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Abstract Only one class of targeted agents (anti-GD2 antibodies) has been incorporated into

front-line therapy for neuroblastoma since the 1980s. The Neuroblastoma New Drug Devel-

opment Strategy (NDDS) initiative commenced in 2012 to accelerate the development of new

drugs for neuroblastoma. Advances have occurred, with eight of nine high-priority targets be-

ing evaluated in paediatric trials including anaplastic lymphoma kinase inhibitors being inves-

tigated in front-line, but significant challenges remain.

This article reports the conclusions of the second NDDS forum, which expanded across the

Atlantic to further develop the initiative. Pre-clinical and clinical data for 40 genetic targets

and mechanisms of action were prioritised and drugs were identified for early-phase trials.

Strategies to develop drugs targeting TERT, telomere maintenance, ATRX, alternative

lengthening of telomeres (ALT), BRIP1 and RRM2 as well as direct targeting of MYCN

are high priority and should be championed for drug discovery. Promising pre-clinical data

suggest that targeting of ALT by ATM or PARP inhibition may be potential strategies. Drugs

targeting CDK2/9, CDK7, ATR and telomere maintenance should enter paediatric clinical

development rapidly. Optimising the response to anti-GD2 by combinations with chemo-

therapy, targeted agents and other immunological targets are crucial.

Delivering this strategy in the face of small patient cohorts, genomically defined subpopu-

lations and a large number of permutations of combination trials, demands even greater inter-

national collaboration.

In conclusion, the NDDS provides an internationally agreed, biologically driven selection of

prioritised genetic targets and drugs. Improvements in the strategy for conducting trials in

neuroblastoma will accelerate bringing these new drugs more rapidly to front-line therapy.

ª 2020 Elsevier Ltd. All rights reserved.
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1. Introduction

Neuroblastoma is the most common extracranial solid

tumour in children and a leading cause of death in

children. High-risk neuroblastoma accounts for almost

50% of all cases and it mainly comprises children over 18

months with metastatic disease (stage M) or children
with tumours harbouring MYCN amplification. Despite

the very good outcome for children with low/interme-

diate-risk disease, patients with high-risk neuroblastoma

have a poor prognosis as half of them relapse despite

intensive multimodal treatment, including standard

chemotherapy, surgery, radiotherapy, high-dose

chemotherapy, differentiation therapy and immuno-

therapy with GD2-targeted monoclonal antibody [1,2].
The prognosis at relapse is even more dismal with less

than 10% surviving after 5 years [3,4]. Hence, new drugs

to improve survival and reduce long-term toxicities are

urgently needed to treat high-risk neuroblastoma at

diagnosis as well as patients with relapsed or refractory

disease [5]

Despite the increased number of promising targets

and drugs identified in pre-clinical studies, and an in-
crease in the number of early clinical trials focused on

neuroblastoma, the success of drugs becoming the front-

line standard of care or even being evaluated in large

upfront phase III trials remains extremely limited. To

date, the only non-immunological targeted agents in

front-line treatment are the anaplastic lymphoma kinase

(ALK) inhibitor crizotinib and 131I-meta-

iodobenzylguanidine (131I-MIBG), which are both
currently being evaluated in an ongoing Children’s

Oncology Group (COG) phase III trial (COG

ANBL1531, NCT number NCT03126916).

Several barriers have delayed the development of new

drugs in paediatric cancer in general, and in neuro-

blastoma in particular. Paediatric drug development is

still largely centred on adult conditions rather than the

biology of the malignancy. The rarity of paediatric tu-
mours and the paucity of novel drugs available for

dedicated paediatric early clinical trials have contributed

to slow progress [6,7]. Neuroblastoma being essentially

only a childhood cancer, in contrast to leukaemia or

sarcomas, further complicates drug development efforts.

Other factors such as incomplete pre-clinical data on

novel drugs and biomarkers and lack of dialogue be-

tween academia, regulators and pharmaceutical in-
dustries have negatively impacted the prioritisation

process in an environment of limited resources. The

multi-stakeholder forum, ACCELERATE, which aims

to promote innovation in new drug development for

children with cancer, has successfully brought together

clinicians, academics, patient advocates, representatives

of pharmaceutical companies and regulators [8].

In this overall context of paediatric cancer drug
development, a concerted international prioritisation
process, anchored in the biology of neuroblastoma, is

needed to identify which targets are high priority and

which drugs should be taken forward expeditiously into

clinical trials for this disease.

The Neuroblastoma New Drug Development Strat-

egy (NDDS) was launched by the Innovative Therapies

for Children with Cancer (ITCC) consortium together

with the European Network for Cancer Research in
Children and Adolescents and the International Society

of Paediatric Oncology Europe Neuroblastoma Group

(SIOPEN) in 2012. The NDDS aims to accelerate the

development of new drugs for patients with neuroblas-

toma by prioritising targets and mechanisms of action

and drugs that should be advanced into paediatric

clinical trials [5].

The results of the first NDDS meeting (NDDS1) have
prioritised resources, informed clinicians designing

early- and late-phase clinical studies and highlighted

targets, mechanisms of action and drugs of greatest in-

terest to the pharmaceutical industry and regulators [5].

ALK, mitogen-activated protein kinase (MEK),

cyclin-dependent kinase (CDK4/6), mouse double min-

ute 2 homolog (MDM2), checkpoint kinase (CHK1),

baculoviral inhibitor of apoptosis repeat-containing 5
(BIRC5), bromodomain and extra-terminal motif

(BET), Aurora A kinase and mammalian target of

rapamycin complex (mTORC1/2) (with the three latter

targets representing ways of potentially targeting

MYCN) were the top priority neuroblastoma targets,

and their current clinical status is shown in Table 1.

Paediatric trials have started for eight of the nine

(89%) targets defined as high priority and for which
drugs were available; however, their development is well

advanced only for the ALK inhibitors. In this field,

crizotinib is now being evaluated in a phase III front-

line trial (COG ANBL1531, NCT03126916), and cer-

itinib (NCT01742286) has completed the phase I/II trial

(results are awaited). Pre-clinical data relating to lorla-

tinib, a third-generation ALK inhibitor, have shown

more potency compared to other inhibitors and activity
against most primary resistant ALK mutations

including the F1174L [9,10]. Following this, an NANT

phase I trial of lorlatinib (NCT03107988) in relapsed/

refractory neuroblastoma is ongoing. The Aurora A

kinase inhibitor alisertib has completed a phase II

combination trial with irinotecan and temozolomide

[11]. Early phase clinical trials including neuroblastoma

cohorts have been completed for MEK (trametinib,
NCT02124772; results are awaited) and CDK4/6 (ribo-

ciclib, NCT01747876) inhibitors, and these are being

taken forward in combination studies. Early phase

paediatric clinical trials of MDM2, CHK1 and BET

inhibitors have just commenced, but have not for

BIRC5. BIRC5 was shown to be a target in neuroblas-

toma with YM155 being an available clinical candidate.

However, although YM155 is no longer in development



Table 1
Targets of interest for drug development in patients with neuroblastoma.

Targets Summary of the development for neuroblastoma

Agents already in paediatric clinical trials

ALK Preclinical: Target expressed in tumour samples (protein & mRNA levels), activating mutations and amplification present in

tumour tissue. Inhibition of mutant ALK in neuroblastoma is complex and challenging. In vitro and in vivo efficacy data (in

xenografts and GEMM) for crizotinib and other inhibitors.

Clinical: Crizotinib is currently being evaluated in an ongoing COG phase III trial (COG ANBL1531, NCT number

NCT03126916). In the phase I trial of crizotinib, 1/11 ALK mutated or amplified neuroblastoma patients had objective

responses (9%). Phase II of single agent and in combination with chemotherapy not reported (NCT00939770 and

NCT01606878). The paediatric phase 1/2 trial of ceritinib was recently completed (NCT01742286) with an objective

response rate of 20% [76]. A phase 1 trial of crizotinib in combination with temsirolimus (ITCC-CRISP, EudraCT 2015-

005437-53) and a phase I/II trial of lorlatinib (NANT, NCT03107988) are ongoing.

Aurora A kinase Preclinical: Inhibitors act on the MYCNeAurora complex, but they are also cytotoxic in their own right. Mechanistically,

there is evidence that Aurora A kinase inhibitors would synergise with ATR inhibitors, but not with CHK1 inhibitors More

potent and selective inhibitors and novel combinations (e.g. ATR inhibitors) should be developed.

Clinical: Alisertib completed phase I and II trials as single agent and in combination with irinotecanetemozolomide [11,20];

however, the activity of alisertib was lower inMYCN-amplified neuroblastoma. Partial response rate 31.8% phase I and 21%

phase II. AT9283 completed phase I without finding objective responses in three neuroblastoma patients [77]. LY3295668

erbumine (NCT04106219) phase I has just opened.

CDK4/6 Preclinical: Role as a single agent through cyclin D1 and in combination with MEK inhibitors [78].

Clinical: Ribociclib completed phase I single agent [79], demonstrated stable disease as a frequent outcome in neuroblastoma

patients (7/15; 47%). Now, being tested in combination in ESMART (NCT02813135) and NEPENTHE (NCT02780128).

WEE1 Pre-clinical: Combinations with gemcitabine and with CHK1 inhibitors are active pre-clinically [26].

Clinical: AZD1775 in paediatric phase I trials by COG (NCT02095132) and ITCC (ESMART) in combination with

irinotecan and carboplatin.

mTORC1/2 Pre-clinical: mTORC1/2 is a target in MYCN-driven and NRAS-mutated neuroblastoma. There are preclinical data with a

number of compounds and combination data with MEK inhibitors [80].

Clinical: AZD2014 included in ESMART (NCT02813135) as single agent and in combination, but drug development

discontinued by the company.

CHK1 Preclinical: Neuroblastoma cell lines and transgenic models are very sensitive to CHK1 inhibitors [33,81]. Replication stress,

but not MYCN amplification, may be predictive of sensitivity to CHK1 inhibitors. Gemcitabine is synergistic with CHK1

inhibitors as are PARP and WEE1 inhibitors.

Clinical: Completed phase I trial of prexasertib (CHK1/2 inhibitor) by COG (NCT02808650). Currently, there is no selective

CHK1 inhibitor being evaluated in paediatrics.

BCL2 Preclinical: BCL-2 is highly expressed in neuroblastoma and plays an important role in oncogenesis. Potential combination

with MCL-1 inhibitor should be explored [82,83].

Clinical: Phase I/II study of venetoclax monotherapy and chemotherapy combinations started (NCT03236857) [84]. There is

potential for combination studies.

MDM2 Pre-clinical: Targetsdp53, MDM2 aberrations, more common at relapse; validated in vitro and in vivo [85].

Clinical: NEPENTHE trial including HDM201 started (NCT02780128), ALRN-6924 and Idasanutlin paediatric studies

started (NCT03654716, NCT04029688).

MEK Pre-clinical: Targets in the RAS-MAPK pathways are frequently mutated in relapsed neuroblastoma [86].

Clinical: Phase I studies of cobimetinib (NCT02639546) and trametinib (including a neuroblastoma cohort, NCT02124772)

completed, results pending.

PARP Pre-clinical: Some neuroblastoma tumours are sensitive to PARP inhibition, resulting in DNA damage and replicative stress

[87]. PARP inhibitors may be synergistic with CHK1 inhibitors. Loss-of-function of ATRX is synthetically lethal with

PARP inhibition [49].

Clinical: Olaparib currently being tested in combination with irinotecan in the ESMART clinical trial (NCT02813135) and

as single agent in selected tumours is starting soon.

Polyamine pathway Pre-clinical: ODC1 is a transcriptional target of MYC, and its encoding gene ODC1 is co-amplified with MYCN in 6% of

high-risk neuroblastoma. DFMO is an inhibitor of ODC1 [26,88].

Clinical: Trial reported using lower doses in maintenance adjuvant setting [27]; NANT trial of DFMO with topotecan/

cyclophosphamide (NCT02030964); COG ANBL1821 trial will evaluate DFMO added to chemo-immunotherapy in

relapsed/refractory neuroblastoma (in development).

BET Pre-clinical: MYCN amplification strong predictive biomarker. Antitumour effects following down-regulation of MYCN

expression and MYCN target genes.

Clinical: A paediatric trial with BMS-986158 (NCT03936465) has just commenced. Adult trials including patients older than

12 years are ongoing (NCT02419417).

Priority targets with no agents yet in the paediatric clinic

ATR Pre-clinical: Deregulated expression of MYCN activates ATR, and MYCN-driven neuroblastoma is reported to depend on

Aurora A kinase to prevent transcription/replication conflicts. The combination of Aurora A kinase and ATR inhibition in

MYCN-driven neuroblastoma is currently under investigation.

Clinical: Several ATR inhibitors are currently being explored clinically in adults (AZD6738, BAY1895344, VX-970). The

combination of AZD6738 is planned in ESMART.
(continued on next page)
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Table 1 (continued )

Targets Summary of the development for neuroblastoma

CDK2/9 Pre-clinical: CDK2/9 inhibition disrupts the interaction between MYCN and pTEFb (CDK9-CyclinT1), resulting in

reduced MYCN protein expression and impaired MYCN activity at promoters and enhancers.

Clinical: Phase I trials of CYC065 as single agent and in combination with venetoclax for chronic lymphocytic leukaemia are

ongoing in adults and planned in paediatrics combined with chemotherapy (ESMART), but have not yet started.

CDK7 Pre-clinical: CDK7 inhibition selectively inhibits growth, induces MYCN down-regulation and affects the transcriptional

programs in MYCN-amplified cell lines.

Clinical: SY-5609 is a CDK7 inhibitor undergoing clinical evaluation in adults.

Priority targets with no agents yet in the adult or paediatric clinic

MYCN (direct) The issues that have impeded traditional medicinal chemistry approaches to drug MYCN oncoproteins include difficulty in

crystallisation of the full-length oncoprotein, its variable tertiary structure in solution and relative lack of well-defined

docking sites for small-molecule inhibitors.

Indirect approaches include that target synthetic lethal interactions, which seek to inhibit defined binding partners of

MYCN that modulate specific oncogenic functions of MYCN, inhibitors of proteins that regulate transcriptional output of

MYCN and proteins that modulate interaction of MYCN with regulatory enhancer and super enhancers. These include

Aurora A kinase, BET, CDK7 or CDK9.

TERT/telomere

maintenance

Imetelstat (GRN163L), a potent competitive inhibitor of telomerase enzymatic activity, was evaluated in paediatric trials,

but its clinical development has been halted.

6-thio-dG represents a novel drug targeting telomerase activity and has promising preclinical utility against neuroblastoma,

but it has not reached clinical development yet.

ALT No direct therapeutic strategy has been established for cancers with the ALT phenotype. Preclinical studies have suggested

that ATR inhibitors, Tetra-Pt (bpy) or ATM inhibitors could be strategies for these patients.

ATRX No published data exist for ATRX, although it has been suggested that it could be targeted via PARP inhibition.

BRIP1 BRIP1 represents a novel target for exploiting replication stress. Direct inhibitors targeting BRIP1 are currently not

clinically available, small molecule targeting other components of the replicative stress response machinery are available,

such as CHK1, CDC7, ATM and WEE1. RRM2 and FOXM1 have also been identified as potential targets but without

direct inhibitors available.

RRM2 RRM2 gene has been identified as a strong dependency gene in high-risk neuroblastoma with overexpression causing

remarkable accelerated tumour formation in an MYCN driven neuroblastoma zebra fish model. RRM2 is a component of

the ribonucleotide reductase complex involved in dNTP production and located on a highly recurrently gained region on

chromosome 2 (2p25.1). Several regulatory pathways control RRM2 expression and protein levels including MYCN itself,

E2F1-3, LIN28B as well as ATR, CHK1 and WEE1 cell cycle checkpoint regulators. Therefore, direct RRM2 inactivating

drugs may be of benefit to integrate into novel combination therapies aimed to target replicative stresseinduced DNA

damage response pathways.

BIRC5 Pre-clinical: mRNA and protein over expression described, target validated in vitro with shRNA and in vitro/in vivo efficacy

data for YM155.

Clinical: Development of YM155 was halted; no clinical candidates are available at the moment.

ALK, anaplastic lymphoma kinase; ALT, alternative lengthening of telomeres; ATM, ataxia telangiectasia mutated; BET, bromodomain and

extra-terminal motif; BIRC5, baculoviral inhibitor of apoptosis repeat-containing 5; CDK, cyclin-dependent kinase; CHK, checkpoint kinase;

COG, Children’s Oncology Group; DFMO, difluoromethylornithine; ESMART, European Proof-of-Concept Therapeutic Stratification Trial of

Molecular Anomalies in Relapsed or Refractory Tumours; ITCC, Innovative Therapies for Children with Cancer; MDM2, mouse double minute 2

homolog; MEK, mitogen-activated protein kinase; mTORC1/2, mammalian target of rapamycin complex; ODC1, ornithine carboxylase; RRM2,

ribonucleotide reductase M2.
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in view of the negative results of adult trials, the target

remains of interest for paediatrics (Table 2).

In 2016, the European Proof-of-Concept Therapeutic

Stratification Trial of Molecular Anomalies in Relapsed

or Refractory Tumours (AcSé-ESMART) trial

(NCT02813135, EudraCT 2016-000133-40) was
launched as the European academic multi-pharma pre-

cision medicine trial [12]. This proof-of-concept, phase I/

II, multi-centre, prospective basket trial is designed to

explore targeted agents, either as a single agent or in

combination in a molecularly enriched cancer popula-

tion. Paediatric patients with relapsed/refractory solid

tumours are assigned to one of the multiple arms based

on their molecular profile determined by a comprehen-
sive molecular screening within the MAPPYACTS

study (NCT02613962) or other advanced molecular

profiling programs. In the first version of ESMART, six
of the seven arms included highly relevant drugs for

neuroblastoma such as CDK4/6, mTORC1/2, PARP or

WEE1. More than 130 patients have already been

recruited and amendments are incorporating newer

targeted therapies and combinations, thus facilitating

the pipeline of drugs and combinations available for
further development in neuroblastoma. Despite this

progress, challenges remain; for some of these agents,

clinical development has been halted or abandoned for

reasons not related to their paediatric development, such

as vistusertib (AZD2014). For others, attrition has been

substantial with a considerable number of single agents,

nonebiomarker-driven early-phase trials not demon-

strating activity and, with the exception of crizotinib, no
other compounds reaching front-line evaluation or

randomised phase IIeIII trials. Despite successful ex-

amples of multi-arm multi-company trials such as the



Table 2
Status of early paediatric clinical trials of prioritised targets in NDDS.

Target Agent Clinical early-phase trials phase I or II and results Status for neuroblastoma

ALK Crizotinib 1: completed, RP2D identified

2: completed as single agent, results pending

2: completed in combination with topotecan

ecyclophosphamide, results pending

COG study in frontline

Ceritinib 1/2: completed, RP2D identified, results pending No trials planned

Lorlatinib 1: ongoing as single agent and in combination Phase I ongoing

Aurora A kinase Alisertib 1: completed as single agent and in combination

2: completed in combination with irinotecan-

temozolomide

Not taken forward in paediatrics

AT9283 1: completed single agent, RP2D identified Drug discontinued by the company

LY3295668 Erbumine 1: opening soon for neuroblastoma Phase I ongoing

CDK4/6 Ribociclib 1: completed single agent

1: evaluated in combination with topotecan

etemozolomide and with everolimus in

ESMART, results pending

Combination trials planned

BCL2 Venetoclax 1: ongoing as single agent and with chemotherapy Phase I ongoing

MDM2 HDM201 1: ongoing in NEPENTHE Phase I ongoing

ALRN6924 1: ongoing Phase I ongoing

Idasanutlin 1: ongoing Phase I ongoing

MEK Trametinib 1: completed RP2D identified

Expansion cohort completed no results

1: ongoing in NEPENTHE

Phase I combination ongoing

Cobimetinib 1: ongoing No trials planned in neuroblastoma

Selumetinib 1: completed

2: completed for plexiform neurofibroma and

low-grade glioma

No trials planned in neuroblastoma

mTORC1/2 Vistusertib 1: in two arms in ESMART, study suspended Drug discontinued by the company

WEE1 AZD1775 1: ESMART (with carboplatin) and COG (with

irinotecan) trial ongoing

Phase I ongoing

Polyamine pathway DFMO 1: completed, RP2D identified

2: ongoing chemo-immunotherapy with/without

DFMO

Randomised phase II ongoing at relapse

PARP Olaparib 1: completed, RP2D identified

1: in ESMART with irinotecan

Phase I ongoing

Talazoparib 1: completed in combination with irinotecan and

also temozolomide

No trials planned in neuroblastoma

CHK1 Prexasertib 1: completed by COG Phase I ongoing

CDK2/9 CYC065 1: to open in ESMART Phase I awaited

Telomerase Imetelstat 1: completed, RP2D identified Drug discontinued by the company

BET BMS-986158 Phase I ongoing Phase I ongoing

ALK, anaplastic lymphoma kinase; BET, bromodomain and extra-terminal motif; CDK, cyclin-dependent kinase; CHK, checkpoint kinase; COG,

Children’s Oncology Group; DFMO, difluoromethylornithine; ESMART, European Proof-of-Concept Therapeutic Stratification Trial of Mo-

lecular Anomalies in Relapsed or Refractory Tumours; MDM2, mouse double minute 2 homolog; MEK, mitogen-activated protein kinase;

mTORC1/2, mammalian target of rapamycin complex; NDDS, Neuroblastoma New Drug Development Strategy.
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ESMART or Paediatric NCI-MATCH trial, additional

challenges ensuring early access to most promising in-

hibitors remain. With this landscape, a second NDDS

forum was convened, and this report summarises the

discussions and conclusions from this initiative.

2. Second NDDS

The second NDDS initiative included both North

American and European academic researchers to ach-

ieve the goal of trans-Atlantic consensus and strengthen
collaboration in this rare disease. Patient advocates and

regulators were included as key stakeholders. Repre-

sentatives from pharmaceutical companies enabled a

discussion about their early pipeline agents to take
place, but they provided an industry perspective on

paediatric cancer early drug development.

The overall aim of the second NDDS forum was to

prioritise targets, according to biological rationale and

drugs with a strong mechanism of action against those

targets. This forum focused on tumour genetic targets or

mechanisms of actions and not on microenvironment/

immunological targets. The desired outcome was the
delivery of early-phase trials with the highest potential

to inform decisions about subsequent front-line studies.

Within a class of compounds with a specific target,

identification of the optimal molecule (i.e. one that

specifically has the desired biological effect) is critical.

For example, the optimal Aurora A kinase inhibitor to

decrease MYCN protein levels is believed to be one
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which elicits conformational changes in the

MYCNeAurora complex [13].

The specific objectives of this second forum were to: i)

identify strategies to target the telomere pathway and

replication stress; ii) prioritise strategies to target

MYCN; and iii) prioritise new targets for neuroblas-

toma and those identified in NDDS1. Drugs relevant to

these prioritised targets were to be identified for inclu-
sion in early-phase clinical studies. Given that there is no

single genetic driver in neuroblastoma, with the presence

of multiple epigenetic events and the role of the immune

system, a focus was given to combination strategies,

including potential combinations of small molecules

with immunotherapy.

For each target, the aim was to review a compre-

hensive information package including data about the
target in neuroblastoma (expression, dependency and

validation), pre-clinical results on available drugs, po-

tential combinations and availability of biomarkers.

Each delegate provided an overall evaluation for each

target.
3. Considerations for neuroblastoma drug development

(Table 3)

A coordinated international effort in new drug devel-
opment in neuroblastoma between Europe, North

America and the rest of the world will have substantial

benefit, especially in view of the challenge of small pa-

tient numbers coupled with a large number of potential

permutations of combination trials and genomically

defined subpopulations.

Those promising targets that have no drugs at present

available for clinical evaluation should be championed
for drug discovery by pharmaceutical and biotechnology

companies and academic drug discovery units.

There is a need to define the optimal package for a

drug to be evaluated pre-clinically in neuroblastoma, as
Table 3
Considerations for neuroblastoma drug development.

Need

Coordinated international effort in new drug development in

neuroblastoma

No drugs available for clinical evaluation targeting

Optimal agreed pre-clinical package for a drug to be evaluated

clinically

Early phase trials include neuroblastoma expansion cohorts

Combinations explored at a very early stage of drug development

First-in-child to front-line trials in only three steps for active drugs

Lack of long-term outcome data of patients with relapsed disease

Define internationally ‘success criteria’ for early clinical trials in

neuroblastoma

NDDS, Neuroblastoma New Drug Development Strategy; INRG, Intern

Children with Cancer.
well as other paediatric tumours. One of the ITCC

Paediatric Preclinical Proof-of-concept Platform

(ITCC-P4) (www.itccp4.eu) work packages is the

development of a consensus for this pre-clinical pack-

age. The ITCC-P4 is a European public-private part-

nership, aiming to establish new, fully characterised

patient-derived pre-clinical models of high-risk paedi-

atric solid tumours and to use these models for pre-
clinical drug evaluation in a sustainable comprehensive

platform.

Early phase (first-in-child) trials that include neuro-

blastoma expansion cohorts, when appropriate, will

provide a preliminary evaluation of therapeutic activity

in this entity, enabling the selection of drugs for further

randomised multi-arm or umbrella studies. One example

of such a study is the SIOPEN-ITCC BEACON trial
(NCT02308527), which is a randomised phase II trial

evaluating the benefit of the addition of novel drugs,

such as the angiogenesis inhibitor bevacizumab, or the

anti-GD2 monoclonal antibody dinutuximab beta to the

activity of chemotherapy and evaluating backbone

chemotherapy regimens for children with relapsed re-

fractory high-risk neuroblastoma. There is a need to

define ‘success criteria’ internationally for early clinical
trials to warrant further evaluation as a single agent or

in combination, particularly for biomarker-driven trials,

and drugs should rapidly transition from first-in-child to

front-line trials in only three stepsdearly-phase clinical

trials, randomised phase II trials and front-line studies,

as shown in Fig. 1.

In parallel, there should be greater emphasis, at a very

early stage of drug development, on establishing optimal
combinations while clinical development of single-agent

molecules should be minimal (Fig. 2 and Fig. 3). Where

possible, clinical development of new drugs should

commence evaluating combinations or there should be a

short ‘run-in’ single-agent phase that leads to early

investigation of combinations with other targeted thera-

pies or with backbone chemotherapy regimens.
Action

NDDS initiative, third NDDS workshop planned for 2021

Multi-stakeholder and global coordination required

Targets championed for drug discovery to pharmaceutical companies

ITCC-P4 project (www.itccp4.eu) work packages develop a consensus

pre-clinical package

Improved trial design, incorporating neuroblastoma expansion cohorts

biomarker enrichment and combinations explored at a very early stage

of drug development

INRG initiative has developed a taskforce to incorporate data on

relapsed patients from frontline and relapsed trials into the INRG

database (www.inrgdb.org)

International consensusdINRG

ational Neuroblastoma Risk Group; ITCC, Innovative Therapies for

http://www.itccp4.eu
http://www.itccp4.eu
http://www.inrgdb.org
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Despite recent studies reporting data on the outcomes

of patients with relapsed neuroblastoma [4,14e16], a

more integrated approach including more data on

follow-up and biological features is required. Following

the meeting, a new International Neuroblastoma Risk

Group (INRG) initiative (www.inrgdb.org) has been

launched to incorporate this relapse-specific informa-

tion into the international database.
4. Target prioritisation process

The primary objective of the Second NDDS Forum
meeting was to prioritise targets based on tumour

biology, with a secondary aim to review the prioritised

targets to determine which have clinically developed

candidate drugs. Targets were prioritised based on evi-

dence of their dependency for tumour growth and pro-

gression, in vitro and in vivo pre-clinical data and, if

available, clinical data in patients following the meth-

odology used in a prior NDDS workshop and other
initiatives such as the Paediatric NCI-MATCH [17].

Nevertheless, a reasonable balance between the

amount of required pre-clinical data and the clinical

urgency to develop treatments for a population with

high unmet need was considered as much knowledge is

gained from first-in-child studies with integrated
Fig. 1. Schema of clinical drug development for

Fig. 2. Summary of targets r
correlative biology studies [6] (www.itccp4.eu). The

availability of profiled tumour sample series both at

the time of diagnosis and relapse, clinical urgency and

availability of paediatric relevant models was

considered for this definition.

Before the forum, 40 targets and mechanisms of ac-

tion were preselected for evaluation based on the most

recent available data (Table 1 and Fig. 1).
In view of the limited number of patients available,

when several drugs are available for a given target, the

drugs need to be considered together in a non-

competitive space, for example, in a Paediatric Strat-

egy Forum [18,19]. Given the high attrition rates in

anticancer drug development and multiple drugs being

developed for a given target, the recommendation is to

take two drugs for paediatric clinical development, not
just one, because in the future, a second candidate might

be needed if the first one is discontinued, or might have

more potency or better toxicity profile. Within a class of

compounds with a specific target, identification of the

optimal molecule (i.e. one that specifically has the

desired biological effect) is critical.

Once identified, high-priority targets and mechanisms

of action were classified into three categories according
to availability of clinical compounds: i) drugs against

targets in ongoing paediatric early-phase clinical trials,

ii) drugs against targets not in paediatric early-phase
neuroblastoma, from the bench to the clinic.

eviewed and prioritised.

http://www.inrgdb.org
http://www.itccp4.eu
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clinical trials and iii) high-priority targets with no drugs

at present available in clinical development (Table 1).
5. Priority drugs in paediatric early-phase clinical trials
(ALK, Aurora A kinase, CDK4/6, WEE1, mTORC1/2,

CHK1, BCL2, MDM2, MEK, PARP, polyamine

pathway and BET)

In this forum, high-priority targets were identified for

drugs, which are currently in paediatric clinical trials:

ALK, Aurora A kinase, CDK4/6, WEE1, mTORC1/2,
CHK1, BCL2, MDM2, MEK, PARP, polyamine

pathway and BET. Their clinical development status is

summarised in Table 1.

ALK is recognised as a high-priority target, with

different inhibitors being developed in paediatric trials

(crizotinib, ceritinib, entrectinib, lorlatinib) as single

agents and in combination. The most advanced ALK

inhibitor crizotinib is currently being evaluated in front-
line patients with tumours that harbour ALK alter-

ations in the COG ANBL1531 trial (NCT number

NCT03126916). The ALK inhibitor in clinical develop-

ment, which pre-clinically is most potent, lorlatinib, is

being tested in an NANT early-phase trial

(NCT03107988). ALK inhibitors were not discussed in

detail as they had been the focus of a recent Paediatric

Strategy Forum [19].
Aurora A kinase inhibitors have completed several

steps of paediatric development including up to phase II

combination trials in neuroblastoma for alisertib [11,20].

In view of its promising pre-clinical activity and toxicity

profile, an international early-phase trial of LY3295668

erbumine specifically in neuroblastoma is about to open

(NCT04106219). The CDK4/6 inhibitor ribociclib

completed single-agent testing and is now being evalu-
ated in combination in the ESMART (NCT02813135,

EudraCT 2016-000133-40) and NEPENTHE trials

(NCT02780128). The aim of the NEPENTHE trial is to

match genomic aberrations in tumour cells at the time of

relapse to rationally designed combinations of molecu-

larly targeted agents: ceritinib (ALK inhibitor), trame-

tinib (MEK inhibitor) and HDM201 (MDM2

inhibitor).
JQ1, a prototypic BET inhibitor, binds the bromo-

domain of BET proteins and disrupts BET recruitment

to chromatin, downregulating the expression of MYC

[21]. MYCN amplification was identified as a strong

predictive biomarker for response to JQ1 in neuroblas-

toma cells [22]. Antitumour effects after down-regula-

tion of MYCN expression and MYCN target genes were

also evident in MYCN-amplified neuroblastoma cell
lines when treated with other BET inhibitors such as I-

BET726 (GSK1324726A) and OTX015 (now MK-8628)

[23,24]. Trials in adult cancer patients have started for

several of these inhibitors. Although responses have
been demonstrated in vitro, in general, in vivo evaluation

has shown slowing of tumour growth as the best

response to monotherapy, with tumour regression being

uncommon. Furthermore, myelosuppression is dose

limiting to obtain the drug levels that are effective

in vitro. There is now a dedicated first-in-child trial of

the BET inhibitor BMS-986158 (NCT03936465) and

adult trials include adolescents [25]. Combination stra-
tegies including BET inhibitors, based on biological

hypotheses, are particularly relevant.

The polyamine pathway is an emerging target as

polyamine metabolism is deregulated in neuroblas-

toma, ornithine carboxylase (ODC1) is a transcrip-

tional target of MYCN and is co-amplified with

MYCN in 6% of high-risk neuroblastoma. Difluor-

omethylornithine (DFMO) is an inhibitor of ODC1
and reduces global protein translation by 26e76% in

MYCN-amplified neuroblastoma [26]. In pre-clinical

models, the activity of cyclophosphamide is increased

when combined with DFMO. COG will be evaluating

DFMO in a randomised study for the first relapse in

combination with irinotecan, temozolomide, dinutux-

imab and GMCSF (COG ANBL1821, NCT03794349).

DFMO is also being studied as maintenance therapy at
the end of high-risk neuroblastoma therapy [27]. Given

the additional risks of bias of evaluating new drugs

added at the end of current therapy, evidence from a

randomised trial comparing with the standard of care

is required.

For WEE1, CHK1, BCL2, mTORC1/2 and MDM2

inhibitors, paediatric trials have recently commenced

and no results are yet available. For MEK and PARP,
paediatric trials have been conducted, but data from

neuroblastoma cohorts are still awaited.
6. Priority drugs not in paediatric early-phase clinical

trials (ATR, CDK2/9 and CDK7)

These targets have available clinical candidates in

adult development and strong pre-clinical supporting

data, but paediatric trials have not yet commenced.

ATR has recently emerged as an attractive thera-

peutic target as its activation promotes cell survival

during DNA damage and replication stress. Several
ATR inhibitors are currently being explored clinically.

Interestingly, deregulated expression of MYCN acti-

vates ATR, and MYCN-driven neuroblastoma is re-

ported to depend on Aurora A to prevent transcription/

replication conflicts [28]. The therapeutic benefit of the

combination of Aurora A kinase and ATR inhibition in

MYCN-driven neuroblastoma is currently under inves-

tigation pre-clinically.
CDK2/9 inhibition disrupts the interaction between

MYCN and pTEFb (CDK9-CyclinT1), resulting in

reduced MYCN protein expression and impaired



Fig. 3. Status of clinical development of high-priority agents that have entered paediatric development. Arrows represent agents currently

undergoing clinical trials. Square lines represent agents for which paediatric development has been stopped. Agents coloured in blue are

being developed in combination, agents in red have only been developed as a single agent so far. Arrows coloured in white are those where

a combination cohort is planned but has not started yet. (For interpretation of the references to colour in this figure legend, the reader is

referred to the Web version of this article.)
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MYCN activity. Phase I trials of the CDK2/9 inhibitor

CYC065 are ongoing in adults and in preparation for

children within ESMART, but have not currently

started.
The transcriptional kinase CDK7 has a role in tran-

scription initiation, but also activates other CDKs

namely, CDK1/2/9. CDK7 inhibition selectively inhibits

growth, induces MYCN down-regulation and affects the
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super-enhanceredriven transcriptional programs in

MYCN-amplified cell lines [29]. SY-5609 is a clinical

candidate.
7. High-priority targets with no drugs currently available

(MYCN, TERT mediated/telomere maintenance, ALT,

ATRX, BRIP1, RRM2 and BIRC5

7.1. Targeting MYCN

The association of high-level amplification of MYCN

with aggressive clinical behaviour in neuroblastoma is
well characterised [30]. MYCN is therefore a high-

priority but nevertheless challenging target for drug

development. The issues that have impeded traditional

medicinal chemistry approaches to drug MYC onco-

proteins include difficulty in crystallisation of the full-

length oncoprotein, its variable tertiary structure in so-

lution and relative lack of well-defined docking sites for

small-molecule inhibitors.
Although strategies to target MYCN directly have

been elusive, indirect approaches that target synthetic

lethal interactions, or which seek to inhibit defined

binding partners of MYCN that modulate specific

oncogenic functions of MYCN are gaining ground.

Targets of note within this arena include Aurora A ki-

nase, which modulates MYCN oncoprotein stability

and regulates the transcriptional output of MYCN.
Alisertib has been evaluated clinically, although little

clinical data were generated to confirm selective target-

ing of MYCN [11,20]. More selective Aurora A kinase

inhibitors are in development, for example, LY3295668

erbumine (NCT04106219) that may ameliorate these

issues [31].

Proteins that regulate the transcriptional output of

MYCN and proteins that modulate the interaction of
MYCN with regulatory enhancer and super enhancers

are receiving much attention. These include components

of the RNA polymerase II complex, such as BET family

proteins, amongst these BRD4, for which the toolkit

inhibitor JQ1 and clinical compounds GSK525762 and

OTX015 were developed [21e23]. Members of the

CDK family, in particular CDK7 and CDK9, play a

major role in modulating enhancer and super enhan-
ceredependent transcription of MYCN [32]. Finally, a

well-characterised syntheticelethal interaction between

expression of checkpoint (CHK) kinases and MYCN

predicts sensitivity to inhibitors of CHK1/CHK2 (pre-

xasertib LY2606368) or CHK1 (ICR CCT244747,

SRA737) [33]. It is envisaged that combinatorial ap-

proaches will maximise the efficacy of this approach

[34].
A different approach consisting of MYCN-specific

antigen oligonucleotides has also been proposed,

including preclinical candidates such as BGA002, but

paediatric clinical development has not yet started [35].
In summary, direct pharmacological inhibition of

transcription factors in general, and MYCN oncopro-

tein in particular, have encountered major difficulties.

The recent identification of co-factors and MYCN-

interacting proteins that are essential effectors of onco-

genic transformation driven by MYCN is leading to a

very realistic possibility that indirect MYCN inhibitors

may enter clinical use in the coming years.

7.2. TERT, telomerase

Over the last few years, TERT-mediated telomere

maintenance and alternative lengthening of telomeres

(ALT) have been identified as markers of poor prog-

nosis in high-risk neuroblastoma [36e39]. TERT rear-

rangements, leading to increased telomerase activity,

have been identified in a subset of high-risk neuroblas-

toma tumours [40,41]. In addition, loss-of-function ge-
netic alterations of ATRX are associated with ALT, a

telomerase-independent mechanism for telomere elon-

gation through homologous recombination.

Targeting telomerase activity and ALT pathways

represent a novel therapeutic approach for high-risk

neuroblastoma, but no clinical candidates are currently

available. Imetelstat (GRN163L), an inhibitor of telo-

merase enzymatic activity, was evaluated in paediatric
trials [42,43], but its clinical development has been halted

because of unacceptable toxicity. Nucleoside analogue 6-

thio-20-deoxyguanosine (6-thio-dG) represents a novel

drug targeting telomerase activity and has promising

preclinical utility against neuroblastoma. 6-thio-dG is

recognised by telomerase and is incorporated into de

novoesynthesised telomeres [44], resulting in modified

telomeres, leading to telomere dysfunction, but only in
cells expressing telomerase. Clinical trials are awaited.

7.3. Alternative lengthening of telomeres and ATRX

A small number of publications have also reported po-

tential therapeutic strategies for cancers with the ALT

phenotype. In osteosarcoma cells, the ALT phenotype

confers hypersensitivity to compounds that inhibit the

activity of the DNA damage repair response protein

ATR [45]. However, these findings have subsequently
been refuted by others [46].

A novel cisplatin derivative Tetra-Pt (bpy), which

targets the G4 quadruplex, has been developed and

shown to selectively inhibit the growth of ALT cells.

However, this compound is not currently available for

clinical use [47]. Finally, it has recently been shown that

ataxia telangiectasia mutated (ATM) is hyperactivated

at ALT telomeres, and that the ATM inhibitor
AZD0156, which is currently in adult early-phase clin-

ical trials, synergises with conventional chemotherapy in

pre-clinical models of ALT neuroblastoma [48].

Genetic alterations in ATRX (a tumour suppressor

gene) are found in approximately half of ALT
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neuroblastoma cases, and may represent another

important potential indirect therapeutic target. There

are currently no published data for the therapeutic tar-

geting of ATRX alterations, although preliminary re-

ports have identified that ATRX loss-of-function is

synthetically lethal with PARP inhibition [49]; this is

being currently addressed in Arm D of ESMART.

In summary, promising pre-clinical data regarding
the therapeutic targeting of TERT and ALT have begun

to emerge in recent years. However, there are currently

no clinical trials available for these large molecular

subgroups of poor outcome patients.
7.4. Replication stress and DNA repair deficiency by

BRIP1 and RRM2

Replication stress indicates a series of events that

interfere with DNA replication and hinders its pro-

gression causing DNA damage [50,51]. Tumours driven

by MYC are likely to be exposed to high levels of

replication stress, but at the same time have efficient

mechanisms to overcome otherwise lethal levels of DNA

damage thus allowing them to grow [52].
BRIP1 represents a novel target for exploiting repli-

cation stress. BRIP1 exerts multiple functions to protect

cells from replicative stress. Firstly, its DNA helicase

function has been shown to be critical for unwinding

stable G4 structures that occur in single-stranded DNA

during replication ensuring timely progression through

S-phase [53]. Secondly, BRIP1 plays a role in stabilising

stalled replicative forks and is involved in resolving
collapsed forks, as binding partner of BRCA1 during

homologous recombination. Thirdly, and most impor-

tantly, BRIP1 also binds TOPBP1 to facilitate RPA

loading to single-stranded DNA of stalled forks thus

providing a crucial upstream trigger for ATR signalling.

Although an inhibitor has been identified for the related

DNA helicase WRN, so far no specific inactivating

small molecules for BRIP1 have been identified [54].
While awaiting such compounds, in vitro assays are

testing putative synergistic effects of BRIP1 depletion

with inhibition of other replicative stress resistors such

as ATR, CHK1, CDC7, ATM and WEE1 kinases [55]

and the ribonucleotide reductase M2 (RRM2) enzyme

[56]. FOXM1 is a key regulator of cell cycle and DNA

damage response and also a potential target for repli-

cative stress; however, no drug specifically inhibiting
either of these targets is available [34,57].
8. Strategies for combination with immunotherapy

Immunotherapy has become an integral component of

therapy for high-risk neuroblastoma following the

pivotal publication demonstrating the benefit of a

ch14.18 antibody (dinutuximab), targeted to the cell

surface GD2 disialoganglioside combined with
cytokines (granulocyteemacrophage colony-stimulating

factor and interleukin 2), in addition to isotretinoin [58].

Anti-GD2 antibody ch14.18 is now given alone or with

cytokines in both North American and European front-

line trials [59,60].

The most recent therapeutic breakthrough for neu-

roblastoma is the combination of anti-GD2 targeted

therapy with chemotherapy [61e63], which demon-
strated promising increased objective response rates and

progression-free survival in the relapsed and refractory

neuroblastoma (COG study ANBL1221 with dinutux-

imab and St. Jude study with Hu14.18K322A) and

front-line settings (St Jude institutional study with

Hu14.18K322A) [61,63,64]. This approach is now being

explored in a wider multicentre setting in front-line high-

risk neuroblastoma (NCT03786783).
Pre-clinical work has recently shown how neutrophils

have significant anti-neuroblastoma effects, but only in

the presence of dinutuximab. This work also showed

enhanced in vivo activity for dinutuximab in combination

with GM-CSF, topotecan and cyclophosphamide. This

further supports the preclinical rationale for the combi-

nation of anti-GD2 (14.18) with chemotherapy [65].

Nevertheless, neuroblastoma has not been considered
an ‘immunogenic’ tumour as it has a low mutational

burden [66] and as a consequence a low number of neo-

antigens known topromote an immunological antitumour

response. This phenotype may in part explain the very

poor response of neuroblastoma to immune checkpoint

blockade [67,68]. Neuroblastoma cells characteristically

have a very low expression of major histocompatibility

complex class I [69] and secrete soluble factors that
contribute to immune evasion. Furthermore, studies have

demonstrated an active immune-suppressing microenvi-

ronment in neuroblastoma [70]. Myeloid-derived sup-

pressor cells have been shown to be integral to

neuroblastoma tumour growth as demonstrated by a

heavy infiltration of myeloid cells found in tumour sam-

ples [71,72]. Several strategies are being developed to

overcome such inhibitory effects of neuroblastoma aiming
to use on-target andoff-target effects of smallmolecules to

potentiate both passive and active immunotherapies.

Three approaches to enhance immunotherapy are

firstly promoting tumour immunogenicity by pre-

treatment with chemotherapy or radiotherapy or

combining with anti CTLA4 or MEK inhibitors. Mo-

lecular radiotherapy is being used in two ongoing trials

evaluating the combination of MIBG therapy with
dinutuximab beta and anti-PD1 inhibitors (MINIVAN

NCT03332667) and MIBG with dinutuximab

(NANT17-01 NCT03332667). Secondly, inhibiting

tumour-promoting inflammation, immunomodulatory

drugs such as lenalidomide (NANT trial with dinutux-

imab and lenalidomide, NCT01711554). Thirdly, by

increasing innate immunity by an immunomodulatory

effect on the tumour microenvironment by increasing
NK and T cells, but reducing regulatory T cells by
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DFMO, reviewed in Ref. [26]. Alternatively, adminis-

tering NK cells in conjunction with anti-GD2 antibody

or other immunostimulatory approaches may improve

antibody-dependent cellular cytotoxicity [73,74]. Other

immunological strategies that are being evaluated

include vaccines against GD2, CAR T-cells engineered

to target neuroblastoma cell surface markers L1-CAM

or GD2 have been developed and most recently bispe-
cific antibodies targeting GD2 and CD3. GPC2 has been

recently identified as a non-mutated neuroblastoma

oncoprotein and candidate immunotherapeutic target

that warrants evaluation [75].

As with non-immunotherapy approaches, pre-clinical

testing should inform the optimal dose, sequence of

drugs to be used in combination and schedule of

administration in the clinic. The relative paucity of
appropriate pre-clinical immunocompetent models

pose a major challenge and will require the development

of newer and better immunocompetent models fit for

immunotherapeutics (ITCC-P4 Work Package 3). In

terms of clinical translation, combinatorial studies

exploring immunotherapy agents should be performed

with attention to careful safety monitoring as single

drug lack of toxicity cannot predict the potential for
synergistic adverse effects.
9. Conclusion

Optimal, accelerated drug development for neuroblas-

toma demands a combination of an efficient strategy and

selection of molecules that have the highest potential to

lead to front-line studies. A coordinated trans-Atlantic

approach is critical to increase the probability of success,

especially in view of the relatively small patient numbers

and even smaller genomically defined subpopulations.

Once this trans-Atlantic strategy has been firmly estab-
lished, an even more global plan can be initiated.

Presentations from the meeting highlighted the need

for an agreed optimal pre-clinical data package [17].

Uniformity of tumour models would advance progress

as there would be comparability when results are pre-

sented. The ITCC-P4 project will deliver this prerequi-

site and a consensus of the criteria for drugs to proceed

to early clinical evaluation. Neuroblastoma is particu-
larly poised to continue with current collaborations and

expansion of those collaborations to cross Atlantic and

Pacific trials.

Greater emphasis on establishing optimal combina-

tions at a very early stage of drug development is

required. Furthermore, the profiling programs at diag-

nosis and relapse have confirmed the absence of unique

driver events in neuroblastoma. In this setting, models
that enable the study of sequential treatments to account

for clonal evolution and cellular escape mechanisms are

crucial. Also, it is envisaged that high-throughput drug-

screening strategies will also contribute to the definition
of effective drug combinations. The number of single-

agent early-phase trials should be reduced, combination

studies preferred and a small ‘window’ single-agent

phase could provide data on the pharmacokinetics and

toxicities of a drug.

Early phase trials should include neuroblastoma

expansion cohorts, with biomarker enrichment and new

active agents should rapidly transition from first-in-child
to front-line trials in only three stepsdearly-phase

clinical trials, randomised phase II trials and front-line

studies.

Twenty-two of 40 targets reviewed were identified as

high priority based on tumour biology. Twelve of these

had clinical molecules in paediatric clinical trials, three

had molecules that had not reached a paediatric devel-

opment and seven had no clinical candidates as yet
identified. Importance should be given to open studies of

the three compounds and those targets with no drugs

available should be championed for drug discovery by

pharmaceutical companies. Emerging therapies target-

ing neuroblastoma with ALT or ATRX alterations

should be evaluated rapidly.

In view of the substantial response to immunotherapy

for neuroblastoma, integrating immunotherapeutics
with targeted drugs is of pivotal importance.

In summary, the development of the prioritised me-

dicinal products should be accelerated by academia and

industry. It is envisioned that the ITCC-P4 project work

package to develop a consensus pre-clinical package will

be a major advance. There should be a trans-Atlantic

strategy to evaluate these agents, with the early intro-

duction of combinations and the aim that active drugs
are transitioned from first-in-child to front-line trials in

only three steps. Collaboration and regular communi-

cation are critical to drive forward this approach and

increase the number of effective drugs incorporated into

front-line therapy.
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