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Deficits in impulse control and attention are prominent in the symptomatology of mental disorders such as attention deficit
hyperactivity disorder (ADHD), substance addiction, schizophrenia, and bipolar disorder, yet the underlying mechanisms are
incompletely understood. Frontostriatal structures, such as the nucleus accumbens (NAcb), the medial prefrontal cortex
(mPFC), and their dopaminergic innervation from the ventral tegmental area (VTA) have been implicated in impulse control
and attention. What remains unclear is how the temporal pattern of activity of these VTA projections contributes to these
processes. Here, we optogenetically stimulated VTA dopamine (DA) cells, as well as VTA projections to the NAcb core
(NAcbC), NAcb shell (NAcbS), and the mPFC in male rats performing the 5-choice serial reaction time task (5-CSRTT). Our
data show that stimulation of VTA DA neurons, and VTA projections to the NAcbC and the mPFC immediately before pre-
sentation of the stimulus cue, impaired attention but spared impulse control. Importantly, in addition to reducing attention,
activation of VTA-NAcbS also increased impulsivity when tested under a longer intertrial interval (ITI), to provoke impulsive
behavior. Optogenetic stimulation at the beginning of the ITI only partially replicated these effects. In sum, our data show
how attention and impulsivity are modulated by neuronal activity in distinct ascending output pathways from the VTA in a
temporally specific manner. These findings increase our understanding of the intricate mechanisms by which mesocorticolim-
bic circuits contribute to cognition.
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Significance Statement

Deficits in impulse control and attention are prominent in the symptomatology of several mental disorders, yet the brain
mechanisms involved are incompletely understood. Since frontostriatal circuits have been implicated in impulse control and
attention, we here examined the role of ascending projections from the midbrain ventral tegmental area (VTA) to the nucleus
accumbens (NAcb) and prefrontal cortex (PFC). Using optogenetics to individually stimulate these projections with time-
locked precision, we distinguished the role that each of these projections plays, in both impulse control and attention. As
such, our study enhances our understanding of the neuronal circuitry that drives impulsive and attentive behavior.

Introduction
Attention and impulse control are cognitive processes which are
essential for adaptive behavior. Deficits in these processes contribute
to the symptomatology of mental disorders such as schizophrenia,
bipolar disorder, substance addiction and attention deficit hyperac-
tivity disorder (ADHD; Moeller et al., 2001; de Wit, 2009; Fineberg
et al., 2014; Dalley and Robbins, 2017). A better understanding of
the precise neural underpinnings of attention and impulse control
would therefore open new avenues to treat these disorders.

The 5-choice serial reaction time task (5-CSRTT) is a transla-
tional task of cognition, widely used to study the neural circuitry
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of impulse control and attention (Rosvold et al., 1956; Robbins,
2002; Bari et al., 2008; Voon et al., 2014). In this task, attention is
assessed by measuring how often and accurately an animal
responds to an instruction cue, whereas impulsive action is eval-
uated by testing how well an animal can withhold from respond-
ing until the cue is presented. Impulse control and attention in
the 5-CSRTT are modulated by frontostriatal circuits and their
monoaminergic innervation, of which dopamine (DA) has been
most widely investigated (Pattij and Vanderschuren, 2008; Eagle
and Baunez, 2010; Baarendse and Vanderschuren, 2012; Dalley
and Robbins, 2017). We recently found that chemogenetically
facilitating the activity of DA neurons in the ventral tegmental
area (VTA), the main DAergic input to the nucleus accumbens
(NAcb) and the medial prefrontal cortex (mPFC), increased
the number of omitted responses, without altering impul-
sive behavior (Boekhoudt et al., 2017). This latter finding is
inconsistent with previous work implicating NAcb DA in
impulsive behavior in the 5-CSRTT (Cole and Robbins,
1987, 1989; Pattij et al., 2007; Pezze et al., 2007; Besson et
al., 2010; Economidou et al., 2012). Importantly, within the
NAcb, its core and shell sub-regions have been proposed to
have distinct roles in modulating impulsive behavior
(Dalley et al., 2007; Pattij et al., 2007; Sesia et al., 2008;
Besson et al., 2010; Economidou et al., 2012), so that simul-
taneous chemogenetic stimulation of core and shell DA
neurotransmission may induce effects on impulsivity that
cancel out each other. Regarding attention, infusion of DA
receptor antagonists into the NAcb has been found to
increase the number of omissions (Pattij et al., 2007; Pezze
et al., 2007). However, infusions of DA agonists yielded
mixed effects (Cole and Robbins, 1987; Pezze et al., 2007;
Besson et al., 2010; Economidou et al., 2012). In other work,
lesions of the mPFC increased premature responses and
omissions (Chudasama et al., 2003) and decreased response
accuracy (Passetti et al., 2002) whereas intra-mPFC infu-
sion of methylphenidate only marginally affected omissions
(Economidou et al., 2012). These distinctions highlight the
need to further assess the role of forebrain DA innervation
in attention and impulse control.

In the present study, we exploited the temporal precision of
optogenetic methods to assess how ascending VTA projections
contribute to attention and impulse control in the 5-CSRTT. We
separately stimulated VTA DA neurons as well as the VTA pro-
jections toward the mPFC, NAcb core (NAcbC), and NAcb shell
(NAcbS), during baseline conditions, as well as during sessions
with an elongated intertrial interval (ITI), resulting in increased
impulsivity (Dalley et al., 2007; Baarendse and Vanderschuren,
2012; Boekhoudt et al., 2017). We expected that optogenetic
stimulation of specific populations of VTA neurons within par-
ticular time-windows in the 5-CSRTT would reveal effects that
may have been obscured after pharmacological or chemogenetic
manipulations. Specifically, we predicted that VTA DA neuron
activation alters attentive but not impulsive behavior, consistent
with our previous chemogenetic study (Boekhoudt et al., 2017).
Moreover, on the basis of previous pharmacological studies, we
expected that activation of VTA-NAcbS, VTA-NAcbC and
VTA-mPFC projections would decrease attention (Cole and
Robbins, 1987; Pezze et al., 2007; Besson et al., 2010;
Economidou et al., 2012). We also predicted changes in prema-
ture responses when activating VTA-NAcbC or VTA-NAcbS
projections, resonating with the mixed findings in the literature
(Murphy et al., 2000; Pezze et al., 2007; Besson et al., 2010;
Economidou et al., 2012).

Materials and Methods
Animals
All animals were bred in-house by crossing heterozygote male rats
expressing the Cre enzyme in tyrosine hydroxylase (TH)-expressing
neurons (TH::Cre1/�; 3.1 line; Witten et al., 2011) with wild-type
female Long–Evans rats (Charles River). Twenty-two TH::Cre1/�
males and 40 male wild-type (TH::Cre�/�) littermates were used in
this study. The animals were socially housed in Type III Macrolon
cages until surgery, after which they were individually housed to
prevent damage to the chronic fibers. They were housed under a 12/
12 h reverse day/night cycle (lights on at 7 P.M.) in a temperature-
controlled (20–22°C) and humidity-controlled (60–70%) room. All
animals were approximately three months old and weighed 250–300
g when 5-CSRTT training commenced. They were food restricted to
90% of the free feeding weight throughout the experiment. All
experiments were approved by the Animal Ethics committee of
Utrecht University and were conducted in accordance with Dutch
Laws (Wet op de Dierproeven, 1996) and European guidelines (86/
609/EEC).

Surgery
Animals were anesthetised by intramuscular injection of Hypnorm
(0.315mg/kg fentanyl, 10mg/kg fluanisone; Janssen Pharmaceutica) and
placed in a stereotaxic frame (Kopf Instruments). Xylocaine (lidocaine
100mg/ml, AstraZeneca) was applied to the skull as a local analgesic. All
animals (except for the control group, see below) received a 1ul bilateral
injection of AAV5-Ef1a-DIO-hChR2-(H134R)-EYFP (7.4� 1012 mole-
cules/ml; UNC Vector Core) into the VTA (�5.80 AP, 11.60 ML,
�8.40 DV; 5° angle) along with a chronic optic fiber (210–240 mm,
0.22NA; Precision Fiber Products) inserted 0.5 mm above the injection
site (�7.90 DV). TH::Cre�/� animals also received 0.5-ml bilateral
injections of Cav2-Cre (1.0� 1012 molecules/ml) into either the NAcbC
(11.20 AP, 11.60 ML, �6.80 DV; 0° angle), the NAcbS (11.20 AP,
12.70 ML, �7.50 DV; 10° angle), or the mPFC (12.70 AP, 11.20 ML,
�5.70 DV; 10° angle). The control group consisted of TH::Cre1/� rats
that received infusion of an inactive virus (AAV5-Ef1a-DIO-EYFP, 3 -
� 1012 molecules/ml; UNC Vector Core) into the VTA. Animals were
given Carprofen (5.0mg/kg Carporal, AST Farma) for pain relief, imme-
diately after surgery and for two consecutive days thereafter.

Behavioral set-up
5-CSRTT training and testing was conducted as previously described
(Baarendse and Vanderschuren, 2012; Boekhoudt et al., 2017). In brief,
the rats were trained to respond into one of five nose-poke holes, that
pseudo-randomly illuminated for 1 s (5-s limited hold), to earn sucrose
pellets. Once all animals performed at criterion (i.e., .70% correct
responses) they underwent surgery. After surgery, all animals were
retrained and habituated to being attached to optic fibers, and to the
laser light, until performance levels returned to presurgery levels, which
took approximately two to threeweeks.

A nose-poke into the illuminated hole within the limited hold period
was counted as a correct response, rewarded by delivery of a sucrose pel-
let. After a correct response, the next trial was initiated when the animal
retrieved the sucrose pellet, as detected by an entry into the food-port. A
response in one of the non-illuminated holes was recorded as an incor-
rect response, a failure to respond within the limited hold period as an
omission, and a nose-poke during the ITI as a premature response.
Incorrect responses, omissions, and premature responses were pun-
ished with a 5-s timeout, during which stimulus lights were
switched off and the house light was switched on; the next trial
commenced after the timeout. Repeated responses in one of the
nose-poke holes were recorded as perseverative responses but had
no programmed consequences. Accuracy was defined as percent-
age of correct responses relative to total responses [correct/(cor-
rect 1 incorrect) � 100%]. Latencies to respond (premature,
correct, incorrect, and food magazine entry) were recorded as well.
Sessions lasted for 100 trials or 30 min, whichever occurred first.
During the 7-s ITI challenge, the number of trials was increased to
200 and the duration to 1 h to incorporate within session.
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Experiments
Five groups of rats were tested. The first group consisted of TH::Cre1/�
animals (n= 16), used to target DAergic neurons in the VTA. Wild-type
TH::Cre�/� littermates were subdivided further into three groups, to
target projections from the VTA to the NAcbC (n=11); projections from
the VTA to the NAcbS (n=9); to target projections from the VTA to the
mPFC (n=13). The fifth group (n=5) consisted of TH::CRE1/� rats
that received infusion of a control virus (AAV5-Ef1a-DIO-EYFP) virus
into the VTA. The effects of optogenetic stimulation were tested under
three conditions: (1) baseline 5-s ITI conditions with stimulation at the
end of the ITI; (2) under a longer ITI condition (i.e., 7 s instead of 5 s), to
provoke premature responding (Dalley et al., 2007; Baarendse and
Vanderschuren, 2012; Boekhoudt et al., 2017); (3) under 5-s ITI condi-
tions with a stimulation time point starting at the onset of the ITI, instead
of before presentation of the stimulus cue. All groups progressed through
the three conditions in the order presented except for the VTA DA group
which began with the ITI onset stimulation, then was tested under the 5-s
ITI baseline (end of ITI stimulation) and ended with the 7-s ITI condition.

Optogenetics
Lasers (Changchun New Industries Optoelectronics) were attached to
rotary joints (DORIC) via a mono fiber-optic patch cord (NA 0.22, 200-
mm core diameter, DORIC). The rotary joint was connected to chronic
fibers implanted into the animal’s brain via two patch cords (NA 0.22,
127–130 mm, THORLABS). During testing and training, a small piece of
black tape was wrapped around the chronic optic fibers to prevent light
leakage from the laser. During “mock” stimulations, a small piece of gray
foam was inserted inside the sleeve connecting the patch cords to the
chronic optic fibers to prevent light from entering the brain but allowing
the laser to minimally shine on the head mount.

All stimulations were done for 3 s at a frequency of 20Hz with 5-ms
pulse width to maximize DA release (Adamantidis et al., 2011). During
baseline sessions, the laser would turn on at 1.5 s into the ITI and turn
off 3 s later, 0.5 s before the onset of the stimulus cue. During the 7-s ITI
challenge sessions, the laser would turn on 3.5 s into the ITI and turn off
3 s later, again 0.5 s before stimulus cue onset. During the ITI onset ses-
sions, the laser would turn on immediately at the onset of the ITI and
turn off 3 s later, i.e., 2 s before stimulus cue onset. The laser was turned
off before cue onset to avoid laser light overflow from interfering with
the stimulus cue. Moreover, stimulating VTA projections during or after
cue presentation may have interfered with reward prediction error proc-
esses (Schultz et al., 1997), hence stimulation was kept within the ITI
timeframe. Mock stimulations were always done the day before stimula-
tion. Laser intensity was maintained at approximately 10 mW, which
was measured before and after stimulation. If a session showed a sub-
stantial decrease in laser intensity (more than 2 mW), that session would
be discarded and repeated the next week. In total each animal received
three laser stimulation sessions (5-s ITI, 7-s ITI, and onset 5-s ITI),
excluding any sessions that had to be repeated because of laser intensity
issues. Animals only underwent optogenetic stimulation if they had
shown stable performance (,10% variation in accuracy and omissions)
over the previous 2 d. Animals were removed from the experiment if
they lost their chronic fiber headcaps.

Immunohistochemistry
Immunohistochemistry was performed as previously described
(Boekhoudt et al., 2017). Briefly, animals were anaesthetized using a le-
thal dose of pentobarbital (0.1 ml/100 g; Euthanimal, Alfasan BV) and
transcardially perfused with 0.9% saline followed by 4% paraformalde-
hyde (PFA) in PBS. Brain slices (40mm) were made using a Leica cryo-
stat and subsequently stained for TH and enhanced yellow fluorescent
protein (EYFP) using mouse anti-TH (EMD Millipore, 1:500) and
chicken anti-EYFP (Sigma-Aldrich, 1:500). Animals that showed no
ChR2 expression in the VTA were removed from the analysis (13 ani-
mals in total across all groups).

Data analysis
All statistical analyses were performed using GraphPad Prism
(GraphPad Software). For tests under baseline conditions, mock and

stimulation sessions were compared. For the long ITI session, we com-
pared laser and no laser trials within a session. Comparisons between
sessions or trials were done using a paired Student’s t test. When data
were not normally distributed (as checked using a Shapiro–Wilk test), a
Wilcoxon matched-pairs signed rank test was performed instead. When
calculating differences between latencies, some animals failed to make
premature or incorrect responses thereby reducing the number of paired
comparisons for that particular parameter. In view of the large number
of t tests performed in this study, rather than correcting for multiple test-
ing, we chose a low a significance level of 0.025 to reduce the chance of
Type I errors. As the parameters were not independent, correcting for all
comparisons would be too stringent.

One animal from the TH::Cre1/� control group, three animals
from the TH::Cre�/� NAcbC group, one animal from the TH::Cre�/�
NAcbS and one animal from the mPFC group were removed because of
optic fiber loss or lack of ChR-2 expression. Additionally, one animal
from the TH::Cre�/� NAcbC group died during surgery and another
animal from the TH::Cre�/� mPFC group was removed because of
incorrect optic fiber placement (wrong angle). Furthermore, before the
7-s ITI stimulation session, 6 animals from the VTA DA group, three
animals from the NAcbC group, and four animals from the mPFC group
were removed from the study as a result of losing one or more of their
optic fibers. For the ITI onset stimulation, one animal was removed
from the NAcbC group and 2 animals were removed from the PFC
group. Within the VTA DA group, one animal was removed from the
study before 5-s ITI baseline stimulation because of fiber optic loss.

Results
Activating VTA dopaminergic neurons decreases attention
We stimulated VTA DA neurons in TH::Cre1/� rats in vivo to
determine how time-locked increments in DA neurotransmis-
sion before stimulus cue presentation affect 5-CSRTT perform-
ance (Fig. 1A–G). Stimulation of VTA DA neurons reduced the
number of correct responses (t(14) = 5.4, p= 0.0001; Fig. 1B) and
increased errors of omission (t(14) = 5.11, p= 0.0002; Fig. 1E).
Incorrect responses, accuracy and premature responses were not
affected [t(14) = 0.23, p= 0.81 (Fig. 1C); t(14) = 1.47, p=0.16 (Fig.
1D); t(14) = 0.33, p= 0.75, respectively (Fig. 1F)]. In addition, la-
tency to correct responses (t(14) = 4.05, p=0.0012; Table 1) were
increased. The latency to retrieve the reward (t(14) = 0.06,
p= 0.95; Fig. 1G), latency to premature responses (t(14) = 0.05,
p= 0.95; Table 1) and perseverative responses (W = �40, p =
0.12; Table 1) remained unaffected, whereas there was a trend to-
ward an increased latency to incorrect responses (t(14) = 2.35,
p= 0.03; Table 1). Optogenetic stimulation in control animals
did not alter any of the parameters in the 5-CSRTT [t(4) = 0.63,
p= 0.56 (Fig. 2A); t(4) = 1.18, p= 0.3 (Fig. 2B); t(4) = 0.94, p=0.40
(Fig. 2C); t(4) = 1.81, p= 0.14 (Fig. 2D); t(4) = 1.39, p=0.23 (Fig.
2E); t(4) = 0.76, p = 0.49 (Fig. 2F)].

Stimulating VTA-NAcbS projections reduces attention
Stimulation of VTA projections to the NAcbS (Fig. 3A–G) signif-
icantly reduced the number of correct responses, and increased
omissions [t(8) = 3.86, p= 0.005 (Fig. 3B) and t(8) = 3.26, p=0.01
(Fig. 3E), respectively]. Stimulation of this pathway tended to
increase the number of premature responses (t(8) = 2.49,
p= 0.037; Fig. 3F); this trend was driven by five out of nine ani-
mals. Stimulation had no effect on incorrect responses, accuracy,
or the latency to retrieve the reward [t(8) = 1.31, p= 0.29 (Fig.
3C); t(8) = 1.44, p=0.19 (Fig. 3D); t(8) = 1.42, p= 0.19 (Fig. 3G),
respectively]. Incorrect responses were made significantly sooner
during stimulation (t(8) = 3.97, p= 0.004; Table 1), but the latency
to correct responses (t(8) = 0.4, p=0.70; Table 1), premature
responses (t(8) = 1.57, p=0.16; Table 1) and the number of
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perseverative responses (W = �18, p= 0.30; Table 1) remained
unaltered.

Stimulating VTA-NAcbC projections impairs attention
Stimulation of VTA projections to the NAcbC (Fig. 4A–G)
decreased the number of correct responses (t(10) = 3.56,
p=0.005; Fig. 4B) and increased errors of omission (t(10) = 3.81,
p=0.003; Fig. 4E). Incorrect responses, accuracy and premature
responses remained unchanged [t(10) = 1.01, p= 0.3 (Fig. 4C);
t(10) = 1.28, p= 0.2 (Fig. 4D); t(10) = 0.73, p= 0.5 (Fig. 4F), respec-
tively]. The number of perseverative responses (t(10) = 1.15,

p= 0.28; Table 1) and the latency to retrieve the reward (t(10) =
2.25, p=0.05; Fig. 4G) latency to correct (t(10) = 0.63, p= 0.54;
Table 1), latency to premature (t(10) = 0.96, p=0.36; Table 1) and
latency to incorrect responses (t(9) = 0.81, p= 0.43; Table 1) were
not affected by stimulation of the VTA-NAcbC pathway.

Stimulating VTA-mPFC projections decreases attention
Stimulating the VTA projection to the mPFC (Fig. 5A) evoked a
decrease in accuracy (t(12) = 4.6, p=0.0005; Fig. 5D) and
increased the number of incorrect responses (t(12) = 4.85,
p= 0.0004; Fig. 5C). Errors of omission (t(12) = 0.23, p=0.82; Fig.
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Figure 1. Stimulation of VTA DA neurons during the 5-CSRTT in TH::Cre1/� rats. A, Infusion of the Cre-dependent AAV5-Ef1a-DIO-hChR2-(H134R)-EYFP viral vector into the VTA of TH::
Cre1/� rats (left). Immunofluorescence of TH (red) and ChR2-EYFP (green) in the VTA (right). Diagram depicting the 5-CSRTT with an ITI of 5 s and a stimulus cue light of 1 s (bottom). B–G,
Correct responses, incorrect responses, accuracy, omissions, premature responses, and latency to retrieve the reward during mock and stimulation sessions, respectively (n= 15). Stimulation
took place in the last 3 s of the ITI at 20 Hz. Data are presented as mean 6 SEM; pp , 0.025 when compared with mock stimulation (paired sample Student’s t test); # indicates a trend
0.025, p, 0.05.
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5E), and premature responses (t(12) = 0.4, p = 0.7; Fig. 5F),
were not affected by stimulation, but there was a trend to-
ward a decrease in the number of correct responses (t(12) =
2.2, p = 0.046; Fig. 5B). Additionally, latency to reward
(t(12) = 0.04, p = 0.9719; Fig. 5G) as well as perseverative
responses, and correct, premature, and incorrect latencies
were not affected by stimulation (W = �27, p = 0.17; W =
20, p = 0.46; W = �31, p = 0.97; t(11) = 1.3, p = 0.23, respec-
tively; Table 1).

Effect of VTA DA, VTA-NAcbS, VTA-NAcbC, and VTA-
mPFC stimulation during a long ITI challenge
The 7-s ITI challenges were conducted within-session as shown
in Figure 7A. Stimulation of VTA DA neurons during a 7-s ITI
(Fig. 6B–F) reduced the number of correct responses (t(8) = 3.4,
p= 0.01; Fig. 6B), increased the number of omissions (t(8) = 3.2,
p= 0.012; Fig. 6E) but did not alter premature responses (t(8) =
0.32, p=0.75; Fig. 6F), incorrect responses (t(8) = 1.31, p= 0.23;
Fig. 6C) or accuracy (t(8) = 1.7, p= 0.13; Fig. 6D). Perseverative
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Table 1. Summary of perseverative responses and latency results in the 5-CSRTT

Perseverative responses

Latencies

Correct Reward Premature Incorrect

Mock Stim Mock Stim Mock Stim Mock Stim Mock Stim

VTA DA 5-s ITI 10.76 4.1 6.36 2.3 0.66 0.02 0 0.86 0.03 1.76 0.01 1.76 0.01 3.56 0.2 3.56 0.1 1.86 0.2 2.36 0.2
7-s ITI 3.86 1.7 1.86 0.1 0.66 0.03 0.76 0.04 1.66 0.2 1.66 0.2 3.96 0.3 3.76 0.6 0.86 0.2 1.16 0.2
onset 11.86 6.4 5.66 2.6 0.76 0.04 0.76 0.03 1.66 0.07 1.56 0.06 4.06 0.1 3.96 0.1 1.56 0.1 1.96 0.1

NAcbS 5-s ITI 4.76 1.7 3.36 0.1 0.66 0.02 0.66 0.03 1.76 0.07 1.66 0.06 4.16 0.1 3.96 0.2 2.26 0.2 1.46 0.1
7-s ITI 3.66 1.4 3.16 0.9 0.66 0.04 0.66 0.02 2.06 0.2 1.96 0.1 5.36 0.3 5.56 0.2 1.66 0.3 1.86 0.5
onset 6.46 2.1 5.86 2.2 0.66 0.03 0.66 0.03 1.96 0.2 1.76 0.08 3.66 0.5 3.76 0.1 1.86 0.3 1.36 0.3

NAcbC 5-s ITI 2.56 0.6 1.96 0.5 0.66 0.04 0.66 0.03 1.56 0.1 1.46 0.1 3.66 0.2 3.36 0.2 2.16 0.3 1.96 0.2
7-s ITI 1.16 0.5 1.46 0.5 0.66 0.04 0.66 0.06 1.56 0.1 1.56 0.1 3.76 0.5 3.46 0.5 1.36 0.1 1.26 0.1
onset 2.16 0.6 2.46 0.9 0.76 0.04 0.86 0.06 1.56 0.2 1.56 0.2 3.86 0.3 4.16 0.2 2.06 0.3 2.16 0.2

mPFC 5-s ITI 4.26 0.9 2.76 0.9 0.76 0.05 0.76 0.04 1.56 0.07 1.56 0.06 3.76 0.2 3.36 0.4 2.06 0.3 1.86 0.2
7-s ITI 1.76 1.2 1.26 1.4 0.56 0.07 0.66 0.08 1.56 0.2 1.56 0.2 4.46 0.4 4.06 0.4 1.06 0.2 1.56 0.5
onset 3.06 0.9 2.06 1.0 0.66 0.02 0.66 0.04 1.66 0.08 1.76 0.08 3.86 0.1 3.86 0.2 1.76 0.4 1.76 0.3

This table presents the mean number of perseverative responses, the latency to make a correct response, the latency to collect the reward, the latency to make a premature response, and the latency to make an incorrect
response for mock and laser stimulation sessions. The values are presented for the stimulation of the following: VTA DA neurons, VTA projections to the NAcbS, VTA projections to the NAcbC, and VTA projections to the mPFC.
The three task parameters shown here are baseline sessions 5-s ITI sessions where stimulation took place at the end of the ITI (before cue), challenge sessions where the ITI was increased to 7 s and stimulation took place at
the end of the ITI and 5-s ITI session where stimulation took place at beginning of the ITI (ITI onset). Bold italics represents p, 0.025 when compared with mock stimulation trials (paired samples Student’s t test or
Wilcoxon’s signed-ranked test when not normally distributed).
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responses, and the latencies to correct, reward, premature,
and incorrect responses were not affected by stimulation
(W = �15, p = 0.06; t(8) = 1.6, p = 0.14; t(8) = 1.7, p = 0.12;
t(8) = 0.40, p = 0.68; t(7) = 0.87, p = 0.41, respectively; Table
1). These observed changes were similar to those observed
during the 5-s ITI stimulation session.

Stimulation of VTA-NAcbS projections (Fig. 6G–K) increased
the number of premature responses (t(8) = 3.16, p=0.014; Fig. 6K)
and omissions (t(8) = 2.9, p=0.02; Fig. 6J), decreased the number of
correct responses (t(8) = 4.8, p=0.001; Fig. 6G) but did not alter ac-
curacy (t(8) = 1.1, p=0.31; Fig. 6I) or the number of incorrect
responses (t(8) = 1.8, p=0.12; Fig. 6H). Perseverative responses, and
the latencies to correct, reward, premature, and incorrect responses
were not affected by stimulation (W = 2, p=0.91; W = 8, p=0.66;
t(8) = 0.20, p=0.85;W = 13, p=0.50;W = 13, p=0.50, respectively;
Table 1). The observed changes were similar to those found during
the 5-s ITI stimulation session, and corroborated the observed trend
in premature responses

Stimulation of VTA-NAcbC projections (Fig. 6L–P) showed
an upwards trend in the number of premature responses (t(7) =

3.6, p=0.03; Fig. 6P). Moreover, unlike during the 5-s ITI ses-
sion, no effects were observed on correct responses (t(7) = 0.74,
p= 0.9; Fig. 6L) or omissions (t(7) = 0.91, p=0.4; Fig. 6O).
Incorrect responses (t(7) = 0.10, p=0.9; Fig. 6M), accuracy (t(7) =
0.18, p= 0.8; Fig. 6N) perseverative responses, and the latencies
to correct, reward, premature, and incorrect responses were not
affected by stimulation (W = 1, p=0.99; t(7) = 1.28, p= 0.24; t(7) =
0.71, p= 0.50;W =�16, p= 0.31; t(7) = 0.42, p=0.68, respectively;
Table 1).

Activating VTA-mPFC projections (Fig. 6Q–U) did not alter
correct responses (t(8) = 1.3, p=0.25; Fig. 6Q), incorrect
responses (t(8) = 1.4, p=0.213; Fig. 6R) or accuracy (t(8) = 1.2,
p= 0.26; Fig. 6S) in contrast to what we observed during the 5-s
ITI stimulation session. However, the number of omissions was
increased (t(8) = 2.9, p= 0.018; Fig. 6T). Premature responses
(t(8) = 1.6, p= 0.15; Fig. 6U), perseverative responses, or the laten-
cies to correct, reward, premature, and incorrect responses were
not affected by stimulation (W = 0, p=0.99; t(8) = 1.27, p= 0.24;
t(8) = 0.85, p= 0.42; t(8) = 1.0, p=0.35; t(8) = 2.0, p=0.08, respec-
tively; Table 1).
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Figure 3. Stimulation of VTA to NAcbS projections in the 5-CSRTT. A, Infusion of the Cre-dependent AAV5-Ef1a-DIO-hChR2-(H134R)-EYFP viral vector into the VTA and infusion of the retro-
grade viral vector Cav2-Cre into the NAcbS (left). Immunofluorescence of TH (red) and ChR2-EYFP (green) in the VTA (right). B–G, Correct responses, incorrect responses, accuracy, omissions,
premature responses, and latency to retrieve the reward during mock and stimulation sessions, respectively (n= 9). Stimulation took place in the last 3 s of the ITI at 20 Hz. Data are presented
as mean6 SEM; pp, 0.025 when compared with mock stimulation (paired sample Student’s t test); # indicates a trend 0.025, p, 0.05.
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Effect of VTA DA, VTA-NAcbS, VTA-NAcbC, and VTA-
mPFC stimulation during the ITI onset
Lastly, we sought to test the time-locked nature of our manipula-
tions by stimulating at the onset, instead of the end of the ITI
(Fig. 7). Stimulation of VTA DA neurons (Fig. 7A–E) at the start
of the ITI increased the number of omissions (t(15) = 4.4,
p=0.0005; Fig. 7D) and decreased correct responses (t(15) = 4.9,
p=0.0002; Fig. 7A), but it did not affect incorrect response, accu-
racy, or premature responses [t(15) = 0.17, p= 0.86 (Fig. 7B);
t(15) = 1.25, p= 0.23 (Fig. 7C); t(15) = 1.10, p=0.29 (Fig. 7E)]. It
also had no effect on correct, premature, or incorrect latencies
(t(15) = 1.30, p=0.21; t(14) = 0.24, p=0.81; t(15) = 2.1, p=0.054;
Table 1) but did decrease the number of perseverative responses
(W =�81, p= 0.008; Table 1) and marginally reduced the latency
to reward (t(15) = 4.81, p=0.0002; Table 1). In contrast to stimu-
lation at the end of the ITI, activating VTA projections toward
the NAcbS during the onset of the ITI (Fig. 7F–J) did not affect
correct responses, incorrect responses, accuracy, omission or
premature responses [t(8) = 1.9, p= 0.09 (Fig. 7F); t(8) = 0.43,
p=0.68 (Fig. 7G); t(8) = 0.06, p=0.94 (Fig. 7H); t(8) = 2.19,

p= 0.06 (Fig. 7I); t(8) = 0.87, p= 0.41 (Fig. 7J)]. It also did not
affect perseverative responses and correct, reward and incorrect
latencies (W = �13, p=0.49;W = 8, p= 0.66;W = �15, p= 0.42;
t(6) = 0.83, p=0.44, respectively; Table 1) but tended to increase
premature response latency (t(7) = 2,7; p= 0.03; Table 1).
Activation of VTA-NAcbC projections (Fig. 7K–O) increased
the number of omissions (t(6) = 3.0, p=0.02; Fig. 7N) and tended
to decrease correct responses (t(6) = 2.5, p=0.045; Fig. 7K) but
did not alter incorrect responses, accuracy, or premature
responses [t(6) = 0.30, p= 0.77 (Fig. 7L); t(6) = 0.55, p= 0.60 (Fig.
7M); t(6) = 0.4, p= 0.7 (Fig. 7O)]. It also did not affect persevera-
tive responses or correct, reward, premature, or incorrect laten-
cies (t(6) = 0.54, p=0.6; t(6) = 1.4, p=0.21; W = 0, p=0.99; t(5) =
0.90, p=0.41; t(6) = 0.47, p= 0.66, respectively; Table 1). Lastly,
stimulation of VTA projections to the mPFC during the ITI
onset had no effect on correct responses, incorrect responses, ac-
curacy, omission or premature responses [t = 0.83, p=0.43 (Fig.
7P); t(6) = 0.88, p= 0.41(Fig. 7Q); t(6) = 0.55, p=0.60 (Fig. 7R);
t(6) = 1.83, p=0.11 (Fig. 7S); t(6) = 0.57, p= 0.58 (Fig. 7T)] or on
perseverative responses or correct, reward, premature, or
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Figure 4. Stimulation of VTA to NAcbC projections in the 5-CSRTT. A, Infusion of the Cre-dependent AAV5-Ef1a-DIO-hChR2-(H134R)-EYFP viral vector into the VTA and infusion of the retro-
grade viral vector Cav2-Cre into the NAcbC (left). Immunofluorescence of TH (red) and ChR2-EYFP (green) in the VTA (right). B–G, Correct responses, incorrect responses, accuracy, omissions,
premature responses, and latency to retrieve the reward during mock and stimulation sessions, respectively (n= 11). Stimulation took place in the last 3 s of the ITI at 20 Hz. Data are pre-
sented as mean6 SEM; pp, 0.025 when compared with mock stimulation (paired sample Student’s t test); # indicates a trend 0.025, p, 0.05.

Flores-Dourojeanni et al. · VTA Projections, Impulsivity, and Attention J. Neurosci., May 12, 2021 • 41(19):4293–4304 • 4299



incorrect latencies (W = �7, p=0.64; W = 14, p= 0.30; t(6) =
1.33, p=0.23; t(5) = 0.16, p= 0.88; t(5) = 0.028, p=0.98, respec-
tively; Table 1).

Discussion
We determined how activation of ascending VTA projections
affects attention and impulse control in the 5-CSRTT. Our find-
ings show that time-locked optogenetic stimulation of VTA DA
neurons induces attentional impairments, by reducing the num-
ber of correct responses and increasing response omissions.
Stimulating VTA projections toward the NAcbC and the NAcbS
reproduced these attentional deficits. Importantly, activating
VTA-NAcbS projections also increased impulsive behavior when
the animals were tested under longer ITI conditions to provoke
impulsive behavior. Finally, stimulating VTA-mPFC projections
impaired attention by reducing accuracy. These effects strongly
depended on when stimulation was applied, as most of the effects
were only found when optogenetic stimulation was applied at

the end of the ITI. These results demonstrate a temporally spe-
cific role of different VTA output projections in distinct aspects
of attention and impulsive action.

Optogenetic stimulation of VTA DA cell bodies impaired
attention but did not alter impulsive behavior in the 5-CSRTT.
This is consistent with our previous findings of chemogenetic
stimulation of VTA DA neurons (Boekhoudt et al., 2017). A pre-
vious study found sustained increases in VTA DA cellular activ-
ity before stimulus presentation in a three-choice task, perhaps
reflecting preparatory attention (Totah et al., 2013). By disrupt-
ing these preparatory VTA DA signals, our stimulation protocol
may have induced a deficit in sustained attention. Consistently,
systemic treatment with amphetamine has also been shown to
increase omissions (Cole and Robbins, 1989; van Gaalen et al.,
2006; Pezze et al., 2007; Pattij and Vanderschuren, 2008; Besson
et al., 2010; Baarendse and Vanderschuren, 2012), although the
most well-known effect of amphetamine in the 5-CSRTT is to
increase premature responses and reduce response latencies.
This latter effect resonates with the involvement of DA in
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Figure 5. Stimulation of VTA to mPFC projections in the 5-CSRTT. A, Infusion of the Cre-dependent AAV5-Ef1a-DIO-hChR2-(H134R)-EYFP viral vector into the VTA and infusion of the retro-
grade viral vector Cav2-Cre into the mPFC (left). Immunofluorescence of TH (red) and ChR2-EYFP (green) in the VTA (right). B–G, Correct responses, incorrect responses, accuracy, omissions,
premature responses, and latency to retrieve the reward during mock and stimulation sessions, respectively (n= 13). Stimulation took place in the last 3 s of the ITI at 20 Hz. Data are pre-
sented as mean6 SEM; pp, 0.025 when compared with mock stimulation (paired sample Student’s t test); # indicates a trend 0.025, p, 0.05.
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incentive motivation (Robbins and Everitt, 2007; Salamone and
Correa, 2012) and reward-prediction error signaling (Schultz
et al., 1997). However, we hardly observed changes in response
or reward collection latencies. Thus, by restricting our manipula-
tion of VTA DA cells to timepoints outside of presentation of
the cue and the reward, we left task motivation and impulse con-
trol intact.

Stimulating either VTA-NAcbC or VTA-NAcbS projections
evoked similar attentional deficits as those seen during broad
VTA DA neuron activation. This concurs with the increases in
omissions after intra-NAcb amphetamine injections (Cole and
Robbins, 1989). However, intra-NAcb infusions of DA D1 or D2
receptor antagonists increased errors of omission, whereas intra-
NAcb infusion of a D1 receptor agonist decreased omissions, but
at a low dose only (Pezze et al., 2007; Moreno et al., 2013). These

findings suggest that optimal attentive performance depends on
a fine balance of NAcb DA activity, whereby the increase in
omissions after VTA-NAcbC and NAcbS stimulation may be
driven by overstimulation of DA D1 receptors. Furthermore, our
results suggest that ascending projections from the VTA to the
NAcbC and NAcbS play comparable roles in attentive behavior
in the 5-CSRTT (see also Pattij et al., 2007). Although stimula-
tion of the VTA-NAcb pathways is not specific to DA neurons,
we think that these effects are mediated by DA. Thus, ;80% of
the VTA neurons targeted are DAergic (Boender et al., 2014;
Verharen et al., 2018), and stimulation of the VTA-NAcb path-
ways yielded comparable results as stimulation of VTA DA cells.
The behavioral effects of stimulation of non-DA (GABAergic
and glutamatergic) ascending VTA projections are difficult to
reconcile with our findings, as stimulation of VTA GABA
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Figure 6. Stimulation of VTA DA neurons and VTA projections to the NAcbS, the NAcbC or the mPFC during a 7-s ITI challenge in the 5-CSRTT. A, Diagram depicting the 7-s ITI challenge of
the 5-CSRTT (left). Schematic showing the division of laser and no-laser trials within a session during a 7-s ITI challenge (right). B–F, Correct responses, incorrect responses, accuracy, omissions,
and premature responses during mock and stimulation trials for the VTA DA group (n = 9). G–K, As previous for the VTA to NAcbS group (n= 9).≙ one animal in J is not shown (out of upper
bounds). L–P, As previous for the NAcbC group (n= 8). Q–U, As previous for the VTA to mPFC group (n= 9). Data are presented as mean6 SEM; pp, 0.025 when compared with mock
stimulation trials (paired samples Student’s t test); # indicates a trend 0.025, p, 0.05.
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neurons did not result in motivational or attentional impair-
ments (van Zessen et al., 2012), stimulation of glutamatergic
VTA-NAcb fibers caused aversive responses (Qi et al., 2016) and
intra-NAcb infusion of a GABA-A receptor agonist resulted in a
profound overall reduction in 5-CSRTT task engagement (Feja
et al., 2014).

Previous studies have shown that NAcb DA plays a promi-
nent role in the modulation of premature responding in the 5-
CSRTT (Cole and Robbins, 1987, 1989; Pattij et al., 2007;
Economidou et al., 2012; Moreno et al., 2013). Indeed, we found
an increase in impulsive behavior during 7-s ITI sessions when
stimulating the VTA-NAcbS pathway, whereas a trend toward
this effect was observed when stimulation was applied during
baseline sessions. Stimulation of this pathway at the onset of the
ITI did not trigger an increase in premature responses, indicating
that modulation of impulse control by NAcbS mechanisms
occurs in a temporally precise manner. Previous single-unit
recordings have suggested that premature responding occurs
because of early ramping activity in the NAcb leading to a maxi-
mum of activity before the cue in the 5-CSRTT (Donnelly et al.,
2015). By stimulating neurons at the end of the ITI we may
therefore mimic the activity maxima in the NAcb associated with
premature responses, whereas ITI onset stimulation may not

increase NAcb activity such that it induces premature respond-
ing. We also found that the increases in premature responding
after VTA-NAcbS stimulation dissipated over the session (data
not shown), suggesting an adaptive mechanism wherein NAcb
cells adjust ramping activity to the stimulation.

Under baseline conditions, stimulation of the VTA-NAcbC
pathway did not increase premature responding. However,
under conditions when impulse control was challenged, using a
longer ITI, stimulation of the VTA-NAcbS increased premature
responses, whereas an upward trend in premature responses was
observed during stimulation under increased ITI conditions in
the NAcbC group. These findings indicate that the NAcbS, and
to a lesser degree the NAcbC, become particularly engaged under
higher cognitive load. The difference of effect between the
NAcbC and the NAcbS stimulation is supported by the findings
that DA dynamics in these regions differ between high-impulsive
versus low-impulsive rats (Diergaarde et al., 2008; Jupp et al.,
2013) and that treatment with DAergic drugs into the NAcbS
and NAcbC differentially affect premature responding in high-
impulsive versus low-impulsive rats in the 5-CSRTT (Besson et
al., 2010; Moreno et al., 2013).

Recent studies have shown that optogenetic stimulation of
VTA DA cells, as well as VTA-NAcb projections, is reinforcing
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Figure 7. Stimulation at ITI onset of VTA DA neurons and VTA projections to the NAcbS, the NAcbC or the mPFC in the 5-CSRTT. A–E, Correct responses, incorrect responses, accuracy, omis-
sions, and premature responses during mock and stimulation sessions for the VTA DA group (n = 16). F–J, As previous for the VTA to NAcbS group (n= 9). K–O, As previous for the NAcbC
group (n= 7). J, P–T, As previous for the VTA to mPFC group (n= 7). Data are presented as mean 6 SEM; pp, 0.025 when compared with mock stimulation session (paired samples
Student’s t test); # indicates a trend 0.025, p, 0.05.
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(Witten et al., 2011; Lammel et al., 2012; Ilango et al., 2014;
Pascoli et al., 2015; Hamid et al., 2016; Saunders et al., 2018).
Task performance may therefore have been disrupted as a result
of reinforcement of prestimulus task-irrelevant behaviors (i.e.,
grooming). It is important to note, however, that specific task-
irrelevant behaviors were not consistently reinforced, since there
was no contingency of any particular behavior with stimulation.
Also, task-relevant behaviors, such as scanning the stimulus light
array could have been reinforced as well, likely resulting in posi-
tive effects on task performance. Moreover, the pattern of effects
of VTA DA cell stimulation on attentional parameters is compa-
rable to our previous findings with chemogenetic VTA DA cell
stimulation, not restricted to certain task epochs or behaviors
(Boekhoudt et al., 2017). Thus, although we cannot rule out a
contribution of incidental reinforcement of task-irrelevant
behavior, it is improbable that this is driving the observed atten-
tional deficits.

The involvement of the mPFC in attention and impulsivity in
the 5-CSRTT has been extensively explored (Muir et al., 1996;
Robbins, 2002; Dalley et al., 2008). Our experiments found no
increases in premature responses when targeting the VTA-
mPFC projection. This falls in line with previous studies showing
no change in premature responding after infusion of methylphe-
nidate into the mPFC (Economidou et al., 2012), as well as the
lack of differences in mPFC DA neurotransmission between
high-impulsive and low-impulsive rats (Diergaarde et al., 2008;
Jupp et al., 2013). Thus, although the mPFC has been implicated
in inhibitory control (Muir et al., 1996; Robbins, 2002; Dalley et
al., 2008; Verharen et al., 2019), this is not driven by activity
stemming from the VTA (Verharen et al., 2020). Attentional per-
formance was significantly reduced when VTA-mPFC projec-
tions were stimulated, consistent with previous work showing
that response accuracy in the 5-CSRTT depends on optimal sig-
naling through DA D1 receptors (Granon et al., 2000). VTA-
mPFC inputs appeared to be particularly involved in attention
immediately before cue onset, as the attentive deficits were only
elicited when the VTA-mPFC projection was stimulated at the
end of the ITI. This reduction in attention was driven by a
decrease in accuracy, stemming from an increase in incorrect
responses. This is unlike the attentional reductions observed after
VTA DA and VTA-NAcb stimulations, which resulted from an
increase in omissions and a reduction in correct responses. Thus,
although stimulation of VTA-NAcb and the VTA-mPFC path-
ways both reduce attention, they do so through different mecha-
nisms: the former reduces attending to the cue, whereas the
latter increases the propensity of animals to make an incorrect
guess. Lastly, we did not observe reduced accuracy or increased
incorrect responses during the 7-s ITI challenge in the VTA-
mPFC group, perhaps because the increased cognitive load in
terms of behavioral inhibition that this challenge poses masks
any attentional deficits.

In conclusion, by stimulating ascending VTA neurons with pro-
jection-specificity and time-locked precision, we show dissociable
deficits in attention and impulse control in the 5-CSRTT.
Importantly, these deficits were mostly seen when stimulation was
applied immediately preceding stimulus cue presentation, demon-
strating that coordinated functional activity of distinct populations
of ascending VTA neurons is required when explicit direction of
cognitive resources at the source of information is needed.
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