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Learning heterogenous reaction rates from stochastic simulations
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Reaction rate equations are ordinary differential equations that are frequently used to describe deterministic
chemical kinetics at the macroscopic scale. At the microscopic scale, the chemical kinetics is stochastic and can
be captured by complex dynamical systems reproducing spatial movements of molecules and their collisions.
Such molecular dynamics systems may implicitly capture intricate phenomena that affect reaction rates but are
not accounted for in the macroscopic models. In this work we present a data assimilation procedure for learning
nonhomogeneous kinetic parameters from molecular simulations with many simultaneously reacting species.
The learned parameters can then be plugged into the deterministic reaction rate equations to predict long time
evolution of the macroscopic system. In this way, our procedure discovers an effective differential equation for
reaction kinetics. To demonstrate the procedure, we upscale the kinetics of a molecular system that forms a
complex covalently bonded network severely interfering with the reaction rates. Incidentally, we report that the
kinetic parameters of this system feature peculiar time and temperature dependences, whereas the probability of
a network strand to close a cycle follows a universal distribution.
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I. INTRODUCTION

How do we deduce chemical rate constants from obser-
vations? On the macroscopic scale, where concentrations of
chemical compounds are deterministic quantities, this ques-
tion was answered by Arrhenius, who linked the reaction
rate constants with slopes and intersection points of the con-
centration related profiles. Microscopic systems, for instance,
living cells [1,2], micropores [3], and those used for in silico
computer experiments [4–8], typically have a small reaction
volume, and therefore, the corresponding reaction rates may
feature stochastic fluctuations that are not accounted for in
the Arrhenius theory. Other assumptions of the Arrhenius
theory, such as the well-mixed environment, Boltzmann’s
Stosszahlansatz, the absence of memory, and noncooperation
of particles, may lead to artifacts even in the case of macro-
scopic systems. If such artifacts occur [6,9,10], the reaction
rate constants appear to be time dependent. For example,
irreversible polymerization leads to progressively growing
molecules, and therefore, each reaction firing changes the
conditions of the system and, consequently, the reaction rates
[11,12]. Molecular networks pose an especially severe case:
their physical properties evolve considerably in the course
of the assembly process, and the latter may undergo various
types of phase transitions [6–8]. As an illustration of how
strong such changes can be, Fig. 1 depicts the formation of
a percolating molecular network that significantly limits the
mobility of all species.
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Molecular dynamics (MD) simulations [5] describe the
evolution of a complex system by solving the equation of
motion for each molecule and do not require reaction rate
constants as input. For the purpose of this paper, we view
the outcome of such simulations as large streams of data that
implicitly contain information about the rates. Provided the
reaction rates are extracted from these time series, the rates
may be used as input for large-scale models, hence enabling
a multiscale paradigm. Among such macroscopic models are
ordinary differential equations for species concentrations, the
chemical master equation, the Langevin equation, the stochas-
tic simulation algorithm, and other Monte Carlo methods [13].

While the foundation of reaction rates is frequently
discussed in the literature [14–17], this paper takes a phe-
nomenological view and develops a practical method for
inferring reaction rate parameters from noisy microscopic
observations as given by, for example, molecular dynamics
simulations.

II. CHEMICAL RATE EQUATION

Consider a system that consists of N chemical species
reacting via M reactions. Each species may be represented
by multiple particles, which is indicated by the particle count
vector x = (x1, x2, . . . , xN )�, where xi are the numbers of
copies that species i is represented by. We thus have

∑N
i=1 xi

particles in total. The reactive interactions that occur between
these species can be modeled using three levels of mathe-
matical description [13]: the equation of motion, stochastic
process, and rate equation.

The rate equations are ordinary differential equations
(ODEs) that instead of species counts xi govern the evolution
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FIG. 1. Time snapshots of the carbon skeleton of the largest cluster in the diacrylate network as given by molecular simulations suggest
that the reaction rates may considerably slow down during the course of polymerization. Left to right: 20%, 30%, and 80% of reaction progress
as measured by the double bond conversion χ .

of their the molar concentrations c = (c1, c2, . . . , cN )�, with

ci = xi

V NA
, (1)

where the volume V → ∞ and xi are assumed to scale in such
a way that keeps the pressure constant and NA is Avogadro’s
constant. In the general case of M reactions, the ODEs are
given by

c′
i(t ) =

M∑
j=1

k jSi, jcν j (t ), i = 1, 2, . . . , N, (2)

where k j are the reaction rate constants, ν j are binary vectors
defining the participation of species i in reaction j, and the
vector power cν = cν1

1 cν2
1 · · · cνN

N is evaluated in an element-
wise manner. Matrix S has size N × M and is composed of
stoichiometric vectors as its rows. For example, Si, j = 1 if the
ith species is the product of the jth reaction, Si, j = −1 if it is
a nonunique reactant, Si, j = −1/2 if it is the only reactant in
the second order reaction, and Si, j = 0 is a nonparticipant.

The intuition behind Eq. (2) becomes clearer after consid-
ering the following example. Consider a system that consists
of three chemical species, A, B, and C, having particle counts
#A = x1, #B = x2, and #C = x3 and reacting via the follow-
ing mechanism:

A + B
k1−⇀↽−
k2

C. (3)

By defining species concentrations with Eq. (1), we arrive at
the following set of ODEs:

c′
3 = k1c1c2 − k2c3,

c′
2 = −k1c1c2 + k2c3, (4)

c′
1 = −k1c1c2 + k2c3,

where ki are the rate constants. In order to see that Eq. (4) is
the special case of Eq. (2) it is sufficient to substitute

S =
(−1 −1 1

1 −1 −1

)�
, ν1 = (1, 1, 0)�,

ν2 = (0, 0, 1)�.

One can see that the elements of ν1 sum up to 2, which indi-
cates that j = 1 is a first order reaction, whereas the elements
of ν2 sum up to 1, indicating that the reaction order of j = 2
is 2.

III. STOCHASTIC RATE EQUATION

We will now introduce a stochastic rate equation that oper-
ates with discrete particle counts xi as opposed to continuous
concentrations used in (2). Suppose that all elements of the
species count vector are large, x � 0, and in small time
increments τ these values undergo a small relative change.
Let z = (z1, z2, . . . , zM )� be the column vector of reaction
firings observed during time interval τ . We also assume that
the dynamics is a heterogenous renewal process, that is, the
elements of z are independent Poisson random variables: z j ∼
Poiss[λixνiτ ], j = 1, . . . , M, which, when combined with re-
action stoichiometry S, provides the update vectors for species
counts x at a given time interval. By iterating τl = tl − tl−1

over all discrete time intervals, one recovers the whole evolu-
tion trajectory of species count vector xl for l = 1, . . . , L:

xl = xl−1 + Szl−1,

zl ∼ (
Poiss

[
λ1xν1

l τl
]
, . . . , Poiss

[
λMxνM

l τl
])�

, (5)

where coefficients λi are (time-dependent) parameters related
to reaction rates ki. Appendix A sketches the derivation of
Eq. (5) and explains the relationship between rate constants ki

and λi. This equation resembles an implementation of the τ -
leaping method [18] and can be regarded as an N-dimensional
random walk on species count numbers.

Stochastic process (5), although practical, relies upon
the system being well mixed, memoryless, and noncoopera-
tive, among other assumptions. We suggest that this can be
partially remedied for by inferring the time-dependent coeffi-
cients λi from molecular simulations that do not suffer from
these issues.
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IV. DATA ASSIMILATION PROCEDURES

In this section we assume that the empirical trajectories of
the species counts x̃l and the counts of all reaction firings
z̃l are known. We solve the inverse problem for estimating
parameters λ1, . . . , λM , which may depend on time. Namely,
we propose several statistical inference methods, so-called
maximum likelihood estimators (MLEs), for estimating effec-
tive reaction rates λi that can be readily used in the stochastic
model (5) or ODEs (2). The source code implementing the
estimators (6)-(11) is provided [19].

Constant rate estimator. Assuming that the stochastic rates
λ j do not depend on time, the following estimates hold:

λ j = 〈z̃ j,l〉
〈x̃ν j

l τl〉
, var(λ j ) = λ2

j

L
〈
z̃ j,l

〉 , (6)

where

〈xl〉 := 1

L

L∑
l=1

xl

denotes the time-average and var(λ j ) refers to the asymptotic
variance of this estimator, which may be used to derive the
confidence intervals. See Appendix B for the derivations.

Moving-average rate estimator. The following estimators
yield rates in the form of a time series:

λ j,l = 〈z̃ j,l〉s〈
x̃ν j

l τl
〉
s

, var(λl, j ) = λ2
j,l

(2s + 1)〈z̃ j,l〉s
, (7)

where

〈xl〉s := 1

2s + 1

l+s∑
l=l−s

xl

represents the moving average with window size s. See Ap-
pendix C for the derivations.

Exponential rate estimator. Consider the following ansatz
for the parameters of process (5):

λ j (t ) = λ j,0e−α j t . (8)

The estimators for the coefficients are given by

λ j,0 = 〈z̃ j,l〉〈
e−α j tl x̃ν j

l τl
〉

and

α j = − ln ω j,

where ω j ∈ [0, 1] are the unique roots of
〈(tl〈z̃ j,l〉 − 〈z̃ j,l tl〉)x̃ν j

l τlω
tl
j 〉 = 0 for j = 1, . . . , M. The

variances of the exponents are given by

var(α j ) = 1

Lλ j,0
〈
t2
l e−α j tl x̃ν j

l τl
〉 ,

and those of the prefactor are given by

var(λ j ) = var(λ j,0) = λ2
j,0

L〈z̃ j,l〉 .

See Appendix D for the derivations.

Exponential polynomial rate estimator. Assume that the
reaction rate parameters that appear in the random walk model
(5) have an exponential dependence on time of the form

λ j (t ) = e−p j (t ), (9)

where p j (t ) = α j,0 + α j,1t + α j,2t2 + · · · + α j,st S is a poly-
nomial of order S. For each j, the estimators of α j,s are found
from the system of S algebraic equations:〈(

e−p j (tl )x̃ν j

l τl − z̃ j,l
)
t s
l

〉 = 0, s = 0, . . . , S, (10)

and the variances of the rates’ logarithms are given by

var[ln λ j (t )] = 1

L
b�H−1

j b, (11)

where H j are (S + 1) × (S + 1) matrices with elements

(H j )k,s = 〈
e−p j (tl )t k

l t s
l x̃ν j

l τl
〉

and b = (1, t, t2, . . . , t S )�. In fact, one can replace time t in
MLE (9) with any monotonous function of time that tracks
the progress of the chemical system, for example, the con-
version of an important species. The derivations are given in
Appendix E.

Model selection. There are two parameters describing the
quality of the estimate that may be used when choosing the
best MLE and, in the case of the polynomial estimator, when
choosing the polynomial order. A small variance implies that
the system is large enough to derive consistent estimates with
a given estimator. A small residual implies that the estimator
explains observed data. In order to rationally determine the
best order of the polynomial for approximation, we propose
to minimize two qualities simultaneously: the variance and
residual.

V. EXAMPLE: RATES OF NETWORK FORMATION

In this section, we illustrate the application of the esti-
mators in a real world example. We infer the reaction rates
of polymer network formation as captured by the MD sim-
ulations illustrated in Fig. 1 and show how to replace these
computationally expensive MD simulations with a simple sys-
tem of ODEs that are valid on arbitrary large timescales.

System setup. Our microsystem [7] is as follows: 2000
diacrylate molecules confined in a 7.52 × 10−25 m3 simula-
tion box with periodic boundary conditions and integrated in
time up to 10−8 s in the NPT ensemble. Initially, 5% of all
monomers are set to be active (bearing radicals), and the acti-
vation energy of the reaction has been reduced to speed up the
simulations. The true kinetic parameters can be recovered by
an appropriate unbiasing procedure (see Ref. [7] for a discus-
sion). This microsystem is confronted with the macrosystem
that reflects the desired real world target: 4.7 mol of monomer
units (which is of the order of 1024 particles), polymerized
under continuous initialization that maintains a steady con-
centration of radicals at 10−4 mol

L (e.g., photopolymerization).
We investigate the rates of the two most important species:
Vinyl groups (V) and a radicals (R) that react via two reaction
channels, propagation and termination, respectively:

V + R → R,

R + R → ∅.
(12)
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TABLE I. Inferred reaction rate parameters for 1,6-Hexanediol
diacrylate (HDDA) polymerization as given by the constant MLE.
Confidence intervals indicate two standard deviations.

T (K) Propagation k1 ( mol
Ls ) Termination, k2 [ mol

Ls ]

200 14.55 ± 0.2802 1.282 106 ± 4.488 105

250 792.3 ± 15.04 7.865 106 ± 2.387 106

300 17733.0 ± 268.7 2.113 107 ± 5.492 106

350 97422.0 ± 1385.0 2.494 107 ± 5.964 106

400 4.276 105 ± 5301.0 3.106 107 ± 6.898 106

450 1.682 106 ± 23599.0 8.03 107 ± 1.890 107

500 3.644 106 ± 43900.0 6.258 107 ± 1.336 107

550 1.031 107 ± 1.391 105 1.237 108 ± 2.871 107

600 1.64 107 ± 1.944 105 1.515 108 ± 3.577 107

This mechanism is characterized by

S =
(−1 0

0 −1/2

)
, ν1 = (1, 1), ν2 = (0, 2),

which in combination with molecular dynamics data x̃l and
z̃l provides enough information to apply the rate estimators.
Since the activation energy Ea has been reduced in the mi-
crosystem, we use the decomposition of the rate

k(t ) = A(t )e−Ea/(RT ) (13)

and perform the inference solely for preexponential factor
A(t ), which is expected to be the most sensitive to the in-
terferences from the network formation. Here, T denotes the
temperature, and R is the gas constant. To recover the rate
coefficient k(t ), Eq. (13) should be supplied with Ea,1 =
31.02 kJ

mol for propagation and Ea,2 = 8.673 kJ
mol for termination

reactions (activation energies from the RMGPY database [20]).
Estimated kinetic rates. Table I reports the constant rate

estimations obtained with Eq. (6). These estimates corre-
spond to the prefactors indicated by the horizontal lines in
Figs. 2(a)–2(d).

According to the variance analysis given in Appendix
F, the exponential polynomial estimator was found to yield
optimal estimates using fourth order polynomials for the prop-
agation reaction and third order ones for the termination, that
is,

k1(χ, T ) = A1(t )e− Ea,1
RT

= Ce−(α1,4χ
4+α1,3χ

3+α1,2χ
2+α1,1χ+α1,0 )e− Ea,1

RT (14)

and

k2(χ, T ) = A2(t )e− Ea,2
RT

= Ce−(α2,3χ
3+α2,2χ

2+α2,1χ+α2,0 )e− Ea,2
RT , (15)

where the scaling constant is C = V Na = 452.93 L
mol . Instead

of time t , we characterize the progress of the network forma-
tion by

χ (t ) = #V (0) − #V (t )

#V (0)
. (16)

FIG. 2. (a)–(d) Inferred reaction rate prefactors A(t ) from a sin-
gle MD trajectory. Horizontal lines represent the constant estimator,
Eq. (6), and bands represent the fourth order exponential polynomial
estimator, Eq. (9). Solid lines correspond to the time series estimator
(7). The margins indicate two-standard-deviation confidence. (e)–(h)
Inferred prefactors A(χ ) with time series and exponential polynomial
estimators shown. All panels share the same legend.

This quantity is also known as the bond conversion in chem-
istry or occupancy probability in the theory of percolation.
The coefficients are given in Table II.

Nonlinear rate behavior. Figure 2 presents the values of
A(t ) and A(χ ) inferred from single MD trajectories for dif-
ferent temperatures of polymerization T . Independent of T ,
both A(t ) and A(χ ) strongly decrease throughout the reaction
progress. This complex behavior can be possibly explained
by the fact that the system undergoes two phase transitions
that may not necessarily coincide: the transition from dis-
connected clusters to a spanning network (the percolation
transition [21]) and the transition from a liquid or resinlike
to solid or glassy state (the glass transition [8]). Thus in total,
we have four distinct domains in the T -χ phase space: 
00,
which is viscous with no network; 
10, which is glassy with
no network; 
01, which is rubbery and has a network; and

11, which is glassy and has a network. As shown in Fig. 3(a),
the partition of the phase space into these domains indicates

052402-4



LEARNING HETEROGENOUS REACTION RATES PHYSICAL REVIEW E 103, 052402 (2021)

TABLE II. The coefficients for the optimal order exponential polynomial MLEs.

T (K) Propagation rate Termination rate

α1,4 α1,3 α1,2 α1,1 α1,0 α2,3 α2,2 α2,1 α2,0

200 78.806 −67.177 16.329 2.931 −16.479 163.830 −156.050 43.836 −16.623
250 115.780 −132.800 48.777 −1.957 −17.741 56.364 −63.904 27.499 −17.383
300 38.288 −38.096 12.209 2.036 −17.787 89.115 −98.233 36.041 −17.526
350 17.323 −14.024 2.348 2.447 −16.529 41.583 −47.910 19.160 −16.423
400 31.335 −36.106 12.000 0.990 −17.584 84.355 −103.340 37.832 −17.272
450 15.275 −14.874 3.435 1.506 −16.412 25.825 −30.223 13.987 −16.426
500 13.135 −11.238 0.775 1.969 −17.098 47.405 −66.980 28.765 −16.719
550 16.446 −20.363 7.150 0.065 −16.451 49.559 −65.727 25.621 −16.464
600 15.189 −16.538 3.135 1.164 −16.178 39.276 −54.521 22.272 −15.959

that the topological transition occurs around χc ≈ 0.2 inde-
pendently of temperature, whereas the critical value of χ for
glass transition is a function of T .

By color-coding the points in the profiles of A(χ ) depend-
ing on which domain they belong to, Fig. 3(b) reveals that
increasing T has opposite effects on A below and above the
topological phase transition: increased temperature inhibits
the value of prefactor A for χ < χc and promotes this value
for χ > χc. Moreover, the collisions in a network are gov-
erned by different mechanisms than collisions in the ideal
gas: the shortest path between species embedded in a network
becomes the most important factor that explains the collision
rates, which, in turn, is independent of temperature or pres-
sure. To emphasize the universal dependence of the system’s
geometry on the topology we compute the return probability
of the shortest path in the network when it closes a chordless
cycle (a so-called topological hole [8]). The probability that a
polymer chain closes a chordless cycle of length n is typically
derived from the return probability of a random walk that
models the chain’s geometry; however, the exact definition
of this random walk is a topic of debate [22–25]. As shown
in Fig. 4(a), the empirical probability that a network strand
closes a cycle is universal and can be asymptotically related

FIG. 3. (a) The T -χ phase space: 
00, viscous, no network;

10, glassy, no network; 
01, rubbery, network; 
11, glassy, net-
work. See [8] for the computational procedure. The solid lines mark
the one-standard-deviation confidence interval around the domain
boundaries. (b) Inferred profiles of A(χ ) show that the polymeriza-
tion temperature has opposite effects on the reaction rates in different
domains, 
00, 
10 and 
01,
11. The colors code the domain of the
phase space.

to Flory’s expression for the self-avoiding random walk,

p ∼ n−3/2e− 3
2 n−1−αn1/2

,

where the chain stiffness parameter α = 1.2 was found by
fitting. The fact that the return probability does not depend on
temperature is exclusive to networks since the latter feature
more geometrically constrained configurations compared to
loose chains.

Upscaling. The most important applied implication of the
rate inference is that one can use this procedure to per-
form predictions with accuracy close to that of molecular
simulations but on the macroscopic scale. Since all kinetic
parameters are derived from the particle potentials, as encoded
by the force field, such predictions can be almost parameter
free. In order to perform the predictions, one models the
reaction mechanism (12) with ODEs (1) that are supplied
with the inferred expressions of A(χ ), where χ is given by
Eq. (16). Figures 4(b)–4(d) illustrate this principle: Fig. 4(b)
compares MD data with the stochastic and ODE models, still

(a) (b)

(c) (d)

FIG. 4. (a) The empirical probability of a network strand to close
a cycle compared to Flory’s self-avoiding random walk and Gaussian
coil. Error bars correspond to one standard deviation. (b)–(d) The
upscaling procedure: (b) molecular simulations versus learned SDEs
and ODEs with exponential polynomial coefficients, (c) macroscopic
ODEs with exponential polynomial coefficients, and (d) macroscopic
ODEs with constant coefficients.
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in the microsystem, whereas Figs. 4(c) and 4(d) present the
upscaled results as given by the ODEs with inferred rates for
the macrosystem up to t = 100 s. Note that representing the
rates as exponential polynomial functions of χ [Fig. 4(c)] as
opposed to constant rates [Fig. 4(d)] is essential to capture
the kinetic slowdown that is induced by the jamming and is
especially pronounced at low temperatures.

VI. CONCLUSION

We proposed a solution of the inverse problem to
Gillespie’s stochastic simulation algorithm [26]: Using the
empirical counts of molecular species, we recovered the re-
action rate parameters that drive the kinetics. From the point
of view of molecular dynamics, a reaction rate is an emer-
gent phenomenon of many reactive particles, and our method
allows one to extract the effective kinetic parameters from
such simulations. Assuming that the inferred parameters are
scale invariant, we show that the results of reactive molecular
simulations may be upscaled in such a way that they become
descriptive at the macroscopic scale.

Molecular simulations of many reaction-driven macro-
scopic phenomena are already on the way; see, for example,
the studies on crystallization [4,27], self-assembly [28], ag-
gregation [29], separation [30], and polymerization [7,9,31],
and the concept of ordinary differential equations that learn
from molecular simulations may facilitate the discovery of
new macroscopic laws and improving existing kinetic models
for these phenomena. As a proof of concept, we applied the
method to diacrylate polymerization to reveal an intricate
phenomenological dependance of the kinetic parameters on
temperature and time in this system and postulated that these
dependencies are induced by the complex evolution of the
underlaying network. With this example we demonstrated that
it is possible to model the transition between freely inter-
acting spices and a dense network with ordinary differential
equations with nonlinear coefficients. We expect that com-
bining such MD-informed kinetic ODEs with random graphs
[32–34] may result in accurate macroscopic models that also
predict network related phenomena.
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APPENDIX A: DERIVATION OF THE STOCHASTIC
RATE EQUATION

Consider a system that consists of a single molecule under-
going a first order reaction. If the reaction firing probabilities
are independent and proportional to waiting time, the proba-
bility that time t passes until this molecule reacts is given by
an exponential random variable with parameter λ:

P [t ∈ [τ, τ + dτ ]] = λe−λτ .

We refer to this fact as t ∼ Exp[λ], also known as the “expo-
nential clock” [35]. If instead, we have x1 = #A independent
molecules of the same species, the time until the first reaction
firing within this set of molecules is given by

t ∼ inf{Exp[λ], . . . , Exp[λ]︸ ︷︷ ︸
x1 times

} ∼ Exp[x1λ]. (A1)

Here, we made use of the standard result about the minimum
of multiple exponential random variables [35]. Since t is again
an exponential random variable, its expected value is given by
E[t] = (λx1)−1, which gives the characteristic time between
reaction firings. Thus, the reaction rate r (the amount of sub-
stance per volume per time) is given by

r = 1

E[t]

1

V NA
= x1λ

V NA
= λc(t ) = kc(t ), (A2)

where the last equality derives from the fact that ci = xi
V NA

,
where NA is Avogadro’s number. Hence, Eq. (A2) settles the
relationship between the stochastic rate λ and the rate constant
k for first order reactions:

k = λ. (A3)

The rates of second order reactions are dependent on a co-
incidence of two events: (1) the two reactants collide in the
correct configuration, and (2) together they undergo a first
order reaction. We thus have a two-stage process:

A + B −⇀↽− AB → C, (A4)

where AB is an intermediate that represents the species that
collided but have not reacted. According to Arrhenius theory,
the first stage settles on an equilibrium: the number of AB is a
constant fraction of the total number of couple combinations:

#AB = Ax1x2.

Since AB → C is a first order mechanism, it features the
stochastic rate λ′ as given by Eq. (A2). Consequently, one
writes the time until the first reaction firing as

t ∼ Exp[λ′Ax1x2] = Exp[λx1x2], λ = λ′A, (A5)

which, after applying similar transformations to Eq. (A2),
gives the approximation for the second order reaction rate:

r = 1

E[t]

1

V NA
= λx1x2

V NA
= λV NAc1(t )c2(t ) = kc1(t )c2(t ).

Hence, for second order reactions we have

k = λV NA. (A6)

Note that if a second order reaction takes place between mem-
bers of the same species, then the number of couples #AA =
1
2 x1(x1 − 1), and therefore, k ≈ 1

2λV NA. More generally, if
the jth reaction (of arbitrary order now) is isolated, the waiting
time that passes before the reaction firing is t ∼ Exp[λ jxν j ],
and by analogy to Eq. (A1), the time until the earliest event
in the case of multiple competing reactions is given by t ∼
inf j Exp[λ jxν j ] ∼ Exp[

∑
j λ jxν j ]. Moreover, the probability

that this is the jth reaction is given by P [ j] = λ j x
ν j∑

i λixνi
. When

iterated over multiple time steps, the latter two sampling rules
yield the stochastic process (5).
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APPENDIX B: CONSTANT MLE

We consider the general setting in which the time inter-
vals τl = tl − tl−1, l = 1, . . . , L need not be equispaced. Let
λ j (t ) = λ j = const; then the rates of the Poisson random vari-
ables from Eq. (5) are given by

λ jx
ν j

l τl , l = 1, . . . , L.

Therefore, the probability to observe configuration x̃l , z̃l on
time intervals τl is given by

L∏
l=1

M∏
j=1

e−λ λy

y!

∣∣∣y = z̃ j,l

λ = λ j x̃
ν j
l τl

,

and taking a logarithm of this product gives the log likelihood
of the entire ensemble of data:

f (λ1, . . . , λM ) =
L∑

l=1

M∑
j=1

(−λ + y ln λ − ln y!)
∣∣∣y = z̃ j,l

λ = λ j x̃
ν j
l τl

,

(B1)

which has the following derivatives:

∂ f

∂λ j
= −

L∑
l=1

x̃ν j

l τl + 1

λ j

L∑
l=1

z̃ j,l = −L
〈
x̃ν j

l τl
〉 + 1

λ j
L〈z̃ j,l〉,

where 〈xl〉 := 1
L

∑L
l=1 xl . By equating this derivative to zero,

one obtains expressions for λ j :

λ j = 〈z̃ j,l〉〈
x̃ν j

l τl
〉 , j = 1, . . . , M. (B2)

In order to give an estimate of the variance of these pa-
rameters, var(λ1, . . . , λn), we make use of the asymptotic
normality property of this MLE and write

var(λ1, . . . , λn) = −[Hess f (λ1, . . . , λn)]−1, (B3)

where Hess f (λ1, . . . , λn) := ∂2 f
∂ki∂k j

is the Hessian matrix.
Evaluating this variance estimate for Eq. (B1) results in a
diagonal covariance matrix, so that

var(λ j ) = λ2
j

L〈z̃ j,l〉 . (B4)

APPENDIX C: MOVING-AVERAGE MLE

For this estimator we require time intervals τl to be equis-
paced. Consider a modification of the previous case in which
for every l = 1, . . . , L the parameter λ(tl ) is calculated from
a local snippet of the data x̃l ′ , z̃l ′ , where l ′ = l − s, . . . , l + s.
Here, s = 1, 2, . . . plays the role of a regularity parameter. We
obtain the following log-likelihood function for λ j,l :

f (λ1,1, . . . , λM,L ) =
s+l∑

l=l−s

M∑
j=1

(−λ + y ln λ − ln y!)
∣∣∣
y = z̃ j,l λ = λ j,l x̃

ν j
l τl

=
s+l∑

l=l−s

M∑
j=1

[−λ j,l x̃
ν j

l τl + z̃ j,l ln(λ j,l ) + z̃ j,l ln
(
x̃ν j

l τl
) − ln(z̃ j,l !)

]
,

with the derivatives

∂ f

∂λ j,l
= −

s+l∑
l=l−s

x̃ν j

l τl + 1

λ j,l

s+l∑
l=l−s

z̃ j,l = (2s + 1)

(
1

λ j,l
〈z̃ j,l〉 − 〈

x̃ν j

l τl
〉)

,

where 〈xl〉s := ∑l+s
l=l−s xl is the moving average. By equating

these derivatives to zero, one obtains expressions for λ j,l :

λ j,l = 〈z̃ j,l〉s〈
x̃ν j

l τl
〉
s

. (C1)

By following an analogous derivation to that of Eq. (B4), one
also obtains the estimate for the variance:

var(λ j,l ) = λ2
j,l

(2s + 1)〈z̃ j,l〉s
. (C2)

APPENDIX D: EXPONENTIAL MLE

We consider the following ansatz:

λ j (t ) = λ j,0e−α j t . (D1)

By plugging y = z̃ j,l and λ = λ j,0e−α j tl x̃ν j

l τl into the log-
likelihood function, we obtain

f (α1,0, . . . , αM,0, α1, . . . , αn)

=
L∑

l=1

M∑
j=1

(−λ + y ln λ − ln y!)

=
L∑

l=1

M∑
j=1

(− λ j,0e−α j tl x̃ν j

l τl + z̃ j,l ln λ j,0 − z̃ j,lα jtl

− ln z̃ j,l !
)
. (D2)

By equating to zero the partial derivatives with respect to λ j,0,
we obtain

∂ f

∂λ j,0
= −

L∑
l=1

e−α j tl x̃ν j

l τl + 1

λ j,0

L∑
l=1

z̃ j,l = 0,
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and consequently,

λ j,0 = 〈z̃ j,l〉〈
e−α j tl x̃ν j

l τl
〉 . (D3)

In a similar fashion, we compute the derivatives with respect
to α j and equate them to zero to obtain

∂ f

∂α j
= λ j,0

L∑
l=1

tl e
−α j tl x̃ν j

l τl

−
L∑

l=1

z̃ j,l tl = λ j,0L
〈
tl e

−α j tl x̃ν j

l τl
〉 − L〈z̃ j,l tl〉 = 0.

Plugging Eq. (D3) in to the latter equality gives

〈z̃ j,l〉〈
e−α j tl x̃ν j

l τl
〉 〈tl e−α j tl x̃ν j

l τl
〉 − 〈z̃ j,l tl〉 = 0,

and since 〈e−α j tl x̃ν j

l τl〉 > 0, one can multiply by this quantity
on both sides to obtain〈

(tl〈z̃ j,l〉 − 〈z̃ j,l tl〉)x̃ν j

l τlω
tl
j

〉 = 0, ω j ∈ [0, 1], (D4)

with α j = − ln ω j . If each of these transcendental equations
has a unique real root ω j ∈ [0, 1], the MLE (D1) has a min-
imum at α j . Equation (D4) can be solved numerically by,
for example, the bisection method. As a special case, when
tl = hl, l = 1, 2, . . . , L are equispaced, Eqs. (D4) become
polynomial equations. For each j, α j = − 1

h ln y, where

L∑
l=1

aly
l = 1 (D5)

and al = (l〈z̃ j,l〉 − 〈z̃ j,l l〉)x̃ν j

l . This equation can be solved
numerically by reformulating it as the eigenvalue problem for
the companion matrix.

Analogous to Eq. (B3), the variances of λ j,0 and α j can
be computed from the Hessian matrices of the correspond-
ing log-likelihood functions. These matrices are not diagonal;
however, at t = 0 we have λ j,0e−α j t = λ j,0, and therefore,

var(λ j ) = var(λ j,0) = λ2
j,0

L〈z̃ j,l〉 .

In a similar fashion, when t � 1, λ j,0e−α j t = e( 1
t ln λ j,0−α j )t ≈

e−α j t , and var(α j ) = 1
Lλ j,0〈t2

l e−α j tl x̃
ν j
l τl 〉

.

APPENDIX E: EXPONENTIAL POLYNOMIAL MLE

In this estimator we assume the ansatz

λ j (t ) = e−p j (t ), (E1)

where

p j (t ) = α j,0 + α j,1t + α j,2t2 + · · · + α j,st
S.

By plugging y = z̃ j,l and λ = λ j (t )x̃ν j

l τl =
e−p j (t )x̃ν j

l τl into the log-likelihood function, we

obtain

f (α1,0, . . . , αM,s) =
L∑

l=1

M∑
j=1

(−λ + y ln λ − ln y!)

= L
〈 − e−p j (tl )x̃ν j

l τl − z̃ j,l p j (tl ) + z̃ j,l

× ln
(
x̃ν j

l

) + z̃ j,l ln τl + ln(z̃ j,l !)
〉
,

which has derivatives ∂ f
∂α j,s

= L〈e−p j (tl )t s
l x̃ν j

l τl − z̃ j,l t s
l 〉. We

obtain MS equations that define α j,s by equating these deriva-
tives to zero: 〈(

e−p j (tl )x̃ν j

l τl − z̃ j,l
)
t s
l big〉 = 0.

As in the preceding case, the variance analysis is performed by
computing the Hessian matrix of the log-likelihood function:

∂2 f

∂α j1,s1∂α j2,s2

=
{−L〈e−p j (tl )x̃ν j

l τl t
s1
l t s2

l 〉 if j1 = j2,
0 if j1 �= j2,

so that var(α j,1, α j,2, . . . , α j,S ) = 1
L H−1, where

Hk,s = 〈
e−p j (tl )x̃ν j

l τl t
k
l t s

l

〉
.

Moreover, this covariance matrix translates into the total vari-
ance of the rate parameter logarithm in the following way:

var[ln λ j (t )] = var

(
S∑

s=0

α j,st
s

)
= 1

L
b�H−1b, (E2)

where b = (1, t, t2, . . . , t S )�.

APPENDIX F: VARIANCE ANALYSIS
AND MODEL SELECTION

We consider exponential polynomial estimator (9) with
conversion χ (t ) = #V (0)−#V (t )

#V (0) as the time variable. In Fig. 5
we explore how different polynomial orders S = 0, . . . , 6
influence the inferred profiles of the rate prefactor A(χ )
and their corresponding confidence intervals. To quantify the
quality of the exponential polynomial estimator we calculate
the residual: r = ∫ 1

0 | ln λ j (χ ) − ln λ∗
j (t )|dχ, where λ∗

j (t ) is
given by the time-series estimator (9). Generally speaking,
the higher the order of the polynomial is, the smaller the
values of r are. Yet this is not the case for the variance of r,
which has a tendency to increase with the polynomial order
(the trend can also be seen in Fig. 5). Employing the fact
that var(r) = ∫ 1

0 var[ln λ j (χ )]dχ2, we find the upper bound of
the confidence interval to be c = r + 2

√
var(r). The optimal

polynomial order is then defined as the order that yields the
smallest value of c. Figure 6(a) shows that the residual indeed
tends to decrease with increasing polynomial order, whereas
Fig. 6(b) shows that there is an optimal saddle point, S = 4,
at which the confidence interval is the smallest in most of
the MD trajectories. We can also see from Fig. 6(a) that the
accuracy increases around 5–10 fold when we use the fourth
order estimator as opposed to constant one, the zeroth order. A
similar analysis for the termination reaction reveals an optimal
order of S = 3 [see Figs. 6(c) and 6(d)]. We therefore report
the inferred rate coefficients using the fourth order polynomial
for the propagation and the third order polynomial for the
termination reaction.
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FIG. 5. Conversion-dependent prefactors as estimated with MLEs of various orders [the red line plus 2σ confidence intervals]. The effective
time-series prefactor is given for reference (the black line). The optimal balance between small residual and high certainty corresponds to
order 4.

(a) (b)

(c) (d)

FIG. 6. The effect of the polynomial order S of the MLE estimation of 1,6-Hexanediol diacrylate (HDDA) rates. (a) and (b) Propagation
reaction. (c) and (d) Termination reaction. (a) and (c) The estimator residual r as a function of S. (b) and (d) The upper bound c of the residual
confidence interval as a function of S. The color scheme indicates the simulation temperature.
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