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Communication constitutes the core of human life. A large portion of our everyday
social interactions is non-verbal. Of the sensory modalities we use for non-verbal
communication, olfaction (i.e., the sense of smell) is often considered the most enigmatic
medium. Outside of our awareness, smells provide information about our identity,
emotions, gender, mate compatibility, illness, and potentially more. Yet, body odors are
astonishingly complex, with their composition being influenced by various factors. Is
there a chemical basis of olfactory communication? Can we identify molecules predictive
of psychological states and traits? We propose that answering these questions
requires integrating two disciplines: psychology and chemistry. This new field, coined
sociochemistry, faces new challenges emerging from the sheer amount of factors
causing variability in chemical composition of body odorants on the one hand (e.g.,
diet, hygiene, skin bacteria, hormones, genes), and variability in psychological states
and traits on the other (e.g., genes, culture, hormones, internal state, context). In past
research, the reality of these high-dimensional data has been reduced in an attempt to
isolate unidimensional factors in small, homogenous samples under tightly controlled
settings. Here, we propose big data approaches to establish novel links between
chemical and psychological data on a large scale from heterogeneous samples in
ecologically valid settings. This approach would increase our grip on the way chemical
signals non-verbally and subconsciously affect our social lives across contexts.

Keywords: sense of smell, machine learning, chemosignals, non-verbal communication, social and personality
psychology

INTRODUCTION

Humans are surprisingly good smellers. The pervasive myth that humans are only “tiny smellers”
has been debunked by 21st century research showing a wide array of smell skills (Stevenson,
2010; de Groot et al., 2017; McGann, 2017). To name a few: humans can follow a scent-trail (like
sniffer dogs; Porter et al., 2007), detect certain odorants at extremely low levels (few droplets in
an Olympic size swimming pool; Yeshurun and Sobel, 2010), and identify diseases like Parkinson’s
before actual diagnosis (Trivedi et al., 2019). In our everyday lives, smells have a “communicative”
function, informing us about the quality of food and warning us for environmental
hazards (e.g., gas leaks) (Stevenson, 2010). An even less well-known function of smell is
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social communication (de Groot et al., 2017; Parma et al., 2017;
Pause, 2017; Roberts et al., 2020); the topic of this article. Studies
have shown that our smells provide others with cues about
our identity and gender (Penn et al., 2007), age (Mitro et al.,
2012), health (Olsson et al., 2014), and emotions (de Groot
et al., 2015; Pause et al., 2020). This form of communication
occurs without our voluntary control and generally outside of our
awareness, which imbues chemical communication with mystery.
Demystifying the spreading of social information through smell
was listed in Science as one of the 125 most compelling
multidisciplinary puzzles facing scientists this century (Kennedy
and Norman, 2005). Our goal here is to outline how researchers
could go about answering this query, whether there is a universal
“language” of social smells. Society at large will be helped by
optimally leveraging fundamental insights emerging from this
view to worldwide industrial and clinical applications that could
improve a person’s quality of life.

Social smells are markedly complex: body odor contains
thousands of molecules (de Lacy Costello et al., 2014), and
massive variability is caused by factors including genotype,
hormonal status, mood, skin bacteria, diet, smoking, hygiene
habits, clothing, and use of fragranced products (e.g., Natsch
and Emter, 2020; Roberts et al., 2020). Past studies have
generally sidestepped this challenge by performing small-scale
psychological experiments under carefully controlled, sterile
conditions (for a meta-analysis: de Groot and Smeets, 2017; for a
critical view: Wyatt, 2020). These studies formed the first stepping
stones by strongly suggesting that social information can be
communicated via smell under tightly controlled settings; yet, (i)
the molecules transmitting the message have generally remained
elusive, as well as (ii) the ecological settings in which chemical
communication occurs. Not dealing with these obstacles could
deadlock future research efforts to “anchor” molecules to their
social source. To accelerate future research, we propose (i)
multidisciplinary ways of working by integrating psychology and
chemistry toward a science of human sociochemistry (Box 1),
and (ii) moving outside of the sterile lab to test subjects with
diverse backgrounds.

The sociochemistry we advance is a multidisciplinary,
ecological approach that in view of its inherent complexity
requires an ecosystem of academic institutions around the
world to flourish, by working together to create speed and
scale (cf. Forscher et al., 2020). We propose the building
of open access databases holding information that spans
across chemistry (e.g., chemical composition of sweat odor)
and psychology (e.g., capturing the states and traits of
those participating in the chemosignaling as well as their
unique contextual information. Machine learning techniques
can be applied to generate models that may accurately
predict molecules’ sway on our social lives across diverse
contexts and samples, with technological, societal, and clinical
applications following suit.

BOX 1 | Definition of sociochemistry. With sociochemistry we refer to the
multidisciplinary science examining non-verbal social communication via
human body odor, particularly focusing on the chemistry between people.

In what follows, we will first outline the initial research
questions, methods, and advances of past research, before we will
identify current obstacles to a broader and deeper understanding
of human chemical communication, and we will end with a
perspective on how to overcome these hurdles in future research.

PAST RESEARCH: SIMPLIFYING A
COMPLEX PROBLEM

Communication is crucial to humans. Most of our
communication is non-verbal. Of all the sensory channels
engaged in non-verbal communication, smells arguably pose the
biggest deciphering challenge.

The past research in this field initially focused on determining
what social information can be communicated via smell. To
test this, researchers have systematically attempted to eradicate
“noise” on the chemical communication channel by controlling
extraneous factors (e.g., diet, hygiene, fragranced product use)
and testing homogeneous samples in carefully controlled lab
experiments. In these studies, sweat was collected from senders
(who had kept to a scent-free regimen for multiple days to isolate
the experimentally-induced chemical “message”) and presented
to receivers in a separate experiment. Chemical communication
was inferred from recipients’ behavioral, affective, physiological,
neuroendocrine and/or neural responses matching the sender’s
state. This way, numerous double-blind experiments showed that
human smells can convey information from fleeting emotions
and sickness, to more enduring traits like identity, gender,
reproductive status, and age (for reviews, see de Groot et al., 2017;
Parma et al., 2017; Pause, 2017).

Although past research on human chemical communication
has provided initial insights into the type of information human
odors can bring across, we identify a number of obstacles for
a better (quicker, broader, and deeper) understanding of non-
verbal communication via smell.

Problem I: Small Scale, Slow Speed
The current science of non-verbal communication via smell
is rooted in a longstanding tradition of strictly controlled
laboratory experiments focusing on the empirical testing of
hypotheses addressing cause-effect relations, using reliable and
validated methods and carefully calibrated instruments (for
empirical demonstrations, see e.g., Chen and Haviland-Jones,
2000; Regenbogen et al., 2017; Endevelt-Shapira et al., 2018;
Quintana et al., 2019; de Groot et al., 2020b; Gomes et al.,
2020; Pause et al., 2020 (for recent narrative overviews, see e.g.,
Loos et al., 2019; Ferdenzi et al., 2020; Havlíček et al., 2020 (for
meta-analyses, see e.g., Gildersleeve et al., 2014; de Groot and
Smeets, 2017). This approach, with a preference for intrinsic
over extrinsic validity, has been the method of choice to build
our (psychological) science for decades. Despite advantages of
scientific rigor and quality, there are problems in speed and scale.
With little coordination across labs around the world, different
researchers may be working on similar research questions (e.g.,
“can humans smell fear?”; Mujica-Parodi et al., 2009; Pause et al.,
2009; Prehn-Kristensen et al., 2009; Zhou and Chen, 2009), each
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moving through the laborious cycle of recruiting, screening,
and testing senders and receivers with barely sufficient statistical
power (as outlined by Wyatt, 2020). The essence to our argument
is that there is a stark contrast between the complexity of the
problem at the root of sociochemistry, which is the mystery of the
correspondence between the chemical “code” and the message it
carries on the one hand, and the relatively slow tactic of churning
experiments one at a time.

Problem II: Generality of Findings
Second, we need to characterize the generality of findings
or extrinsic validity of the traditional experiments (Simons
et al., 2017). Both uniformity in subject characteristics and
test settings form obstacles to a broader understanding of the
potentially species-wide and real-world impact of non-verbal
communication via smell. Open queries include: Is the language
of smell universal? How much of this communication is modified
by context, a powerful moderating factor in olfactory science
(e.g., Dalton, 1999; De Araujo et al., 2005; de Groot et al., 2020a)?
Can this language be “heard” beyond the thick walls of labs, in
noisy field settings? Answering these questions will help chart the
impact of social smells on the daily lives of many.

Because past research has been typified by (i) context-deprived
lab experiments, presenting (ii) uncontaminated sweat samples,
using (iii) a relatively small number of subjects with (iv) relatively
uniform characteristics, we currently have no knowledge of
how broadly shared human olfactory communication is. To
illustrate, the male-to-female chemical communication dyad
initially served to increase experimental sensitivity, with males
generally having the larger and more active sweat glands, and
females being the slightly better smellers (but see this meta-
analysis: Sorokowski et al., 2019; and this review: Majid et al.,
2017, for gender differences that are at most small and affecting
only higher order smell processing). Although initially useful, this
gender uniformity adds a constraint on generality, and the same
goes for the almost exclusive reliance on participants that are
Western, Educated, Industrialized, Rich, Democratic (WEIRD;
Henrich et al., 2010) (cf. de Groot et al., 2018; Roberts et al.,
2020). Generalizing research findings from WEIRD samples to
other populations is a major problem in science in general, and
a particularly pressing issue when one examines the breadth and
scale of the non-verbal language of smells (Box 2).

Problem III: Unidisciplinary Research
Third, to be able to forge a link between smell molecules and
behavior we need to move beyond a single-discipline research

BOX 2 | Sociochemical language. A sociochemical language would imply
configurations of chemical symbols that convey meaning, which meaning is
acquired via learning. This notion of language would acknowledge the
possibility that (i) identical chemical configurations do not mean the same to
everyone, (ii) the meaning of an identical chemical configuration may vary even
to a single individual depending on context, (iii) that there is (substantial)
variation or “noise” around one chemical configuration, from which one single
uniform meaning can still be distilled. Therefore, the language would not have
to be universal.

tradition. Although several psychological studies have revealed
systematic patterns in the behaviors of senders and recipients
(in relatively sterile, uniform settings), the chemical message
driving this coupling has generally remained enciphered (but
see Penn et al., 2007; Smeets et al., 2020). Lessons can be
learned from the animal literature, where the combination of
rigorous behavioral experiments (bioassay) and chemical analysis
(isolating, identifying, and synthesizing the bioactive substance
to recreate the bioassay-behavior) forms the golden standard to
detect a common chemical “language” for a species: pheromones
(Wyatt, 2015, 2020). But the definition of pheromones, rooted
in entomological research as single molecules eliciting innate
responses in a conspecific (Karlson and Lüscher, 1959), appears
outdated and unsuitable for mammals like humans, as our smell
perception strongly depends on learning and context, and our
body emits a multitude of molecules (de Groot et al., 2017). The
minimum pragmatic evidence, however, is to determine (in a
collaborative, multi-lab effort) whether human chemical language
is consistent in form (requiring a multidisciplinary approach)
and broadly shared across the human species (requiring diverse
samples and settings).

PROSPECTIVE ADVANCES

In the wake of recent developments in psychological research
and theory, chemical analytical technology, and data science
(discussed below), substantial progress can be made now to
unravel the symbol system of social smell. Specifically, we
outline an integration of traditional psychology methods and
chemistry toward a new science of human sociochemistry,
studying human chemosignaling across various ecologically
valid settings and samples, across all human diversity. To
deal with the complexity and large, multidimensional databases
that emerge from this interdisciplinary, ecologically valid
endeavor, we propose applying data science approaches like
machine learning. We anticipate that large scale multidisciplinary
collaborations are required to get us closer to identifying the
alphabet of the language of social smells and assess its real-
world impact.

Multidisciplinary Approach: Deciphering
the Alphabet of Social Smells
Any attempt to get closer to the answer of whether social
smells convey a common language requires a multidisciplinary
combination of psychological experiments and chemical analysis.

Most research on human chemical communication focused
on psychological effects. The few studies that did apply chemical
analysis have shown that certain characteristics and transient
emotions could be identified in a sender’s body odor. One
pioneering study by Penn et al. (2007) showed that a person’s
identity and gender could be expressed in a person’s body odor,
with 14 molecules predicting gender with 75% accuracy. Based
on remarkable anecdotal evidence that a human “super smeller”
could detect Parkinson’s Disease (PD) by smell, Trivedi et al.
(2019) found that four compounds (eicosane, hippuric acid,
octadecanal, and perillic aldehyde) were characteristic markers
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of PD; when smelling these compounds, the super smeller
subjectively reported a strong PD smell. Other studies found
chemical markers suggestive of fear (and happiness). Potential
chemical markers for fear were identified by in armpit odor
(Smeets et al., 2020), stress levels were also expressed in a
person’s breath (Preti et al., 2019; acetone, isoprene, dimethyl
sulfide), and in a creative field study, (Williams et al., 2016)
showed that scary and funny film events reliably changed the
emission of molecules from cinema audiences. Taken together,
these multidisciplinary studies show the potential for social
information to be encoded in a person’s smell in predictable
ways, thus jumpstarting a sociochemistry approach to identify a
common smell language.

Whereas on the one end of the scientific spectrum,
we have this classic tradition of sequentially conducting
laboratory experiments designed to address a specific causal
hypothesis derived from theory, carefully controlling for
measurement error and extraneous influence. On the other end
there is the big data approach relying on machine learning
analytical techniques performed on big databases holding what
seems to be unrelated information from large populations
to magically reveal unexpected correlations unencumbered
by theory (Mayer-Schönberger and Cukier, 2013). Neither, on
its own, will be an optimal path for unraveling human
sociochemistry and the underlying language on which it is built.
What we propose, instead, is a hybrid approach, a combination
in which machine learning techniques are used to help us find
handles on and insights into the composition of the chemical
signal combinations that are the building blocks of the signal,
and the related individual and external variables to further sculp
this unique form of social communication. These insights will
contribute to the formulation of hypotheses about cause and
effect that can then be isolated and tested in controlled lab
environments (cf. Wyatt, 2015, 2020).

Ecological Validity: A Broadly Shared,
Widely Used Social Smell Language?
In the quest for discovering a potential universal language of
smell that is also societally relevant, we argue that the highest
success rate can be achieved by first examining smells whose
detection generally aids survival (Schaal and Porter, 1991).

In the earliest stages of life, when vision and hearing are still
underdeveloped, the smell of mothers’ milk is a powerful cue
that attracts a newborn to the food source (Schaal et al., 2020).
Even formula-fed newborns oriented more toward the smell of
an unfamiliar lactating woman than to the familiar formula smell
(Porter et al., 1991); and this was not a novelty effect, as the
same smell was also preferred over the breast odor of nulliparous
women (Makin and Porter, 1989). There may well be universal
chemical cues in the breast odor of lactating women that attract
most if not all newborns under diverse ecologically valid settings,
but this still requires empirical investigation from non-WEIRD
samples (Schaal et al., 2020).

Humans would also benefit from picking up smells indicating
danger, like fear sweat threatening physical harm, and disease
sweat threatening contamination. The capacity to register

these invisible, far-reaching, and long-lasting chemical warning
cues would have increased our ancestors’ survival chances.
Indeed, the smell of fear has been shown to instigate
adaptive processes: a fearful facial expression (raised eyebrows,
opened nose) and increased sensory intake (eyes and nose)
to better detect threat (de Groot et al., 2012); yet, typically
this phenomenon has not been examined beyond WEIRD
samples, with one East Asian exception (de Groot et al.,
2018). Quintana and colleagues (2019) further assessed the
breadth of chemical communication in a controlled yet
ecologically valid Virtual Reality environment. They found that
smelling fear/stress sweat induced anxiety in recipients and
reduced their interpersonal trust toward a virtual character.
Even outside of the lab, the smell of fear (masked in
clove odor, making it undetectable) could negatively impact
dental student performance (Singh et al., 2018). Indeed, odor
masking (e.g., with perfume, deodorant) could not prevent
recipients from making consistent and reliable smell-based
social judgments at typical social distances (Gaby and Zayas,
2017). Taken together, these findings allude to fear/stress smell
affecting behavior across contexts in diverse samples, but
more data is needed.

The complex and resource-intensive methodology of sweat
sampling and exposure has arguably held back large (field)
experiments, but upscaling and including natural settings seems
inevitable in an attempt to discover the commonalities in
human smells and their practical application, with big data
approaches providing structure within the anticipated wealth of
transdisciplinary data.

Machine Learning: Solving the Big Data
Challenge Ahead of Us
In vision and hearing, the wavelength of light and frequency of
sound are highly predictive of color and tone; yet, predicting
the smell of a molecule from its chemical structure is much
harder. In the past decade, researchers have started using
machine learning techniques to demonstrate links between
molecular structure and odor perception (for an overview:
Lötsch et al., 2018). Machine learning, a popular application
of artificial intelligence, is a set of methods that can be
used to automatically detect patterns in data and use these
patterns to predict or classify future data (e.g., Murphy, 2012;
Dhar, 2013). Although machine learning models have shown
the feasibility of predicting odor perception from relatively
simple, non-social smells (Khan et al., 2007; Zarzo, 2011; Snitz
et al., 2013; Keller et al., 2017; Gutiérrez et al., 2018; Sanchez-
Lengeling et al., 2019) a number of extra challenges emerge
when machine learning is applied to uncover the language of
social smells. The difference between past “non-social” models
and what we propose here is that (i) past models predicted odor
perception from physico-chemical properties of single chemical
compounds, whereas body odors are mixtures of compounds,
and the communicative signal also likely having a multi-
component architecture (Loos et al., 2014), the composition
of which requires employing chemical analytical techniques
to elucidate; (ii) past model endpoints have traditionally been
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FIGURE 1 | Possible pathway to understanding sociochemistry using machine learning (ML). The different steps denote past/present (Step 1 and 2) and proposed
(Step 3) approaches to elucidate human social communication via smell. The steps are increasingly data-intense and complex and go from uni- to multidisciplinary
research. Although there is no strict order, Step 1 and 2 can form initial building blocks for sociochemistry (Step 3), by testing psychological correspondence
between senders and receivers in traditional ways (Step 1; chemical medium “remains” black box); and by decoding psychological/clinical information from the
sender’s smell (Step 2; the receiver’s response and therefore the social chemosignal remains “black box”). Controlling for various factors (e.g., genotype, culture,
gender, hygiene, diet) is recommended here to initially isolate the signal and/or its psychological effect. However, true chemical communication (e.g., of emotions like
fear) involves (i) studying behavioral/physiological/brain response patterns in senders and receivers, while (ii) identifying the molecules that link two humans (i.e., the
social (chemo)signal in human-human interaction), (iii) under ecologically valid conditions (i.e., including “noise” factors like dietary and hygiene habits) (Step 3), to
eventually develop artificial intelligence-based sensors that could be applied in the real world for senders (e.g., diagnosis) and receivers (e.g., facilitating well-being by
blocking the signals from entering the nose). This is an example of fear chemosignaling (vs. neutral), using faces obtained from the Radboud Faces Database
(Langner et al., 2010).

sensory endpoints (e.g., intensity, pleasantness, and qualitative
descriptors like garlicky or fruity) as opposed to social-behavioral
endpoints (e.g., perceivers’ affect, physiology, behavior); (iii),
past models have not considered various sample characteristics
(excepting gene variants coding for odorants receptors) or
ecologically relevant contexts that are expected to impact smell
perception as well.

To identify human chemosignals within the vast amount of
data that can encompass body odors (a big data challenge),
we recommend moving away from using a single, traditional
statistical model (e.g., logistic regression), and instead propose a
sequence of different analyses, including machine learning (ML).
It would seem premature to rigorously define each step in the

analysis sequence, but we will sketch a possible analysis “pipeline”
(Figure 1):

Step 1 would entail collecting sweat from senders induced to
be in a particular state (e.g., fear, happiness, disgust, sickness)
or having a characteristic of interest (e.g., gender, personality,
genotype). A subset of these sweat samples would then be used as
stimuli in another experiment involving human receivers, whose
behavioral responses will form a benchmark for verifying effective
chemical communication (requiring a sender and receiver).

In Step 2, the remaining sweat samples will be used
for chemical analysis. After extracting the molecules using
headspace, solvent, or direct extraction techniques, chemical
analysis could entail two-dimensional gas chromatography-mass
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spectrometry (GCxGC-ToF-MS) allowing for comprehensive
profiling of the volatile molecules in the sweat samples and
their discriminative power between two (or more) states/traits
of interest. Because there is little to no background knowledge
on chemical classes associated with presumed signals in sweat
odor, initial research by Smeets et al. (2020) used untargeted
screening approaches to distinguish between fear, happiness,
and a neutral state, and found a matrix of over a 1,000
chemical volatile peaks. This number could be reduced as
a next step to 94 by selecting only those peak intensities
that differed significantly with at least one other emotion
category. Preprocessing the GC × GC-ToF-MS profiles into
total-intensity-count values (TICs) is another way to yield
a smaller, more manageable subset of peaks of interest
(cf. Lebanov et al., 2020). What could further ease the
future identification of unique chemical profiles predicting
human states/traits are templates (reference peak profiles) that
follow from overlaying all chromatograms in a set (cf. Stilo
et al., 2019), or using previous datasets as templates (cf.
Reichenbach et al., 2019). This requires acquiring large chemical
datasets, which necessitates high-throughput approaches like
automated extraction and (ultra)fast GCxGC-ToF-MS, followed
by automated quantification of specific target compounds
belonging to specific states and traits.

In Step 3, ML techniques could help identify the core
chemical features of human states/traits in multiple ways.
Unsupervised learning (e.g., k-means clustering) could yield
potentially interesting clusters of chemicals that are involved
in chemical communication not considered before. Supervised
learning could be applied next by training an algorithm on
a large subset of samples, and testing the trained model on
the remaining set. While there are vast varieties in learning
algorithms, they can broadly be divided into linear or non-
linear based on the shape of the decision surface used to classify
data. Linear methods, like support vector machines (SVM)
with linear kernels, may be preferred because they perform
at least on par with non-linear methods (e.g., Misaki et al.,
2010, in the context of separating emotions with fMRI data)
while remaining straightforward to interpret. The interpretability
of the models from the pipeline we propose might be tested
by comparing the predictive power of those models with the
outcomes on receiver experiments. To illustrate, Reichenbach
et al. (2019) combined GC × GC chemical profiling with SVM
to predict different characteristics of wines (e.g., grape variety,
origin). Although the wines had considerable overlap in their
chemical composition (up to 25% overlap in grape variety),
the analysis yielded a number of highly distinctive molecules
that the models used to differentiate the wines with around
90% accuracy (Reichenbach et al., 2019). At the same time,
the resulting models were still relatively intuitively interpretable
(cf. Mori and Uchihira, 2019).

We believe that applying a chemosignal-identification pipeline
as described above would also yield relatively straightforward
models, with an interpretable set of chemical predictors that
are highly predictive of the emotions under investigation.
Feature selection in our machine learning pipeline could be
based on, depending on the ML technique used, mean absolute
error (MAE) of the predictor (in case of regression-based

techniques) or area under the curve (AUC) measures (in case
of classification-based techniques) (Molnar, 2018). Selection of
the best performing predictors could be tested by application
level evaluation (cf. Molnar, 2018), using follow-up lab or crowd-
sourced experiments where the most likely molecule candidates
are tested in appropriate molecular concentrations.

DATABASE-BUILDING: BACK TO THE
FUTURE

The proposed analysis pipeline requires rather large, well-
populated databases compared to current standards. At present,
there is a lack of such (publicly available) databases. Ideally,
data in these databases contain a vast amount of parameters
from hundreds of participants (senders and receivers). These
parameters include personal factors (e.g., gender, age, country
of residence, genotype), lifestyle factors (e.g., deodorant use,
hygiene habits), measures of context (e.g., sterile lab vs. field),
health, personality, and emotion (e.g., subjectively reported
emotions and psychophysiological measures), and thousands
of additional parameters per sample resulting from chemical
analysis. Hence, the complexity and vastness of the resulting
database underscores the need to step away from experimenter-
driven analyses techniques such as traditional regression models,
and turn to automatic feature selecting analyzation algorithms
instead. Using these ML techniques has another advantage –
the possibility to directly apply the best performing models in
artificial intelligence applications.

However, one big hurdle to take with this multivariate,
machine learning approach is the need for large, ecologically
valid datasets. Talking about big data, a now famous 1989
National Geographic Smell Survey managed to test and analyze
data from 1.42 million respondents to examine the relation
between olfaction and aging (Wysocki and Gilbert, 1989). In
a related effort to build socially relevant smell databases, Snitz
et al. (2019) cleverly combined online crowdsourcing with
the physical distribution of “scratch-and-sniff” odorants (via
regular mail), and collected data (now publicly available) from
about 1,000 individuals in 100 days. In these studies, chemical
communication had not been the focus. If body odors were
the topic, the database should hold matrices of (i) the chemical
constituents of body odors (alongside multivariate information
about, e.g., the emotional state during which the body odor was
produced), as well as (ii) relevant person- and situation-specific
variables of senders donating the samples (e.g., diet, hygiene
product use, culture, genetic variation), and (iii) person- and
situation-specific variables of recipients.

Acquiring such a complex and elaborate database can
impossibly be a single-lab endeavor, and in our view,
coordination within a larger ecosystem of labs will be crucial.
Fortunately, technical advances in communication allow large
consortia of researchers to globally collaborate from the comfort
of their homes, like the Global Consortium for Chemosensory
Research (GCCR), which focuses on the relation between
COVID-19 and chemosensory dysfunction. Within weeks,
hundreds of researchers around the globe collaborated to design
an online study resulting in a large (open access) database
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on COVID-19 and smell/taste dysfunction and a published
manuscript (Parma et al., 2020). Moreover, in work that focused
on smell communication (literally, being able to talk about
smells), Majid et al. (2018) have examined for 20 languages
whether there exists a universal hierarchy to vision being more
accessible to consciousness and linguistic description than
smell. These, and other examples (e.g., Iravani et al., 2020), have
illustrated that global consortia can be instrumental in acquiring
the necessary datasets to solve complex and urgent questions in
a timely manner.

TECHNOLOGY SUPPORTING SOCIETAL
AND CLINICAL IMPACT

We envision the application of machine learning to understand
human non-verbal communication to yield a series of impactful
consequences ranging from psychology to medicine. If machine
learning techniques can pick up on statistical regularities
between, for instance, emotional states and health conditions on
the one hand and patterns of molecules on the other, chemical
sensors can be developed to read this “smell language” in real
time. Promisingly, Imam and Cleland (2020) placed an array of
72 chemosensors (based on the architecture of the mammalian
olfactory bulb) in a wind tunnel, which rapidly learned and
identified odor representations, despite various sources of noise.
Given that body odor (itself susceptible to noise) contains
information about emotions (Smeets et al., 2020) and one’s health,
ranging from markers for Parkinson’s disease (Trivedi et al.,
2019), general inflammatory reactions (Olsson et al., 2014), to
possibly the presence of COVID-19 in sweat (Grandjean et al.,
2020), it would be intriguing to explore whether such algorithms
could be used to learn and identify the even more complex
language inherent to human odors.

The near future could see a rapid growth in the diagnostic
implementation of sweat odor analysis that could happen outside
of a lab or clinic in a person’s home, with the emergence
of novel smartphone-based biosensors (Brasier and Eckstein,
2019). Through these smartphone-based on-skin biosensors,
sweat compounds could become broadly available in databases
as digital biomarkers. Such an in-home approach is expected to
have a major influence on clinical and outpatient care, and could
even prevent infectious diseases from spreading by suggesting
self-quarantining. The impact of these biosensors may extend to
therapeutic settings, where the smell-based detection of patients’
emotions (or lack thereof) could provide an insightful role in
(online) therapeutic sessions. In sum, physicians and clinicians
could foresee their instrumentation being expanded in the future
by sensors and machine learning to more quickly, accurately,
and safely get a grip on a disease or clinical problems and their
prognosis (Chen et al., 2019).

CONCLUSION

Although scientific evidence has shown that the sense of smell
serves a number of crucial functions in the daily life of humans,

including social communication (e.g., Stevenson, 2010; de Groot
et al., 2017; McGann, 2017), the idea that humans are micro
smellers has remained hardwired among scientists and laypeople.
However, through smell, humans can (unwillingly) convey
information about a person. These initial advances were generally
obtained under the most sterile conditions, by single research
groups from the perspective of a single discipline. Although
initially fruitful, we caution that continuing this experimental
tradition will stall scientific progress toward a broader, deeper,
and quicker understanding of non-verbal communication via
smell. In the quest for discovering the real-world impact of social
smells in diverse samples across diverse settings, we focused on
the importance of ecological testing conditions, multidisciplinary
research, and open collaborations to populate high dimensional
databases, with machine learning approaches “making sense” of
the complicated statistical regularities between smell molecules
and physical or psychological conditions (the science of
sociochemistry). By informing us about food, danger, health,
and hygiene, olfaction serves a crucial role in human life, and
so much so, that losing our sense of smell dramatically reduces
the quality of our life. Our invitation for a better fundamental
and practical understanding of the language of human smells
opens up a multitude of (technological) possibilities, including
tailor-made or world-wide clinical and societal applications
proportionate to the scale at which human odors non-verbally
communicate information from a sender to a recipient, whether
human or machine.
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Roberts, S. C., Havlíček, J., and Schaal, B. (2020). Human olfactory communication:
current challenges and future prospects. Philos. Trans. R. Soc. B 375:20190258.
doi: 10.1098/rstb.2019.0258

Sanchez-Lengeling, B., Wei, J. N., Lee, B. K., Gerkin, R. C., Aspuru-Guzik, A., and
Wiltschko, A. B. (2019). Machine Learning for Scent: Learning Generalizable
Perceptual Representations of Small Molecules. Available online at: http://arxiv.
org/abs/1910.10685 (accessed September 16, 2020).

Schaal, B., and Porter, R. H. (1991). Microsmatic humans” revisited: the generation
and perception of chemical signals. Adv. Study Behav 20, 135–199. doi: 10.1016/
S0065-3454(08)60321-6

Schaal, B., Saxton, T. K., Loos, H., Soussignan, R., and Durand, K. (2020).
Olfaction scaffolds the developing human from neonate to adolescent and
beyond. Philos. Trans. R. Soc. B Biol. Sci. 375:20190261. doi: 10.1098/rstb.20
19.0261

Simons, D. J., Shoda, Y., and Lindsay, D. S. (2017). Constraints on Generality
(COG): a proposed Addition to All Empirical Papers. Perspect. Psychol. Sci. 12,
1123–1128. doi: 10.1177/1745691617708630

Singh, P. B., Young, A., Lind, S., Leegaard, M. C., Capuozzo, A., and Parma, V.
(2018). Smelling anxiety chemosignals impairs clinical performance of dental
students. Chem. Senses 43, 411–417. doi: 10.1093/chemse/bjy028

Smeets, M. A. M., Rosing, E. A. E., Jacobs, D. M., van Velzen, E., Koek, J. H., Blonk,
C., et al. (2020). Chemical fingerprints of emotional body odor. Metabolites
10:84. doi: 10.3390/metabo10030084

Snitz, K., Perl, O., Honigstein, D., Secundo, L., Ravia, A., Yablonka, A., et al. (2019).
Smellspace: an odor-based social network as a platform for collecting olfactory
perceptual data. Chem. Senses 44, 267–278. doi: 10.1093/chemse/bjz014

Snitz, K., Yablonka, A., Weiss, T., Frumin, I., Khan, R. M., and Sobel, N. (2013).
Predicting odor perceptual similarity from odor structure. PLoS Comput. Biol
9:3184. doi: 10.1371/journal.pcbi.1003184

Sorokowski, P., Karwowski, M., Misiak, M., Marczak, M. K., Dziekan, M., Hummel,
T., et al. (2019). Sex differences in human olfaction: a meta-analysis. Front.
Psychol. 10:242. doi: 10.3389/fpsyg.2019.00242

Stevenson, R. J. (2010). An initial evaluation of the functions of human olfaction.
Chem. Senses 35, 3–20. doi: 10.1093/chemse/bjp083

Stilo, F., Liberto, E., Reichenbach, S. E., Tao, Q., Bicchi, C., and Cordero, C. (2019).
Untargeted and targeted fingerprinting of extra virgin olive oil volatiles by
comprehensive two-dimensional gas chromatography with mass spectrometry:
challenges in long-term studies. J. Agric. Food Chem. 67, 5289–5302. doi: 10.
1021/acs.jafc.9b01661

Trivedi, D. K., Sinclair, E., Xu, Y., Sarkar, D., Walton-Doyle, C., Liscio, C., et al.
(2019). Discovery of volatile biomarkers of Parkinson’s disease from sebum.
ACS Cent. Sci. 5, 599–606. doi: 10.1021/acscentsci.8b00879

Williams, J., Stönner, C., Wicker, J., Krauter, N., Derstroff, B., Bourtsoukidis, E.,
et al. (2016). Cinema audiences reproducibly vary the chemical composition of
air during films, by broadcasting scene specific emissions on breath. Sci. Rep.
6:25464. doi: 10.1038/srep25464

Wyatt, T. D. (2015). The search for human pheromones: the lost decades and the
necessity of returning to first principles. Proc. R. Soc. B Biol. Sci. 282:20142994.
doi: 10.1098/rspb.2014.2994

Wyatt, T. D. (2020). Reproducible research into human chemical communication
by cues and pheromones: learning from psychology’s renaissance. Philos. Trans.
R. Soc. B 375:20190262. doi: 10.1098/rstb.2019.0262

Wysocki, C. J., and Gilbert, A. N. (1989). National geographic smell survey: effects
of age are heterogeneous. Ann. N.Y. Acad. Sci. 561, 12–28. doi: 10.1111/j.1749-
6632.1989.tb20966.x

Yeshurun, Y., and Sobel, N. (2010). An odor is not worth a thousand words: from
multidimensional odors to unidimensional odor objects. Annu. Rev. Psychol.
61, 219–241. doi: 10.1146/annurev.psych.60.110707.163639

Zarzo, M. (2011). Hedonic judgments of chemical compounds are correlated with
molecular size. Sensors 11, 3667–3686. doi: 10.3390/s110403667

Zhou, W., and Chen, D. (2009). Fear-related chemosignals modulate recognition
of fear in ambiguous facial expressions. Psychol. Sci. 20, 177–183. doi: 10.1111/
j.1467-9280.2009.02263.x

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 de Groot, Croijmans and Smeets. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 9 October 2020 | Volume 11 | Article 581701

https://doi.org/10.2210/PDB6SLF/PDB
https://doi.org/10.1177/0956797613515681
https://doi.org/10.1177/0956797613515681
https://doi.org/10.1007/978-3-319-26932-0
https://doi.org/10.1093/chemse/bjaa041
https://doi.org/10.1093/chemse/bjaa041
https://doi.org/10.1016/j.ijpsycho.2009.07.008
https://doi.org/10.1098/rstb.2019.0270
https://doi.org/10.1098/rsif.2006.0182
https://doi.org/10.1038/nn1819
https://doi.org/10.1016/0031-9384(91)90413-I
https://doi.org/10.1371/journal.pone.0005987
https://doi.org/10.1093/gerona/gly169/5057054
https://doi.org/10.1073/pnas.1617357114
https://doi.org/10.1016/j.chroma.2019.02.027
https://doi.org/10.1016/j.chroma.2019.02.027
https://doi.org/10.1098/rstb.2019.0258
http://arxiv.org/abs/1910.10685
http://arxiv.org/abs/1910.10685
https://doi.org/10.1016/S0065-3454(08)60321-6
https://doi.org/10.1016/S0065-3454(08)60321-6
https://doi.org/10.1098/rstb.2019.0261
https://doi.org/10.1098/rstb.2019.0261
https://doi.org/10.1177/1745691617708630
https://doi.org/10.1093/chemse/bjy028
https://doi.org/10.3390/metabo10030084
https://doi.org/10.1093/chemse/bjz014
https://doi.org/10.1371/journal.pcbi.1003184
https://doi.org/10.3389/fpsyg.2019.00242
https://doi.org/10.1093/chemse/bjp083
https://doi.org/10.1021/acs.jafc.9b01661
https://doi.org/10.1021/acs.jafc.9b01661
https://doi.org/10.1021/acscentsci.8b00879
https://doi.org/10.1038/srep25464
https://doi.org/10.1098/rspb.2014.2994
https://doi.org/10.1098/rstb.2019.0262
https://doi.org/10.1111/j.1749-6632.1989.tb20966.x
https://doi.org/10.1111/j.1749-6632.1989.tb20966.x
https://doi.org/10.1146/annurev.psych.60.110707.163639
https://doi.org/10.3390/s110403667
https://doi.org/10.1111/j.1467-9280.2009.02263.x
https://doi.org/10.1111/j.1467-9280.2009.02263.x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

	More Data, Please: Machine Learning to Advance the Multidisciplinary Science of Human Sociochemistry
	Introduction
	Past Research: Simplifying a Complex Problem
	Problem I: Small Scale, Slow Speed
	Problem II: Generality of Findings
	Problem III: Unidisciplinary Research

	Prospective Advances
	Multidisciplinary Approach: Deciphering the Alphabet of Social Smells
	Ecological Validity: A Broadly Shared, Widely Used Social Smell Language?
	Machine Learning: Solving the Big Data Challenge Ahead of Us

	Database-Building: Back to the Future
	Technology Supporting Societal and Clinical Impact
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


