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Contingent evolution of alternative metabolic
network topologies determines whether
cross-feeding evolves
Jeroen Meijer 1,2✉, Bram van Dijk1,2 & Paulien Hogeweg1

Metabolic exchange is widespread in natural microbial communities and an important driver

of ecosystem structure and diversity, yet it remains unclear what determines whether

microbes evolve division of labor or maintain metabolic autonomy. Here we use a

mechanistic model to study how metabolic strategies evolve in a constant, one resource

environment, when metabolic networks are allowed to freely evolve. We find that initially

identical ancestral communities of digital organisms follow different evolutionary trajectories,

as some communities become dominated by a single, autonomous lineage, while others are

formed by stably coexisting lineages that cross-feed on essential building blocks. Our results

show how without presupposed cellular trade-offs or external drivers such as temporal

niches, diverse metabolic strategies spontaneously emerge from the interplay between

ecology, spatial structure, and metabolic constraints that arise during the evolution of

metabolic networks. Thus, in the long term, whether microbes remain autonomous or evolve

metabolic division of labour is an evolutionary contingency.
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Natural microbial communities are typically complex,
composed of many different taxonomic groups that stably
coexist. The complexity of these communities might

partly reflect the complexity of their environment, which can
generate and maintain diversity by allowing specialisation on
different niches1–10. Experimental evolution has shown how
initially clonal populations can adaptively diversify into stably
coexisting ecotypes, each specialised on pre-existing niches
defined by available nutrients1, spatial structure2,11, temporal
variability such as the feast and famine cycles in serial transfer3–9,
or combinations thereof10. However, even in constant, unstruc-
tured environments with a single limiting carbon source meta-
bolic diversification routinely evolves4,12–14. Here, new niches are
constructed by microbes themselves, as metabolic byproducts
released by one become the growth substrate for another,
allowing stable coexistence mediated by metabolic interactions.
For example, initially clonal Escherichia coli populations grown in
a glucose-limited chemostat genetically diversify into a lineage
that rapidly but inefficiently grows on the provided resource, and
lineages that specialise in using the overflow acetate produced by
the first lineage4,13,15. Niche construction can thus lead to stable
coexistence even with a single resource, which according to the
competitive exclusion principle16 would support only a single
species.

Several mechanisms have been proposed that might explain
both the evolution of cross-feeding in simple, constant environ-
ments as well as the prevalence of cross-feeding in natural
communities17–22 (see ref. 23 for a review). For example, cellular
or metabolic trade-offs might favour metabolic specialisation24,25,
and division of labour might increase productivity of a commu-
nity26. Alternatively, the “Black Queen Hypothesis” holds that
gene loss can be adaptive for functions that are costly, leaky and
essential—such as the production of essential building blocks that
end up in the environment through diffusion or lysis—provided
other community members compensate for the lost function27–29.
Indeed, by removing two metabolic genes in E. coli, a recent study
showed that in a synthetic community with engineered obligate
dependencies for amino acids, strains grow up to 20% faster
compared with the autonomous wild-type, suggesting positive
selection for the loss of biosynthetic genes18. Cross-feeding might
thus be caused by a gene loss ratchet in a community of initially
autonomous microbes that, driven by escaping the burden of
biosynthesis genes, evolve complementary metabolic networks
and become dependent30,31.

Theoretical studies on the evolution of metabolic dependency
typically predefine a limited number of metabolic strategies32,
take cellular trade-offs for granted25,32–36, or explicitly assume
external forcing such as seasonality37,38, and investigate how
other conditions favour autonomous or cross-feeding strategies,
or prevent the evolution of metabolic free-loaders39. For example,
by constructing genome-scale metabolic models and limiting the
number of reactions that can be performed by a single individual,
under certain conditions multiple cross-feeding strategies toge-
ther can outperform an autonomous strategy26. However, these
trade-offs are not always necessarily an inescapable physical
reality that must be faced, but are themselves evolved cellular
properties40, and little attention is given to the evolution of trade-
offs compared with the evolution on trade-offs.

In addition, these models tend to assume ecological and evolu-
tionary timescales are separated—the fate of each individual
mutation is determined by playing out ecological dynamics
before the next mutation arrives. We know from experimental
studies9,41–45 that microbial communities do not operate in such a
mutation-limited domain, and instead, multiple mutations con-
tinuously emerge and cause complex evolutionary dynamics and
contingency. Theoretical work46,47 demonstrated that under such

true “eco-evolutionary” conditions, evolutionary dynamics quali-
tatively change and result in more complex and diverse ecosystems.

Here, we investigate how different metabolic strategies can
evolve using a bottom-up, mechanistic model of microbial eco-
evolutionary dynamics that explicitly accounts for the high
diversity in communities without assuming cellular trade-offs or
external drivers for metabolic division of labour. We show that
initially identical populations—when propagated under identical
conditions—can reach two qualitatively different eco-
evolutionary attractors: a community of cross-feeding metabolic
specialists or, alternatively, a community formed by a single
lineage of microbes that are metabolically autonomous, produ-
cing all metabolites they need. Which type of community evolves
is dependent on, and can be predicted from, a “frozen metabolic
accident”: the topology of the metabolic network that typically
fixes much earlier in evolution. Differences between these
topologies appear to be neutral across populations at time of
fixation, but have far reaching repercussions for subsequent
evolution.

Results
Model overview. See “Methods” for a detailed model description
and parameters.

In the model, we explicitly incorporate a “chemical universe”,
metabolism, cell growth and division, genome evolution and a
two-dimensional spatial environment that all co-evolve (Fig. 1).
We do not predefine fitness (such as a target genotype or biomass
reaction to be optimised), but set basic rules for cell growth,
reproduction and death. This means whether a mutation is
beneficial, neutral or deleterious depends on local environmental
conditions and interactions, cellular state and genomic back-
ground, all of which are shaped by prior evolution in the model.
As a consequence, metabolic or ecological strategies are not
predefined, but emerge during evolutionary simulations as
microbes evolve and explore the possibilities of the chemical
universe and reshape their local environment by metabolite
uptake and exchange. This approach allows us to de novo create
microbial communities with their own evolutionary histories and
study them with access to a perfect digital “fossil record”.

Microbes compete for a single resource molecule R and limited
space on a 2d grid, reproducing locally into empty neighbouring
sites (Fig. 1a, b). They require two essential (non-substitutable)
building block metabolites B1, B2 for cell growth and expressing
proteins that perform metabolic functions. Building blocks do not
natively occur in the environment, but can be synthesised from
the provided resource by expressing relevant metabolic proteins.
In addition to building blocks, microbes require energy
metabolite E to operate transporter proteins to pump metabolites
(such as the provided resource) in and out of the cell. The
chemical universe available for evolution to meet these metabolic
demands consists of a predefined set of nine metabolites (R, B1,
B2, M1−5 and E) connected by 59 reactions (43 conversion
reactions and 16 transport reactions, see Methods), that contains
many redundant pathways and provides many degrees of
freedom to form functional metabolic networks.

Proteins catalyse individual reactions (e.g. 1R → 1M1+ 5E)
that can be combined to form metabolic pathways. They are
coded on the microbe’s genome, which typically covers only a
small subset of all reactions. When cells reproduce the genome
can mutate, allowing the metabolic networks to evolve by tuning
the rates of individual reactions through point mutations (basal
expression rate and kinetic parameters of the enzyme) and gene
copy number (gene deletion, duplication). New pathways can be
formed by discovering new genes or through horizontal gene
transfer from nearby cells.
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Cells can reproduce in a neighbouring empty site if they meet a
minimal division size (Fig. 1b), with competition biased towards
larger cells when multiple cells are eligible. Cell death is modelled
as a stochastic process with a basal death rate that is potentially
elevated when internal metabolites reach toxic concentrations.
Cell lysis releases all internal metabolites into the local
environment, which then locally diffuse and become available
for other nearby microbes to take up. In this way, microbes
change the metabolite composition of their local environment
through active transport, passive diffusion across the cell
membrane and cell death (see Fig. 1b). Motivated by experi-
mental work11,48 that shows that microscale gradients quickly
establish and influence microbial metabolism and community
dynamics, we first consider evolution in a spatially structured
environment with limited diffusion (mimicking biofilm condi-
tions), and subsequently investigate evolution simulating a well-
mixed medium.

We constructed an initial population of “minimally viable”
microbes by generating 2025 randomly parameterised genomes
coding for metabolic networks that contain a food importer and
randomly selected genes to produce both building blocks. We
then evolved 60 identical copies of this population in parallel
under the exact same conditions for 106 time steps (~4 × 105

generations), while fluxing in food metabolite R at a constant rate
at all grid points. Using this model, we examine whether
“ecosystem based” metabolic strategies evolve, i.e. cross-feeding
species with complementary metabolic networks, or “individual-
based” strategies in the form of autonomous microbes that
produce all required building blocks.

Diverse metabolic strategies evolve in a simple, constant
environment. We investigated the evolution of metabolic stra-
tegies with a mechanistic model, first focusing on the effect of
contingency with a parallel evolution experiment. The ancestral

community consists of microbes with metabolic networks com-
posed of a food importer and randomly selected genes to produce
both building blocks, all of which have randomly sampled kinetic
parameters and expression rates. During the simulations point
mutations fix that tune fluxes through specific reactions, and
metabolic networks are extended with reactions that are dedicated
to producing energy—which allows increased food uptake—and
reactions that process byproducts for more energy and/or
building blocks. Furthermore, importers are recruited to recycle
building blocks that accumulate in the environment through cell
lysis. Thus eventually, all populations evolve efficient, closed
metabolic networks that make use of all produced metabolites.

However, mutants with different metabolic repertoires con-
tinuously arise and compete for dominance within populations
and all populations are highly diverse throughout the evolu-
tionary simulations. As only very few genotypically identical
individuals are present at any given time, we found it useful for
interpretation and visualisation purposes to classify microbes
based on their “metabolic genotype”: a binary representation that
indicates the presence or absence for each of the 59 metabolic
genes and transporters in the genome. Tracking the abundances
of these metabolic genotypes over time shows that the
evolutionary dynamics are complex and characterised by clonal
interference and frequent hitchhiking, leapfrogging and horizon-
tal gene transfer (see Muller plots in Fig. 2).

To condense these complex dynamics, we use lineage tracking
and analyse the cell proteomes of these lineages. This reveals that
some of these heterogeneous communities are dominated by a
single lineage that performs all the metabolic functions outlined
above by itself (see Fig. 2a–d; Supplementary Fig. 1 for lineage
markers for all 60 populations), while other communities
diversify in two complimentary, cross-feeding lineages that
specialise in producing one, and importing the other building
block (Fig. 2e–h). These cross-feeding lineages form interleaved

Fig. 1 Model of microbial eco-evolutionary dynamics. a Genes on a linear genome code for specific metabolic enzymes that catalyse individual reactions of
the metabolic network. To express proteins and grow, microbes require two non-substitutable building block metabolites B1 and B2 (red, blue) that do not
natively occur in their environment, but can be metabolised from the single provided resource R (green) by expressing the right metabolic pathways. Active
transport of metabolites across the cell membrane requires an energy metabolite E (yellow). The genome of a single microbe typically covers a small
subset of the complete “chemical universe” of 59 reactions (see Methods). b Microbes compete for space and metabolites on a 45 × 45 lattice. They can
reproduce in an adjacent empty space if they meet the minimal division cell size. Here, microbes NE and W of the empty space are too small to reproduce.
Upon replication, genomes can mutate through gene duplication and deletion, discovery of new genes, and point mutations that can change the expression
rate and kinetic parameters of individual genes. New genes can also be acquired via horizontal gene transfer from nearby microbes. Active transport of
metabolites and lysis changes the composition of a microbes’ local environment.
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patterns in the spatial environment, and quickly mix when
separated from each other (see Supplementary Fig. 6 and and
Supplementary Movie 1). In some communities, cross-feeding or
autonomous epochs that last tens of thousands of generations
change by quickly switching strategy (Fig. 2i–l, from here on we
refer to “autonomous”, “cross-feeding” and “switching”

community types). Switching occurs only occasionally, and
typically once either strategy is established in a community it
lasts until the end of the simulation. So, even though new
mutations continue to fix in the population and metabolic
networks remain in flux, the metabolic strategy of a community is
very stable.
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To investigate the nature of the cross-feeding interaction, we
examined whether lineages could survive in absence of the other.
Specifically, at different time points after the two lineages emerged,
we tested metabolic dependencies in the standing diversity of cross-
feeding populations by removing all microbes from one lineage and
preventing further mutations to occur in the remaining lineage
(Fig. 3a–c). We find that cross-feeding communities generally con-
sist of a major lineage that produces both building blocks and can
survive by itself, and a minor lineage that is obligately dependent on
the major lineage for one of the building blocks and goes extinct
when the major lineage is removed, barring a few rare mutants
(Fig. 3c). These dependencies are not constant during the
simulation, but can increase, decrease, completely switch direction
and change to fully co-dependent, as reflected by large changes in
size of the population bottleneck following lineage removal (Fig. 3c)
and changes in the ratio that cross-feeding lineages occur in a
community during the main experiment (Fig. 2; Supplementary
Fig. 1). However, both major and minor lineage nearly always grow
faster in the presence of their partner (98,8% of cases that survive,
see Fig. 3d, e; Supplementary Fig. 2), supplementing their own
metabolism with building blocks produced by the other lineage.

At any given time during a simulation mutants with the
opposing strategy can be found within a community, but even
though simulations last tens of thousands of generations
communities only switch strategy a couple of times and most
communities (45/60) do not switch at all (Fig. 2; Supplementary
Fig. 1). For example, in cross-feeding populations autonomous
mutants can easily evolve via horizontal gene transfer between
lineages with complementary metabolic networks. When a cross-
feeding lineage is removed, such mutants in the remaining lineage
can successfully take over and found a new, completely
autonomous population, but their growth rates are higher in
the context of the original cross-feeding population where they
exploit the environment created by the whole ecosystem (Fig. 3d,
e; Supplementary Fig. 3). This explains why they cannot replace
the resident cross-feeding community in the main evolutionary
experiment, where they sometimes reach substantial fractions but
are typically only transiently present. Similarly, in autonomous
communities gene loss can produce mutants that specialise on
producing or importing only one building block, but these fail to
invade in the resident population that imports and produces both
building blocks. Apparently, both cross-feeding and metabolic
autonomy are eco-evolutionary attractors that are stable against
invading mutants of the opposed strategy, with only occasional
occurrences of populations switching between them. Since all
simulations started from the same ancestral community, this
shows evolutionary contingency determines what kind of
community evolves. Before we further consider the consequences
for predicting evolution, we first need to understand exactly what
determines which strategy evolves.

The evolution of cross-feeding is not explained by protein cost.
The Black Queen Hypothesis explains the evolution of cross-feeding

through the adaptive loss of costly biosynthetic genes for metabo-
lites that are produced by community members and publicly
available27–29. In our simulations, the evolution of cross-feeding is
characterised by loss of genes for building block synthesis and/or
transporters, and results in smaller genomes for cross-feeding
compared with autonomous strategies. As we assume an explicit
cost for protein expression and essential building blocks are an
“inescapable public good” because they are released into the
environment when cells die, evolution of cross-feeding could thus
be driven by Black Queen dynamics.

To test this we study the effect of varying the cost for protein
expression on the evolution of metabolic strategies. Surprisingly,
the emergence of autonomous, cross-feeding and occasionally
switching communities is robust to increasing or decreasing the
costs of proteins expression an order of magnitude (Supplemen-
tary Fig. 4). Although some of the dynamics change (for example,
lower expression costs allow larger genomes to evolve and
increased expression costs cause the evolutionary dynamics to
slow down), both strategies evolve under all conditions and are
stable eco-evolutionary attractors. Thus, even though in our
model the production of building blocks acts as a public good and
protein expression has an explicit cost that can be reduced by
gene loss, the evolution of cross-feeding is not driven by gene loss
to escape this cost.

Trade-offs emerge during the evolution of metabolic networks.
To look for signatures for cross-feeding and autonomous strate-
gies, we further investigated the diversity of metabolic networks
that evolved. First, we clustered the final evolved populations at
the end of the simulation based on metabolic gene frequencies in
each population (see Fig. 4a). This shows that all populations
share a core set of five genes for the uptake of the food resource
and production and uptake of both building blocks. In cross-
feeding communities, the genes for production and uptake of
building blocks are only present in subsets of the population,
reflecting how these communities have a distributed metabolic
network. Note that populations strongly differ in which reaction
is recruited to produce energy, and how byproducts from this
reaction are further metabolised. Typically, a single dedicated
energy reaction fixes in a population. Although clustering is
dominated by individual energy generating reactions which
clusters autonomous and cross-feeding populations with a few
exceptions (Fig. 4a), no single gene acts as a signature for either
community type.

Next, as metabolic strategies are stable during long-term
evolution even though metabolic networks continuously evolve,
we consider how these gene frequencies change over the complete
duration of the simulation by PCA (Fig. 5; Supplementary Fig. 5).
We find that the major component separates cross-feeding and
autonomous communities. Moreover, based on the energy
reactions recruited by each strategy, the metabolic networks can
be classified in two different topologies that associate exclusively
with either strategy: networks that degrade the food metabolite

Fig. 2 Emergence of diverse metabolic strategies. a–d Example of population dominated by a single autonomous lineage. a Muller plot showing relative
frequencies and phylogenetic relationships of different metabolic genotypes throughout the experiment. Clades of microbes with different metabolic
genotypes (colours) continuously evolve, resulting in complex evolutionary dynamics of competition and leapfrogging. b Tracking ancestral relationships
with renewing lineage markers shows a continued turnover in markers, indicating that at any point during the simulation all microbes have a recent
common ancestor. c Snapshots of spatial environment. d Principal component analysis of single-cell proteomes shows that in these communities all
microbes express similar proteins. e–h Example of a population that diversifies in two lineages that cross-feed on essential building blocks. g Lineages form
an interleaved pattern in the spatial environment (see Supplementary Fig. 6 and Supplementary Movie 1). h Single-cell proteomes show that these lineages
express different metabolic enzymes. i–l Example of a population that switches between autonomous and cross-feeding strategies. Lineage markers are
redistributed when a single marker fixes in the whole population. PCAs coloured for lineage markers, and composed per simulation on relative single-cell
protein expressions, see “Methods” for details.
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for energy (i.e. R → energy+ byproduct) are found in cross-
feeding communities, and networks that degrade a building block
for energy (i.e. B1 or B2 → energy+ byproduct) in autonomous
communities (Fig. 4b). Further support that links network
topology to community strategy comes from communities that
switched between strategies. Here, a switch from cross-feeding to
autonomous (or vice versa) is accompanied by a simultaneous
switch in network topology, and when a switch occurs
communities move along the first principal component accord-
ingly (Figs. 5d and 6a). Finally, communities can be composed of
microbes with hybrid metabolic networks that degrade building
blocks as well as food for energy (Figs. 4, 6). Interestingly, within
a hybrid metabolic network one type of energy reaction appears
dominant, as communities with such networks follow either a
cross-feeding or autonomous strategy and do not mix different
strategies within a community. Such communities can also switch
strategy (and move accordingly in the PCA) without changing
their network topology.

Why do these topologies determine metabolic strategies? The
amount of energy available to a microbe is limited, and as a

consequence, importing more of one metabolite trades off with
importing others, depending on what metabolite is used as an
energy precursor. If microbes create energy by degrading the food
resource, taking up other metabolites such as building blocks
lowers the cell’s energy budget. The amount of additional
metabolites that can be imported is thus constrained for
metabolic networks with this topology. As building blocks are
produced and accumulate in the environment, this creates two
niches (i.e. one for each building block) that can be exploited by
different lineages. In contrast, when building blocks are degraded
for energy, importing them increases the energy budget and does
not trade-off with importing the food resource, allowing
individual microbes to import both types of building blocks as
well as retain their competitive ability for the food resource.
Furthermore, as only one of the two building blocks is used for
energy in autonomous communities, a cross-feeding scenario
with this topology would be inherently asymmetrical and
unstable, as one lineage would be dependent on the other for
both energy and building blocks, while the other lineage only
requires the complementary building block.
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Fig. 3 Metabolic dependencies in cross-feeding communities.We tested metabolic dependencies in 29 selected populations by removing either lineage at
different time points after cross-feeding evolved, and without allowing further mutations to occur. a–d Example of 2 × 10 tests of metabolic dependency in
replicate population 23. Times indicated with dashed lines in a. b. When removing the major lineage (pink) at t= 2 × 105, most microbes of the remaining
lineage (blue) die out. However, a rare mutant is able to grow by itself, though it cannot import building block 1 and does not reach a high abundance.
c Outcome of removing lineages for all time points in (a), with different metabolic genotypes within each lineage indicated with shades of the lineage
colour. Typically, the minor lineage goes extinct or contains only few mutants that survive in isolation, reflecting obligate dependency on the major lineage.
In contrast, microbes in the major lineage can mostly survive without the minor lineage. These dependencies are not constant over evolutionary time as
metabolic genotypes that dominate within each lineage change. Note that directly following lineage removal, all remaining lineages can initially quickly
grow on the limited store of building blocks that were produced by partner lineage and are still present in the environment. d Community production rates
before and 1500 time steps after lineage removal. All surviving minor and major lineages have higher growth rates in the context of the original cross-
feeding population. e Difference in community growth rate for surviving lineages in 484 tests of metabolic dependency in 29 populations. In total, 407 out
of 412 (98.8%) tested cases that survive removal have reduced growth rates in isolation. Surviving lineages shown in a–d are highlighted.
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The evolution of cross-feeding requires spatial structure.
Recent experimental and theoretical work11,48–51 re-emphasised
the importance of spatial structure and local interactions on eco-
evolutionary dynamics, and metabolic division of labour in par-
ticular. In our evolutionary experiment microbes reshape the
composition of the local environment through metabolic activity,
and cross-feeding lineages self-organise into interleaved spatial
patterns, locally enriching it for one of both building blocks (see
Figs. 2, 3b; Supplementary Movie 1 and Supplementary Fig. 6). To
test whether spatial structure was necessary for cross-feeding to
evolve, we re-ran the experiment 18 times starting from the same
ancestral population while simulating well-mixed but otherwise
identical conditions. No cross-feeding lineages emerged, even
though metabolic networks evolved that reliably associated with
cross-feeding strategies in unmixed conditions. Moreover, when
we stopped mixing, populations with the cross-feeding-associated
topology quickly diversified in two cross-feeding lineages, while
communities with an autonomous-associated topology remained
metabolically autonomous, signifying that it is the interplay
between environmental structure and evolved metabolic con-
straints that drives cross-feeding.

Finally, reasoning that long-term coexistence might result in
increased robustness of the cross-feeding interaction, we tested

the ecological and evolutionary stability of cross-feeding com-
munities from the original experiment by transfer to a well-mixed
medium. Specifically, we subjected seven randomly chosen cross-
feeding populations to well-mixed conditions at varying time
steps after cross-feeding evolved, while either allowing or
preventing further mutations to occur. In all “ecology-only” tests
(i.e. without mutation), cross-feeding is stably maintained, and
population size and community productivity increase. The
increased productivity makes intuitive sense, as mutants that
are less productive are outcompeted and cannot re-appear due to
lack of mutations. Moreover, under unmixed conditions, local
reproduction and metabolite diffusion limit the interface between
both lineages and therefore reduce efficient exchange of building
blocks. In contrast, when mutations are allowed under mixed
conditions, all cross-feeding communities are quickly taken over
by autonomous mutants. Strikingly, the resulting autonomous
communities have smaller population sizes and productivity than
their ancestral cross-feeding community. This shows that while
spatial structure puts an upper limit to the efficiency of cross-
feeding, it also protects against autonomous metabolic strategies.
Consistent with previous results32,51, we find that spatial structure
is needed to evolve and maintain metabolic cross-feeding and also
find that whether cross-feeding evolves or not depends on
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Fig. 4 Emergent metabolic strategies differ in their energy metabolism. a Heatmap showing the frequency of 59 metabolic genes (columns) in 60 evolved
communities (rows) at the end of the simulation. Cross-feeding communities (dark blue label) and single-lineage autonomous communities (in mustard)
cluster mostly together, but no single gene is associated with either metabolic strategy. Instead, the topology of the evolved metabolic network determines
community strategy. b Examples of metabolic networks with different topologies. Topology is determined by the substrate of the energy reaction (resource
or building block), and networks with the same topology may differ in the specific reaction used to produce energy and other reactions. All communities that
degrade resource R for energy follow the cross-feeding strategy (light blue), while in contrast all autonomous communities degrade building block B1 or B2 for
energy (yellow). 15 out of 60 communities switched strategy during the evolutionary simulation (marked with letter "S" in a) in most cases because a mutant
with the opposing network topology invaded and replaced the resident population. Some communities are formed by microbes with hybrid metabolic
networks that degrade both resource and building block for energy (indicated in green) and can switch strategy without changing network topology.
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constraints of previous metabolic adaptations. As microbes evolve
to produce more energy from either the resource or one of the
building blocks, importing one metabolite trades of with
importing others. We find that the shape of this trade-off is an
evolved property of the metabolic networks and the local
environmental niches they construct.

Metabolic strategies are an evolutionary contingency. Our
results demonstrate that the topology of the evolved metabolic
network, combined with spatial structure, determines whether
cross-feeding evolves or not. Which topology evolves in a
population is arbitrary and often establishes early on. For simu-
lations where the cost of protein expression is increased, this
topology often fixes up to tens of thousands of generations before
metabolic networks “mature” by making use of all building blocks
that accumulate in the environment. What eco-evolutionary
strategy will evolve when microbes finally evolve to tap into that
source can be predicted from the evolved topology (see Fig. 6b),
realising a fate already cemented earlier in its evolutionary his-
tory. However, it is interesting to note that exact prediction is
limited by several factors. Firstly, evolution of the topology of the
metabolic network is typically “founder controlled”, where the
energy reaction that establishes itself first in the community
quickly accumulates more beneficial mutations and is never
outcompeted by other energy reaction genes that are discovered
later on. However, mutants with a different energy type occa-
sionally do invade and replace the original population, changing
community fate (Fig. 6a). Secondly, microbes that have a hybrid
metabolism can switch between strategies as they evolve and
different energy reactions dominate the metabolic network or are
lost (Fig. 6a).

Concluding, a combination of contingency and predictability is
manifest in our eco-evolutionary modelling experiment. Given
the topology of the metabolic network that evolves, in the long
run, and with intermittent metastable states, the type of
community which evolves is predictable.

Discussion
Previous experimental studies have shown repeated evolution of
cross-feeding8,13,14,43,52, and the emergence of cross-feeding is

typically interpreted as driven by physiological constraints. By
explicitly incorporating constraints such as trade-offs in resource
uptake or production25, or a limit in the maximum number of
reactions within a single organism26, theoretical approaches
demonstrate how these constraints can force metabolic speciali-
sation and drive the evolution of cross-feeding. Here, rather than
pre-defining such physiological constraints in our model, we
demonstrate how metabolic constraints can themselves evolve,
and whether or not they are driving cross-feeding is a historic
contingency.

Next to metabolic constraints, other factors important for the
evolution of metabolic exchange have been previously identified.
For example, in batch culture repeated cycles of feast and star-
vation generate temporal niches that explain stable coexistence of
cross-feeding ecotypes7,8,25,37,38. In these studies, cross-feeding is
unidirectional, i.e. one lineage feeds on metabolic byproducts of
the other. In contrast, we here show bidirectional cross-feeding of
two non-substitutable building blocks, and in a constant envir-
onment. This matches recent experimental observations of the
evolution of cross-feeding on essential nutrients43, and stable
coexistence mediated by uptake of debris from lysed cells of a
coexisting lineage8.

Another suggested driver for the evolution of cross-feeding is
that the collective exploitation of resources can be more efficient
or productive than individual-based solutions19,26,53,54. In our
simulations, autonomous mutants in cross-feeding communities
are indeed less productive than the resident cross-feeders (Fig. 3;
Supplementary Figs. 2, 3). However, communities that evolve a
completely autonomous strategy are equally or more productive
than cross-feeding communities, showing that productivity alone
may not be sufficient to explain widespread metabolic-
dependencies observed in nature. Thus, we should realise that
community productivity itself is an evolved property of the
evolved metabolism, and that division of labour is not necessarily
more productive, as productivity depends on evolved metabolic
constraints.

Metabolic dependencies can also arise due to non-adaptive
gene loss caused by genetic drift in small populations55. In our
model this seems not to be the case as cross-feeding has a clear
adaptive benefit (Supplementary Fig. 2), and lost functions are
easily regained by HGT.

Fig. 5 Evolutionary trajectories towards community attractors. a PCA of gene frequencies of 59 metabolic genes in 58 communities over the whole
duration of the experiment. One dot represents one community. For clarity, only the initial community and final time point of the simulations are shown.
This separates communities by strategy along the first component, and reveals that topology of the evolved metabolic network determines metabolic
strategy of the community: networks with reactions that degrade resource R for energy cross-feed on building blocks, whereas networks with reactions that
degrade building block B1 or B2 for energy remain metabolically autonomous and consume all building blocks from the environment. b–d Evolutionary
trajectory showing all time points in the PCA for a community that b evolves cross-feeding (community 9), c metabolic autonomy (community 4)
and d switches between strategies (community 18). For visualisation purposes outlier populations 59 and 47 were omitted from this analysis (see
Supplementary Fig. 5 for analysis including these outliers).
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Recent experimental work showed that initially clonal micro-
bial communities quickly become genetically heterogeneous9,44,
and that in the resulting complex evolutionary dynamics the fate
of individual mutations does not only depend on that specific
mutation’s fitness, but mainly on what new mutations accumulate

in that background44. Likewise, we find that when no further
mutations are allowed to occur, autonomous mutants already
present in cross-feeding population never fixate in the well-mixed
selection regime, but when they can acquire more mutations
always take over and dominate evolutionary outcome. In other

Fig. 6 Prior metabolic adaptations constrain future ecological roles. a Evolutionary trajectories of example communities (first component from PCA in
Fig. 5 v.s. time) towards cross-feeding (negative y-value) or autonomous (positive y-value) strategy, coloured for topology of the metabolic network. Grey
lines indicate trajectories of all other communities. Changes in dominant network topology cause a switch in community strategy. b Cartoon of evolutionary
trajectories. Earlier metabolic adaptations that fix in the initial population dictate final eco-evolutionary attractor, but are an evolutionary contingency.
However, prediction is limited because the duration of each depicted stage is unpredictable, and cases where mutants with an alternate network topology
invade and replace the population (dashed arrow in b, population 18 and 21 in a) are possible.
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words, the outcome of evolution (i.e. type of community that
evolves) depends critically on interlocking evolutionary and
ecological timescales, recapitulating earlier theoretical work46,47.

It is interesting to note that in each cross-feeding lineage more
mutants gain partial dominance than is the case in autonomous
lineages (Fig. 2). The amount of mutations in synthetic cross-
feeding versus autonomous strains was recently studied in56.
Contrasting with our results, they found that although, under
strong selection, the sum of the mutations in the two cross-
feeding strains was larger and more varied than in the autono-
mous strain, the separate cross-feeding strains acquired less
mutations than the autonomous strain. We conclude that the
speed and trajectory of evolutionary dynamics in relation to co-
evolving, interdependent lineages under various selection regimes
is a promising avenue of future computational, theoretical and
experimental research.

For computational feasibility and simplicity, we here con-
sidered a simple metabolism with only two essential building
blocks, while in reality many metabolites such as carbon and
nitrogen sources, amino acids, nucleotides and vitamins are
required for growth, and are also exchanged in microbial com-
munities23. It would be interesting to extend the model meta-
bolism with more building blocks and investigate whether the
here reported distinct community types (metabolic autonomy
and cross-feeding) are maintained, or whether communities with
intermediate levels of metabolic division of labour evolve.

Interestingly, the dichotomy in community types we report
here matches a recent paper that investigated the metabolism of
natural communities composed of up to 40 species. The authors
reported that natural communities in a wide range of environ-
ments are either highly cooperative, with smaller genomes and
diverse metabolic dependencies, or highly competitive, and
dominated by species with larger genomes and overlapping
nutritional needs57. This suggests the result of our computational
experiment is a general property of microbial communities.
Furthermore, it would be interesting to investigate whether the
rapid switching between cross-feeding and autonomous com-
munity types we find also occurs in natural communities. It is
exciting to see that patterns emerging in the eco-evolutionary
dynamics of our multi-level virtual microbes model are now
detectable through metagenomic analysis of natural communities.
We look forward to future cross-feeding of the two approaches to
enhance our understanding of the microbial world.

Methods
Metabolic genotypes and the construction of Muller plots. We found it useful
for interpretation and visualisation purposes to classify microbes based on their
“metabolic genotype”: a binary representation that indicates presence or absence of
each of the 59 metabolic genes and transporters in the genome, ignoring copy
number variations, promoter strength and kinetic parameters. During simulations,
we created a phylogeny with clades consisting of related microbes with the same
metabolic genotype by tracking gain and loss mutations that changed this meta-
bolic genotype and collecting abundances and ancestral relationships. For creating
Muller plots, we subsampled the data every 500 time steps, and used a cut-off of 5%
of maximum population size to remove clades that never became abundant. Plots
were created in R with the GGMuller package58, which follows the convention to
stack every new clade emerging from the centre of its parent clade in chronological
order of appearance.

Lineage tracking with renewing markers. To allow tracking of ecological and
evolutionary dynamics, we used a technique similar to barcoding methods used in
experimental evolution59. We label each microbe in the initial population with a
unique neutral marker that it passes on to their offspring. If at any point during the
simulation all living microbes have the same marker—indicating that they share a
common ancestor that was alive when markers were distributed—markers are
renewed by giving each microbe a new unique marker. Note that these markers
only track lineage dynamics and not mutations, and lineages do not correspond
directly to the clades of metabolic genotypes shown in the Muller plots. Markers do
not reflect genetic or phenotypic identity nor provide high-resolution insight in the

thousands of independent adaptive and non-adaptive mutations competing within
a population.

Diversity within replicate populations. To investigate different metabolic stra-
tegies of individual microbes within a community, we measured differential
investments across all metabolic reactions by normalising protein concentrations of
each metabolic protein to the total protein concentration in the cell. We collected
protein data from all cells for time points (1, 2, ..., 10) ×105 and then performed a
separate PCA for each simulation.

Testing metabolic dependency. To asses metabolic dependency of microbes in
cross-feeding populations, we removed all microbes in one lineage (including
internal metabolites) and set mutation rates to zero. Following removal, we con-
tinued the simulation for a maximum of 2000 time steps or population extinction.
For 29 populations that evolved cross-feeding (all 21 cross-feeding populations and
8 randomly selected switching population), we tested both lineages at every mul-
tiple of 105 time steps after cross-feeding evolved. In total, we performed 484 tests.
We measured production rates of microbes at the time step just preceding lineage
removal and, if populations survived, after 2000 time steps following removal.

Diversity between replicate populations. We performed a single principal
component analysis on the frequencies of all 59 metabolic genes in all 60 replicate
populations over all time points in the main experiment. For clarity of visualisation,
we omitted two outliers (population 47 and 59) from this analysis, which did not
impact the result. See Supplementary Fig. 5 for an analysis including these outliers.

Model description. VirtualMicrobes extends an earlier explicit model of genome
evolution, metabolism and homoeostasis60–62 by adding a structured environment
and emergent microbe-microbe interactions. It is a highly configurable framework
designed to study emergent, eco-evolutionary microbial dynamics under a wide
range of possible conditions. For clarity, here we only describe the configuration
and features that are relevant to this study. A full manual is available at https://
bitbucket.org/thocu/virtualmicrobes and https://virtualmicrobes.readthedocs.io,
and parts have previously been described in an earlier study38.

Overview. VirtualMicrobes is an agent-based model, where each individual
microbe occupies a grid point on a 2D plane. Population dynamics (i.e. compe-
tition, reproduction and death) play out every time step. Within a time step,
cellular processes (cellular growth, gene expression, metabolic reactions including
uptake, excretion and diffusion across the cell membrane, metabolite and protein
decay) and environmental metabolite dynamics (food influx, degradation and
diffusion between grid points) are updated using ordinary differential equations
(ODEs).

Metabolic universe. The metabolic universe is an a priori defined set of all
metabolites and possible reactions between them. We procedurally generated a
universe consisting of nine metabolites (a single resource R, two designated
building block molecules B1, B2, energy carrier E, and four intermediate metabolites
M1−5) with their own toxicity, degradation and diffusion parameters, and 43
metabolic reactions (see Table 1). This provides evolution considerable degrees of
freedom for forming metabolic networks to produce the required building blocks
and energy from the available resource.

Transport. For all metabolites, transporters exist that import or export the
metabolite across the cell membrane. Transporters T catalyse the transport of
substrate S over the cell membrane by consuming energy metabolite E. Transport
rate v is then given by Michaelis–Menten kinetics:

v ¼ vmaxT
� ½T � � ½S� � ½E�

ð½S� þ KSÞ � ð½E� þ KEÞ
; ð1Þ

where KS, and KE are the Michaelis–Menten constants for the substrate and energy
molecule. Depending on the direction of transport (importing or exporting) [S] is
either the external or internal concentration of the substrate. KS, KE and vmax T are
all freely evolvable parameters.

Metabolism. Metabolic enzymes catalyse reactions of the general form:

R0 þ R1 þ ¼�! P0 þ ¼ ; ð2Þ

converting reactant metabolites {Ri, …} to products {Pj, …}. The rate of catalysis v
is calculated with Michaelis–Menten kinetics as follows:

v ¼ vmaxE
� ½E� �

Q
R2R½R�Q

R2Rð½R� þ KRÞ
; ð3Þ

where ½E� is the concentration of the enzyme catalysing the reaction, R the set of all
reactant metabolites and KR and vmaxE

are evolvable kinetic parameters of enzyme E.
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Degradation and dilution of molecules. Concentrations of all molecules (i.e.
proteins, product and metabolites) are adjusted according to the change in cell
volume dVol/dt. In addition, all molecules degrade with a molecule-specific rate
degradation.

Biomass production budget. Microbes convert building blocks B1 and B2 to a
production budget B with rate production, favouring homeostasis of building block
concentrations with:

production ¼ ½B1� � ½B2�
1þ j½B1� �

½B1 �þ½B2 �
2 j þ j½B2� �

½B1 �þ½B2 �
2 j

� � : ð4Þ

This budget is spent for increasing cell size costgrowth and producing proteins by
gene expression costexpr. Note that to maintain sufficient selection pressure to select
for adaptive mutations as building block synthesis rates of populations increase
during evolutionary simulations, we scale the amount of budget spent with Bscaling :

Bscaling ¼
B

B þ Bpop
; ð5Þ

where Bpop is the time averaged population production value. The concentration of
B then changes with a rate:

dB
dt

¼ production� costgrowth � costexpr � degradation� dilution: ð6Þ

When cells grow, B is consumed proportional to the rate of growth:

costgrowth ¼ Volgrowth � Bscaling � B: ð7Þ

Total consumption of product for gene expression is summed over all genes:

costexpr ¼
XNgenes

i¼1

Pri � Bscaling � B: ð8Þ

Cell volume growth. We assume that if microbes grow without being able to
divide due to lack of space, they approach a maximum cell size Volmax with rate g.
We implement a cost for maintaining cell volume with a small shrinking rate s.
Volume changes with a rate:

dVol
dt

¼ Volgrowth � s � Vol; ð9Þ

where Volgrowth is given by:

Volgrowth ¼ g � Vol � 1� Vol
Volmax

� Bscaling: ð10Þ

Protein expression. Protein concentrations P for any given gene are governed by
the function:

dP
dt

¼ Pr � Bscaling � degradation� dilution; ð11Þ

where Pr is the per gene evolvable parameter promoter strength. VirtualMicrobes
features explicit transcription factor proteins (TF) that can modify protein tran-
scription. TFs were not relevant for this study and not recruited during evolu-
tionary simulations and are here omitted for clarity. See the full documentation for
a description of TFs.

Toxicity and death. We model death as a stochastic process depending on an
intrinsic death rate r= 0.03, which is potentially increased when internal meta-
bolite concentrations reach a toxic threshold. This cumulative toxic effect etox is
computed over all internal metabolitesM and the current lifetime τ of a microbe as:

etox ¼
X
m2M

Z τ

t¼0
f ðm; tÞdt; ð12Þ

with the toxic effect function f(m, t) for the concentration of metabolite m at time t
with metabolite-specific toxicity threshold toxm

f ðm; tÞ ¼ maxð0; ½mt � � toxm
toxm

Þ: ð13Þ

This toxic effect increases the death rate d of microbes starting at the intrinsic death
rate r:

d ¼ etox
sþ etox

� ð1� rÞ þ r; ð14Þ

where s scales the toxic effect. Microbes that survive after an update cycle retain the
toxic level they accumulated so far. Cells can also die from starvation. When they
are unable to produce enough biomass product to maintain the slowly decaying
volume of the cell and cell size drops below a predefined threshold size, cells are
automatically marked for death.

Reproduction. Microbes grow and reproduce on a 45 × 45 grid, competing for
metabolites and available space. A microbe can reproduce if it meets the minimal
division size and there is an empty grid site in any of its eight neighbouring sites.
When multiple microbes are eligible for reproduction in the same empty site,
reproduction chance depends on the microbe’s production value P, with a dyna-
mically scaled chance for a “no reproduction” event occurring. Cell volume is
divided equally between parent and offspring (molecule and protein concentrations
remain constant), and the genome is copied with possible mutations. Toxic effects
built up during the parent’s lifetime do not carry over to offspring.

Table 1 Metabolic universe: Using VirtualMicrobes, we generated an artificial biochemistry comprised of 9 metabolites, 8
importers, 8 exporters and 43 conversion reactions, with two non-substitutable building blocks and a single energy molecule.

Metabolite Class Diffusion rate Degradation rate Toxicity Mass Influx rate

R Resource 0.011 0.0003 0.077 9 0.002
B1 Building block 0.011 0.0100 0.058 8 0
B2 Building block 0.012 0.0100 0.103 8 0
E Energy carrier 0.050 0.1000 0.065 1 0
M1 – 0.014 0.0006 0.105 6 0
M2 – 0.019 0.0003 0.080 4 0
M3 – 0.013 0.0006 0.079 7 0
M4 – 0.014 0.0014 0.158 6 0
M5 – 0.016 0.0008 0.047 5 0

Reactions

R → B2 + E B1 → M4 + 2 E M1 → M2 + 2 E M2 + M5 → B1 M3 + M5 → R
R → B1 + E B1 → M5 + 3 E M2 + M3 → B1 M2 + M5 → M1 M3 → M5 + 2 E
R → M1 + 3 E B2 → M1 + 2 E M2 + M3 → B2 2 M1 → R M3 → M4 + E
R → M2 + 5 E B2 → M2 + 4 E M2 + M5 → M4 2 M2 → M1 M4 → M2 + 2 E
R → M4 + 3 E B2 → M3 + E M2 + M4 → M3 2 M2 → B1 M4 + M5 → B2
R → M5 + 4 E B2 → M4 + 2 E M2 + M5 → M3 2 M2 → B2 M4 + M5 → R
R → M3 + 2 E B2 → M5 + 3 E M2 + M4 → B2 2 M2 → M4 M4 + M5 → B1
B1 → M1 + 2 E M1 + M4 → R M2 + M5 → B2 2 M2 → M5 M5 → M2 + E
B1 → M2 + 4 E M1 + M2 → M3 M2 + M5 → R
Importers: one for each non-energy metabolite (8 total)
Exporters: one for each non-energy metabolite (8 total)
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Genome and mutations. The genome is a linear organisation of genes coding for
enzymes and transporters. When a microbe successfully reproduces it divides and
the offspring inherits a copy of the parent’s genome, which can then be subject to
various types of mutations. Stretches of genes can be duplicated, deleted, inverted
or translocated to another position on the genome (Table 2). At the single gene
level, all evolvable parameters can mutate individually (Table 2). Horizontal gene
transfer can occur on every time step. Innovations are modelled as HGT from an
external (off-grid) source by drawing a random reaction from the metabolic uni-
verse with random parameters, and can occur every time step.

Initialisation and experimental setup. We constructed an initial population of
2025 “minimally viable” microbes by generating genomes containing one importer
gene for the food resource and 5 random enzymes, with the constraint that the
resulting metabolic network was at least capable of producing the necessary building
blocks and energy from the provided resource. Genes were randomly parameterised
and ordered on the genome. In total, 60 identical copies of this population were
propagated in parallel for 1 × 106 time steps (corresponding to roughly 4 × 105 gen-
erations) under the exact same conditions, differing only in the mutation seed.

Statistics and reproducibility. The experiments and analysis conducted in this
paper can be reproduced with the publicly available code.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data shown supporting this study is available for download from https://doi.org/
10.5281/zenodo.384046363, with exception of the data used for creating the Muller
diagrams in Fig. 2, Supplementary Fig. 6 and Supplementary Movie 1, which are available
from the corresponding author upon request.

Code availability
Full documentation, source code, and installation instructions for the VirtualMicrobes
Python module are publicly available at https://bitbucket.org/thocu/virtual-microbes.
This study used VirtualMicrobes version 0.2.5, which is archived at https://doi.org/
10.5281/zenodo.384360964. Custom scripts used for the analysis and creation of figures in
this paper are available at https://github.com/meijer-jeroen/contingent-evolution-2020
and archived at https://doi.org/10.5281/zenodo.384193065.
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