,000 events 20–30 event types
P-PaySys ‘‘I do not think our scale is particularly high’’ 20–30 stream types
DocumentSys 5,000,000 events 1,000,000 events per month. 100 event types
Advert1Sys 50,000,000 events 60,000 events per day 115 event types.
Advert2Sys 5,000,000 events (active event store) 1,000,000 events per day 50 event types
InventorySys 1,100,000,000 (250 gigabyte) 77,000,000 events per month 450 event types
E
e
e

f

t
d
o
s
a

5

t
T
t
i

i
c
r
t

P
s
T
r
i

T
c
e

{ "LicenseCreated": {
"customerId": "BlackMirror",
"titleId": "TheNationalAnthemS01E01",
"date": "2014-01-06" } }

The importance of the relation to the business domain is stated
y E5: ‘‘business analysts are telling us what the events should

be’’. E11 adds ‘‘you capture business changes as a flow of events,
you align these events with real world events’’. A more general
definition is given by Michelson (2006): ‘‘a notable thing that
happens’’. It lacks the relation to the business domain as it is used
for event-driven architectures in general. The data in the events
can be stored in different formats such as JSON, XML, AVRO (The
Apache Software Foundation, 2019), or Protobuf (Google Inc.,
2019). Events are stored in a sequence, in event streams.

Both E14 and E25 do see a distinction between internal and
xternal events. Internal events are fine-grained and contain more
etail, while external events are more coarse grained and meant
or other systems to communicate. Through this distinction it is
ossible to hide internal business logic from external consumers.
ultiple engineers (E12, E14, E16, E17, and E22) also acknowl-
dge the usefulness of state propagation through events. Instead
f events that mark a business event, events can also be used to
imply propagate the state of an object.

vent sequence. Every event is stored together with a sequence
umber. Its sequence number represents the position of the event in
he stream.

vent stream. An event stream s is a sequence of tuples, each tuple
ontaining an event and its sequence number

= ⟨(e1, 1), (e2, 2), . . . , (en, n)⟩

he sequence numbers are consecutive natural numbers, starting
ith the number 1.

The sequence numbers are not handed out by the event
tream, but are supplied by the producer of the new events.
he event stream does validate if the sequence numbers are
onsecutive natural numbers. E3 explains how this is used by
vent subscribers: ‘‘you get this monotonically increasing sequence
f events that you can use to record your position’’. The streams
ogether are stored in the event store.

vent store. An event store is a set of event streams. These streams
orm the partitions of the event store, and are disjoint.
 g

7

The event store has two foundational operations on event
streams: read and append. The read operation enables systems
to read an event stream from a given sequence number. Events
are appended to the event stream with the operation append.
20 explains how append is the only operation that changes the
vent stream: ‘‘I only append new events, and never throw away old
vents’’. The append operation has an extra validation: the caller
should supply the sequence number for the new event, which is
validated and an error is returned if it is not the expected number.
Through this validation the store achieves optimistic concurrency
control. According to engineer E24, this is the strongest guarantee
that the event store should offer. A caller will first need to read
from the event stream, before append can be called. If another
caller calls append in between, the append of the first caller will
ail, because the highest sequence number has changed.

Both the read and append operation operate on single streams,
his emphasizes the fact that the streams in an event store are
isjoint. The append function can either append a single event,
r multiple events, depending on the implementation. For in-
tance Event Store (2019) implements the append function with
version that atomically appends multiple events to the stream.

.2. The event sourced system

Enterprise software applications support at least two founda-
ional use cases: storing information and retrieving information.
he event store is used to store the state changes in the sys-
em, however, the event store is not optimized for retrieving
nformation.

In ESSs the project function is central in both storing new
nformation and retrieving of information. First we define and
haracterize this project function. Second we discuss storing and
etrieving information by presenting two parameterized opera-
ions.

roject function. The project function takes one or more event
treams and creates a projection with the data from the given events.
he projection itself can take different forms, for instance it can be a
elational database is updated through SQL statements, or a search
ndex manipulated through the filesystem.

The project function operates on one or more event streams.
he event streams are disjoint, and the project function thus
annot assume an order between the events from the differ-
nt streams. While the order of events in a single stream is

uaranteed, the events from different streams have no relation.



M. Overeem, M. Spoor, S. Jansen et al. The Journal of Systems & Software 178 (2021) 110970

s
2
e
s

P
e
f
p
e

g
t
E
t
s
c
E
a
c

t
f
t
p
m
c
p

t
t
e
E
i
i
E
e
o
r
r
o

b
a
d
t
t
e
a
p
p
p
p
a

o
w
f
i
i

T
i
e
a

t
a

a
p
a

G
t
o
c
e
c
t
c

a
c
t
i
i

5

o
i
i
p
i
s

a
H
t
S
s

E
e

S
l
r
a
l
(

E
e
e
c
c
t

e
b
t
e

E
s

The projection that is built by the project function in an ESS is
imilar to the concept of projections in relational algebra (Date,
003): projections contain a selection of the data present in
vents. Projections are similar to views in a relational database: a
election and transformation of one or more database tables.

rojections. A projection π is a selection of the data stored in
vents, transformed into a specific model. The selection and trans-
ormation depends on the purpose of the projection. The data in a
rojection is transient, a projection can be rebuilt from its source
vents at any point.

Examples of different variations of projections are frequently
iven by the engineers. Engineer E6 for instance explains how
hey project the event data to both Neo4J (a graph database) and
lasticSearch (a document database). The graph database serves
he navigation through the data, while the document database
erves the search functionality. Other examples given are a spe-
ific storage technology for indexing (used by for instance by E8,
12, E23), an analysis to report abuse of accounts information,
nd a relational table with all issued licenses for downloaded
ontent.
The primary design question of the project function and its

arget projection is its purpose. The importance of the project
unction lays in its encapsulation of the variability in storage
echnology, data selection, and data model. Choices can be made
er project function, which enables a huge potential for opti-
ized projections for their purpose. The flexibility as reason for
hoosing event sourcing (Section 6) is in large part caused by the
roject function.
The project function also poses a risk for the performance of

he system, a challenge we discussed in Section 6. The time it
akes to build a projection depends on two factors: the number of
vents that are read and the time it takes to update the projection.
ngineers E11, E13, and E14 discuss their search for improved
mplementations of projectors. Quick improvements can be found
n faster storage technology, or better use of hardware. Engineer
12 explains how they prune the event stream by moving older
vents into a different stream. This pruning decreases the number
f events that the project function needs to process, making the
ebuilding faster. Engineer E14 discusses how they rather plan the
ebuilding in weekends, instead of investing developer effort for
ptimization.
The retrieval of information from the event store is done

y building a projection. Queries are answered using the data
vailable in the projection. Projectors can build the projection on-
emand, or opportunistic: the given projection is build first and
hen the specific query is answered. However, it is also possible
o pre-build the projection: the projector constantly watches the
vent streams and updates the projection whenever new events
rrive. This decision depends on the ratio between reads of the
rojection and new events being appended to the stream. If a
rojection is read infrequently, it is unnecessary to constantly
roject new events, and thus consume resources. However, if a
rojection is read frequently projecting the new event directly on
rrival improves the performance of the query.
The behavior of the projector is similar to that of the higher-

rder function fold (Hutton, 1999), a recursion operator that
orks on lists, as stated by Meißner et al. (2018). The projector

olds over the specific event streams and creates a projection. The
ntegration of functional programming and domain-driven design
s further explored by Wlaschin (2018).

Storing new information is done using the append operation.
he append operation is the only operation that is capable of stor-
ng new events in the store. However, before storing these new
vents, they have to be produced. Events in an ESS are produced
s a result of an action (the commonly used name is command)
 c

8

hat is accepted by the system. The validation, resulting in an
cceptance or rejection of the command is done by the accept

function.

Accept function. The accept function takes a projection π and
n command c. The command is validated using the data in the
rojection, and the accept function either results in an error or in
n event.

The command follows the Command pattern described by
amma et al. (1995). The system first builds a projection, and
hen validates the command using the accept function. Validation
f the command can result in either an new event or an error (in
ase of a validation error). The new event is appended to a specific
vent stream, which is selected based on properties present in the
ommand. This appended event is the new information stored in
he system. While the projection is built in order to validate the
ommand, it is only used to validate the command and is volatile.
A command can only affect a single stream, because the

ppend operation appends to a single stream. To guarantee the
onsistency of information, the system should not append events
o two streams in one request. One append might fail, leav-
ng the system in an inconsistent state. This rule increases the
mportance of the design of the schema of an event store.

.3. The schema

An event store contains no schema for the specific structure
f events. The data schema is not explicitly defined at all, but is
mplicitly encoded in the ESS. The knowledge of the data schema
nside an ESS is encoded in the source code of the accept , and
roject functions. This is similar to other systems with a so-called
mplicit schema (Fowler, 2013), such as document oriented data
torage systems.
In general, events can take any form and thus the schema

s well, therefore, we left these definitions abstract on purpose.
owever, we believe that these abstract definitions can be used
o support the discussion of schema evolution, as we show in
ection 7. This section defines event, event stream, and event
tore schemas, along with the conforms relation.

vent schema. An event schema ε describes the type and form of
vents. conforms(e, ε) holds if event e conforms to the specification ε.

An event schema could be implemented by for instance XML
chemas, or AVRO (The Apache Software Foundation, 2019). The
atter uses the schema not only for validation, but also for se-
ialization to a binary format. Two other options that can be
pplied to create a more formal event schema are domain specific
anguages (suggested by E11 and E14) and strongly typed classes
see Table 5).

vent stream schema. An event stream schema ς describes an
vent stream and the events that can occur in the stream. The
vent stream schema contains the event schemas of the events that
an occur in the stream, along with the patterns of occurrence.
onforms(s, ς ) holds if event stream s conforms to the specifica-
ion ς .

An event stream schema contains both the specification of the
vents, and the specific patterns. An example schema contains
oth the schema (or specification) of the ‘registered’ event, and
he fact that the ‘registered’ event occurs before a ‘checkout’
vent.

vent store schema. An event store schema θ describes an event
tore and the streams that are stored in the event store.

onforms(es, θ ) holds if event store es conforms to the specification θ .



M. Overeem, M. Spoor, S. Jansen et al. The Journal of Systems & Software 178 (2021) 110970

t
F
w
s
s

s

5

a
(
c
f
b
i
e
d
e
t
a

(
a
g
o
b
c
t

e
t
s
o
u
b

t
r
o
s
f
b

d
s
(
u
o
q
r
q
r
t
o
t
e
d
n

(
a
v
o

The event store schema contains more knowledge than only
he event stream schemas, similar to the event stream schema.
or instance the cohesion between streams, such as the fact that
hen a specific stream contains a certain event another stream
hould exist is also present in the event schema, can also be
pecified in the event store schema.
An explicit implementation of event stream schemas or event

tore schemas was not encountered during the interviews.

.4. Event sourced systems based on CQRS

As we have seen in Section 4, every ESS under study also
pplies CQRS. CQRS was introduced by Young (2010) and Dahan
2009), and the goal of this pattern is to separate actions that
hange data (those are called commands) from requests that ask
or data (called queries). Although event sourcing and CQRS can
e used separately, the common application of the two patterns
s worth exploring. Based on literature and the interviews an
xample architecture combining event sourcing with CQRS is
iscussed. This architecture is shown in Fig. 1. As illustrated, the
vent store schema θ is part of the ESS: the event store conforms
o it, and the command and query system encode it in their
pplication logic.
In the command system aggregates (as introduced by Evans

2003)) are used to process incoming commands (1). Commands
re routed by the commandhandler to the correct aggregate. Ag-
regates will process the commands using the accept and append
perations. First the existing events are read (2), a projection is
uilt (3), and then the accept function will be called. When the
ommand is accepted, the resulting event will be appended to
he event stream (4).

An aggregate reads a specific event stream, to which the new
vent is also appended. Often the aggregate will be the owner of
he event stream it reads and appends to. As a benefit, commands
ent to different aggregates can be processed concurrently with-
ut interfering. E6 describes a solution were multiple aggregates
se the same stream. This variation is used to share generic
ehavior among aggregates, it is mixed with more specific logic.
In the query system, projectors are used to build projections

hat can be used to return information to the sender. Queries are
outed by the queryhandler to the correct projector (5), depending
n the specific purpose of the projector (such as browsing or
earching). The projector will retrieve the requested information
rom its projection. First the events from the event streams will
e read (6), then the projection will be built (7).
While queries can be handled by building the projection on-

emand, most ESSs based on CQRS will update the projection as
oon as new events are appended. In that scenario, step (6) and
7) will be executed before (5), and the projector can immediately
se the projection to handle the query. This decision is based
n the ratio between events and queries. When there are few
ueries, and many events, pre-building the projection takes up
esources (such as storage). If the workload consists of more
ueries, building the projection ahead of time results in faster
esponse times. E24 describes a flexible approach that merges the
wo approaches in an on-demand fashion. The sequence numbers
f events are used as checkpoints and allow the projectors to
rack which events are already processed. Immutability of the
vent store is crucial for these projectors, if events or their or-
ering are mutated, the checkpoint has no value and the projector
eeds to re-read the event streams and rebuilt the projection.
Most pre-built projectors are eventually consistent. As Vogels

2009) explains, the ESS guarantees that if no new commands
re processed, eventually all queries will return the last updated
alue. However, because there is time between the acceptance
f a command and the updating of a projection, a query might
9

Table 5
The concepts and codes extracted from the interviews related to the
implementation of CQRS based ESSs.
Concepts Codes

Event Store Business events (E5, E11);
State propagation (E12, E14, E16, E17, E22);
Monotonically increasing sequence number (E3);
Append only (E1, E2, E16, E17, E20);
Optimistic concurrency control (E24);
Internal versus external (E14, E25)

Event Sourced System Projector variations (E6, E8, E12, E23);
Optimization of projecting (E11, E12, E13, E14)

Schema Domain Specific Languages (E11, E14);
Strongly typed classes (E2, E3, E4, E5, E17)

CQRS: Projections Synchronous (E2, E20, E21, E23);
Opportunistic (E24);
Independent (E16, E17)

CQRS: Aggregates Multiple on one stream (E6);
Snapshots (E2, E20, E21);
Instance versus type (E14, E25)

return an older value. The duration between (4) and (7) is the so-
called inconsistency window: the command system and the query
system do not share a consistent state. Eventual consistency was
also listed as one of the challenges in ESSs and is discussed in
Section 6.

Four engineers explain how there projectors share a database
transaction with the aggregates. This allows them to achieve
immediate consistency, because both the event as the projections
are committed in a single projection. In those systems scalabil-
ity is sacrificed for immediate consistency. This implementation
technique results in synchronous projections.

Table 5 summarizes the different concepts and codes that
were extracted from the interviews. While the definitions are
mainly based on our experience in building an ESS, we have used
the data extracted from the interviews to scope our description.
The concepts and codes discussed by the engineers determined
what specifics were described.

6. Challenges faced in applying event sourcing

A pattern description without discussing the consequences is
incomplete, and would lead engineers astray. While Section 4
discusses the positive consequences that engineers experienced,
they also discussed the negatives in the interviews. In this Section
we discus five challenges experienced by the engineers with two
goals in mind: (1) to indicate to practitioners what the limitations
of the pattern are and (2) to formulate novel research topics for
future research around the pattern. The first two challenges are
addressed in more detail by two of our contributions in Sections 5
and 7. The summary of mentioned challenges by engineers is
listed in Table 6.
How can Engineers better be Supported in Learning how to
Apply the Event Sourcing Pattern? — The most prominent cat-
egory of challenges mentioned by the engineers is in the area of
designing software. Designing ESSs is more difficult than other
systems, because of two characteristics. In the experience of thir-
teen of the 25 engineers, thinking in events and state transfers is
completely different from thinking in current state and database
transactions. Section 5 proposes a description that improves the
understanding, and support the teaching of event sourcing and
event sourced systems (ESSs).

However, an ESS introduces not only events and state trans-
fers. Eventual consistency forces developers to let go of guar-
antees that they would have in a system using current state
and synchronous processing. In a CQRS system, an update sent



M. Overeem, M. Spoor, S. Jansen et al. The Journal of Systems & Software 178 (2021) 110970

s

d
a

r
o
s
d
T
w
i
t
t
H
a
t
H
u
e
d
s
o
t
w
H
M

Fig. 1. An event sourced system based on CQRS. The event store conforms to the schema θ , which is encoded by the command and query systems. The command
ystem validates commands using the events. These same events are read by the query system to build the projections, which are used to respond to queries.
Table 6
The challenges faced by the practitioners while implementing ESSs.
Challenge Codes

How can Engineers better be Supported in Learning how to
Apply the Event Sourcing Pattern?

Eventual Consistency (E1, E2, E14, E24); Events versus state (E1, E2, E4, E5,
E6, E12, E13, E15, E16, E17, E20, E21, E23, E25); Lack of knowledge
sharing (E1, E3, E9, E10); Start is slow (E4, E5)

How can Tools, Frameworks, and Platforms be Provided to
Make the Pattern even More Successful?

Immature tools (E2, E9, E10, E17, E20, E21, E25); Frameworks not properly
maintained (E6, E19, E22); Pattern versus framework (E6, E24); Tools not
accepted by operations (E14); Frameworks hide details from developers
(E24); Frameworks help beginners (E6, E7, E13, E14, E17, E24)

How can Projections be Optimized? Rebuilding is slow (E4, E5, E8, E9, E10, E13, E20, E21, E22, E25); First
in-memory (E8, E24); Targeted rebuilds (E8, E9, E10, E16, E17, E20, E21,
E23); Rebuild versus developer time (E1, E2, E6, E7, E9, E10, E11, E13, E14,
E15, E20, E21, E22)

How can a System that Uses Event Sourcing Protect User
Privacy?

Separate events from personal information (E20, E21); Remove (E11, E23);
Anonymization (E11, E25)

How can Event Stores be Evolved? See Table 7
d
f
c
a
t
E
t
a
l
t
s
H
i
R
E

i
b
w
E
i

t
e
s
a

t
i
p

through a command will not immediately be reflected in the
result of a query. The system first needs to process the event
into one or more projections. Engineer E12 states that ‘‘a lot of
evelopers had to get used to information not being in place’’, and E2
dds that ‘‘getting people to understand eventual consistency is the

biggest hurdle’’. Eventual consistency forces developers to rethink
the basic interactions of the user with the system.

We give two examples of interactions that force developers to
ethink system design. The first example is that of the expectation
f users to retrieve data that they previously submitted into the
ystem. However, in a CQRS system, the query system might not
irectly return the data that was submitted through a command.
he user interface of the system should make it clear to the user
hat is going on, or even try to hide the fact that the system

s eventual consistent. The second example is that of developers
hat more or less have the same expectation. Often developers try
o use the result of the query to make decisions in an aggregate.
owever, the query system might not have processed all events
nd misses recent updates. If developers overlook this principle,
he decisions lead to bugs in the system.
ow can Event Stores be Evolved? — Both E13, ‘‘we dreaded the
pgrading, we had some fear in advance’’, and E22, ‘‘versioning in
vent sourced systems is a big problem’’, point out the perceived
ifficulty of upgrading ESSs. This challenge did not come as a
urprise, our earlier work Overeem et al. (2017) and the work
f Young (2017) underline this. During the interviews we iden-
ified five fundamental techniques for schema evolution in ESSs,
hich are described in Section 7.
ow can Tools, Frameworks, and Platforms be Provided to

ake the Pattern even More Successful? — Eight engineers i

10
iscuss the lack of standardized tools, such as frameworks, plat-
orms, and databases. A commonly stated opinion within the
ommunity is that you do not need frameworks to implement
n ESS. However, engineers E9, E10, E17, E20, E21 and E25 state
hat they wish to see more mature libraries and frameworks.
ngineers E6, E17, E19, and E22 mention that infrastructure and
ooling for ESSs is immature. Either the tooling does not support
broad enough set of scenarios, or the quality is lacking. How

arge the market is for specialized event sourcing tools is difficult
o say. Recently AxonIQ (2019) has started to offer commercial
upport for ESSs, similar to what Event Store (2019) does.
ow can Projections be Optimized? — Projections, as discussed
n Section 5, are used to retrieve information from the system.
ebuilding projections, however, can become a bottleneck for
SSs.
Engineers E11, E13, and E14 discuss their search for improved

mplementations of projectors. Quick improvements can often
e found in faster database technology, or better use of hard-
are. Although rebuilding projections needs planning, engineer
14 discusses how they rather plan the rebuilding in weekends,
nstead of investing developer effort for optimization.

Engineer E16 explains how the domain can show an optimiza-
ion: not reading all the events on a rebuild. Often the older
vents are no longer reflected in the projection, because the
pecific data (such as a classified advertisement) is no longer
ctive.
Another important implementation detail that lifts some of

he burden is that projectors can (and must) be implemented as
ndependent, autonomous processes. This gives the system the
ossibility to only rebuilt those projections that are required to,
nstead of all the projections at once.



M. Overeem, M. Spoor, S. Jansen et al. The Journal of Systems & Software 178 (2021) 110970

H
v
p
t
s
a
i
d
H
r
t
a
f
s
i
a

7

e
t
e
d

E
b
p
a
t
c
e
t

m
r
i
r
T

i
a
w
s
k
w
o
e

t
o
c
a
T
o
e
m

s
o
d
t
a
t
t
d

l
t
t
E
e

i
t
s

w
r
i
m
n
E
e
n
d
t
i
o

a
t
F
b

t
a
t
s
E
e
T
t
f
p
f

a
a
e
i

ow can a System that Uses Event Sourcing Protect User Pri-
acy? — Privacy regulations, such as the GDPR, are designed to
rotect users from being taken advantage of. Personal informa-
ion should not be kept in a system for all eternity, but the system
hould delete it whenever someone requests that. However, such
requirement conflicts with the nature of event sourcing: retain-
ng all the data. Engineers E20, E21, E23, E25 mention that they
esigned their systems to comply with these regulations. Systems
ealthSys and P-PaySys use some form of anonymization and
emoval of information to comply. Obviously, this requires them
o rewrite events. System IdentitySys takes a completely different
pproach. The system separates the events and the personal in-
ormation in two different stores. When events are read, they are
upplemented with the personal information. If that information
s no longer present (because of removal requests), default values
re supplied.

. Schema evolution in event sourced systems

A challenge discussed by multiple engineers is evolution of
vent sourced systems (ESSs) (as stated in Section 6). From the
ranscripts, we identified five fundamental techniques for schema
volution. These event schema evolution (ESE) techniques are
escribed using the definitions given in Section 5.
We encountered two reasons why event schema evolution in

SSs is difficult. First of all, the implicit schema (as described
y Fowler (2013)) makes evolution in ESSs difficult. Solutions as
roposed by Meurice et al. (2016) and Maule et al. (2008) to
nalyze the impact of schema changes are not usable, because
here is no explicit schema. In contrast to their solution, the
hange originates in the application and impacts the data in the
vent store. This makes the direction of the impact different than
heirs.

The second difficulty in event schema evolution, is the im-
utability of the event store. Traditional solutions to transform or

ewrite the store are not always possible. However, the benefits of
mmutability in event stores (as listed in Section 4) are not always
equirements. The different degrees of immutability, as shown in
able 2, allows for different evolution techniques.
Teams that apply event sourcing without a clear understand-

ng of the business domain introduce risk, according to E14, E16,
nd E22. E22 explains that the challenge of evolution is exactly
hy it is preferred to always start a new system without event
ourcing, and only introduce event sourcing when the domain
nowledge is stable: ‘‘once we have enough trust in our model we
ill transform to event sourcing’’. As E16 confirms, events based
n a sufficiently clear domain knowledge will decrease schema
volution.
Another prevention technique is the cleaning up of events in

he event store, of which we encountered two possibilities. First
f all, older events that no longer represent active information
an be moved into cold storage. These events can still be read
nd processed, but are no longer processed by the ESS itself.
herefore, they do not have to conform to the implicit schema
f the ESS. Second, sometimes these events can be kept in the
vent store itself, but the ESS will never read them. Again, this
akes it possible to ignore those events on upgrades.
Event schema evolution that cannot be prevented can be

olved by the following five evolution techniques. Although in
ur work Overeem et al. (2017) we also discuss five techniques,
uring the interviews a different set of techniques was encoun-
ered. The technique lazy transformations was not mentioned by
ny of the engineers, while weak schema was mentioned as a new
echnique. Which techniques are used by which engineers, and
he benefits and liabilities per technique given by the engineers
uring the interviews are classified in Table 7. In some cases the
11
iabilities are also from engineers that do not apply the particular
echnique: they stated the liability as a reason for not using the
echnique.
SE Technique 1: Versioned Events — Given an event store
s conforming to a schema θ , the technique versioned events
transforms the schema into θ ′ such that

conforms(es, θ ′) ∧ ∀ς ∈ θ : ∃ς ′
∈ θ ′

: ς ⊆ ς ′

This techniques introduces only new types of events, and does
t in such a way that the event store es conforms to θ ′ without
ransformation. The project functions that process the involved
treams are required to handle these new events.
findings This technique is applied by engineers E7 and E19,

ith the sole benefit that it is a simple technique that does not
equire specific changes to the ESS. The liability of this technique
s the pollution of application logic, as stated by E16: ‘‘I try to keep
y domain abstraction pure. My v1 and v2 version of the event do
ot enter the model together’’.
SE Technique 2: Weak Schema — With this technique the
vents are described in a minimalistic manner. Similar to tech-
ique 1, the event store es or the schema θ are not transformed
uring evolution. Evolution operations that are allowed with this
echnique are limited to transforming the event e into e′ such that
t still conforms to the event schema ϵ. This requires the project
peration to handle this variability.
related work This technique is described by Daigneau (2011)

s the tolerant reader pattern. Serialization formats such as Pro-
obuf by Google Inc. (2019) and AVRO by The Apache Software
oundation (2019) support this technique by reading the existing
inary data into the new version of the objects.
findings Eleven engineers apply this technique, because of

he simplicity. The limitations of this technique are stated as
liability, together with the pollution of the project operation

hat is required (E9 explains: ‘‘you want to assume a certain event
chema’’).
SE Technique 3: Upcasting — This technique is well known to
vent sourcing practitioners and described by Betts et al. (2013).
he event streams are transformed into streams conforming to
he latest schema by a new function: the upcast function. This
unction is called before the streams are passed into existing
roject functions. The transformation is centralized in this new
unction, which improves the maintainability of the system.

For the project functions it appears that little has changed, it
ppears that the relation conforms(es, θ ′) holds. However, events
lready stored in es still conforms to θ , while newly appended
vents conform to θ ′. After appending new events to es, the store
tself will neither conform to θ or θ ′.

related work The technique is similar to message translators
as described by Hohpe and Woolf (2004).

findings Twelve engineers use upcasters, claiming benefits
as no domain pollution, immutability of events, and simplicity
of implementation. One of the stated liabilities is an decrease
in performance: ‘‘If you have been running upcasters for a long
time, you will have quite a stack of them in place, which slows
down the entire loading’’. Other liabilities are added complexity in
analyzing the event store, because it contains events that conform
to different schemas.
ESE Technique 4: In-Place Transformation — This technique
updates events to resemble the new schema, and thus forces
ESSs to forgo of immutability. New operations that alter event
streams need to be introduced, such as insert (insert an event
at a specific position) and update (update the event at a specific
position). These operations break the immutability of the event
store, with the consequence that cached projection need to be
rebuilt. Therefore, two available event stores, EventStore (Event



M. Overeem, M. Spoor, S. Jansen et al. The Journal of Systems & Software 178 (2021) 110970

f
(
s
m

a
o
o
t
f
t
z
E
o
a
s
e
s
r

c
b
Q
g
a
p

t
s
‘
i
t
t

t
t
e
W
e

Table 7
Benefits and liabilities of event sourcing evolution techniques.
Technique Engineers Benefits Liabilities

Versioned events 2: E7, E19 Simplicity of implementation
(E19)

Application logic pollution (E7, E9,
E16)

Weak schema 11: E2, E7, E8, E11, E14, E15, E16,
E17, E20, E21, E22

Simplicity of implementation (E2,
E8, E11, E15, E17, E22)

Application logic pollution (E9)
Feature incomplete (E8, E15, E17)

Upcasters 12: E1, E4, E5, E7, E11, E12, E13,
E14, E16, E19, E23, E24

No application logic pollution
(E19) Strict immutability (E24)
Simplicity of implementation
(E14)

Decrease of run time performance
(E11, E23) Multiple schemas (E23)
Complexity of implementation
(E23)

In-place
transformation

5: E8, E9, E10, E13, E23 Ad-hoc evolution (E8, E9, E10,
E13, E23) Single schema (E13)

Mutability of events (E22)
Complexity of implementation
(E13) Decrease of evolution
performance (E24) Risk of
data-loss (E8)

copy-transform 14: E3, E6, E7, E8, E9, E10, E11,
E13, E14, E15, E17, E19, E22, E23

Simplicity of implementation (E6,
E13) Strict immutability (E15, E17,
E19) Ad-hoc evolution (E3, E6,
E17, E23)

Mutability of events (E11, E16,
E22) Decrease of evolution
performance (E6, E24)
Store, 2019) and AxonDB (AxonIQ, 2019), deliberately do not offer
these operations.

related work This technique is similar to migration scripts
or relational databases. Scherzinger et al. (2013) and Saur et al.
2016) both propose a similar approach to evolve data in a NoSQL
tore. The lazy migration (on data access) is similar to incremental
igration as described by Sadalage and Fowler (2012).
findings Four systems, HealthSys, PaymentSys, ApproveSys,

nd Advert1Sys, apply this technique. Benefits are the possibility
f ad-hoc fixes, and improved reasoning because the store will
nly contain events conforming to a single schema. However,
he risk of making errors, the loss of immutability, and the per-
ormance are stated as liabilities. E22 explicitly prevented this
echnique from being used: ‘‘to prevent this technique we first
ipped the events, and then encoded the result before storing them’’.
SE Technique 5: Copy-And-Transform — During the execution
f this technique, existing streams are processed and new streams
re created from transformed events that conform to the new
chema. This does not violate the immutability of the source
vents, but creates new events instead. Existing projections are
till valid, although they do need to process new streams to
eceive new events.

related work Young (2017) describes this technique as
opy and replace. The parallel universe of IMAGO, as described
y Dumitras̨ and Narasimhan (2009), is similar to this technique.
uantumDB, created by de Jong and van Deursen (2015), uses
host tables to apply this technique in relational databases. Copy-
nd-transform of a complete event store could be seen as an ETL
rocess that creates a new store.
findings Fourteen engineers have used this technique, either

o transform specific streams or a complete event store. As E6
tates, this technique is relatively simple to implement, because
‘we can do literally anything we want’’. The data preservation
s stated as a benefit, as well as the fact that this is a one-
ime operation. The performance of this operation is a liability,
ransforming a large store takes a considerable amount of time.

The data discussed in Table 7 does not allow us to discuss how
echniques are combined within a single system. It does allow us
o discuss how engineers have experienced and applied differ-
nt techniques over the course of working on multiple systems.
e can observe the following from the discussed engineering

xperiences:

• No engineer has solely applied versioned events or in-place
transformation, those techniques are clearly used in combi-

nation with others.

12
• Five engineers have solely applied upcasters, which cor-
responds with the general advice we found in the grey
literature and community.

• The copy-transform technique is mostly used in combina-
tion with other techniques, only two out of the fourteen
engineers have solely applied this technique.

• Four engineers have considered techniques, but opted to
not apply them: E9 considered versioned events and weak
schema, E16 considered versioned events and copy-transform,
E22 considered in-place transformation, and E24 considered
copy-transform and in-place transformation.

We conclude that the techniques are not exclusive: almost all
engineers have used multiple techniques and applied multiple
techniques in a single system. Example combinations mentioned
in the interview are

• The application of upcasters, with copy-transform to clean up
the upcasters when there are to many.

• The application of in-place transformation for quick patches,
while a different technique is used for planned evolution.

• The application of weak schema for simple evolution steps,
while a different technique is used for more complex evo-
lution.

From the study we formulate the following advice:

1. Versioned events and weak schema are the simplest tech-
niques to implement. Systems should start out with those
techniques.

2. When evolution operations cannot be handled by the first
two techniques, systems can apply upcasting. This retains
the immutability of the event store.

3. Only when a decrease of performance or maintainability is
experienced should systems apply copy-and-transform.

4. In-place transformation should only be used by those sys-
tems that do not require immutability or an audit log.

The techniques form a range of possibilities to evolve the
event store of an ESS. All techniques with one exception, in-place
transformation, can be applied in an ESS that follows the definition
given in Section 5.

8. Discussion

One could wonder whether another research approach would
have been equally successful in extracting architecture

knowledge about the event sourcing pattern. We have looked



M. Overeem, M. Spoor, S. Jansen et al. The Journal of Systems & Software 178 (2021) 110970

a
S
(
a
a
t
c
t
i
m
a
i
h
d
h
p
w
o
a

m
c
p
o
p

t

t open source systems such as Axon Framework (2019), Event
tore (2019), NEventStore Dev team (2019), Prooph Components
2019), and observed that these follow the pattern and guidelines
s discussed in this article. However, aspects such as the rationale
nd consequences of using the pattern are impossible to extract
his way. This research is also similar to a study with multiple
ases (Flyvbjerg, 2006), although one would expect a more ex-
ensive extraction of information about the case (i.e., system) and
ts context in a multiple case study. We would have had to use
ore research resources, but perhaps we would have also been
ble to provide more code examples of how the pattern was
mplemented. Finally, design research (Sein et al. (2011)) could
ave also been used to extract the pattern description. While the
escription would perhaps have been less extensive, there would
ave been more focus on the evaluation and validation of the
attern and its description. We consider this last aspect as future
ork, even though we are convinced that the incremental nature
f this research has led to a pattern description that is reusable
nd useful for architects.
Our pattern description itself does not follow a specific for-

at. We decided to structure our presentation according to the
oncepts emerged from the GT, and not according to a specific
attern description format. We did, however, use the examples
f Gamma et al. (1995) to evaluate the completeness of our
attern description.
Gamma et al. states three essential elements besides the

he pattern name: the problem, the solution, and the con-
sequences. The problem describes what the context is of the
pattern, and when to apply it, which we have summarized in
Section 4. The description of the pattern, the solution, is covered
in Section 5. Finally, the consequences, are split over two sections:
Section 4 covers the positive consequences by linking them to
the problems that are solved. Section 6 covers the negative
consequences by stating several research challenges for future
work.

The format that Gamma et al. use to describe patterns consists
of thirteen different sections. While these sections cover the four
essential elements, the related pattern section should be discussed
on its own. The design of a software system is never the appli-
cation of a single pattern, but rather the combination of different
patterns that together form the design. This is not different in
ESSs. Section 5 recognizes this, and explains the combination
of event sourcing in CQRS in great detail. The relation to other
patterns to solve the specific challenges of schema evolution are
covered in Section 7.

A second question that must be asked is whether academic
fora are the optimal place to publish patterns. As whole books
have been written about particular patterns and as patterns ap-
pear to have a certain shelf life, one could wonder whether
patterns should be published in academia at all. We argue, with
this article, that some patterns are too important to ignore (SOA,
Client-Server, Event Sourcing, etc.) and that these deserve specific
detailed attention from academics. We find the strongest proof
for this in the provided research challenges (Section 6) and in
the challenge discussion about evolving event sourced systems
(Section 7).

The number of interviews does not allow use to generalize
over the results. It is not possible to prove that, because 14
engineers use the technique weak schema it is the recommended
technique. However, practitioners can integrate the reported ex-
perience into their decision making. They can weight the context
of the interviewed engineers, and match that with their own
context. Although our research does not result in hard recom-
mendations, we believe that practitioners can benefit from the
reported experiences.
13
9. Threats to validity

Both Golfasni (2003) and Onwuegbuzie and Leech (2007) dis-
cuss the challenges of assessing validity in qualitative research.
We identify several biases for both internal and external validity.
First, we regard the objects of study, i.e., the engineers and their
uses of and experience with the pattern. The contributions of our
research are based on the 25 interviews that were conducted. The
engineers were not hand selected, but volunteered. Therefore, it
is possible that we only interviewed a particular subset of practi-
tioners, who are willing and able to discuss the pattern at length.
It is for instance remarkable that they all combine CQRS with
event sourcing. Table 1 shows a diverse variety of experiences,
and Table 2 shows an equally diverse variety of systems. We have
interviewed consultants (E14 and E16), and full-time employees,
with a wide range of years of experience. From small systems to
multi-million user systems, the interviewed engineers have been
exposed to all. These characteristics indicate a broad range of
opinions and experiences. Within the group of 25 engineers, 16
engineers have three years or less of experience working on ESSs.
This could be due to the relative novelty of the pattern. However,
these engineers were full-time involved in the development of
the ESS. The exploratory questions (Appendix) focus on topics
that can sufficiently be answered by engineers with one or two
years of experience.

Internal validity, which is strengthened by the way in which
the research is conducted, has been defended in several ways.
First, an interview and analysis protocol (Appendix) has been
applied to each interview. The interview protocol was created
from extensive literature study and discussion in the research
team, in which two members have no experience with the pattern
itself, thereby reducing bias. The first two authors have extensive
experience in developing a large ESS. This experience has lead
to many interactions with practitioners in gatherings, confer-
ences, and on-line. These interactions have served as an informal
triangulation that support the findings presented in this article.

As a constructivist GT approach (Charmaz, 1996) was followed,
we conducted relatively open interviews. The exploratory nature
of the interviews enabled interviewees to comment on all aspects
of the subject under study, independent of the experience of
the engineer with the pattern. Many engineers work on closed
source, commercial systems, which makes it hard to use docu-
mentation or source code in the research. Every interview was
closed with the question if anything important was left unasked,
and if they knew other engineers that we should interview. Often
the engineers came with stories and anecdotes that amplified the
discussed topics. The engineers that were referred us to were all
invited to cooperate.

External validity, i.e. generalizability to other cases, can be
defended by the multitudes of systems that the engineers have
observed and worked on. As already discussed in Section 2 we
do not claim to have reached saturation. Not reaching saturation
could leave us open to missing crucial information, or even using
incorrect information. Seven of the interviewed engineers have
five or more years of experience, and we did not find conflicts
between their statements and the other interviews. Together with
the experience of the first two authors in developing ESSs, we
believe that our findings are supported by the data. We have not
covered all niches in the software world, so we cannot generalize
to all types of systems. However, we do believe that in the domain
of business information systems, we have sufficient coverage to
claim generalizability to other systems in this domain. Further-
more, while we do not claim generalizability to other domains,
we do believe that those domains can be inspired by our findings
in designing event sourced systems. Also, the common occurrence
of all event sourcing evolution techniques in Table 7, illustrates



M. Overeem, M. Spoor, S. Jansen et al. The Journal of Systems & Software 178 (2021) 110970

t
t
c
f
t

1

s
i
p
b
p
t
T
i
c
s
t
s
s

i
t
a
i
s
f
W
o
b
o
p
i
h
A
r
e
b
m
T
s
f
m
s
C
e
a
t
t
b
o
H
d
s
o
t
n
t
t
p
H
s
e
t
c

hat we observed a broad cross section of systems in use. Finally,
he use of GT has provided us with a reliable manner of extracting
oncepts and definitions from the interviews. While this study’s
indings can be generalized to describe event sourced patterns,
he research work is not finished.

0. Conclusion

In this article we present a conceptualization of the event
ourcing pattern, grounded in interviews with 25 event sourc-
ng engineers. Event sourcing is a pattern that solves the three
roblems that modern systems face. The flexibility that the com-
ination of event sourcing and CQRS gives decreases the com-
lexity in large systems. The decrease of complexity enables
he development of larger systems that remain maintainable.
he reliability of the system improves when every state change
s stored in a durable store. It allows engineers to undo state
hanges that were incorrect, or replay those state changes after
ystem failures. An improved reliability is essential for systems
hat provide increasingly critical processes. Finally, systems that
erve increasing numbers of end-users benefit of the improved
calability that ESSs systems provide.
These benefits give enough reason to incorporate event sourc-

ng in modern systems. This article presents a thorough descrip-
ion of the pattern, including the context in which it is applied
nd the consequences that are encountered. The description itself
s grounded in the experience of 25 engineers, making it a reliable
ource for both new practitioners and scientists. We answer the
ollowing four research questions in this work.
hat types of systems apply event sourcing, and why? The
verview of 19 systems, given in Section 4 and especially in Ta-
les 2 and 4, show that event sourcing can be applied in systems
f any size: both smaller and larger systems benefit from the
attern. We studied systems with thousands of events up to and
ncluding systems with billions of events, and all of these systems
ave benefited from event sourcing, according to their engineers.
s E14 states ‘‘I have never seen an event sourced system that was
ewritten to a system with traditional current state storage’’. The
vent sourcing pattern is not tied to a specific type of application,
ut is applied in many different domains, such as marketing,
icro-lending, content management and classified advertising.
he systems under study show a strong relation to DDD as a
oftware development approach. This is partially explained by the
act that event sourcing and CQRS were invented in the com-
unity that grew around DDD. The microservice architectural
tyle has a weaker relation (8 out of 19 systems apply it), while
QRS is used in all these systems. We identify four reasons for
vent sourcing: audit, flexibility, complexity, and trending. While
common characteristic of event sourcing is the immutability of
he events, we show that there are three levels of immutability
hat can be found in ESSs. The characteristics summarized in Ta-
le 2 substantiate that event sourcing can be applied in a diversity
f domains, and technologies.
ow can event sourced systems be defined? Section 5 gives
efinitions of the different concepts in event sourcing and event
ourced systems. These definitions are based on our five years
f experience in building an ESS, and they are augmented with
he interviews. The experiences of the interviewed engineers add
uance and variation options to the different concepts, making
hem reflect the view of practitioners. Concepts and codes ex-
racted from the interviews scoped our definition: the engineers
rovided us the topics to define through the interviews.
ow can event sourced data structures be evolved? Five event
chema evolution techniques are discussed in Section 7: versioned
vents, weak schema, upcasters, in-place transformation, and copy-
ransform. For every technique the benefits and liabilities as dis-
ussed with the interviewed engineers, as summarized in Table 7.
14
Almost all engineers have experience with multiple techniques,
often combining them in a single system. As all techniques have
their benefits and their liabilities we did not found a single tech-
nique that would be applicable in all scenarios. We conclude the
section with general advice on when to apply specific techniques,
and how to combine the techniques.
What are the challenges faced in applying event sourcing?
Five challenges that the interviewed engineers experienced are
discussed in Section 6 and summarized in Table 6. We address
the steep learning curve in Section 5 by giving definitions and
operations that can be used in discussing and teaching of ESSs.
Evolution is discussed in detail in Section 7, again using the
concepts and operations to explain and characterize the differ-
ent techniques. The other three challenges, lack of technology,
rebuilding projections, and privacy, are presented as a start for
a research roadmap. We call for researchers to further explore
these challenges.

The main scientific contributions are found in Sections 2 and 6
. In the research approach, we aim to inspire future architecture
researchers to use similar qualitative techniques, such as GT,
for the explication of architecture knowledge from practitioners.
Secondly, a set of research challenges is provided for software
engineering researchers to challenge the knowledge around event
sourcing in large software systems. Additionally, we are excited
to define and document such an important software pattern for
the scientific community.

CRediT authorship contribution statement

Michiel Overeem: Conceptualization, Writing - original draft,
Data curation, Investigation. Marten Spoor: Data curation, Val-
idation, Writing - review & editing. Slinger Jansen: Validation,
Supervision, Writing - review & editing. Sjaak Brinkkemper:
Supervision, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The authors thank all the engineers for sharing their valuable
experience and their willingness to contribute to this study. Fur-
thermore, we would like to thank Paris Avgeriou, Fabiano Dalpiaz,
Jurriaan Hage, André van der Hoek, John Mylopoulos, Alexander
Serebrenik, Jan Martijn van der Werf, Greg Young, Uwe Zdun, and
all the anonymous reviewers for their constructive feedback on
earlier drafts.

Appendix. Interview protocol

Context related questions

1. Please introduce yourself, the company, the product, and
your role in the development.

(a) How many years is the system in production?
(b) How many installations are there of the system

(single on-premise custom-made, single cloud SaaS,
multiple on-premise customers, . . . )?

(c) What is the load on the system in terms of users/
traffic (events?)? Can you give a rough estimate?

2. Why is event sourcing applied in this software system?



M. Overeem, M. Spoor, S. Jansen et al. The Journal of Systems & Software 178 (2021) 110970

V

O

C

R

A

A

A

A

A

(a) If this decision is already a few years old, is event
sourcing still applicable of would the team decide
otherwise with the current knowledge?

3. What is the technology stack?
4. Could you give a summary of the size of the system in

terms of event sourcing? For instance in terms of different
stream types, stream instances and number of events.

ersioning related questions

5. What strategy do you use for event versioning? (Elaborate
on the why)

(a) When using weak serialization: How do you deal
with not being able to perform certain operations?
Does it bother you, or not?

(b) When using upcasters: How many upcasters are
there? What is the longest chain of upcasters? How
do you manage them?

(c) When using in-place scripts: How do you validate
the correctness? What about the audit log, how do
you deal with re-writing?

(d) When using conversion: How long does it take?
What about the audit log, how do you deal with
re-writing?

6. Do you need/ want the audit features? (What is the level
of immutability?)

7. What is your strategy for the query-side? How do you keep
this in sync?

8. How often are new versions released, and who perfor-
mance the upgrade?

9. What kind of upgrade strategy is used? How do you deploy
an upgrade?

(a) Do you have any SLAs based on the domain/product?
(such as 24/7, 9 to 5)

ther topics

10. Do you use ProcessManagers/Sagas? Anything special for
those?

11. Are you satisfied with the current upgrade and versioning
strategy? If not, what would you like to see differently?

12. What do you see as future challenges of ESSs?
13. Can you apply event sourcing without DDD?
14. What would your approach be to building a huge system?

losing

15. What did we miss? What should we have asked?
16. With whom should we talk?

eferences

dolph, S., Hall, W., Kruchten, P., 2011. Using grounded theory to study the
experience of software development. Empir. Softw. Eng. 16 (4), 487–513.
http://dx.doi.org/10.1007/s10664-010-9152-6.

nh, D.T.T., Zhang, M., Ooi, B.C., Chen, G., 2018. Untangling blockchain: A data
processing view of blockchain systems. IEEE Trans. Knowl. Data Eng. 4347
(c), 1–20. http://dx.doi.org/10.1109/TKDE.2017.2781227, arXiv:1708.05665.

very, P., Reta, R., 2017. Scaling event sourcing for netflix downloads. https:
//www.infoq.com/presentations/netflix-scale-event-sourcing.

xon Framework, 2019. Reference guide axon framework reference guide - Event
upcasting. https://docs.axoniq.io/reference-guide/configuring-infrastructure-
components/event-processing/event-bus-and-event-store.

xonIQ, 2019. AxonDB. https://axoniq.io/product-overview/axondb.
15
Betts, D., Dominguez, J., Melnik, G., Simonazzi, F., Subramanian, M., 2013. Explor-
ing CQRS and Event Sourcing: A Journey into High Scalability, Availability,
and Maintainability with Windows Azure. Microsoft patterns & practices.

Biemans, F.P., Lankhorst, M.M., Teeuw, W.B., Van De Watering, R.G., 2001.
Dealing with the complexity of business systems architecting. Syst. Eng. 4
(2), 118–133. http://dx.doi.org/10.1002/sys.1010.

Brandolini, A., 2018. Introducing Event Storming. Leanpub.
Castillo-Montoya, M., 2016. Preparing for interview research: The interview

protocol refinement framework. Qualitative Rep. 21 (5), 811–831.
Charmaz, K., 1996. The search for meanings - Grounded theory. Rethinking Meth-

ods Psychol. 27–49. http://dx.doi.org/10.1016/B978-0-08-044894-7.01581-
5.

Clements, P.C., 19997. Coming attractions in software architecture. In: Proceed-
ings of 5th International Workshop on Parallel and Distributed Real-Time
Systems and 3rd Workshop on Object-Oriented Real-Time Systems, pp. 2–9.

Dahan, U., 2009. Clarified CQRS. http://www.udidahan.com/2009/12/0.
Daigneau, R., 2011. Service Design Patterns: Fundamental Design Solutions for

SOAP/WSDL and Restful Web Services. Addison-Wesley.
Date, C.J., 2003. An Introduction to Database Systems, eigth ed. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA.
Debski, A., Szczepanik, B., Malawski, M., Spahr, S., Muthig, D., 2017. In search

for a scalable & reactive architecture of a cloud application: CQRS and event
sourcing case study. IEEE Softw. PP (99), 1. http://dx.doi.org/10.1109/MS.
2017.265095722.

Dragoni, N., Giallorenzo, S., Lafuente, A.L., Mazzara, M., 2017. Microservices: yes-
terday, today, and tomorrow. In: Present and Ulterior Software Engineering.
Springer, pp. 195–216, arXiv:arXiv:1606.04036v4.

Dreyer, W., Dittrich, A.K., Schmidt, D., 1994. Research perspectives for time
series management systems. ACM SIGMOD Record 23 (1), 10–15. http:
//dx.doi.org/10.1145/181550.181553.

Dumitras̨, T., Narasimhan, P., 2009. Why Do Upgrades Fail and What Can We
Do About It? Toward Dependable, Online Upgrades in Enterprise System.
In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5896 LNCS,
pp. 349–372. http://dx.doi.org/10.1007/978-3-642-10445-9_18.

Erb, B., 2019. Distributed Computing on Event-Sourced Graphs (Ph.D. thesis).
Erb, B., Hauck, F.J., 2016. On the potential of event sourcing for retroactive

actor-based programming. In: First Workshop on Programming Models and
Languages for Distributed Computing, vol. 1. ACM, pp. 4:1–4:5.

Evans, E., 2003. Domain-Driven Design. Addison-Wesley Professional.
Evans, E., 2015. Domain-Driven Design Reference. Eric Evans, http:

//domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-
03.pdf.

Event Store, L., 2019. Event store. https://eventstore.org/.
Flyvbjerg, B., 2006. Five misunderstandings about case-study research. Qualita-

tive Inquiry 12 (2), 219–245. http://dx.doi.org/10.1177/1077800405284363,
arXiv:1304.1186.

Fowler, M., 2002. Patterns of Enterprise Application Architecture. Addison-
Wesley.

Fowler, M., 2005. Event sourcing. http://martinfowler.com/eaaDev/
EventSourcing.html.

Fowler, M., 2013. Schemaless data structures. http://martinfowler.com/articles/
schemaless/.

Fowler, M., 2017. What do you mean by ‘‘Event-Driven’’?. https://martinfowler.
com/articles/201701-event-driven.html.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional.

Golfasni, N., 2003. Understanding reliability and validity in qualitative research.
Qualitative Report 8 (4), 597–607, http://www.news-medical.net/health/
Thalassemia-Prevalence.aspx.

Google Inc., 2019. Protocol buffers. https://github.com/google/protobuf.
Gorodinski, L., 2017. Scaling event-sourcing at jet. https://medium.com/@eulerfx/

scaling-event-sourcing-at-jet-9c873cac33b8.
Gray, J., Reuter, A., 1992. Transaction Processing: Concepts and Techniques.

Elsevier.
Greiler, M., Van Deursen, A., Storey, M.A., 2012. Test confessions: A study

of testing practices for plug-in systems. In: Proceedings - International
Conference on Software Engineering, pp. 244–254. http://dx.doi.org/10.1109/
ICSE.2012.6227189.

Harrison, N.B., Avgeriou, P., Zdun, U., 2007. Using patterns to capture architec-
tural decisions. IEEE Softw. 24 (4), 38–45. http://dx.doi.org/10.1109/MS.2007.
124.

Helland, P., 2015. Immutability changes everything. Commun. ACM 59 (1), 64–70.
http://dx.doi.org/10.1145/2844112, arXiv:arXiv:1011.1669v3.

Hoda, R., Noble, J., Marshall, S., 2012. Developing a grounded theory to explain
the practices of self-organizing Agile teams. Empir. Softw. Eng. 17 (6),
609–639. http://dx.doi.org/10.1007/s10664-011-9161-0.

Hohpe, G., Woolf, B., 2004. Enterprise Integration Patterns: Designing, Building,
and Deploying Messaging Solutions. Addison-Wesley Professional.

http://dx.doi.org/10.1007/s10664-010-9152-6
http://dx.doi.org/10.1109/TKDE.2017.2781227
http://arxiv.org/abs/1708.05665
https://www.infoq.com/presentations/netflix-scale-event-sourcing
https://www.infoq.com/presentations/netflix-scale-event-sourcing
https://www.infoq.com/presentations/netflix-scale-event-sourcing
https://docs.axoniq.io/reference-guide/configuring-infrastructure-components/event-processing/event-bus-and-event-store
https://docs.axoniq.io/reference-guide/configuring-infrastructure-components/event-processing/event-bus-and-event-store
https://docs.axoniq.io/reference-guide/configuring-infrastructure-components/event-processing/event-bus-and-event-store
https://axoniq.io/product-overview/axondb
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb6
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb6
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb6
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb6
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb6
http://dx.doi.org/10.1002/sys.1010
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb8
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb9
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb9
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb9
http://dx.doi.org/10.1016/B978-0-08-044894-7.01581-5
http://dx.doi.org/10.1016/B978-0-08-044894-7.01581-5
http://dx.doi.org/10.1016/B978-0-08-044894-7.01581-5
http://www.udidahan.com/2009/12/0
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb13
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb13
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb13
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb14
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb14
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb14
http://dx.doi.org/10.1109/MS.2017.265095722
http://dx.doi.org/10.1109/MS.2017.265095722
http://dx.doi.org/10.1109/MS.2017.265095722
http://arxiv.org/abs/arXiv:1606.04036v4
http://dx.doi.org/10.1145/181550.181553
http://dx.doi.org/10.1145/181550.181553
http://dx.doi.org/10.1145/181550.181553
http://dx.doi.org/10.1007/978-3-642-10445-9_18
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb19
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb20
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb20
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb20
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb20
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb20
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb21
http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
https://eventstore.org/
http://dx.doi.org/10.1177/1077800405284363
http://arxiv.org/abs/1304.1186
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb25
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb25
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb25
http://martinfowler.com/eaaDev/EventSourcing.html
http://martinfowler.com/eaaDev/EventSourcing.html
http://martinfowler.com/eaaDev/EventSourcing.html
http://martinfowler.com/articles/schemaless/
http://martinfowler.com/articles/schemaless/
http://martinfowler.com/articles/schemaless/
https://martinfowler.com/articles/201701-event-driven.html
https://martinfowler.com/articles/201701-event-driven.html
https://martinfowler.com/articles/201701-event-driven.html
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb29
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb29
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb29
http://www.news-medical.net/health/Thalassemia-Prevalence.aspx
http://www.news-medical.net/health/Thalassemia-Prevalence.aspx
http://www.news-medical.net/health/Thalassemia-Prevalence.aspx
https://github.com/google/protobuf
https://medium.com/@eulerfx/scaling-event-sourcing-at-jet-9c873cac33b8
https://medium.com/@eulerfx/scaling-event-sourcing-at-jet-9c873cac33b8
https://medium.com/@eulerfx/scaling-event-sourcing-at-jet-9c873cac33b8
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb33
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb33
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb33
http://dx.doi.org/10.1109/ICSE.2012.6227189
http://dx.doi.org/10.1109/ICSE.2012.6227189
http://dx.doi.org/10.1109/ICSE.2012.6227189
http://dx.doi.org/10.1109/MS.2007.124
http://dx.doi.org/10.1109/MS.2007.124
http://dx.doi.org/10.1109/MS.2007.124
http://dx.doi.org/10.1145/2844112
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1007/s10664-011-9161-0
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb38
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb38
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb38


M. Overeem, M. Spoor, S. Jansen et al. The Journal of Systems & Software 178 (2021) 110970

H

J

d

K

K

K

L

L

L

M

M

M

M

d

M

N
O

O

O

P
S

S

S

S

S

utton, G., 1999. A tutorial on the universality and expressiveness of
fold. J. Funct. Programming 9 (4), 355–372. http://dx.doi.org/10.1017/
S0956796899003500.

agadish, H., Mumick, I.S., Silberschatz, A., 1995. View maintenance issues for
the chronicle data model. In: Proceedings of the Fourteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems. ACM, pp.
113–124. http://dx.doi.org/10.1145/212433.220201.

e Jong, M., van Deursen, A., 2015. Continuous deployment and schema evolution
in SQL databases. In: 2015 IEEE/ACM 3rd International Workshop on Release
Engineering, pp. 16–19, http://dx.doi.org/10.1109/RELENG.2015.14.

abbedijk, J., Jansen, S., Brinkkemper, S., 2012. A case study of the variability
consequences of the CQRS pattern in online business software. In: Proceed-
ings of the 17th European Conference on Pattern Languages of Programs.
ACM, p. 2. http://dx.doi.org/10.1145/0000000.0000000.

assab, M., Mazzara, M., Lee, J.Y., Succi, G., 2018. Software architectural patterns
in practice: an empirical study. Innov. Syst. Softw. Eng. 14 (4), 263–271.
http://dx.doi.org/10.1007/s11334-018-0319-4.

leppmann, M., 2017. Designing Data-Intensive Applications: The Big Ideas
Behind Reliable, Scalable, and Maintainable Systems. O’Reilly Media, Inc..

assing, N., Rijsenbrij, D., Van Wet, H., 1999. Towards a broader view on software
architecture analysis of flexibility. In: Proceedings - 6th Asia Pacific Software
Engineering Conference, APSEC 1999, pp. 238–245. http://dx.doi.org/10.1109/
APSEC.1999.809608.

i, Z., Liang, P., Avgeriou, P., 2013. Application of knowledge-based approaches
in software architecture: A systematic mapping study. Inf. Softw. Technol.
55 (5), 777–794. http://dx.doi.org/10.1016/j.infsof.2012.11.005.

uckham, D.C., 2011. Event Processing for Business: Organizing the Real-Time
Enterprise. John Wiley & Sons.

aule, A., Emmerich, W., Rosenblum, D.S., 2008. Impact analysis of database
schema changes. In: 2008 ACM/IEEE 30th International Conference on
Software Engineering. ACM, pp. 451–460. http://dx.doi.org/10.1145/1368088.
1368150.

eißner, D., Erb, B., Kargl, F., Tichy, M., 2018. retro- λ : An event-sourced
platform for serverless applications with retroactive computing support. In:
Proceedings of the 12th ACM International Conference on Distributed and
Event-Based Systems, pp. 76–87.

eurice, L., Nagy, C., Cleve, A., 2016. Detecting and preventing program in-
consistencies under database schema evolution. In: 2016 IEEE International
Conference on Software Quality, Reliability and Security, QRS, pp. 262–273.
http://dx.doi.org/10.1109/QRS.2016.38.

ichelson, B.M., 2006. Event-Driven Architecture Overview. Technical report,
Patricia Seybold Group, pp. 210–1571.

e Murillas, E.G.L., van Der Aalst, W.M., Reijers, H.A., 2015. Process mining on
databases: Unearthing historical data from redo logs. In: Lecture Notes in
Computer Science (Including Subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 9253, pp. 367–385. http://dx.doi.
org/10.1007/978-3-319-23063-4_25.

usil, J., Musil, A., Weyns, D., Biffl, S., 2015. An architecture pattern for collective
intelligence systems. In: 12th Working IEEE/IFIP Conference on Software
Architecture, pp. 21–30. http://dx.doi.org/10.1145/2855321.2855342.

EventStore Dev team, 2019. NEventStore. http://neventstore.org.
nwuegbuzie, A.J., Leech, N.L., 2007. Validity and qualitative research: An oxy-

moron? Quality Quantity 41 (2), 233–249. http://dx.doi.org/10.1007/s11135-
006-9000-3.

vereem, M., Spoor, M., Jansen, S., 2017. The dark side of event sourcing: Man-
aging Data conversion. In: IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering, SANER, pp. 193–204.

vereem, M., Spoor, M., Jansen, S., Brinkkemper, S., 2021. An Empirical Charac-
terization of Event Sourced Systems and Their Schema Evolution - Lessons
from Industry - Accompanying Anonymized Transcripts. Mendeley Data,
http://dx.doi.org/10.17632/dgbxyn7yw3.1.

rooph Components, 2019. Prooph. http://getprooph.org/.
adalage, P.J., Fowler, M., 2012. NoSQL Distilled: A Brief Guide to the Emerging

World of Polyglot Persistence. Addison-Wesley.
adri, F., Kowalski, R., 1995. Variants of the event calculus Fariba Sadri and

Robert Kowalski abstract. In: Proceedings of the Twelfth International
Conference on Logic Programming, pp. 67–81.

antos, J.C.S., Sejfia, A., Corrello, T., Gadenkanahalli, S., Mirakhorli, M., 2019.
Achilles’ heel of plug-and-Play software architectures: a grounded theory
based approach. In: ESEC/FSE ’19, Tallinn, Estonia, pp. 671–682. http://dx.
doi.org/10.1145/3338906.3338969.

aur, K., Dumitras̨, T., Hicks, M., 2016. Evolving NoSQL databases without
downtime. In: IEEE International Conference on Software Maintenance and
Evolution, ICSME, pp. 166–176, arXiv:1506.08800.

cherzinger, S., Klettke, M., Störl, U., 2013. Managing schema evolution in
nosql data stores. In: Green, T.J., Schmitt, A. (Eds.), Proceedings of the
14th International Symposium on Database Programming Languages {(DBPL}
2013), August 30, 2013. Riva Del Garda, Trento, Italy, http://arxiv.org/abs/
1308.0514.
16
Sein, M.K., Henfridsson, O., Purao, S., Rossi, M., Lindgren, R., 2011. Action design
research. MIS Quarterly Manag. Inform. Syst. 35 (1), 37–56. http://dx.doi.org/
10.2307/23043488.

Slotos, T., 2016. The star pattern - Representing domain concepts in a uniform
way. In: Proceedings of the 21st European Conference on Pattern Languages
of Programs, pp. 8. http://dx.doi.org/10.1145/3011784.3011792.

Stol, K.-J., Ralph, P., Fitzgerald, B., 2015. grounded theory in software engineering
research : A critical review and guidelines. In: Proceedings of the 37th
International Conference on Software Engineering, ICSE 2015, pp. 120–131.
http://dx.doi.org/10.1145/2884781.2884833.

Taibi, D., Lenarduzzi, V., Pahl, C., 2018. Architectural patterns for microservices:
A systematic mapping study. In: CLOSER 2018 - Proceedings of the 8th
International Conference on Cloud Computing and Services Science, pp.
221–232. http://dx.doi.org/10.5220/0006798302210232.

Tamburri, D.A., Kazman, R., 2018. General methods for software architecture
recovery: a potential approach and its evaluation. Empir. Softw. Eng. 23 (3),
1457–1489. http://dx.doi.org/10.1007/s10664-017-9543-z.

The Apache Software Foundation, 2019. Apache avro. http://avro.apache.org/.
Van Der Aalst, W.M., Van Hee, K.M., Van Der Werf, J.M., Verdonk, M., 2010.

Auditing 2.0: Using process mining to support tomorrow’s auditor. Computer
43 (3), 90–93. http://dx.doi.org/10.1109/MC.2010.61.

Vassiliadis, P., 2009. A survey of extract – transform – load technology. Intl.
J. Data Warehousing Mining 5 (3), 1–27. http://dx.doi.org/10.4018/jdwm.
2009070101.

Vernon, V., 2013. Implementing Domain-Driven Design. Addison-Wesley.
Vogels, W., 2009. Eventually consistent. Commun. ACM 52 (1), 40–44.
Wlaschin, S., 2018. Domain Modeling Made Functional. The Pragmatic Bookshelf.
Wohlin, C., 2014. Guidelines for snowballing in systematic literature studies

and a replication in software engineering. In: 18th International Conference
on Evaluation and Assessment in Software Engineering, EASE 2014, pp.
1–10. http://dx.doi.org/10.1145/2601248.2601268. http://dl.acm.org/citation.
cfm?doid=2601248.2601268.

Wu, E., Diao, Y., Rizvi, S., 2006. High-performance complex event processing over
streams. In: Proceedings of the 2006 ACM SIGMOD International Conference
on Management of Data - SIGMOD ’06, pp. 407. http://dx.doi.org/10.1145/
1142473.1142520.

Young, G., 2010. CQRS and Event Sourcing. p. 56, http://codebetter.com/
gregyoung/2010/02/13/cqrs-and-event-sourcing.

Young, G., 2017. Versioning in an Event Sourced System. Leanpub.
Zhong, Y., Li, W., Wang, J., 2019. Using event sourcing and CQRS to build a

high performance point trading system. ACM Int. Conf. Proc. Ser. 16–19.
http://dx.doi.org/10.1145/3317614.3317632.

Michiel Overeem is a Lead Software Architect at AFAS Software and part of the
team that is responsible for their future ERP Cloud platform. As a Ph.D. candidate
with Utrecht University he conducts research on the upgrading of model-driven,
cloud-based software.

Marten Spoor is a Software Architect at AFAS Software and part of the team
that is responsible for their future ERP Cloud platform.

Slinger Jansen is an assistant professor at the Department of Information and
Computer Science at Utrecht University. He is one of the leading researchers
in the domain of software ecosystems and co-founders of the International
Conference on Software Business and International Workshop on Software
Ecosystems. He is lead editor of the book ‘‘Software Ecosystems: Analyzing and
Managing Business Networks in the Software Industry’’ and of several others.
Besides his academic endeavors he actively supports new enterprises and sits
on the boards of advisors of several startups.

Sjaak Brinkkemper is full professor of organization and information at the
Department of Information and Computing Sciences of the Utrecht University,
the Netherlands. He leads a group of about twenty researchers specialized in
product software development and entrepreneurship. In essence, he studies
the implications of market conditions on software development methods and
processes. He received the best paper awards for several papers, he has given
keynote talks at several conferences. He has been awarded the IFIP Silver Core
Medal. He is member of the steering committee of CAiSE, ECIS, ICSOB and
IWSPM. He is co-founder of the International Software Product Management
Board.

http://dx.doi.org/10.1017/S0956796899003500
http://dx.doi.org/10.1017/S0956796899003500
http://dx.doi.org/10.1017/S0956796899003500
http://dx.doi.org/10.1145/212433.220201
http://dx.doi.org/10.1109/RELENG.2015.14
http://dx.doi.org/10.1145/0000000.0000000
http://dx.doi.org/10.1007/s11334-018-0319-4
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb44
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb44
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb44
http://dx.doi.org/10.1109/APSEC.1999.809608
http://dx.doi.org/10.1109/APSEC.1999.809608
http://dx.doi.org/10.1109/APSEC.1999.809608
http://dx.doi.org/10.1016/j.infsof.2012.11.005
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb47
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb47
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb47
http://dx.doi.org/10.1145/1368088.1368150
http://dx.doi.org/10.1145/1368088.1368150
http://dx.doi.org/10.1145/1368088.1368150
http://dx.doi.org/10.1109/QRS.2016.38
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb51
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb51
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb51
http://dx.doi.org/10.1007/978-3-319-23063-4_25
http://dx.doi.org/10.1007/978-3-319-23063-4_25
http://dx.doi.org/10.1007/978-3-319-23063-4_25
http://dx.doi.org/10.1145/2855321.2855342
http://neventstore.org
http://dx.doi.org/10.1007/s11135-006-9000-3
http://dx.doi.org/10.1007/s11135-006-9000-3
http://dx.doi.org/10.1007/s11135-006-9000-3
http://dx.doi.org/10.17632/dgbxyn7yw3.1
http://getprooph.org/
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb59
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb59
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb59
http://dx.doi.org/10.1145/3338906.3338969
http://dx.doi.org/10.1145/3338906.3338969
http://dx.doi.org/10.1145/3338906.3338969
http://arxiv.org/abs/1506.08800
http://arxiv.org/abs/1308.0514
http://arxiv.org/abs/1308.0514
http://arxiv.org/abs/1308.0514
http://dx.doi.org/10.2307/23043488
http://dx.doi.org/10.2307/23043488
http://dx.doi.org/10.2307/23043488
http://dx.doi.org/10.1145/3011784.3011792
http://dx.doi.org/10.1145/2884781.2884833
http://dx.doi.org/10.5220/0006798302210232
http://dx.doi.org/10.1007/s10664-017-9543-z
http://avro.apache.org/
http://dx.doi.org/10.1109/MC.2010.61
http://dx.doi.org/10.4018/jdwm.2009070101
http://dx.doi.org/10.4018/jdwm.2009070101
http://dx.doi.org/10.4018/jdwm.2009070101
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb72
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb73
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb74
http://dx.doi.org/10.1145/2601248.2601268
http://dl.acm.org/citation.cfm?doid=2601248.2601268
http://dl.acm.org/citation.cfm?doid=2601248.2601268
http://dl.acm.org/citation.cfm?doid=2601248.2601268
http://dx.doi.org/10.1145/1142473.1142520
http://dx.doi.org/10.1145/1142473.1142520
http://dx.doi.org/10.1145/1142473.1142520
http://codebetter.com/gregyoung/2010/02/13/cqrs-and-event-sourcing
http://codebetter.com/gregyoung/2010/02/13/cqrs-and-event-sourcing
http://codebetter.com/gregyoung/2010/02/13/cqrs-and-event-sourcing
http://refhub.elsevier.com/S0164-1212(21)00067-4/sb78
http://dx.doi.org/10.1145/3317614.3317632

	An empirical characterization of event sourced systems and their schema evolution — Lessons from industry
	Introduction
	Research approach: Constructivist grounded theory
	Research questions and motivation
	Sampling and interviewees
	Interview techniques and GT
	Coding, analysis, and creativity

	Background
	Event sourcing in practice
	Rationale for ESSs
	Characteristics of event sourced systems

	Event stores and event sourced systems
	The event store
	The event sourced system
	The schema
	Event sourced systems based on CQRS

	Challenges faced in applying event sourcing
	Schema evolution in event sourced systems
	Discussion
	Threats to validity
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix. Interview Protocol
	Context related questions
	Versioning related questions
	Other topics
	Closing

	References


