
1. Introduction
Rock debris covers about 11% of the glacier area in High Mountain Asia (HMA), and importantly, about 
one third of their ice mass below the equilibrium line (Kraaijenbrink et al., 2017), that is, the area which 
actively contributes to melt. The timing and the quantity of melt water runoff from glaciers is increasingly 
important for the large and growing economies of the downstream regions of HMA (Pritchard, 2019). If 
supraglacial debris thickness exceeds a few centimeters, it insulates the underlying ice from the atmos-
phere, considerably lowering the glacier melt rate (Evatt et al., 2015; Lejeune et al., 2013; Østrem, 1959; 
Reid et al., 2012). Therefore debris-covered glaciers are generally thinning rather than shrinking in area 
and retreating (Kirkbride, 1993; Mölg et al., 2019; Ogilvie, 1904; Rowan et al., 2015; Scherler et al., 2011) 
but the driving mechanisms controlling the magnitude of their surface lowering are still not quantified. 
In recent research, steep ice faces interrupting the continuous debris layer, known as ice cliffs (Figure 1b), 
have been shown to substantially increase glacier melt locally (Anderson & Anderson,  2018; Bhushan 
et  al.,  2018; Han et  al.,  2010; Pellicciotti et  al.,  2015; Ragettli et  al.,  2016; Reid & Brock,  2014; Rounce 
et al., 2018; Sakai et al., 1998; Thompson et al., 2016; Watson, Quincey, Carrivick, et al., 2017). Until recently, 
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these features could not be monitored in satellite images because of their coarse resolution and direct field 
observations are rare (Sakai et  al.,  1998). As a result, no models of glacier changes and high mountain 
hydrology included their effect explicitly to date. In the past few years, photogrammetric measurements 
(Brun et al., 2016; Watson, Quincey, Smith, et al., 2017) and detailed local energy balance modeling efforts 
(Buri, Miles, et al., 2016) have quantified volume losses and backwasting evolution of individual ice cliffs, 
identifying that these bare ice features can act as local hot spots for melt on debris-covered glacier tongues, 
melting at rates 3–14 times the rest of the ablation area (Brun et al., 2016; Buri, Pellicciotti, et al., 2016; Reid 
& Brock, 2014; Sakai et al., 2000; Thompson et al., 2016). These small-scale studies however are difficult to 
extrapolate and we therefore still lack understanding of their role on the glacier mass balance and whether 
they substantially alter glacier mass losses or remain confined to specific local phenomena. Here we provide 
the first assessment of their role at the glacier and catchment scale relevant for understanding the mass 
balance and hydrology of Himalayan glaciers.

Ice cliff melt for individual glaciers has been estimated extrapolating point-scale model results (Han 
et al., 2010; Reid & Brock, 2014; Sakai et al., 1998) or by differencing of digital elevation models (DEMs) 
(Brun et al., 2018; Thompson et al., 2016). Modeling efforts to date assumed simplified and invariant cliff 
geometries, neglecting complex melt patterns on the cliff surface (Buri, Miles, et al., 2016; Buri, Pellicciotti, 
et al., 2016) while DEM-differencing is restricted to the availability of remote sensing data and their tempo-
ral and spatial resolution and cannot provide insights into the physics of cliff mass loss. Methods relying on 
observational data alone additionally have to deal with glacier dynamics which are difficult to separate from 
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Figure 1. Map of the upper Langtang Valley catchment (a), photos showing examples of ice cliffs in the catchment (b), and visualization of ice cliff 
backwasting (c). (a) The catchment is indicated in yellow, glacierized areas in orange and debris in gray. The four main glaciers are Lirung, Shalbachum, 
Langtang, and Langshisha Glacier. Also indicated are the automatic weather stations on Lirung and Langtang Glacier (black circles) and in Kyanjing (black 
cross). (b) Photos of cliffs on Lirung (left) and Langtang Glacier (middle and right) with a person in red circles for scale. (c) Visualization of ice cliff backwasting 
based on high-resolution UAV-DEM-observations. The upper plot shows the observed 3D-evolution of a cliff on Lirung Glacier from May to October 2013 (right 
to left); the central plot shows in blue the observed cliff profiles at the dashed transect line in May (light) and October (dark), and in gray, the observed volume 
loss derived from DEM-differencing (all dimensionless). DEM, digital elevation model; UAV, unpiloted aerial vehicle.
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cliff backwasting (Brun et al., 2018). Modeling offers the way forward to understand the physical mecha-
nisms controlling melt patterns over a season or beyond for future projections.

Here, we simulate the backwasting of all the cliffs in a 585 km2 catchment containing four major debris-cov-
ered glaciers (Figure 1a) over one ablation season and we assess their contribution to the total glacier mass 
loss in the catchment, estimated with the mean surface mass balance rate over the period 2006–2015 and 
mean debris-covered area emergence velocity for the same glaciers. This allows us to reveal the importance 
of supraglacial ice cliffs for glacier mass loss in a Himalayan catchment. We are able to resolve the preferen-
tial orientation of ice cliffs and their effects as we analyze the cliffs' area, aspect and volume loss of an entire 
catchment in a consistent way. This is the first time that an ice cliff model is applied to the entire population 
of cliffs in a large catchment containing multiple glaciers.

2. Methods
2.1. Dynamic 3D-Backwasting Model

We assess the melt and mass loss of 366 supraglacial ice cliffs in the Langtang catchment (13% glacierized, 
of which one third is debris-covered), distributed on its four principal debris-covered glaciers, Lirung, Shal-
bachum, Langshisha, and Langtang Glacier (Figure 1a). We run an energy-balance driven, process-based 
3D-backwasting model (Buri, Miles, et al., 2016) that is able to reproduce the cliff 's heterogeneous melt 
patterns, volume loss and dynamic evolution (expansion, shrinkage and reburial), and use a Monte Carlo 
approach to estimate the uncertainty in key model parameters. The model, coded in the programming lan-
guage R (R Core Team, 2019) has previously been used to simulate the evolution of few selected ice cliffs on 
Lirung Glacier (one of the study glaciers) and has been validated with multiple independent datasets (abla-
tion stakes, terrestrial, and airborne photogrammetric surveys; Buri, Miles, et al., 2016). Average deviations 
between modeled and observed cliff characteristics after one melt season were all within a plausible range 
(10% in volume loss; 6° in mean aspect, 6% in mean slope, 9% in vertical extent, 7% in horizontal extent; 
Tables 3 and 4 in Buri, Miles, et al., 2016), lending confidence to its use for this application. Details of the 
model can be found in Buri, Miles, et al. (2016), where the model was presented and tested in detail for four 
cliffs on Lirung Glacier, as well as in Buri and Pellicciotti (2018), where the model was applied to two cliffs 
on Lirung glacier to study the effect of orientation on the survival of cliffs. In the supporting information 
(SI) document we only recall the changes we have implemented for this study (Section S2.4).

Initial ice cliff topographies are defined using a DEM of 3 m spatial resolution derived from SPOT6 tri-ste-
reo satellite imagery (Ragettli et al., 2016) from April 21, 2014 and manually delineated cliff outlines based 
on an orthoimage of 1.5 m spatial resolution processed from the same data set (Steiner et al., 2019; Sec-
tion S2.1). Simulated cliff melt is based on surface energy balance calculations (Section S2.3), in which the 
complex radiation patterns due to the heterogeneous ice cliff and glacier surface topographies are modeled 
in high detail. The surface energy balance at the cliff-atmosphere interface is calculated from energy bal-
ance equations for every grid cell, based on hourly meteorological data distributed from automatic weather 
stations (Section S2.2) in the catchment (Figure 1a), of which two were recording directly on the glacier 
surface and one off-glacier, starting on May 11, 2014 and ending on 9 October of the same year. Computa-
tion of radiative fluxes accounts for direct and diffuse components from the sky and the surrounding debris. 
Reflected shortwave radiation is controlled by constant ice and debris albedo values. Longwave radiation 
emitted from debris, sky and the ice cliff is included in the energy balance calculations. Cliffs' geometries, 
initiated with given cliff outlines and glacier surface topography from observational data, are adjusted twice 
(1 August and 9 October; this time interval was the most appropriate from consideration of model resolu-
tion and magnitude of the melt vectors) during the ablation season based on the differential ablation of the 
ice cliff surface, in combination with the slope and aspect of each cliff cell. The 3D-updates of the cliffs take 
into account (a) thermo-erosional melt at cliff-water contact zones by adjacent supraglacial ponds, a process 
that maintains steep sections at the cliff bottom (Brun et al., 2016; Miles et al., 2016); and (b) expansion and 
shrinkage of cliffs (e.g., reburial by debris), depending on the slope and the amount of debris seen at the 
cliff margin (Buri, Miles, et al., 2016). Steep areas above the 35° slope threshold at the ice-debris transition 
zone become debris-free, and shallow zones below the slope threshold along the cliff margin can become 
debris-covered, which allows a dynamic extension or shrinking of the ice cliff shape after the two geometry 
update steps during the modeling period. Subdebris melt of the surrounding glacier surface (a constant 
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value in time and space) is taken into account and subtracted from every off-cliff grid cell on the glacier. We 
excluded terminal ice cliffs from all our analysis, as they undergo different dynamics (Steiner et al., 2019).

2.2. Glacier Mass Balance Estimates

Total glacier mass loss was determined from the geodetic thinning estimates calculated for 2006–2015 spa-
tially distributed on a 30 m resolution grid (Ragettli et al., 2016). We used the ensemble mean of the el-
evation differences between six DEMs (2006, 2009, 2014, and February and October 2015; Section S3.1). 
We corrected the observed geodetic thinning rates for emergence velocity calculated from flux gates at an 
interval of 50 m elevation (following the approach in Miles et al., 2018, Figure S4) to convert thinning into 
average annual surface mass balance rates. This approach provides estimates of surface mass balance for 
the four study glaciers averaged over a period of 10 years (2006–2015). Since we compare simulated ice cliffs 
from one season (2014) against the mean geodetic mass balance over 10 years, we first carry out an analy-
sis of the meteorological conditions of that year in comparison to the entire period (Section S3.2). We use 
monthly ERA5-Land reanalysis data (Copernicus Climate Change Service, 2019) to calculate standardized 
anomalies of air temperature and precipitation during the 10-year period for the Langtang Area (Figure S5, 
Table S5). The deviation in air temperature and precipitation of our target year 2014 was small compared to 
the ensemble period. We thus expect the ensemble mean glacier mass balance estimate over the period to 
represent the 2014 mass balance well, and use it to calculate the cliffs contribution to the total glacier mass 
losses. Additionally we also assessed how 2014 deviates in comparison with the 10-year mean in terms of 
radiative forcing (Figure S5), since cliff melt is especially sensitive to short- and longwave radiation inputs. 
The ERA5-Land radiation estimates for 2014 do not differ significantly from the other years (Table S5) and 
we therefore expect that the cliff melt estimates for that particular year are representative for the 10-year 
period.

2.3. Uncertainty

There are multiple uncertainties in our approach: uncertainties associated to the ice cliff- and glacier areas, 
the selection of specific parameters in the ice cliff model and the meteorological input variables, as well as 
those associated to the estimates of the geodetic thinning and the emergence flux rates. We estimated these 
uncertainties and propagated them throughout our analysis based on the assumption of uncorrelated and 
random errors (Section S4). To investigate the influence of ice cliff model parameters on cliff volume loss, 
we randomly selected a subset of 40 cliffs which represents the whole population well in terms of distri-
butions of slope, aspect, elevation, and area and spatial distribution (Section S4.1; Figure S6). This enabled 
repeated testing of the model, which is not computationally possible for the entire set. To identify the pa-
rameters whose uncertainty will have the strongest effect on the final model uncertainty, we applied a one-
at-a-time sensitivity analysis by running the ice cliff model for the 2014 melt season on the cliff subset vary-
ing each parameter two times to the limits of their likely range (Figures S7 and S8). In this way, we selected 
the four physical model parameters debris albedo, debris emissivity, terrain slope threshold, aerodynamic 
roughness length, and the six meteorological input variables incoming longwave and shortwave radiation, 
relative humidity, air and surface temperature, and wind speed, which all have non-negligible effects over 
their ranges. We then carried out a Monte Carlo analysis, running 100 distinct model simulations of 40 cliffs 
(∼10% of our total population), and assuming they have an uniform distribution, to produce an uncertainty 
estimate of cliff melt (Table S1). For the error estimates in glacier mass balance, we used the uncertainties 
of the 2006–2015 ensemble mean elevation differences (see Table 4 in Ragettli et al., 2016). Additionally we 
added the corresponding emergence flux uncertainties (see Table 1 in Miles et al., 2018) for each glacier. 
By applying 10 m buffers (inside and outside) to the actual 2014 glacier and debris outlines, we derived 
the areal uncertainty of glacier and debris areas (mean deviation) in the catchment. Cliff area delineation 
uncertainty was previously estimated to be 26% in Steiner et al. (2019) as a result from manual delineation 
and stereo image quality.
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3. Results
3.1. Ice Cliff Backwasting and Characteristics

The simulations revealed average ice cliff backwasting in the order of 5–10 m in horizontal direction during 
the melt season. The modeled mean daily sums of energy fluxes (Figure S1) reveal insights into the mech-
anisms of ice cliff backwasting: none of the fluxes shows a clear trend with elevation, defying simple eleva-
tion-based parameterizations. Latent heat LE is the only energy flux which changes from slightly positive 
to slightly negative with elevation, as a function of the temperature lapse rate. Thus, air temperature does 
not seem to be the main control of cliffs backwasting. This implies that the energy balance resulting from 
the interactions of fluxes is complex and not easily prone to parameterizations, and likely dominated by 
radiative fluxes (Figure S1). The number of cliffs varies greatly between glaciers and decreases slightly over 
the season according to the simulations (from 366 to 322) and the cliffs become slightly steeper from May to 
October (Figure S2). With the exception of one 50 m-elevation segment on Langshisha Glacier, where the 
tongue is relatively narrow and ice cliffs occupied 8.6% of the glacier area, the relative areal contribution per 
elevation segment never exceeds 4.3% (Langtang), 2.6% (Lirung), or 2.8% (Shalbachum) on the four glaciers 
(Figure 2, and Tables S6–S9).

3.2. Cliffs Contribution to Glacier Mass Losses

We present the cliff backwasting results as a relative contribution to mean glacier mass balance spatially 
across each glacier (Figure 2, M). Cliffs are substantial contributors to the melt of debris-covered glacier 
tongues. The total mass losses attributable to cliffs are 5.2 × 10−3 ± 1.2 × 10−3 km3 w.e. over the melting 
season from May 11 to October 9, 2014 (Table 1). This is equivalent to 0.22 ± 0.05 m w.e. thinning in the 
Langtang catchment over the same period (0.07 ± 0.02 m w.e. thinning of the entire glaciers; Table S10). 
We convert these values into portions of total geodetic glacier mass loss rates. Although the debris-covered 
glacier tongues have only 2.1% ± 0.69% of their surface area exposed to the atmosphere as ice cliffs, they 
account for 17% ± 4% of the mass loss of the debris-covered tongues in the catchment (Table 1). Considering 
the glacier area of the entire catchment, the 0.6% ± 0.2% area of ice cliff accounts for 15% ± 5% of glacier 
mass loss.

The very high melt efficiency of cliffs compared to their small area can be expressed through an enhance-
ment factor (Figure 2, EF, and Table 1), which we define as the ratio of the relative contributions of ice 
cliff volume loss and ice cliff area (Brun et al., 2018) (Equation 6 in SI). The EFs obtained in this way vary 
between 6 ± 3 on Langshisha Glacier and 13 ± 4 on Langtang Glacier and indicate very high efficiency of 
ice cliff backwasting compared to the debris-covered area's mass loss. Despite a relative ice cliff coverage of 
less than 1% at the glacier scale, these bare-ice surface features are responsible for 7% ± 4% (Shalbachum 
Glacier) to 17% ± 5% (Langtang Glacier) of the net mass loss of the entire glacier for the model period, 
indicating that ice cliff melt is 18 ± 12 (Shalbachum Glacier) to 67 ± 64 times (Lirung Glacier) higher than 
the melt of the rest of the glacier (subdebris melt, bare ice melt and accumulation higher up combined).

Cliff-associated volume losses vary considerably from glacier to glacier and are dominated by Langtang and 
Langshisha Glacier because of their larger size. Corresponding cliff-associated melt on these two tongues 
is −0.24 ± 0.05 and −0.21 ± 0.06 m w.e. relative to planimetric surface area, respectively (Table S10). The 
ice cliffs contribute most in terms of mass loss in the lower and upper sections of the glaciers and show a 
reduction in the middle zones of the glacier tongues. Although the debris-covered tongues have similar frac-
tions of ice cliff area exposed to the atmosphere (between 1.6% ± 0.4% on Lirung Glacier and 2.7% ± 0.7% on 
Langshisha Glacier, Table 1), the relative importance of ice cliff melt for net glacier mass loss greatly differs 
(Table 1) because of differences in debris thickness, subdebris melt and elevation. On all four glaciers single 
elevation bands show relative volume losses attributable to ice cliffs > 10%, and Langshisha and Langtang 
glaciers reach contributions of > 40% in their lowermost sections, where the debris layer is thickest, or on 
glacier tributaries which are prone to avalanches. Both thick debris and avalanches result in a less negative 
mass balance, because of reduced melt or increased accumulation.

Superimposed on this spatial pattern, cliffs' aspect appears to exert a strong control on mass losses, with 
the highest volume losses at northwest-oriented cliffs on all four glaciers (Figure 3), despite the glaciers' 
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contrasting overall flow directions. This supports previous findings that ice cliffs in the Langtang catchment 
find their ideal aspect in terms of survival time and area in a northwest orientation (Buri & Pellicciotti, 2018; 
Steiner et al., 2019). South- and east-facing ice cliffs are thus negligible at the glacier- and catchment scale 
on the glaciers of Langtang Valley. Cliffs facing these aspects may be more prevalent and more important in 
other catchments if independent controls (e.g., supraglacial streams or crevasses) are able to maintain their 
geometry and aspect.

4. Discussion and Conclusions
We found that cliffs enhance melt especially where this would normally be reduced by the environmental 
conditions, that is: (1) at high elevations and (2) where debris is thick (i.e., several decimeters; Figure 4), 
thus providing a mechanism that drives ablation through absorption of solar radiation. Case (1) is evident 
on Langtang Glacier, which shows the highest contribution of ice cliffs to total glacier melt (21% ± 4%; 
Table 1), exceeding 13 ± 4 times the cliff area. This high contribution of cliffs to total mass losses is due 
to the glacier's higher elevation and associated lower glacier-wide sub-debris melt rates on the tongue 
(−1.17 ± 0.06 m w.e.; Table S10), compared to the other three glaciers in this study. Glacier melt rates on 
the upper debris zones of Langtang Glacier (reaching above 5,300 m a.s.l.) are reduced by low air temper-
atures that results in strong radiative losses at the debris surface and low energy available for melt of the 
debris-covered ice. On ice cliffs, instead, because of their inclined surfaces, the energy available for melt is 
less sensitive to elevation (Figure S1) and is instead controlled by incident radiation. The relative contribu-
tion of cliffs to glacier mass loss thus increases toward the upper reaches of the glacier tongue on all four 
glaciers (Figure S3). Case (2) is evident on the terminus of all four glaciers, where debris is thickest, and for 
Lirung on the entire glacier because of a rather thick debris layer throughout (Figure S3). The combination 
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Figure 2. Cliff and pond observations and model results per elevation band in the Langtang Valley catchment. Lirung 
Glacier, Shalbachum Glacier, Langshisha Glacier, and Langtang Glacier with debris covered tongues (white outline), 
supraglacial ice cliffs (orange), and ponds (blue). Terminal ice cliffs are indicated in red. The relative contribution of ice 
cliffs in terms of observed area (A) and modeled mass balance (M) compared to the glacier per 50 m-elevation segment 
are shown in the next two glacier shapes. The shape to the right shows the enhancement factor (EF), indicating the 
ratio of A to M (efficiency of ice cliff melt compared to glacier mass loss per unit area).
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of the two cases, with the ice cliffs acting as melt hotspots that amplify melt where it would be otherwise 
suppressed (by either thick debris lower down or cold conditions higher up), create the double peak evident 
in the EF along the glacier tongue (Figure 2 and Figure S3).

We provide the first catchment scale model-based evidence of the substantial contribution of ice cliffs, a 
key component of debris-covered glacier mass losses, to total ablation. For all the debris-covered glacier 
tongues in the high-elevation Langtang catchment, 17%  ±  4% (0.22  ±  0.05  m w.e.) of glacier mass loss 
during one normal ablation season is attributable to ice cliff melt. The catchment-wide glacier melt is un-
derestimated by roughly 15% ± 5% if ice cliff melt is not considered. Our independent approach clearly 
isolates the melt attributable to cliffs and is consistent with detailed measurements at one of the studied 
glaciers (Brun et al., 2016). Glacier-scale remote sensing efforts to assess cliff influence have generally led 
to lower-end estimates of cliff melt enhancement factors (Brun et al., 2018; Mölg et al., 2019), but crucially 
depend on the successful identification of all cliff melt-affected areas between observations; the challenges 
in successfully identifying cliffs in a variety of illumination conditions, even from high-resolution imagery 
(Kneib et al., 2020; Steiner et al., 2019; Thompson et al., 2016; Watson et al., 2016) biases remote sensing 
assessments of cliffs' influence to lower values. Furthermore, such estimates are strongly influenced by 
estimation of glacier emergence velocity and its spatial pattern, or lack thereof.

Our study shows that ice cliff backwasting is a non-negligible term in the total glacier mass balance of these 
Himalayan debris-covered glaciers: in our study catchment 15% ± 5% of the total net ice loss of the four 
study glaciers (equivalent to a surface thinning of 0.07 ± 0.02 m w.e.) can be attributed to ice cliff melt, 
although the cliffs cover only 0.6% ± 0.2% of the glacier area (EF = 29 ± 12). This reveals the efficiency 
of their backwasting mechanism compared to subdebris melt. Ice cliffs have often been associated with 
supraglacial ponds, which also act as melt hotspots (Miles et al., 2016; Sakai et al., 2000; Watson, Quincey, 
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Langtang Lirung Langshisha Shalbachum ∑

Number of 
cliffs

ncl 225 17 79 45 366

Area abs. 
(km2)

Agl 46.5 ± 1.9 6.5 ± 0.5 16.3 ± 0.7 10.2 ± 0.4 79.5 ± 3.4

Adeb 15.5 ± 0.7 1 ± < 0.1 4.5 ± 0.2 2.6 ± 0.1 23.7 ± 1.1

Acl 3.1 × 10−1 ± 8.1 × 10−2 1.8 × 10−2 ± 4.7 × 10−3 1.2 × 10−1 ± 3.1 × 10−2 4.4 × 10−2 ± 1.1 × 10−2 5.0 × 10−1 ± 1.3 × 10−1

Acl rel. to Agl 
(%)

Arel,gl 0.7 ± 0.2 0.3 ± 0.1 0.7 ± 0.2 0.4 ± 0.1 0.6 ± 0.2

Acl rel. to Adeb 
(%)

Arel,deb 2.0 ± 0.5 1.6 ± 0.4 2.7 ± 0.7 1.7 ± 0.4 2.1 ± 0.6

Volume loss 
abs. (km3 
w.e.)

Vgl −2.2 × 10−2 ± 5.1 × 10−3 −1.2 × 10−3 ± 8.8 × 10−4 −6.2 × 10−3 ± 2.6 × 10−3 −4.6 × 10−3 ± 1.7 × 10−3 −3.4 × 10−2 ± 6.1 × 10−3

Vdeb −1.8 × 10−2 ± 8.9 × 10−4 −1.8 × 10−3 ± 5.8 × 10−4 −6.6 × 10−3 ± 1.0 × 10−3 −3.2 × 10−3 ± 4.7 × 10−4 −3.0 × 10−2 ± 1.5 × 10−3

Vcl −3.7 × 10−3 ± 7.6 × 10−4 −1.9 × 10−4 ± 5.7 × 10−5 −9.4 × 10−4 ± 2.7 × 10−4 −3.4 × 10−4 ± 1.5 × 10−4 −5.2 × 10−3 ± 1.2 × 10−3

Vcl rel. to Vgl 
(%)

Vrel,gl 17 ± 5 16 ± 12 15 ± 8 7 ± 4 15 ± 5

Vcl rel. to Vdeb 
(%)

Vrel,deb 21 ± 4 11 ± 5 14 ± 5 10 ± 5 17 ± 4

EF per unit 
Agl (–)

EFgl 31 ± 14 67 ± 64 24 ± 15 18 ± 12 29 ± 12

EF per unit 
Adeb (–)

EFdeb 13 ± 4 7 ± 4 6 ± 3 7 ± 4 10 ± 4

Notes. Area values are based on the cliff inventory, while volume losses are modeled using the ice cliff backwasting model run for the period from May to 
October 2014. Subscripts gl and deb refer to the entire glacier surface and the debris-covered tongue only, respectively. Total glacier volume losses used to 
calculate the percentage contribution of cliffs to total mass balance are estimated using the sum of observed ensemble mean geodetic thinning rates 2006–2015 
(Ragettli et al., 2016) and modeled emergence fluxes for the same period (Miles et al., 2018). The so-called enhancement factor (EF) indicates the ratio of the 
relative cliff melt contribution to the relative cliff area (Section S5). All values are rounded to two significant digits where applicable.

Table 1 
Ice Cliffs Area and Volume Losses for All the Cliffs Per Glacier and Overall
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Carrivick, et al., 2017). For the same catchment, Miles et al. (2018) estimated that ponds cover 1.0% of the 
debris-covered area, yet contribute to 13.8% ± 2.9% of the annual mass loss. If we combine this estimate 
with our own, we find that the 97% ± 0.7% covered by debris contributes 69% ± 5% of ice mass loss. Togeth-
er, cliffs and ponds cover 3.1% ± 0.7% of the area but contribute 31% ± 5% to mass loss, showing a net effec-
tive enhancement factor of 14 ± 6. This is a conservative estimate, as it is based on an inventory of cliffs from 
which we have removed all features where there was some uncertainty in delineation (Steiner et al., 2019; 
Section S7). Further we likely miss a few weeks of ice cliff melt before and after the ice cliff model period, 

which would also slightly raise the relative contribution of ice cliff melt 
to glacier mass loss at the annual basis. We estimate the ice cliff melt dur-
ing the shoulder seasons to be less than 18% compared to the ice cliff melt 
during the model period at the lowest elevation in the catchment and less 
than 2% above the average elevation of the cliff domain (Section S6).

We do not account for cliffs emerging within the melt season and we do 
not include the melt influences of supraglacial streams, which can be rel-
evant surface features on debris-covered glaciers with different morphol-
ogies and debris cover and should be studied in future research. Further 
the direct comparison of ice cliff melt over one melt season only with the 
annual glacier mass balance estimates can be slightly convoluted by the 
presence of snow accumulation at the glacier scale.

The relative debris-cover extent on glaciers in HMA and in glacierized 
areas globally is likely to increase in a warming climate (Herreid & Pel-
licciotti,  2020; Scherler et  al.,  2018). Shrinking glaciers uncover new 
source areas for debris supply and increase the gravitational potential 
between the source and the glacier surface, as well as exposing increas-
ingly larger amounts of englacial debris. In this context, the importance 
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Figure 3. Model results per aspect for four debris-covered glaciers in the Langtang Valley catchment. Total volume losses of ice cliffs per aspect (45°-sections) 
for the four glaciers shown in Figures 1a and 2. The color, direction, and size of the pie chart pieces indicate area, aspect and volume loss of all cliffs 
summarized per 45°-aspect section.

Figure 4. Conceptual scheme of the main controls of debris-covered 
glaciers mass losses and their variations with elevation. Variations with 
elevation of air temperature (environmental lapse rate, e.g., Steiner & 
Pellicciotti, 2016), debris thickness (e.g., Anderson & Anderson, 2016), 
subdebris melt rate, ice cliff melt rate, and melt enhancement from ice 
cliffs over debris-covered glacier tongues (this study), independent of the 
number of cliffs.
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of supraglacial melt hot spots such as ice cliffs will increase. The glaciers in the Langtang catchment are 
all in a rather advanced evolutionary stage (stage values between 0.71 and 0.78; from Herreid & Pellicci-
otti, 2020) in terms of debris cover, decay and stagnancy, with extensive (and possibly thick) debris cover 
that have almost reached the (areal) carrying capacity of the glaciers. They are examples of how glaciers in 
earlier stages and similar environments might look like in the future. Our findings show that on glaciers 
in an advanced debris stage, cliffs will act as a dominant mechanism of glacier ablation, even despite their 
small number, confirming findings from Ngozumpa Glacier (Khumbu Region, Nepal; stage value = 0.78) 
(Thompson et  al.,  2016). A better understanding of the sourcing and temporal and spatial evolution of 
debris volumes on glaciers, in combination with the appearance, life cycle and decay of supraglacial ice 
cliffs, seem imperative to simulate the dynamics, mass losses, and streamflow contribution of increasingly 
prevalent debris-covered glaciers.

Data Availability Statement
Model results of this study are archived and available at Zenodo (Langtang Ice Cliff Modeling Study; http://
doi.org/10.5281/zenodo.4073138), the ice cliff inventory is openly accessible via Pangaea (https://doi.pan-
gaea.de/10.1594/PANGAEA.899171) from Steiner et al. (2019).
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