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ABSTRACT

We show that vn-periodic homotopy groups detect homotopy equivalences

between simply-connected finite CW-complexes.

1. Introduction

The classical Whitehead theorem [Whi49] states that a map of CW-complexes

which induces an isomorphism on homotopy groups (for any choice of basepoint)

is a homotopy equivalence. Combined with the Hurewicz theorem, it implies

that an integral homology equivalence of nilpotent CW-complexes is a homotopy

equivalence. This paper concerns a variant of such results where one replaces

homotopy groups and integral homology by algebraic invariants arising from

chromatic homotopy theory.
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The first such invariants are the Morava K-theories K(n). These also depend

on a prime p, but (as is common) we suppress it from the notation. The following

was proved, but not explicitly stated, by Bousfield [Bou82]; an alternative proof

is given by Hopkins and Ravenel [HR92], who show that suspension spectra are

local with respect to the wedge of all Morava K-theories.

Theorem 1.1 (Bousfield, Hopkins–Ravenel): Let f be a map between nilpotent

spaces such that K(n)∗f is an isomorphism for all n and p. Then f is a weak

homotopy equivalence.

For convenience we assume a prime p has been fixed and we work p-locally

throughout. Our focus will be on the vn-periodic homotopy groups of spaces.

Recall that a pointed finite CW-complex V is said to be of type n if

K(i)∗V ∼= K(i)∗ for i < n, but K(n)∗V is non-trivial. The periodicity the-

orem of Hopkins and Smith [HS98] implies that after suspending V sufficiently

many times, it admits a vn self-map

v : ΣdV → V.

By definition, such a map induces an isomorphism on the groups K(n)∗V and

acts nilpotently on the (reduced) K(m)-homology groups for m �= n.

Now for X a pointed space and n ≥ 1, one defines its v-periodic homotopy

groups to be

v−1π∗(X ;V ) := Z[v±1]⊗Z[v] π∗Map∗(V,X).

Here Z[v] is a graded ring (with v in degree d) and π∗Map∗(V,X) (with ∗ ≥ 2)

is regarded as a graded abelian group on which v acts by

π∗Map∗(V,X)
v∗−→ π∗Map∗(Σ

dV,X) ∼= π∗+dMap∗(V,X).

Definition 1.2: A map f of pointed spaces is a vn-equivalence if v−1π∗(f ;V )

is an isomorphism.

This definition depends only on n. Indeed, to see that it is independent of

the choice of type n space V and vn self-map v, one applies Theorem 7 (the

thick subcategory theorem) and Corollary 3.7 (the asymptotic uniqueness of vn

self-maps) of [HS98]. An equivalent way of phrasing the definition above is to

say that f is a vn-equivalence if Φn(f) is an equivalence of spectra, with Φn

denoting the nth Bousfield–Kuhn functor [Kuh08].
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Remark 1.3: Fix a finite type n spectrum V with a vn self-map v and write

T (n) for the mapping telescope

T (n) := hocolim(V
v−→ Σ−dV

v−→ Σ−2dV
v−→ · · · ).

By definition a map f of spectra is a vn-periodic equivalence if and only if T (n)∗f
is an isomorphism. (Although T (n) depends on the choice of V , the associated

notion of T (n)∗-homology isomorphism does not.) Moreover, if T (n)∗f is an

isomorphism, then K(n)∗f is an isomorphism. The telescope conjecture asserts

the converse, but is only known to hold for n = 0 and n = 1. The reader

should be warned that the relation between vn-periodic equivalences and T (n)∗-
homology isomorphisms of spaces is much more subtle. In particular, there is no

direct implication in either direction. Bousfield gives detailed results relating

vn-periodic equivalences of spaces to the notion of virtual K(n)-equivalences

in [Bou97].

We say a map f : X → Y is simple1 if the homotopy fiber F of f is connected,

has abelian fundamental group, and π1X acts trivially on the homotopy groups

of F . Thus, a space Z is simple if and only if Z → ∗ is a simple map, and

the homotopy fiber of a simple map is a simple space. Also, any map between

simply-connected spaces is simple.

In addition to Definition 1.2, we say a map f of pointed nilpotent spaces is

a v0-equivalence (resp. p-local equivalence) if it is a rational weak homotopy

equivalence (resp. weak equivalence after Z(p)-localization). The aim of this pa-

per is to prove the following Whitehead theorem for periodic homotopy groups:

Theorem 1.4: Let f be a simple map of pointed nilpotent finite CW -complexes.

If f is a vn-equivalence for every n ≥ 0, then f is a p-local equivalence.

The hypothesis that the spaces involved be finite complexes cannot simply

be omitted, as the example f : K(Z/p,m) → ∗ for m ≥ 1 shows. Indeed, the

space in question has vanishing vn-periodic homotopy groups for every n ≥ 0.

In fact, one can replace K(Z/p,m) by (the connected cover of) Ω∞E for any

dissonant spectrum E to obtain a larger class of counterexamples.

1 We warn the reader that this notion is unrelated to the notion of a simple map in

geometric topology, where one demands that the inverse images of points are contractible.
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The plan of this paper is as follows. In Section 2 we give a brief review of

the integral Morava K-theories and their values on Eilenberg–Mac Lane spaces.

Section 3 reviews some of Bousfield’s results on the relation between vn-periodic

equivalences and homotopical localizations of the category of pointed spaces.

Finally, in Section 4 we prove Theorem 1.4.

Conventions. Throughout this document, we fix a prime p and all our spaces

are assumed to be pointed, connected, nilpotent, and p-local. For the theory

of arithmetic localizations of nilpotent spaces we refer to [BK72, Chapter V].

In particular, the homotopy groups of the R-localization of X for some sub-

ring R ⊂ Q will be just π∗X ⊗ R (with appropriate meaning for π1) and sim-

ilarly for homology. We understand a finite space to be the p-localization of a

finite CW-complex. If X is a pointed space we write X〈n〉 for its n-connected
cover and τ≤nX for its nth Postnikov section.

Acknowledgements. We would like to thank Tyler Lawson, for helpful con-

versations concerning multiplications on integral Morava K-theory, as well as

Tomer Schlank. We moreover thank the referee for catching an inaccuracy.

The authors would like to thank the Isaac Newton Institute for Mathematical

Sciences for support and hospitality during the programme “Homotopy harness-

ing higher structures” when work on this paper was undertaken. This work was

supported by EPSRC grant number EP/R014604/1.

2. Integral Morava K-theories

In this section we will study the basic properties of integral Morava K-theories

K(n). These are 2(pn − 1)-periodic complex orientable integral lifts of the

ordinary Morava K-theories K(n) at height n and prime p. The p-complete

version of K(n) was first studied by Morava in [Mor88]; for the convenience of

the reader, we briefly recall the construction.

Let MU be (p-local) complex cobordism with coefficients

π∗MU ∼= Z(p)[t1, t2, . . .],

where ti has degree 2i and t0 := p. Following [EKMM97, Ch. V], we extend ti

to a map Σ2iMU → MU and denote the corresponding cofiber by M(i).



Vol. 241, 2021 A WHITEHEAD THEOREM 5

Definition 2.1: We define an integral Morava K-theory K(n) at height n ≥ 1

and prime p as

K(n) := MU [t−1
pn−1]⊗

⊗
i/∈{0,pn−1}

M(i).

Here, the smash products are taken over MU .

Note that the construction of K(n) depends on a choice of generators

t1, t2, . . . , tn−1, tn, . . .; we fix one such choice and consequently omit it from

the notation. Furthermore, we shall write vn := tpn−1 from now on. The next

lemma summarizes the salient features of the integral Morava K-theories.

Lemma 2.2: The integral Morava K-theories have the following properties:

(1) For any p and n, the spectrum K(n) has the structure of an even complex

orientable ring spectrum with graded commutative coefficient ring

π∗K(n) ∼= Z(p)[v
±1
n ],

where vn is in degree 2(pn − 1).

(2) Write K(n) for 2(pn − 1)-periodic Morava K-theory. There is a cofiber

sequence

K(n)
p−→ K(n) → K(n),

so in particular an equality of Bousfield classes

〈K(n)〉 = 〈K(0)⊕K(n)〉.
(3) For any p and n, K(n) has the structure of an A∞-ring spectrum. If p > 2,

then the multiplication on K(n) is homotopy commutative.

Proof. By construction, K(n) is an even homotopy associative ring spectrum

with the indicated coefficients, equipped with a homomorphism MU → K(n)

of ring spectra. Moreover, multiplication by p on K(n) induces an equality of

Bousfield classes

〈K(n)〉 = 〈K(n)/p〉 ⊕ 〈p−1K(n)〉.
Since K(n)/p � K(n) and 〈p−1K(n)〉 = 〈K(0)〉, Claim (2) follows.

It remains to prove (3). In [Ang08, Cor. 3.2] Angeltveit shows that a quo-

tient R/x of an even commutative S-algebra R by a non-zero divisor x admits

an A∞ R-algebra structure. Applying this to R = MU and the spectraM(i) de-

fined above, it follows that K(n) admits the structure of an A∞-ring spectrum.
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Finally, if p > 2, n ≥ 1, and I = (t1, t2, . . . , tpn−2, tpn , tpn+1, . . .), then the coef-

ficients of MU/I are concentrated in degrees divisible by 4 ≤ 2pn− 2 = |tpn−1|.
Theorem V.4.1 in [EKMM97] implies that K(n) = MU/I[t±1

pn−1] is a homotopy

commutative and associative ring spectrum, so K(n) is homotopy commutative

whenever p > 2.

Remark 2.3: If p = 2 and n > 1, then K(n) is not homotopy commutative.

We have learned the following argument from Tyler Lawson; a more detailed

account will be contained in forthcoming work by Lawson. Let p = 2 and

suppose for contradiction that the multiplication on K(n) constructed above is

homotopy commutative. Consider then its homotopy commutative connective

cover R = τ≥0K(n) and let f : R → H = HF2 be the canonical quotient map. It

would follow that the image of the induced map in homologyH∗R → H∗H must

be closed under the operation Q1, which acts as Qk+1 in degree k. However,

a computation with the Tor spectral sequence for H ⊗ R � (H ⊗ BP ) ⊗BP R

shows that this image is

F2[ξ
2

1, ξ2, . . . , ξn−1, ξ
2

n, ξn+1, . . .],

which is not closed under Q1 if n > 1, because Q1(ξi) = Q2i(ξi) = ξi+1 for

all i ≥ 1 by [BMMS86, Theorem III.2.2]. This gives the claim.

Let Dp∞ be a p-divisible graded K(n)∗-module concentrated in even degrees.

Consider the graded commutative K(n)∗-algebra

Λ(Dp∞) := K(n)∗ ⊕Dp∞ [−1],

obtained as the split square-zero extension of K(n)∗ by a copy of Dp∞ shifted

down one homological degree. In our examples, Dp∞ will be a direct sum of

copies of Q/Z(p) in every even degree.

Proposition 2.4: Let π be a finite abelian p-group, n ≥ 1, and K(π, d) the

associated Eilenberg–Mac Lane space. Then there is an isomorphism

K(n)∗(K(π, d)) ∼= Λ(Dp∞)

of graded commutative K(n)∗-algebras, for some p-divisible torsion graded even

K(n)∗-module Dp∞ depending on π, n and d. Moreover, if π is non-trivial,

then Dp∞ = 0 if and only if n < d.2

2 In fact, the module Dp∞ can be described explicitly in terms of π, n, and d, but we will

not need the precise formula here.
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Proof. By the Ravenel–Wilson computation of the Morava K-homology of

Eilenberg–Mac Lane spaces [RW80] [JW85, Appendix], K(n)∗K(π, d) is an even

finitely generated module overK(n)∗, and the same papers establish the vanish-

ing result claimed at the end of the proposition. Recall that, as a consequence

of the classification of injective abelian groups (see e.g. [Fuc70, Theorem 23.1]),

a p-divisible p-torsion abelian group is uniquely determined by its p1-torsion.

Let Dp∞ be the uniquely determined even graded p-divisible torsion K(n)∗-
module whose submodule of p1-torsion elements is isomorphic to the reduced

homology K(n)∗(K(π, d)), i.e., the injective hull of the latter graded group.

Consider the long exact sequence in homotopy associated to the cofiber

sequence

K(n)⊗K(π, d)
p−→ K(n)⊗K(π, d) → K(n)⊗K(π, d).

By evenness, multiplication by p on K(n)∗(K(π, d)) is injective in even degrees

and surjective in odd degrees. Since Q ⊗ K(n)∗(K(π, d)) = 0, it thus follows

that K(n)∗(K(π, d)) is trivial in even degrees and p-divisible in odd degrees.

We thus get an isomorphism

φ : K(n)∗(K(π, d)) ∼= Λ(Dp∞)

of K(n)∗-modules. In any K(n)∗-algebra structure on Λ(Dp∞) the product

of two elements of Dp∞ must be zero as it is p-power torsion and in even

degree. Thus, Λ(Dp∞) carries a unique K(n)∗-algebra structure, namely that

of a split square-zero extension, and hence φ must be an isomorphism of K(n)∗-
algebras.

Note that we have in particular shown that the ring K(n)∗(K(π, d)) is graded

commutative also in the case p = 2, n > 1, where K(n) is not a homotopy

commutative ring spectrum. The divisible and hence non-finitely generated

summands in K(n)∗(K(π, d)) will play a crucial role in the proof of the main

theorem.

Remark 2.5: We could also work with the functor LK(0)⊕K(n)(En ⊗ (−)) in

place of K(n) in this paper, where En is a Morava E-theory of height n. The

chromatic fracture square for K(0)⊕K(n) combined with Peterson’s lift [Pet11]

of the Ravenel–Wilson computation to MoravaE-theory can be used to establish

the properties of this functor which we require for our applications.
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3. Periodic homotopy and homology equivalences

The aim of this section is to state and prove Proposition 3.4, implying a relation

between vn-periodic homotopy groups and En-homology groups of spaces. We

will rely on results concerning periodizations (or nullifications) of spaces as

developed by Bousfield [Bou94, Bou01] and Dror Farjoun [Far96].

Following Section 4 of [Bou01] we begin by fixing a finite CW-complex Vn+1

of type n+1 that is also a suspension. For later reference we will denote by dn+1

the lowest dimension in which Vn+1 has a nonvanishing homotopy group. There

is an associated functor

L̂f
n : S∗ → S∗

which is the left Bousfield localization with respect to the map Vn+1 → ∗.
This functor takes values in spaces X which are Vn+1-null, meaning that the

map Vn+1 → ∗ induces an equivalence

X → Map(Vn+1, X).

Also, for any X there is a natural map ηX : X → L̂f
nX which is homotopy initial

for maps into Vn+1-null spaces. The behavior of this functor with respect to

periodic homotopy groups is as follows (cf. §4.6 of [Bou01]):

(i) The map ηX induces an isomorphism of rational homotopy groups.

(ii) The map ηX induces an isomorphism of vi-periodic homotopy groups for

1 ≤ i ≤ n.

(iii) The vi-periodic homotopy groups of L̂f
nX vanish for i > n.

Let us call a map ϕ an L̂f
n-equivalence precisely if L̂f

n(ϕ) is an equivalence

of spaces. A crucial result is the following converse to the above:

Theorem 3.1 (Bousfield [Bou01], Corollary 4.8): A map ϕ : X → Y of dn+1-

connected spaces is an L̂f
n-equivalence if and only if it is a vi-equivalence for

every 0 ≤ i ≤ n.

We remark that some connectivity assumption is indeed necessary here. As

by Ravenel–Wilson K(n)∗K(π, n) �= 0 for a non-trivial finite abelian p-group π,

we see that the L̂f
n-localization can change under connected covers if the space is

not at least n-connected. In contrast, vn-periodic homotopy theory is insensitive

to connected covers by the following well-known lemma.
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Lemma 3.2: Let m,n ≥ 1 and X be an arbitrary space. Then the canonical

map X〈m〉 → X is a vn-equivalence.

Proof. With notation as in the introduction, v−1πk(X ;V ) depends only

on πk+NdMap(V,X) for N large (and d positive), which in turn only depends

on X〈m〉 for m large.

The next lemma shows that the localization functor L̂f
n described above is

compatible with its stable counterpart

Lf
n : Sp → Sp,

which localizes away from the finite type n+1 spectrum Σ∞Vn+1. By construc-

tion, Lf
n is a finite and thus smashing localization functor, i.e., Lf

nX � X⊗Lf
nS

0

for any spectrum X .

Lemma 3.3: If E is an Lf
n-local spectrum and ϕ is an L̂f

n-equivalence of spaces,

then ϕ is also an E∗-equivalence.

Proof. If E is an Lf
n-local spectrum (i.e., E∗(Vn+1) = 0), then Ω∞E is Vn+1-

null and thus an L̂f
n-local space. Hence, if ϕ is an L̂f

n-equivalence of spaces, then

it follows for any Lf
n-local spectrum E that Map(Σ∞ϕ,E) � Map(ϕ,Ω∞E) is

an equivalence, so Σ∞ϕ is an Lf
n-equivalence of spectra. Since Lf

n is smashing,

we get

E ⊗ Σ∞ϕ � Lf
n(E) ⊗ Σ∞ϕ � E ⊗ Lf

nΣ
∞ϕ,

which is an equivalence as observed above.

We write Ln for the Bousfield localization with respect to the nth Morava

E-theory En. Equivalently, it is Bousfield localization with respect to the direct

sum

K(0)⊕K(1)⊕ · · · ⊕K(n).

By Lemma 3.3, any L̂f
n-equivalence of spaces is in particular an Ln-equivalence.

The point of this section is the following variation on (one direction of) The-

orem 3.1:

Proposition 3.4: Let ϕ : X → Y be an (n + 1)-connected map (i.e., a map

with n-connected homotopy fiber). If ϕ is a vi-equivalence for 0 ≤ i ≤ n, then

it is an Ln-equivalence.

The proof of this proposition will use the following well-known lemma:
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Lemma 3.5: Consider a spectrum E and a diagram of spaces

F F ′

Y Y ′

X X ′

in which the columns are fiber sequences. If the bottom map is an equivalence

and the top map is an E∗-equivalence, then the middle map is also an E∗-
equivalence.

Proof. The induced map of Atiyah–Hirzebruch spectral sequences for these two

fibrations gives an isomorphism of E2-pages, from which the result follows im-

mediately.

Proof of Proposition 3.4. Write F for the homotopy fiber of ϕ. By assumption

it is an n-connected space with vanishing vi-periodic homotopy groups for i ≤ n.

By Lemma 3.5 it suffices to show that LnF is contractible. Consider the fiber

sequence

F 〈dn+1〉 → F → τ≤dn+1F.

The space F 〈dn+1〉 is dn+1-connected and has vanishing vi-periodic homotopy

groups for i ≤ n by Lemma 3.2. Thus Theorem 3.1 implies that L̂f
n(F 〈dn+1〉)

is contractible and Lemma 3.3 implies that the same is true for Ln(F 〈dn+1〉).
Applying Lemma 3.5 to the fiber sequence above, we see that it suffices to

prove that Lnτ≤dn+1F is contractible. Using Lemma 3.5 together with the

vanishing of (En)∗K(Z/p, k) for k > n established by Ravenel and Wilson

(cf. Proposition 2.4), a finite induction on the Postnikov tower of τ≤dn+1F now

gives the desired conclusion. Note that we have used the fact that the homotopy

groups of F are torsion.

4. Proof of the main result

Before we prove our Whitehead theorem in its general form, we will prove it for

the special case of a map X → ∗ to demonstrate the basic idea.

Proposition 4.1: Let X be a nilpotent finite space with abelian fundamental

group such that X → ∗ is a vn-equivalence for all n ≥ 0. Then X is contractible.
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Proof. Note that the assumption on X implies that all homotopy groups of X

are finite. We show by induction that X is n-connected for every n, the base

case being n = 0. Assume thus that X is already (n−1)-connected and consider

the fiber sequence

X〈n〉 → X → K(πnX,n).

As K(πnX,n) and X have trivial vi-periodic homotopy groups for i ≤ n, so

does X〈n〉. By Proposition 3.4 this implies that LnX〈n〉 is contractible and

thus

K(n)∗X ∼= K(n)∗(K(πnX,n))

by Lemma 3.5. As X is a finite CW-complex, this must be a finitely generated

K(n)∗-module. By Proposition 2.4 this is only possible if πnX = 0, implying

that X is n-connected.

Remark 4.2: Observe that the previous proposition does not need that X is

simple, only that it is nilpotent with abelian fundamental group. It is therefore

slightly stronger than the specialization of Theorem 1.4 to the absolute case. In

fact with some care the hypothesis that X be nilpotent can also be removed in

Proposition 4.1.

The remainder of this section is devoted to the proof of Theorem 1.4. We

will set up an induction using the Moore–Postnikov tower of f . This is a tower

of factorizations of f

...

P2(f)

P1(f)

X P0(f) Y

characterized (up to equivalence) by the following properties:

(1) The map X → Pn(f) is n-connected, meaning it is an isomorphism on πi

for i < n and surjective on πn.

(2) The map Pn(f) → Y is an isomorphism on πi for i > n and injective on πn.



12 T. BARTHEL, G. HEUTS AND L. MEIER Isr. J. Math.

Note that this implies that πn(Pn(f)) = Im(πnf). If Y is contractible, the

Moore–Postnikov tower reproduces the Postnikov tower of X ; if X is con-

tractible, it gives the Whitehead tower of Y . Our assumption that f is a simple

map guarantees that the Moore–Postnikov tower is in fact a tower of principal

fibrations; see [May67].

Given our assumption thatX and Y are connected and π1f is surjective (since

the homotopy fiber of f is connected), the map P1(f) → Y is an equivalence.

Our inductive hypothesis will be that Pn(f) → Y is an equivalence, from which

we will deduce that Pn+1(f) → Y is an equivalence as well. Since

X → holimnPn(f)

is an equivalence, this proves the theorem.

We start with the following straightforward observation:

Lemma 4.3: The maps X → Pn(f) and Pn(f) → Y are vi-equivalences for

all n, i ≥ 0.

Proof. For i = 0 this is clear. Since Pn(f) → Y induces an equivalence on

n-connected covers, it is a vi-equivalence for any i > 0 using Lemma 3.2. The

statement for X → Pn(f) now follows by two-out-of-three.

Lemma 4.4: The map X → Pn+1(f) is an Ln-equivalence.

Proof. The map of the lemma is (n + 1)-connected by construction and a

vi-equivalence for i ≥ 0 by Lemma 4.3. Therefore Proposition 3.4 gives the

conclusion.

Corollary 4.5: If K is an En-local ring spectrum with K∗ noetherian, then

K∗(Pn+1(f)) is a finitely generated K∗-module.

Lemma 4.6: Let n ≥ 1 and assume Pn(f) → Y is an equivalence. Then the

fiber of Pn+1(f) → Y is a K(π, n) for

π = πn hofib(f)

a finite abelian p-group.

Proof. Denote the fiber of Pn+1(f) → Y by F . The exact sequence

· · · → πn+1F → πn+1Pn+1(f) ↪→ πn+1Y → πnF → πnPn+1(f) → πnY → · · ·
receives a map from the exact sequence for the fiber sequence hofib(f)→X→Y ,

inducing an isomorphism πn hofib(f) → πnF by the five lemma. Moreover, the
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exact sequence above implies that in fact F is a K(π, n). To see this, use

that πiPn+1(f) → πiY is bijective for i > n + 1 and injective for i = n + 1

by construction. Also πiPn+1f = πiX for i ≤ n and the assumption that

Pn(f) → Y is an equivalence implies that πiX → πiY is surjective for i = n and

bijective for i < n. Finally, π is indeed finite as f is a rational equivalence.

We will exploit the non-finiteness of K(n)∗K(π, n). The crucial fact is the

following:

Lemma 4.7: Consider a fiber sequence

K(π, n) → E → Y

with n ≥ 1 and Y finite such that π is a nonzero finite abelian p-group and π1E

acts trivially on π. Then K(n)∗E is not finitely generated over K(n)∗.

Proof. For the duration of this proof we will work in the Z/2-graded setting,

separating odd and even degrees. Recall from Proposition 2.4 that

K(n)∗K(π, n) = Λ(Dp∞),

where Λ(Dp∞) is the split square-zero extension of Z(p) in even degree by a p-

divisible gradedK(n)∗-moduleDp∞ [−1] in odd degrees. Note thatDp∞ depends

on π, but is nonzero.

We consider the Atiyah–Hirzebruch spectral sequence (AHSS)

E2
s,t

∼= Hs(Y ;K(n)tK(π, n)) ⇒ K(n)s+tE,

where t ∈ Z/(2pn − 2). Note that the E2-page is given as stated because our

assumptions imply that π1Y acts trivially on the homotopy groups of K(π, n).

As π1E acts trivially on π, the fibration sequence of the lemma is in fact a

principal fibration [Hat02, Lemma 4.70], i.e., can be extended to the right by a

map Y → K(π, n+1). Thus, the AHSS becomes a spectral sequence of Λ(Dp∞)-

modules by [Swi02, §15, Remark 4 on Page 352].

We write M for the E2-page viewed as a Z/2-graded Λ(Dp∞)-module, where

we view Λ(Dp∞) as being Z/2-graded by collecting the even and the odd degree

elements, respectively. Moreover, we write M0 = E2∗,even for the even part

and M1 = E2
∗,odd for the odd one.
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Consider the Serre class C of finite abelian p-groups and denote by the same

symbol the Serre class of Z/2-graded Λ(Dp∞)-modules whose underlying abelian

groups are in C. Then M is a finitely generated free Λ(Dp∞)-module mod C.
Indeed, this follows immediately from the observation that M is a direct sum

of the following kinds of groups:

(1) A finitely generated free Λ(Dp∞)-module corresponding to the torsion-free

summand of H∗Y .

(2) A finite torsion group of the form (H∗Y )tor ⊗ Λ(Dp∞).

(3) A finite torsion group of the form Tor(H∗Y,Λ(Dp∞)).

Also, the even part M0 is finitely generated over Z(p), whereas the odd part M1

consists entirely of p-primary torsion. It immediately follows that the same is

true of all subsequent pages of the AHSS.

For every Z/2-graded Λ(Dp∞)-module N , we have a map

(	) Dp∞ ⊗N0 → N1.

This map is an isomorphism mod C for N = M , simply becauseM is free mod C.
We say more generally that a graded Λ(Dp∞)-module N has property (P) when-

ever (	) is an isomorphism mod C. We now claim that every subsequent page

of the AHSS has property (P). This will prove the lemma. Indeed, the AHSS

collapses at a finite stage (since H∗Y is bounded above), so that the E∞-page

has property (P). The even part of the E∞-page contains a summand Z(p) cor-

responding to the basepoint of E. Using property (P), it follows that the odd

part of the E∞-page is not finitely generated over Z(p), because Dp∞ is not.

To establish our claim we consider two cases.

Passing from E2k
to E2k+1

. Write N = E2k and consider it as a graded

Λ(Dp∞)-module. The differential d2k is of odd degree, i.e., it gives homomor-

phisms

N0
d2k−−→ N1 and N1

d2k−−→ N0.

Since N0 is finitely generated over Z(p) and N1 is p-primary torsion, it follows

that both these maps have image a finite abelian p-group (informally speak-

ing, d2k is zero mod C). It follows immediately that E2k+1 is isomorphic to E2k

mod C. In particular, it still satisfies property (P).
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Passing from E2k−1
to E2k

. Write N = E2k−1. This time the differen-

tial d2k−1 is even. Since d2k−1 is a Λ(Dp∞)-module map, we obtain a commu-

tative square

Dp∞ ⊗N0 N1

Dp∞ ⊗N0 N1.

d2k−1 d2k−1

Since the horizontal maps are isomorphisms mod C, it follows that the induced

map on homology

H(Dp∞ ⊗N0, d2k−1) → H(N1, d2k−1)

is an isomorphism mod C. To conclude that E2k satisfies property (P), we need

that the natural map

Dp∞ ⊗H(N0, d2k−1) → H(Dp∞ ⊗N0, d2k−1)

is an isomorphism mod C. But this follows from the fact that the functor

(Q/Z(p))⊗− : Abfg → Ab

is exact mod C (in the target). Here Ab (resp. Abfg) denotes the category of

abelian groups (resp. finitely generated abelian groups). This last statement is

equivalent to the fact that Tor(Q/Z(p), A) is a finite abelian p-group whenever A

is finitely generated.

We can now complete what we set out to do:

Proof of Theorem 1.4. Combining Corollary 4.5 and Lemma 4.7, it follows

that π = 0 with π as in Lemma 4.6. Note that the application of Lemma 4.7 uses

the assumption on f that π1X acts trivially on the homotopy group πn hofib(f).

Then Lemma 4.6 implies that Pn+1(f) → Y is an equivalence, which establishes

the inductive step.
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