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A B S T R A C T   

Few studies go beyond the residential environment in assessments of the environment-mental health association, 
despite multiple environments being encountered in daily life. This study investigated 1) the associations be
tween multiple environmental exposures and depressive symptoms, both in the residential environment and 
along the daily mobility path, 2) examined differences in the strength of associations between residential- and 
mobility-based models, and 3) explored sex as a moderator. 

Depressive symptoms of 393 randomly sampled adults aged 18–65 were assessed using the Patient Health 
Questionnaire (PHQ-9). Respondents were tracked via global positioning systems- (GPS) enabled smartphones 
for up to 7 days. 

Exposure to green space (normalized difference vegetation index (NDVI)), blue space, noise (Lden) and air 
pollution (particulate matter (PM2.5)) within 50 m and 100 m of each residential address and GPS point was 
computed. Multiple linear regression analyses were conducted separately for the residential- and mobility-based 
exposures. Wald tests were used to assess if the coefficients differed across models. Interaction terms were 
entered in fully adjusted models to determine if associations varied by sex. 

A significant negative relationship between green space and depressive symptoms was found in the fully 
adjusted residential- and mobility-based models using the 50 m buffer. No significant differences were observed 
in coefficients across models. None of the interaction terms were significant. 

Our results suggest that exposure to green space in the immediate environment, both at home and along the 
daily mobility path, is associated with a reduction in depressive symptoms. Further research is required to 
establish the utility of dynamic approaches to exposure assessment in studies on the environment and mental 
health.   

1. Introduction 

Major depressive disorder is a leading contributor to disability 
worldwide (James et al., 2018). Global lifetime prevalence is 14.6%; in 
the Netherlands it is estimated to be slightly higher at 18.1% (Fedko 
et al., 2020). The disorder is characterised by sustained depressed mood, 
loss of interest or enjoyment and reduced energy (World Health Orga
nization, 2017). Overall, this places a substantial burden on healthcare 
systems and results in high healthcare expenditure (König et al., 2020). 

Recent studies have identified associations between green space, 
blue space, noise and air pollution and mental health (Klompmaker, 
Hoek, et al., 2019; Zhang et al., 2019). Greater surrounding green and 
blue space has been associated with lower incidence of depression 

(Groenewegen et al., 2018; McEachan et al., 2015; White et al., 2020). 
Moreover, research has shown that views of green and blue space from 
the home are also associated with improved mental health (Honold 
et al., 2016; White et al., 2020). Three pathways between green space, 
blue space, and health and well-being have been proposed: reducing 
harm (i.e. reducing exposure to environmental stressors), restoring ca
pacities (e.g. attention restoration and stress reduction), and building 
capacities (e.g. facilitating physical activity or social cohesion) (Mar
kevych et al., 2017; White et al., 2020). 

In contrast, greater exposure to noise and air pollution has been 
associated with increased risk of depression (Braithwaite et al., 2019; 
Dzhambov & Lercher, 2019; Eze et al., 2020). The relationship between 
noise and poorer mental health may be mediated by noise annoyance, 
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neighbourhood restorative quality, physical activity and sleep distur
bance (Dzhambov et al., 2018; van den Bosch & Meyer-Lindenberg, 
2019). Air pollution may influence neuroinflammation, neurotrans
mitter function, neural plasticity and oxidative stress, which in turn 
affects mental health (van den Bosch & Meyer-Lindenberg, 2019). 

Previous research on the relationship between environmental expo
sures and health has traditionally taken a residential-based approach to 
exposure assessment. That is, exposure extent has been defined on the 
basis of administrative boundaries containing, or circular or network 
buffers around, the residential address (Klompmaker, Hoek, et al., 2019; 
Seidler et al., 2017; Triguero-Mas et al., 2015; Zijlema et al., 2016). A 
boundary centred on the residential address represents an overly 
simplistic context that may not be in line with the true spatial behaviour 
of a person. In reality, people typically encounter multiple environments 
outside of the home in the course of their daily routine, for example for 
work, education or leisure activities (Chaix, 2018). Discrepancies be
tween the measured and true context can result in exposure misclassi
fication and in turn, biased estimates (Culyba et al., 2018; Kwan, 2018). 

Recent research has urged the need to address these limitations by 
advocating for mobility-based exposure assessments (Chaix, 2018; 
Helbich, 2018; Kestens et al., 2017). Approaches to this vary: options 
include activity surveys or travel diaries that include details on time 
spent in other locations (Cole-Hunter et al., 2018; Tang et al., 2018); 
however, this can be burdensome for a participant and affected by issues 
of memory recall. The development of global positioning systems (GPS) 
offers the possibility to collect high resolution spatiotemporal data 
(Birenboim & Shoval, 2016). Due to their growing ubiquity worldwide, 
it is increasingly possible to utilise smartphones with GPS capabilities. 
This reduces participant burden and allows for rich data collection while 
remaining unobtrusive (Boonstra et al., 2018; Tonne et al., 2017). 

Emerging research has used GPS-enabled smartphones to examine 
the relationship between the natural environment and mood state 
(Beute & de Kort, 2018; Kondo et al., 2020; Li et al., 2018; Tost et al., 
2019). However, these studies do not account for other environmental 
exposures, such as air pollution, with which the natural environment 
may be spatially correlated. The potential for confounding is therefore 
ignored. This has been addressed in limited research that uses 
residential-based environmental exposures (Klompmaker, Hoek, et al., 
2019; Zhang et al., 2019), but to the best of our knowledge, this is the 
first study to consider the combined effects of multiple environmental 
exposures (namely, green space, blue space, noise and air pollution) 
along the daily mobility path on depressive symptoms. 

There is some evidence that associations between green space, blue 
space and mental health may vary by sex (Gascon et al., 2015), but the 
differences are not well understood. Moreover, there is scarce research 
on the moderating role of sex in the relationships between noise, air 
pollution and mental health (Clark & Paunovic, 2018; Fan et al., 2020). 
Given the differences in the prevalence and symptomology of mental 
disorders between sexes (Riecher-Rössler, 2017), an investigation into 
associations between environmental exposures and depressive symp
toms by sex was warranted. 

The aim of this study was to investigate the combined associations of 
green space, blue space, noise and air pollution around the home and 
along the daily mobility path and depressive symptoms. Our second aim 
was to explore differences in the strength of associations between 
residential-based and mobility-based environmental exposures and 
depressive symptoms. Lastly, we investigated whether these associations 
varied by sex. 

2. Materials and method 

2.1. Study design and sample 

We conducted an observational cross-sectional tracking study (Hel
bich, 2019). Data collection was a two-stage process, involving a survey 
and a GPS-tracking smartphone app. In September-November 2018, 

45,000 people were invited via a letter from Statistics Netherlands to 
complete an online survey, “Mood and Living Environment”. Eligibility 
criteria for participation were: registered in the Dutch National Personal 
Records Database; aged 18–65; living in a private household; not 
sampled by Statistics Netherlands in the past 12 months. The sample was 
determined using stratified random sampling. The number of in
dividuals to be selected from each municipality was guided by its pop
ulation size; individuals were then randomly sampled. The survey 
included questions on, among others, mental health, demographics and 
socioeconomic status. 11,505 respondents completed the survey, rep
resenting a response rate of 25.6%. 

To capture mobility-based exposure, a GPS-tracking smartphone app 
was utilised. Survey respondents who agreed to be approached again 
were invited via email to download a bespoke smartphone app. Re
spondents received the invitation up to two days after survey comple
tion. An information letter and an app log-in code that ensured data 
could be linked between the survey and smartphone app were included. 
The app was available for Android phones only (version 4.4+). An iOS 
app was developed; however, as the app was designed for a restricted 
user base, it was not approved for distribution on the App store. 8,869 
invitation emails were sent, and the total number of app downloads was 
820. 

Once downloaded, in-app permissions must be granted for the app to 
collect sensor data. 753 participants agreed to in-app permissions for the 
app to monitor location, 629 of which recorded at least one GPS mea
surement. Summary characteristics of participants who downloaded the 
app but did not agree to permissions or provide data can be found in 
Table S1. The app then ran in the background with no user interaction 
for the duration of data collection. User interaction was minimised as 
much as possible to reduce any changes in behaviour as a result of the 
app running. 

2.2. App settings 

Adaptive sampling intervals were determined through pretesting by 
the research team and personal contacts using a variety of smartphone 
brands. Perceived battery life change was discussed, and changes made 
to balance this concern with the aims of the study. The location sampling 
interval was 20 s, with extended time intervals if no relevant movement 
had been made (minimum 20 m). If there was no relevant movement 
after 30 min, location was checked every minute. If no relevant move
ment was recorded after one hour, then location was checked every two 
minutes. The app stopped recording after a cumulative total time of 7 
days of data had been collected. Data were initially stored locally and 
then uploaded daily and stored on a secure server at Utrecht University. 

2.3. Ethics and data privacy 

The study protocol (Helbich, 2019) was approved by the Ethics Re
view Board of Utrecht University (FETC17–060). 

2.4. Measures 

2.4.1. Outcome 
Depressive symptoms were measured using the Patient Health 

Questionnaire (PHQ-9) (Kroenke et al., 2001). Respondents were asked 
how often they have been bothered by problems such as, for example, 
“Little interest or pleasure in doing things”, and “Feeling down, 
depressed, or hopeless”, over the past two weeks. Response options 
range from 0 “Not at all” to 3 “Nearly every day”. Items were summed to 
produce a total score; a higher score indicates more depressive symp
toms. The summed-item score has been shown to have good diagnostic 
performance for screening for depression (Manea & Gilbody, 2015). The 
internal consistency of the items was high (Cronbach’s alpha = 0.89). 

H. Roberts and M. Helbich                                                                                                                                                                                                                    



Environment International 156 (2021) 106635

3

2.4.2. GPS data 
The GPS data was cleaned according to criteria that indicated it was 

not representative of participant mobility. First, we removed partici
pants whose data indicated poor compliance to the study. We defined 
this as a participant having<2.5 times the median absolute deviation in 
terms of the number of observations (Leys et al., 2013). Participants 
were also removed if they had any GPS points outside of the Netherlands 
as we assumed this was not representative of a typical week. 

Next, points with a speed of > 200 km/hr were removed. We selected 
200 km/hr as the maximum possible speed between points as it was 
deemed implausible that speeds above the stated threshold could be 
achieved. This is in line with previous Dutch studies on travel speed 
(Bohte & Maat, 2009). Further, GPS points located >50 m from the 
travel network were removed. While GPS accuracy ideally is between 5 
m and 10 m, this can extend to over 50 m dependent on travel mode and 
in urban areas with high-rise buildings (Beekhuizen et al., 2013). The 
travel network (namely, roads, railways, pedestrian and bike paths) was 
obtained from a topographic map of the Netherlands (Kadaster 
TOP10NL, 2020). The distance between each GPS point and the nearest 
point on the network was calculated, and those with a value >50 m were 
removed. Following the GPS cleaning, the sample comprised 419 par
ticipants. For a full flow chart of participant selection and the GPS 
cleaning process, see Fig. S1 in the Supplementary Materials. 

2.4.3. Environmental exposures 
Environmental exposures were calculated according to concentric 

buffers of 50 m and 100 m around each GPS point and for each partic
ipants’ home address. The home address of each respondent was ob
tained via register linkage in order to calculate residential-based 
exposure. Buffer sizes were selected on the basis of previous research 
(Mueller et al., 2020; Su et al., 2019), and are thought to represent an 
area that is immediately visible, or with which the participant has direct 
contact. GPS points that lay within 100 m of the German or Belgian 
border (size of the largest buffer) were excluded from analysis to avoid 
edge effects due to data being unavailable for these countries. 878 GPS 
points were removed (representing 0.08% of the points that were kept 
after cleaning). 

2.4.4. Green space 
Green space was operationalised using the Normalised Difference 

Vegetation Indices (NDVI) (Tucker, 1979), derived from Landsat 8 
Operational Land Imager via the Google Earth Engine (GEE) cloud 
computing platform (Gorelick et al., 2017). NDVI describes the level of 
green biomass based on land surface reflectance of visible and near- 
infrared radiation using satellite imagery at a spatial resolution of 30 
m × 30 m. Images were selected for the year 2018. Due to seasonal 
vegetation cycles, we only considered atmospherically corrected scenes 
collected during the growing season, namely May to September. To 
minimise the effects of clouds, we applied the GEE cloud score algorithm 
(Google Earth Engine, 2020). Scenes with > 40% cloud cover and pixels 
with a cloud score of > 25 were removed. Values range from − 1 to 1 
with higher values indicating greater density of vegetation, and negative 
values referring to non-biomass e.g., water bodies. Values <0 were 
excluded to avoid distortions when calculating the mean NDVI value per 
circular buffer. 

2.4.5. Blue space 
Blue space data was extracted from the Dutch land use database 

(Landelijk Grondgebruiksbestand Nederland; LGN) for 2018 (Hazeu 
et al., 2020). The database distinguishes 48 different land use types with 
a spatial resolution of 5 m × 5 m per raster cell. Proportion of blue space 
was calculated as the proportion of cells classified as fresh water or 
saltwater within the total number of cells in the circular buffer. 

2.4.6. Air pollution 
Annual average PM2.5 concentrations (µg/m3) were estimated for 

each buffer using maps derived from land use regression models (Eeftens 
et al., 2012; Schmitz et al., 2019). Annual average PM2.5 concentrations 
were predicted by traffic intensity, traffic infrastructure, land use, and 
population density. PM2.5 concentrations were resampled from a 5 m ×
5 m to a 25 m × 25 m grid employing bilinear interpolation in order to 
reduce computational demand. The data refers to 2009, however, can be 
applicable to +/− 10 years as annual mean values are stable for multiple 
years (de Hoogh et al., 2018). 

2.4.7. Noise pollution 
Estimated average noise exposure from road, rail, air traffic, industry 

and wind turbines over a 24-hour period was obtained for 2016 from the 
Dutch National Institute for Public Health and Environment (RIVM) 
(Rijksinstituut voor Volksgezondheid en Milieu, 2019). Estimates were 
determined by the Standard Model Instrumentation for Noise Assess
ments (STAMINA), which was developed by the RIVM to map envi
ronmental noise in the Netherlands (Schreurs et al., 2010). The level of 
detail of the maps depend on the distance between the source and the 
observation point; the lowest resolution is 80 m × 80 m, and close to the 
source the resolution is 10 m × 10 m (Schreurs et al., 2010). The model 
has been applied in previous Dutch studies examining, among other 
exposures, the association between noise and health (Klompmaker, 
Janssen, et al., 2019). Estimates (in Lden (dB)) were grouped into nine 
day-evening-night noise classes, ranging from < 45 dB to > 80 dB. Es
timates for each buffer were calculated by assigning a value of 1–9 to 
each class, weighting each value according to the proportion of the class 
found in the buffer, and summing. 

2.4.8. Covariates 
Control variables were available from the survey. We included age, 

sex, origin (Dutch, Western migration background, non-Western 
migration background), education (low, medium, high), employment 
status (employed, unemployed, non-working (i.e., incapacitated, stu
dent, homemaker, retired), other), marital status (married, separated/ 
divorced, widow, never married), household type (couple with child, 
couple without child, single parent, other household type) and income 
quintile (1 = lowest, 5 = highest). 

Population density, deprivation and social fragmentation were 
derived from Dutch population register data (Bakker et al., 2014), 
centred on the participants’ home address at buffer sizes of 50 m and 
100 m. Population density was operationalised by the number of in
habitants within the buffer on 1st January 2016. Deprivation was based 
on the unemployment rate, the standardised median household income 
(reverse coded), and the share of households with a standardised income 
below the poverty line. Social fragmentation was based on the per
centage of adult residents (>18 years) who are unmarried, live in a 
single-person household, and who moved to their residential address in 
the last year. Input variables were z-scored and summed, with higher 
scores indicating greater social fragmentation or deprivation. Input data 
for the indices were from 1st January 2016. More recent years were 
unavailable. 

2.5. Statistical analysis 

Descriptive statistics were examined to explore the range and dis
tribution of depressive symptoms and the environmental exposures. 
Wilcoxon tests were used to test for a statistical difference in PHQ-9 
scores between the survey respondents and the final sample, and to 
assess the statistical significance of differences between the residential- 
and mobility-based exposures. Spearman correlations were produced to 
examine bivariate associations between the main variables. Generalized 
variance inflation factors (GVIF) were used to identify multicollinearity 
between exposures (Fox & Monette, 1992). 

The structure of the data is such that the GPS points are nested within 
individuals, who each have a single outcome score. The environmental 
exposure data therefore must be aggregated to align the data to the same 
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level. It has been suggested that the reduction in variability in the data 
when calculating the group mean can lead to biased parameter estimates 
and inaccurate estimates of standard errors (Croon & van Veldhoven, 
2007). An alternative method has been proposed whereby a latent 
variable is produced from the explanatory variables at the lower level; in 
other words, the exposures associated with each GPS point are treated as 
indicators of the overall exposure variable for each individual (Croon & 
van Veldhoven, 2007). The unbiased group mean can then be used in an 
ordinary least squares regression with all variables aligned at the same 
level. Because the group sizes are different (i.e., varying number of GPS 
points per individual), this is implemented in conjunction with White’s 
correction for heteroscedasticity. 

We conducted separate multiple regression analyses using (1) the 
residential-based environmental exposures and (2) the mobility-based 
environmental exposures, at the 50 m and 100 m buffer level. Models 
were run with increasing levels of adjustment. In Model 1 a multi- 
exposure model was specified; green space, blue space, noise, and air 
pollution were entered only. In Model 2, we adjusted for the individual- 
based variables, namely: age, sex, education, employment, marital sta
tus, household type, origin, and income quintile. Finally, we added the 
social environment variables: population density, deprivation and social 
fragmentation. We considered these variables at two buffer sizes around 
the residential address: 50 m (Model 3a) and 100 m (Model 3b). 

To explore the moderating role of sex, we compared fully adjusted 
models (using residential- and mobility-based exposures, at both buffer 
sizes) with and without an interaction term between PHQ-9 and sex, and 
statistically tested this using likelihood ratio tests. Where the likelihood 
ratio test was significant, results were stratified to examine differences 
between sex. 

Unstandardised (B) and standardised (β) beta coefficients with 
(corrected) standard errors are reported. Following the recommenda
tions of Gelman (2008), the regression coefficients were standardised by 
subtracting the mean of each input variable and dividing by twice the 
variable’s standard deviation. This allows for regression coefficients to 
be comparable where there are also binary inputs (Gelman, 2008). Wald 
tests were conducted to test whether comparable coefficients for the 
environmental exposures were significantly statistically different be
tween the fully adjusted residential- and mobility-based models. 
Reduction in Akaike’s information criterion (AIC) of > 2 indicated 
substantial model improvement (Burnham & Anderson, 2004). For 
comparison, and following the conclusions of Foster-Johnson & Krom
rey (2018), analysis was repeated using the observed means of the 
mobility-based exposures for each individual with White’s correction for 
heteroscedasticity. Results were similar and model fit was not mean
ingfully improved (Table S2; Table S3). All analysis was conducted in R 
version 3.6.2 (R Core Team, 2019). 

3. Results 

3.1. Descriptive statistics 

Table 1 summarises the characteristics of the final sample. The 
sample comprised participants who provided both residential and 
mobility-based environmental exposure data, no missing survey or 
register data, and met the GPS cleaning criteria. This led to a sample of 
393 persons (3.4% of survey respondents). On average, each participant 
contributed 6.79 days of GPS data. Full details of participant selection 
can be seen in Fig. S1 in Supplementary Materials. 

Mean PHQ-9 score was 5.08 (SD: 5.17). Wilcoxon tests showed there 
were no significant differences (p = 0.508) in PHQ-9 scores between the 
survey respondents and the final sample. The mean age of the sample 
was 44.56 (SD: 14.22), and the split between men and women was 
roughly equal (53.7% male). The majority of participants were 
employed (71.0%), highly educated (48.6%), of Dutch origin (89.8%) 
and in the second-highest or highest income quintile (60.8%). Mean 
population density was high (69.17 persons living within a 50 m radius 

of participant addresses), however, a large standard deviation (SD: 
49.34) indicates a large variation in this. 

Table 2 summarises the distribution of the residential-based and 
mobility-based exposures at the 50 m and 100 m buffer sizes. Exposure 
to green space was not significantly different between measurement 
types. Mean blue space, noise and PM2.5 was greater for mobility-based 
exposures than for residential-based exposures, and these were 
confirmed to be significantly different (p < 0.001). 

3.2. Bivariate analysis 

Fig. S2 shows Spearman correlations between PHQ-9 and the envi
ronmental exposures. PHQ-9 was negatively, but weakly, significantly 
correlated with green space (all p < 0.01); correlations with each of the 
blue space measurements were non-significant. PHQ-9 was also signif
icantly, yet weakly, positively correlated with both noise and PM2.5 
using the residential-based measurements only (p < 0.05). 

Green space was consistently significantly negatively correlated with 
noise and PM2.5 (p = 0.001). Noise and PM2.5 were weakly to moderately 
correlated; correlations between blue space and the other exposures 
were largely non-significant. 

For each environmental exposure, residential and mobility-based 
measurements were significantly correlated. Green space, blue space 
and noise were all somewhat moderately correlated (rs = 0.39 to 0.66), 
whereas air pollution measurements were highly correlated, ranging 
from 0.80 to 0.84. 

3.3. Regression analysis 

The largest GVIF across all models was 1.82, indicating that multi
collinearity between exposures was not an issue in analysis. A compar
ison of AIC values showed Model 2 consistently performed best (Table 
S3); adjusted R2 values for Model 2 were moderate, ranging from 0.186 

Table 1 
Characteristics of study population (n = 393).   

Category n (%) 

PHQ9 score (M (SD))  5.081 (5.17) 
Age (M (SD))  44.56 (14.22) 
Sex Male 211 (53.7%)  

Female 182 (46.3%) 
Employment status Employed 279 (71.0%)  

Non-working 83 (21.1%)  
Other 11 (2.8%)  
Unemployed 20 (5.1%) 

Education Low 52 (13.2%)  
Medium 150 (38.2%)  
High 191 (48.6%) 

Marital Status Married 208 (52.9%)  
Separated 40 (10.2%)  
Unmarried 141 (35.9%)  
Widowed 4 (1.0%) 

Household type Couple with child 181 (46.1%)  
Couple without child 128 (32.6%)  
Single parent 18 (4.6%)  
Other household type 66 (16.8%) 

Origin Dutch 353 (89.8%)  
Western 29 (7.4%)  
Non-Western 11 (2.8%) 

Income quintile Very low 36 (9.2%)  
Low 39 (9.9%)  
Middle 79 (20.1%)  
High 120 (30.5%)  
Very high 119 (30.3%) 

Population density (M (SD)) (50 m)  69.17 (49.34) 
Population density (M (SD)) (100 m)  234.71 (144.23) 
Social fragmentation (M (SD)) (50 m)  − 0.06 (2.53) 
Social fragmentation (M (SD)) (100 m)  − 0.06 (2.42) 
Deprivation (M (SD)) (50 m)  − 0.05 (1.79) 
Deprivation (M (SD)) (100 m)  0.06 (1.91)  
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to 0.189. 
Table 3 reports the models of associations between the environ

mental exposures and depressive symptoms according to the residential- 
and mobility-based exposure measures across 50 m and 100 m buffers, 
with increasing levels of adjustment. In our minimally adjusted models 
(Model 1), green space was significant for both residential- and mobility- 
based exposures and at both buffer sizes. Following adjustment for in
dividual characteristics, the effect of green space was rendered non- 
significant. In the fully adjusted model (Model 3b), green space was 
significant in the residential- and mobility-based exposure models for 
the 50 m buffer only. Blue space, noise and PM2.5 were not significantly 
associated with depressive symptoms in any of the models. Wald tests 
did not indicate any significant differences between comparable co
efficients of the residential- and mobility-based environmental expo
sures across the fully adjusted models (Table S4). 

3.4. Moderation analysis 

We added interaction terms between the environmental exposures 
and sex separately, one at a time to fully adjusted models. No statisti
cally significant interactions were observed; therefore, the models were 
not stratified further. 

4. Discussion 

4.1. Main findings 

The purpose of this study was to examine associations between 

multiple environmental exposures, specifically green space, blue space, 
noise and air pollution, both at home and along the daily mobility path, 
and depressive symptoms. We also aimed to explore differences between 
the residential-based and mobility-based environmental exposures, and 
to investigate whether these associations varied by sex. 

In our regression analyses, we observed a statistically significant 
negative relationship between greater exposure to green space and 
depressive symptoms in the minimally adjusted residential-based and 
mobility-based models, using both 50 m and 100 m buffers. This asso
ciation was rendered non-significant following adjustment for individ
ual characteristics. In our final fully adjusted model, the significant 
association between green space and depressive symptoms returned in 
both models for the 50 m buffer size only. No significant associations 
were observed between blue space, noise, and air pollution and 
depressive symptoms across all models. 

We found that, on average, exposure to blue space, noise and air 
pollution was higher when using the mobility-based measure than the 
residential based measure. However, Wald tests demonstrated that the 
coefficients observed in the fully adjusted models did not differ signifi
cantly between the measurement types. Finally, we did not observe any 
statistically significant interactions between the environmental expo
sures and sex. 

4.2. Available evidence 

Principally, our findings underscore prior research that has consis
tently demonstrated an association between exposure to green space in 
the residential environment and depression (Klompmaker, Hoek, et al., 

Table 2 
Environmental exposure among study population.   

Residential-based (50 m) 
M (SD) 

Mobility-based (50 m) 
M (SD) 

p value Residential-based (100 m) 
M (SD) 

Mobility-based (100 m) 
M (SD) 

p value 

NDVI 0.360 (0.092) 0.362 (0.131) 0.821 0.370 (0.089) 0.374 (0.124) 0.473 
Blue space 1.696 (4.817) 2.655 (7.468) <0.001 2.434 (5.282) 3.218 (6.830) <0.001 
Noise (Lden (dB)) 55.878 (5.529) 61.009 (8.704) <0.001 56.061 (5.225) 60.294 (7.777) <0.001 
PM2.5 (µg/m3) 16.564 (0.721) 17.038 (1.168) <0.001 16.582 (0.703) 16.933 (0.966) <0.001  

Table 3 
Multiple regressions for environmental exposures on depressive symptoms (n = 393).   

Residential-based Mobility-baseda  

50 m 100 m 50 m 100 m  

B SE β B SE β B SE β B SE β 

NDVI             
Model 1 − 7.666** 2.922 − 1.409** − 7.516* 3.102 − 1.342* − 14.623** 4.482 − 1.870** − 12.801** 4.582 1.651** 
Model 2 − 4.160 2.763 − 0.765 − 3.524 2.936 − 0.629 − 7.119 4.385 − 0.911 − 5.176 4.294 − 0.668 
Model 3a − 5.287 3.193 − 0.971 − 4.270 3.296 − 0.763 − 8.252 4.844 − 1.055 − 5.774 4.658 − 0.745 
Model 3b − 6.620* 3.304 − 1.217* − 6.190 3.559 − 1.106 − 10.050* 5.355 − 1.285 − 7.621 5.247 − 0.983 
Blue space             
Model 1 − 0.066 0.054 − 0.633 0.005 0.049 0.056 − 0.023 0.110 − 0.122 − 0.010 0.097 − 0.057 
Model 2 − 0.046 0.051 − 0.439 0.025 0.046 0.271 − 0.008 0.085 − 0.043 0.026 0.076 0.155 
Model 3a − 0.043 0.051 − 0.412 0.029 0.046 0.314 − 0.006 0.086 − 0.030 0.029 0.077 0.170 
Model 3b − 0.045 0.049 − 0.431 0.021 0.047 0.219 0.006 0.087 0.033 0.034 0.076 0.200 
Noise             
Model 1 0.033 0.051 0.365 0.035 0.056 0.370 − 0.033 0.080 − 0.274 − 0.022 0.083 − 0.174 
Model 2 − 0.0009 0.049 − 0.010 0.008 0.053 0.081 − 0.048 0.082 − 0.406 − 0.032 0.085 − 0.253 
Model 3a 0.005 0.049 0.057 0.023 0.384 0.161 − 0.044 0.083 − 0.366 − 0.026 0.087 − 0.210 
Model 3b − 0.005 0.049 − 0.062 0.008 0.054 0.091 − 0.051 0.082 − 0.426 − 0.030 0.086 − 0.237 
PM2.5             

Model 1 0.345 0.393 0.498 0.491 0.407 0.690 0.099 0.488 0.143 0.173 0.519 0.233 
Model 2 0.050 0.369 0.072 0.211 0.381 0.297 0.116 0.454 0.167 0.164 0.481 0.221 
Model 3a 0.053 0.372 0.076 0.225 0.384 0.317 0.128 0.447 0.185 0.183 0.472 0.246 
Model 3b 0.036 0.371 0.053 0.195 0.382 0.275 0.132 0.448 0.190 0.170 0.476 0.229 

Note. Model 1: environmental exposures only; Model 2: Model 1 + age, sex, employment, education, marital status, household type, origin, income quintile; Model 3a: 
Model 2 + population density, social fragmentation and deprivation using 50 m buffer; Model 3b: Model 2 + population density, social fragmentation and deprivation 
using 100 m buffer. * = p < 0.05; ** = p < 0.01. 

a Using adjusted means with White’s correction for standard errors. 
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2019; McEachan et al., 2015; Triguero-Mas et al., 2015). Moreover, we 
went beyond previous research that was typically centred on the home 
to also take a mobility-based approach to exposure assessment. In this 
way we were able to confirm the currently limited research that has 
found a relationship between exposure to green space along the daily 
mobility path and mental health (Kondo et al., 2020; Li et al., 2018). 

In our fully adjusted residential- and mobility-based models, the 
association between green space and depressive symptoms only held 
when applying the 50 m buffer size. No association was seen when using 
the 100 m buffer. This may be because a smaller buffer size is more 
closely aligned with what is visible and how the participant directly 
experiences the environment. This is supported by studies of street 
greenery and mental health (de Vries et al., 2013; Helbich et al., 2019; 
Wang et al., 2019). On the other hand, this contrasts with previous 
research that found improvements in mental health outcomes in relation 
to exposure to green space in the residential environment when using 
larger buffer sizes (Bos et al., 2016; Su et al., 2019). 

In addition to green space, we also examined associations with blue 
space, noise, and air pollution. Such environmental exposures (including 
green space) are usually spatially correlated and few studies have 
considered their combined effects, therefore ignoring the potential for 
confounding (Gascon et al., 2017; Tzivian et al., 2015). We did not 
observe any significant associations with regards the other exposures. 
Our results are comparable to a previous study that examined the effect 
of multiple environmental exposures on depression, albeit the exposures 
were based on residential location: Klompmaker et al. (2019) report that 
in a multi-exposure model of antidepressant prescriptions, only green 
space within 300 m of the home was significant, with PM2.5 and road 
traffic noise not reaching significance. Our findings highlight the need 
for future studies to control for multiple exposures where possible to 
avoid incorrectly estimating the effect of a single exposure. 

We found no evidence that the strength of associations between the 
environmental exposures and depressive symptoms differed between 
residential- and mobility-based exposures. Our inconclusive results may 
be attributed to the way in which exposure along the daily mobility path 
was measured. For example, the choices made in terms of GPS data 
cleaning or aggregation may have affected our findings. Nevertheless, 
we did observe significant differences in means for blue space, noise and 
PM2.5 between measurement types. Our findings supplement previous 
research that has observed significant differences in exposure to air 
pollution between residential location and mobility-based exposure 
(Dewulf et al., 2016; Nyhan et al., 2016; Setton et al., 2011), and further 
underscore the issue of exposure misclassification when only taking into 
account the residential environment (Culyba et al., 2018; Kwan, 2018). 

We did not find any evidence that the associations between the 
environmental exposures and depressive symptoms varied by sex. The 
evidence for sex differences in the relationship between green space and 
mental health is inconsistent (Bolte et al., 2019; Van Den Berg et al., 
2015). For example, a previous study on depression and anxiety in the 
Netherlands reported that a higher proportion of green space within 3 
km of the home was associated with improved outcomes for women in 
the lowest (18–24) and highest age groups (≥65) only (Bos et al., 2016). 
In contrast, a study of four European studies found no evidence of 
moderation by sex between neighbourhood green space and mental 
health (Ruijsbroek et al., 2017). Our findings are therefore in agreement 
with (Ruijsbroek et al., 2017). We make a novel contribution to this 
discussion as the first to consider exposure to green space along the daily 
mobility path. 

4.3. Strengths and limitations 

This study advances current research as one of the first to go beyond 
residential-based exposures in the context of mental health. The use of 
GPS allowed for objective location data to be collected that was not 
affected by recall bias, and further demonstrates the feasibility of using 
GPS-enabled smartphones to capture dynamic environmental exposures. 

In this way, we have answered calls to expand the focus on residential 
neighbourhoods to a more person-centred approach (Chaix, 2018; Hel
bich, 2018). We were able to consider multiple environmental exposures 
along the daily mobility path, and we adjusted for a large number of 
control variables. Future research would do well to continue to push the 
capabilities of understanding dynamic environmental exposures using 
mobile sensor data, particularly with regard to integration of indicators 
of the social environment (Alexandre et al., 2020). 

The study also has a number of limitations. Due to the cross-sectional 
nature of the data, we cannot rule out a reverse relationship whereby 
people with better mental health visit green space more. Experimental 
manipulation would be required to establish causality. Our outcome was 
based on self-reported data rather than objective diagnosis or prescrip
tion data, and this may have introduced bias. The survey data may be 
subject to selection bias, and highly educated and high-income persons 
were over-represented in our final sample. Therefore, our findings may 
not be generalisable to the general Dutch population. 

The GPS data may have reduced accuracy in places where there are 
many tall buildings or dense canopy. However, we believe that these 
effects are negligible due to the flat terrain of the Netherlands and an 
absence of ‘urban canyons’. In addition, we did not distinguish the GPS 
data by travel mode or whether the participant was indoors or outdoors. 
The effects of the environmental exposures may differ according to these 
different contexts. Moreover, we did not weight the mobility-based ex
posures by time spent in each location during aggregation. Spending 
more time in a location may be related to a stronger association between 
the environmental exposure and depressive symptoms. We also did not 
collect data on the environment as perceived by the participant. Par
ticipants may engage with or relate to certain environments in different 
ways, and this may affect the influence of the environment on their 
mental health (Kestens et al., 2017). This may be collected using 
ecological momentary assessment, however, it is not clear if this would 
alter participant responses or mobility patterns (Birenboim & Shoval, 
2016). We aimed to minimise this issue by having almost no user 
interaction, but we cannot exclude the possibility that mobility patterns 
were altered without having comparable data prior to study inclusion. 

Finally, as we could not meet the requirements of the App Store, we 
were unable to collect exposure data on iOS devices. At the time of data 
collection, Android represented on average 76.3% of the market share 
across the five main European markets (Kantar Worldpanel Comtech, 
2019); we assume this is reflected within the Netherlands. 

5. Conclusion 

Our study finds that exposure to green space in the immediate 
environment is associated with a reduction in depressive symptoms. No 
associations were seen for blue space, noise, and air pollution. Resi
dential- and mobility-based exposures were evaluated to be significantly 
different, however, this did not translate to a significant difference in the 
strength of associations with depressive symptoms. There was no evi
dence for sex as a moderator. Further research is required to determine 
the differences between residential- and mobility-based approaches to 
environmental exposure assessment and the implications for mental 
health. 
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